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Chapter 1

Introduction

The first MAC protocol designed for wireless networks was Aloha. As opposed to prior point-to- point
computer communications, Aloha used a shared medium for transmission. Because of its very simple
mechanism, where each node just sends data with probability p, Aloha is widely studied and serves as a
basis for many of the MAC protocols being deployed nowadays in wired and wireless networks, such as
Ethernet and IEEE 802.11. Keeping the random access spirit of Aloha, a variety of MAC layer protocols
have been proposed for wireless ad-hoc networks. Many of these protocols use some variation of CSMA
(Carrier Sense Multiple Access), which improves the utilization of the channel by allowing nodes to
first listen to the medium and then decide whether to transmit or not. The main challenge of all these
protocols is to deal with the hidden terminal problem, which makes it tricky to take preventive measures
against collisions, since two sending nodes may not be within mutual reach of each other and therefore
not be able to sense that the other is transmitting to the same receiver, for example.

1.1 Interference Model

In this thesis we aim to analyse, through simulations, the performances of MAC protocols for wireless
ad-hoc networks in the SINR (Signal-to-Interference-plus-Noise-Ratio) interference model are compared.
In the SINR model, the energy of a signal fades with the distance to the power of the path-loss exponent
α. If the signal strength received by a device divided by the interfering strength of competitor transmit-
ters is above some threshold β, the receiver can decode the message, otherwise it cannot.

Px

dα
xy

N + Iy

≥ β (1.1)

,
Where Px is the power level of the transmission, dxy is the distance between nodes x and y, α > 2 is the
path loss exponent, which depends on external conditions of the medium, β ≥ 1 denotes the minimum
signal to interference ratio requires for a message to be successfully received, N is the ambient noise, and
Iy is the total amount of interference experienced by ther receiver y. This interference, which is caused
by all simultaneously transmitting nodes in the network is defined as follows:

Iy =
∑

vǫ\V x

Pv

dα
vy

(1.2)

We assume here that all nodes transmit with the same power level.
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1.2 Simulation Framework

We use a network simulator developed by the Distributed Computing Group, called Sinalgo [11]. Sinalgo
is a simulation framework for testing and validating network algorithms. Unlike most other network
simulators, which spend most time simulating the different layers of the network stack, Sinalgo focuses
on the verification of network algorithms, and abstracts from the underlying layers: It offers a message
passing view of the network, which captures well the view of actual network devices. Sinalgo was designed,
but is not limited to simulate wireless networks.

1.3 Extension to Framework

We developed a tool, called simtest, in order to get reliable results and to automate the execution of
many simulation calls and produce graphical representation. This extension runs several simulations
in batch mode and generates graphics from its output. It provides an easy interface to specify input
variables and output parameters to generate the graphics using gnuplot [12]. The program runs several
simulations (according to specification) and generates the graphics from the mean vales to reduce the
variance. Furthermore it calculates and plots variances for all outputparameters and stores the rawdata
separately to review the Sinalgo simulation output. With some configuration simtest makes it possible
to analyse or compare one or more protocols with a single command.

1.4 MAC Protocols

The Media Access Control (MAC) data communication protocol sub-layer is a part of the data link layer
specified in the seven-layer OSI model . It provides channel access control mechanisms that makes it
possible for several terminals or network nodes to communicate within a network. The MAC protocol
handles the multiuser medium access. Since in a radio network the air is the transmission medium, a
MAC protocol for wireless networks determines its access rules for transmission.

1.5 Thesis Overview

This thesis is organized as follows. In Chapter 2 the Sinalgo simulator and the simtest program are
introduced. In Chapter 3 we describe the protocols analysed in Chapter 4 and their implementation in
Sinalgo. In Chapter 4 we present all simulation results, and in Chapter 5 we examine the results and
analyse the protocols.
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Chapter 2

Simulation Framework

In this chapter, the simulation framework and its extension are described.

2.1 Sinalgo

Sinalgo is a Java based wireless network protocol simulator. The synchronous time-slot environment is
chosen to set the protocols up. These so called rounds are comparable to a global timer in a network set
ub by a base station or the nodes.

Sinalgo Project Structure

The Sinalgo simulator provides many dummy templates in the default
project. To set up your own project you can implement, as depicted
besides, the models, such as interference, distribution, connectivity,
mobility, reliability, and the message transmission model, and the im-
plementation of the edges, messages, nodes, and timers to customize a
project. Furthermore each project has its own configuration and de-
scription file. The CustomGlobal class holds global variables for the
project and is an appropriate location to log the statistics for simtest.

The Sinalgo default project and base files provide tools for logging, a
random number and distributions generator, a print tool to generate
EPS or PDF files from the gui, and a statistics class to sample data.

Key to a protocol implementation is the node and the message im-
plementation. Messages usually can be kept simple, header and data,
but the node implementation determines the global behaviour of the
protocol.

The default models used here are:

• Connectivity Model: Unit Disk Graph (UDG) connectivity which is a purely geometric connectivity
model: Two nodes are within communication range if their mutual distance is below a given
threshold, the maximal transmission radius. By modifying this radius the number of neighbours
to each node (sending or transmitting unit) is influenced.

• Interference Model: Signal to Noise Interference Ratio (SINR)

• Distribution Model: Random Distribution Model, the nodes are placed randomly on the simulation
area

6



• Static, no mobility model is used

2.2 simtest

This extension to the Sinalgo simulator framework runs several simulation calls and gathers information
about these by running one scenario more times and modifying one or more parameters sequentially.
From these results it can then generate statistics and graphics. The parameters and sequences have
to be specified in an XML input file. It contains information about the paths to execute Sinalgo, log
directory, the command to execute gnuplot, and so on, parameters to call Sinalgo, one running variable
parameter to which the graphical output will refer to, and the labels to find the information in the log
file of the simulator. For more information about the use, refer to Appendix A.1. In this section a brief
description about the usage is given, the mode of operation and the usefulness of the program is showen.

2.2.1 Use of simtest

Basically, the use of this program is to test protocols fully automatically. With the configuration of
Sinalgo according to simtest specification, one or more projects can be tested for all kinds of scenarios.
You can run several instances of the same Sinalgo configuration to reduce the variance and proceed
through several Sinalgo configurations without gathering the information about the single results by
hand e.g., you can run simulations changing the number of nodes for two projects going through a
sequence of increasing message length, running each configuration 50 times to compare two algorithms.
This time consuming process can be launched with a single command and it produces graphical output
and tables with the mean values and variances. As a result, the process which is extensive by hand can
simply be run overnight.

2.2.2 Mode of Operation

The program proceeds in following five steps:

• Getting input from XML file

• Computing Sinalgo Arguments

• Executing the commands one by one to

• After each execution gather the specified parameters and write them to data files

• Draw graphics from the data files created

Table 2.1 lists the class and their basic functionality.

2.2.3 Inputparameters

The simtest input file must reside in the simtest root folder and be named simtestParameter.xml.
Table 2.2 shows the values which have to be specified.
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class brief description

Main base class calling all methods, warning and error handling

Configuration class holding global variables, such as total number of simula-
tions, number of simulation calls per configuration, etc., and
the interface for other methods to set the input parameters and
the mentioned variables

Parameters the base class for parsing through the input file and Sinalgo
log file, it distributes these values to other classes and contains
the interface to draw the graphics

Executor a class that executes Java system calls i.e., executes the Sinalgo
simulations

Output creates, copies, or recreates data, log, gnuplot script files, writes
to the data files

Outputpair holds the information about the label pairs, which will generate
one graphic each and are used to parse the Sinalgo log file

DataSeries a statistics class to compute mean values and variances

Table 2.1: Class list and a brief description of each

inputparameters

paths execution path, path to Sinalgo log file, simtest log path, raw
data log path

gnuplot command the gnuplot command line command may be different for dif-
ferent systems

OS operating system, Windows or Linux

file modification tag this tag determines if the data output files in the log path
are modified rerunning all simulations or just the graphics are
drawn from it, useful for automatic plot, if you changed the
data (erased or added a data block) or want to create another
outputformat

output format can be either PNG or EPS, PNG is colored, EPS is more read-
able included in documents

No
¯

of simulation calls per configu-
ration

the amount of sinalgo calls to reduce variance

Sinalgo parameters node name (containing project name) No
¯

of nodes to create,
No

¯
of rounds to run before termination, models (distribution,

interference, connectivity), and the rest has to be introduced
as overwrite statement

runnning parameter also a Sinalgo parameter, but due to this sequence the graphical
output is adjusted

parameter analysis parameters plotpairs with an X tag and a Y tag to retrieve information
from the Sinalgo log file and to determine what graphics to
draw

Table 2.2: simtest Input Parameters
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2.2.4 Sinalgo Adaption

To achieve a full automation, simtest has to be able to process the Sinalgo log file. It has to be in XML
format and look like this:

<?xml version="1.0" encoding="UTF-8"?>

<Document>

<simtest>

<!--*****************SIMTESTDATA*********************-->

<UDGrMax value="300"/>

<!--**************SIMTESTDATA************************-->

</simtest>

</Document>

and must be named according to the input path to log file, given in the simtest input file. Disable the
Sinalgo log to time folder option in the configuration file so that simtest finds the log file after each
simulation in the same place.

The UDGrMax-tag is an example tag to show the format of an entry. Specify this tag (UDGrMax) in the
simtest input file as a tag for plotting and simtest will find it in the Sinalgo log file and add an entry in
the output file. Template functions to create this file structure are within the simtest package.
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Chapter 3

Protocols

The protocols studied in this thesis are presented in this chapter. Their implementation in the simulation
framework can not always be like reality. Hence, there are some restrictions in implementation. The
protocols are described in general and then the implementation is discussed in another subsection.

3.1 Aloha

Aloha was the first MAC protocol designed for wireless networks. As opposed to prior point-to-point
computer communications, Aloha uses a shared medium for transmission.

3.1.1 Concept

The first version of the protocol was basic:

• If there is data to send, send the data

• If the message collides with another transmission, wait random time and try resending

The critical aspect is: what is random? The quality of the backoff scheme chosen significantly influ-
ences the efficiency of the protocol and the predictability of its behavior. Pure Aloha had a maximum
throughput of about 18.4%.

An improvement to the original Aloha protocol was Slotted Aloha, which introduced discrete timeslots
and increased the maximum throughput to 36.8%. A station can send only at the beginning of a timeslot,
and thus collisions are reduced. It uses a DATA-ACK Sequence for transferring data.

3.1.2 Implementation

The Slotted Aloha protocol fits to the concept of rounds in the Sinalgo simulator and was therefore
implemented. The random waiting time concept is emulated by using a sending probability with which
each node will send its data. This sending probability is the most influencing factor for the Aloha
performance. In our simulations we decided to set our sending probability as follows:

Psend =
1

NnoOfNeighbors ∗ k
(3.1)

Where k is the sending probability coefficient, Psend is the probability a node sends a message in this
round, NavgNoOfNeighbors is the number of neighbours a node has. This way the sending probability is
adjusted according to the density of the network.
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3.2 MACAW

MACAW was first introduced in 1994 [2] as an improvement to Multiple Access with Collision Avoidance
(MACA) protocol and alternative to CSMA based algorithms. In MACAW the RTS-CTS handshake
was incorporated for the first time.

3.2.1 Concept

In MACAW each node has a Network Allocation Vector (NAV) which makes the node back off. MACAW
uses RTS-CTS-DS-DATA-ACK frame sequence for transferring data to solve the hidden terminal prob-
lem, where two senders are out of range and may cause a collision at another node which is within the
range of both. If a node A wants to send a message to node B it sets a random timer (implemented
as sending probability) and if no overhearing makes A back off it broadcasts an RTS (Ready To Send)
message containing B’s ID and the data message length. Upon reception of a RTS, B broadcasts imme-
diately a CTS (Clear To Send) message containing also the data message length. This exchange done, A
broadcasts a DS (Data Send) message containing the data message length and starts sending the data.
When the data transmission is complete, B acknowledges this with an ACK message. If an ACK message
gets lost and B receives an RTS for the same packet it acknowledged already, it sends directly the ACK
message.

Every node overhearing an RTS sets its NAV and backs off for the amount of time a successful RTS-CTS
exchange needs. It will then probably overhear a DS message and back off the time the data and the
following ACK have to be sent. This is called virtual carrier sensing. A node overhearing a CTS backs
off immediately the amount of time DS-DATA-ACK sequence would need.

3.2.2 Implementation

In the framework the minimum message length is one round, this is for RTS, CTS, DS and ACK, the
data message can be longer. For instance a node backs off two rounds upon overhearing a RTS message,
one to send back the CTS, another to overhear the DS. In every case of waiting (back off, wait for CTS,
wait for ACK, . . . ) a timer is set regarding the estimated time the e.g., ACK arrives. In case a timer runs
out the node goes back to contend state and sets a random timer. In two cases the timer is not random,
when a node awaits a CTS and the timer runs out it increases the backoff by 1.5 and in case of successful
transmission, upon reception of an ACK, it decreases by one. This backoff algorithm is called MILD
back off and was introduced in [2] as an improvement to the binary exponential backoff (BEB), which we
implemented also in MACAW to compare the backoff algorithms. In the base-station-cell model there is
also a copy scheme, in case a node switches to another cell and adapts its backoff, but here this is not
considered (no mobility).

3.3 IEEE 802.11 DCF

The Distributed Coordination Function (DCF) [5] is the IEEE 802.11 standard and so practically applied
in many networks and by many users and was first introduced 1997. It is interesting to evaluate its
performance in ad-hoc networks.

3.3.1 Concept

DCF uses CSMA/CA in a form of noise listening and a RTS-CTS-ACK sequence. Once a node senses
the noise below a certain threshold and/or no carrier signal it sets a random timer and then sends its
RTS if the channel is still considered free. A node receiving a RTS destined for itself sends immediately
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a CTS and waits for data message. This data message is sent without delay by the requesting node
upon the CTS reception. A successful transmission is notified by an ACK message. All messages contain
the whole transmission time needed e.g., a RTS contains RTS-CTS-DATA-ACK time units, a CTS only
DATA-ACK. Any message overhearing node backs off the time pending to end of transmission. Like the
MACAW node it sets a NAV. In case a CTS is lost the nodes use Binary Exponential Backoff (BEB)
(increase: double) which is reset to two on successful transmission (reception of an ACK).

The main difference to MACAW is the transmission sequence (without DS message) and the CSMA.
MACAW does not sense the medium before sending. Furthermore the backoff algorithm differs from the
original MACAW, which uses the MILD backoff algorithm instead of the BEB, and a node in DCF backs
off directly the whole transmission length upon overhearing a RTS message, where a node in MACAW
waits just the time until a DS message arrives and backs off the whole transmission length only upon a
successful handshake.

3.3.2 Implementation

This protocol is ported in the same manner as MACAW to the Sinalgo framework considering the
messages and the inbox handling. The messages contain more information about the time left for a
successful transmission, and the DS message is not present.

The sensing algorithm is adapted to the SINR model, if the noise sensed in the node’s area is below a
certain threshold the medium is considered as free to transmit. The node runtime-sequence is put in a
random order such that a node with a great ID is not always blocked by the low ID nodes’ messages in
the air, whose interference it would sense.

3.4 Location Enhancement to IEEE 802.11 DCF

Location Enhancement to DCF (LED) [3] is an enhancement to DCF and an interesting approach to
increase the throughput of DCF by using a less pessimistic backoff algorithm. The main enhancement
is the adding of a block containing location information about sender and receiver to every message , if
possible.

3.4.1 Concept

This protocol (LED) is like DCF but has the location enhancement. Therefore a node sends its position
and the noise sensed at sending time within each message. Now every RTS contains the senders position
and the receiver can add its location information to the message to complete the block (GPS or another
positioning method can be used for this). An overhearing node calculates its own influence to the nodes
attempting to build up a connection using a propagation model. During the blocking decision making
process, a non- receiver station (denoted as station i) of the frame calculates if its own transmissions will
cause enough interference to interrupt the data delivery to which the just received frame belongs. The
station needs to calculate the power level of its own transmission at both the source, denoted as P s

i , and
the destination, denoted as P d

i , of the ongoing data delivery using an appropriate propagation model. [3]
assumes a free space omni-directional propagation channel model [4]. This is a model in which many
channels, especially outdoor channels, have been found to fit in practice. In this propagation model, the
received signal power, Pr, is calculated as follows:

Pr =

{

PtGtGrλ2

(4π)2D2L
D ≤ Dcross

PtGtGrh2

t h2

r

DL
D > Dcross

}

(3.2)

where Pt is the transmission power, Gt is the transmitter antenna gain, Gr is the receiver antenna gain,
D is the separation between the transmitter and the receiver, ht is the transmitter elevation, hr is the

12



receiver elevation, L is the system loss factor not related to propagation (≥ 1), λ is the wavelength in
meters, and Dcross is calculated as Dcross = (4πhrht)/λ. The first sub-model of this equation is called
the Friis free-space propagation model and only used when the distance between the transmitter and the
receiver is small. The second sub-model is called the two-ray ground reflection model and used when
the distance is large. The station also needs to calculate the received power level of the destination
station’s transmission at the source, denoted as P s

d , and that of the source transmission measured at the
destination, P s

d . If (P d
s > βP s

i ) and (P d
s > βP d

i ), the station should not block its own transmissions.
Otherwise, it should block its transmissions. In the case that the communication parameters of either
the source or the destination are unknown, the assessing station assumes the worst and blocks its own
transmission. The noise at sending time may have changed at receiving time, but the transmission delay
of a message is not so long that the actual noise taken in consideration when making the blocking decision
differs significantly.

3.4.2 Implementation

The algorithm to evaluate a node’s influence in the Sinalgo implementation we follow the SINR model.
Instead of the Friis and Two-Ray model the node computes its influence over the distance following
the equation shown below. We use constant transmit powers and therefore the power of a transmission
depends only on the distance.

P s
i =

P

dα
(i,s)

(3.3)

P d
i =

P

dα
(i,d)

(3.4)

P d
s =

P

dα
(s,d)

(3.5)

Where d(A,B) is the distance from node A to node B and α is taken from the SINR interference model.

The noise at sending time is denoted as Ns
ST at the connection source and Nd

ST at the receiving node in
the connection.

The blocking condition is P d
s > β(P s

i + Ns
ST ) and P d

s > β(P d
i + Nd

ST ) .
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Chapter 4

Results

In this chapter we present the results, the chapter is devided into two sections, one treating a single
protocol for itself, and another comparing the protocols for different densities, message lengths, and
topologies.

To analyse the protocols and their behaviour we picked out five marking characteristics.

• DATAThroughput, in frames, the average amount of received data frames in 100 rounds per node

• DATAReceptionEfficiency, the index for data throughput, the data frame to data send attempts
ratio

• CollisionIndex, messages which did not reach their destination node , including control messages
(this is not the inverted DATAReceptionEfficiency, but closely related), in relation to the send
attempts

• TimeUntilSuccessPerMessage, is the average time (in rounds) a node needed to transmit success-
fully a complete message

• FairnessIndex, according to Jain’s fairness index:

F =
(
∑N

i=1 γi)
2

N
∑N

i=1 γ2
i

(4.1)

Where N is the number of connections and γi is the number of received packets for connection i

The numbers which belong to the lines are accorded to the parameters in the title, starting from the left.

UDG/rMax average number of neighbours

150 6

200 10

250 16

300 22

350 28

400 35

Table 4.1: Key to the density analysis
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Simulation Area 1000 x 1000

Connectivity Model UDG: rMax = 200

Interference Model SINR: α = 3, β = 1

Geometric Node Collection rMax = 400

Message Length = 5 (Aloha:1)

Distribution Model Uniform Random Distribution

Number Of Nodes 100

These are the default values and are changed due to the aim of the analysis

Table 4.2: Default Simulation Setup

 0

 1

 2

 3

 4

 5

 6

 5  10  15  20  25  30  35

AverageNumberOfNeighbors

DATAThroughput
----------------------------------------

1: UDG/k=1
2: UDG/k=2
3: UDG/k=3
4: UDG/k=4
5: UDG/k=5
6: UDG/k=6

1
2
3
4
5
6

Figure 4.1: Aloha: Data Throughput
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Figure 4.2: Aloha: Collision Index

4.1 Aloha Performance

The simulations for the Aloha Protocol examine the influence of the sending probability coefficient k.
The graphics show the performance for different k’s in dependence of the density given in average number
of neighbors. It shows that the performance has a certain breakpoint.

Figure 4.1 shows that the data Throughput is decreasing with the increasing density and greater k. Line
1 for k equal 1 has the highest throughput.

The collision index in Figure 4.2 shows the collision ratio. The ration of messages not received by their
destination node decreases with a greater k.

For k greater than one the fairness index is quite stable and remains in a range of 0.1 for every density
as seen in Figure 4.3. For k equal to one the protocol is less fair.

The time until success for each message (Figure 4.4) is in the range of approx. 3 rounds from a k greater
than 2, performance is less for smaller k.

Finally, the data reception efficiency increases the smaller k is, Figure 4.5.
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Figure 4.3: Aloha: Fairness Index
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Figure 4.4: Aloha: Time Until Success Per Message
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Figure 4.5: Aloha: Data Reception Efficiency
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Figure 4.6: Density Analysis: DATA Throughput
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Figure 4.7: Density Analysis: Collision Index

4.2 Comparing Protocols

This section examines the protocols in comparison of to other. Hence, the focus is layed not only on
the performance change but also on the influence of the parts a protocol consists of, such as the backoff
algorithms, the transmission sequences, and the CSMA algorithm usage. All graphics show the results
for two MACAW protocols (one designed with a MILD Backoff algorithm (standard), the other using
BEB), DCF, and LED protocol. LED is DCF based and both use BEB and CSMA.

Therefore the impact of the backoff algorithm can be studied looking at the MACAW results. To see
the effect of using CSMA, the DCF and the MACAW protocol behaviour will be examined.

The standard MACAW protocol, in further text called MACAW, the MACAW protocol using BEB
instead of MILD backoff algorithm, denoted MACAWBEB, the DCF original protocol, denoted as DCF,
and the resulting plot for the location enhancement to DCF protocol, short: LED, are analyzed.

4.2.1 Density Analysis

The density analysis is made using a message length of five frames, that makes the data five times longer
as any control message. That means that there is a 20% overhead. The graphics are organized such that
to the left with an average number of neighbors of 5 are the results for a less dense network. To the right
edge the density increases up to 35 neighbors in average.

Figure 4.6 shows the throughput of data in frames per node and 100 rounds. DCF and LED achieve
quite the same throughput, from 6 maximum to 1 frame in average. Below, MACAWBEB has 1 frame
more throughput but converges towards MACAW for higher density.

The collision index in Figure 4.7 shows that a higher density brings more collisions to all. This per-
formance is similar to Figure 4.6, MACAW shows worst performance and so on. LED produces more
collisions than DCF, the throughput was the same.

Figure 4.8 shows the fairness index and here the different backoff algorithms separate the performance
of the protocols. With a fairness index of average 0.5, which decreases only slightly, the MACAW leads.
All protocols perform a quite stable fairness for different densities. Second is DCF surrounding the
average af 0.4 with a slight downwards trend. LED starts with the same value for low density, takes a
0.1 step towards unfairness and then covaries parallelly to the original DCF. Last, with an average of
0.3, MACAWBEB acts similar to MACAW, slightly worse.

The fairest algorithm has also the highest rate of time to succcessful transmission of a whole message.
The time to success per message in Figure 4.9 shows that MACAW time to success increases faster than
the others. From 100 rounds per message to 250 in average. The others increase by 80-100 rounds from
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Figure 4.8: Density Analysis: Fairness Index
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Figure 4.9: Density Analysis: Time Until Success
Per Message
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Figure 4.10: Density Analysis: DATA Reception
Efficiency

lowest density to highest density. MACAWBEB starts around 50 rounds and DCF and LED have the
same performance and start around 30 rounds per message for low density.

The reliablity of the protocols shown in Figure 4.10 points out clearly that the MACAW protocols have
a better reception efficiency regarding only the data frames. With a reception rate of 0.96 decreasing
with higher density to 0.92 both MACAW protocols, independent of the backoff algorithm used, show
the same performance. DCF and LED start at the same point for low density, 0.92. Where in LED the
data experiences more collisions the denser the network is. For an average of 35 neighbors per node DCF
has a 0.86, LED a 0.8 data reception efficiency.

The impact of the backoff algorithm is significant for the performance. BEB produces less collisions
than MILD backoff algorithm, has a significantly less time to success per message, and a little more
throughput, but MILD is way fairer than all BEB based protocols.

The influence of the transmission sequence used and the inbuilt of CSMA in the protocol can be seen in
Figures 4.6, 4.7, and 4.10, higher throughput and less collisions combined with a worse data reception
efficiency. Hence, the collision index is caused by colliding control messages in the MACAW transmission
sequence.
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Figure 4.11: Message Length Analysis: DATA
Throughput
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Figure 4.12: Message Length Analysis: Collision
Index
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Figure 4.13: Message Length Analysis: Fairness In-
dex
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Figure 4.14: Message Length Analysis: Time Until
Success Per Message

4.2.2 Message Length Analysis

The network behaviour for longer messages changes. Since the overhead shrinks and the reliability of the
transmission gets more weight regarding the performance. The message length simulated varies from 1
to 10 frames per message. All nodes use the same message length.

Figure 4.11 shows the data Throughput (throughput). All protocols at least triple their data frame
throughput for a message length from 1 frame to 10 frames lentgh, where the DCF based protocols have
with 1.5 to 5 frames per node and 100 rounds , in average, the double of the MACAW based ones.
With an increasing message length the difference shrinks. MACAWBEB has 40% more throughput than
MACAW.

The collision index, depicted in Figure 4.12 shows that the DCF based protocols behave the same,
decreasing a little (around 4%) in the region of 10% colliding messages. The MACAW based protocols
start off at 27% collisions and decrease strongly with the shrinking overhead (in relation to the message
length). For a message length of 10 frames only 18% collisions occurr. The MACAW using BEB performs
a little better (∼5%).

Regarding the fairness, Figure 4.13 shows that the fairness decreases with a longer message, for the
protocols using BEB only a little in a region from 0.3 to 0.45, where the DCF protocol is the fairest.
Special is the behaviour of DCF for small message length, it shows an irregularity, its fairness index
is below the one of LED and crosses its line for a message length of 3 frames. MACAW using MILD
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Figure 4.15: Message Length Analysis: DATA Re-
ception Efficiency

backoff algorithm protocol starts at 0.65 and decreases stronger under the influence of a longer message.
Its performance decreases to 0.5 fairness index and is the fairest for all message lengths.

The time a message needs for a successful transmission is shown in Figure 4.14. As expected, the time to
successful transmission increases with the message length. For MACAW from 110 rounds average to 150
rounds, MACAWBEB needs in average only half of the time (60 to 90 rounds average). The DCF based
protocols perform the same, starting from 30 rounds average to 50 for a message length of 10 frames.

All protocols perform the same data reception efficiency for a short message (one frame), as shown in
Figure 4.15. MACAW and MACAWBEB keep their performance which decreases only to 93% for a 10
frames message length, where the DCF based protocols’ performance goes down to 87% arrived messages.
LED performs a little worse. The differences between the single protocols with the same base are more
obvious with the increasing message length.

The behaviour of the protocols are devided by the backoff algorithm used regarding the time to success
and the fairness, and otherwise by the base (MACAW or DCF). For longer messages, more data flows but
the reception efficiency decreases. Less collisions occur overall with less overhead for reliable protocols
regarding the data frames.
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Figure 4.16: Topology Analysis: DATA Through-
put, MACAW
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Figure 4.17: Topology Analysis: DATA Through-
put
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Figure 4.18: Topology Analysis: Collision Index,
MACAW
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Figure 4.19: Topology Analysis: Collision Index

4.2.3 Topology Analysis

Protocols act differently in different topologies. Here the performance of the protocols in 4 scenarios is
shown:

• uniform random distribution

• a grid over the whole simulation area which give the same distance to every neighbor in the
horizontal or vertical direction

• a line from top to bottom of the simulation area

• a circle

To obtain readable graphics the protocols are split into two sections, one containing MACAW and
MACAW using BEB, the other DCF and LED. The variability of the average number of neighbors can
be explained by each topology. Most neighbors are in reach when all nodes are on one line.

Figure 4.16 and Figure 4.17 show that the perfomance regarding the data throughput depends mostly
on the density but does not vary much for the different topologies. The DCF based Algorithms have a
higher data Throughput but for an average of 65 neighbors per node the performance is approximately
the same for both sections.
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Figure 4.20: Topology Analysis: Fairness Index,
MACAW
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Figure 4.21: Topology Analysis: Fairness Index
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Figure 4.22: Topology Analysis: Time Until Suc-
cess Per Message, MACAW
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Figure 4.23: Topology Analysis: Time Until Suc-
cess Per Message

The collision index for the MACAW based protocols in Figure 4.18 is stable with a changing topology.
MACAWBEB produces always a little less collisions. The DCF based protocols (Figure 4.19) have the
performance already seen in the density analysis for the random distribution, produce more collisions for
a grid distribution, and with a more aligned distribution scenario like a circle and a line less collisions.
With the line distribution the DCF based protocols have a collision index of only 0.1 for an average
number of neighbors of over 60. The LED protocol simulation results for every scenario in a worse
collision index than the DCF.

In Figure 4.20 the fairness index performance results are only devided by the backoff algorithm used, not
significantly by the topology of the network. MACAW has a higher fairness index, around 0.6 decreasing
with the density. MACAWBEB has the same performance in the region around 0.3. Significant in Figure
4.21 is the drastic decrease from the low density region for a grid distribution. The behaviour of the DCF
based protocols regarding the fairness index decrease stronger with the higher density than in Figure
4.20. This lines show the best performance in these graphics.

Figure 4.22 shows the average time until successful transmission of a whole message. For both MACAW
Protocols the time until success increases for higher density networks. The MACAW protocol using
MILD backoff algorithm performance increases more with the higher density and is in average 170 rounds.
MACAWBEB performance is in the region of 50 to 110 rounds. Both are stable for all topologies. In
Figure 4.23 the results vary with the topology. Worst is the performance for a grid topology, then the
random distribution and the grid distribution topology. Line distribution performance separates itself
by an almost constant very good performance around 50 rounds per message even for a high density.
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Figure 4.24: Topology Analysis: DATA Reception
Efficiency, MACAW
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Figure 4.25: Topology Analysis: DATA Reception
Efficiency

In Figure 4.24 the MACAW based protocols show no stability for different topologies. The range of
variation is from 0.92 to 0.98 i.e., very good data reception efficiency. Circle and line scenario performance
are stable with the density, random scenario performance decreases strongly and linear with the density,
and grid topology performance decreases in the low desity region and is then quite stable over the density,
perform worst.

Figure 4.25 has a range of data reception efficiency from 0.84 to 0.96. Also here the line and circle
distributions result in a stability over the density, the others decrease as described above for Figure 4.24.

This Analysis shows the behaviour of the protocols for different topologies. The impact of the topologies is
greater for the DCF based protocols, which increase their performance for a circle and line topology. Less
interference from more than two sides causes these protocols to work better. Since the circle distribution
is not entirely cross connected its performance reaches the one of the line distribution. There is no
influence of the topology to the impact of the backoff scheme, both MACAW based protocols are stable
for all topologies. One exception here is the data reception efficiency where the MACAW protocols show
a behaviour similar to the DCF based ones. Remarkable is the stable data throughput, Figure 4.16 and
Figure 4.17 although other performance parameters differ so much.

LED performs always a little worse than DCF for all shown results.
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Chapter 5

Conclusion

This chapter discusses the conclusions the simulation results allow. The first section describes the con-
clusions about the Sinalgo simulator and the influence of it. The second section describes the conclusions
for the different protocols in general and the following the specialties of the different analysis comparing
the protocols.

5.1 Sinalgo

We used the synchronous mode in Sinalgo to run our simulations. Hence, Sinalgo updates each node
sequentially which poses some irregularities in comparison to the real world. The way of carrier sensing
we implemented goes through the packets-in-the-air buffer, where packets are added when a node wants

noise at
sending

time
noise at

beginning 
of the round

noise at
the end of
the round

nodes adding their
packets to the packets

in the air buffer

function call
noise sensing

time

to send a message. This buffer is always set to zero
pre round, so the first node using the CSMA function
will hear no noise at all, the last node called senses the
most.

We randomzed the sequence in which the nodes are
called to grant fairness as far as possible. As depicted
in the graphic besides it may happen that a node at
sensing time senses very low noise at its position since
its function call is at the beginning of a round and the
noise increases drastically during the round that the
next round the same node can not decode a incom-
ing message, because it is desturbed by messages added
later to the buffer i.e., nodes that are in a sending pro-

cess and do not use the CSMA before sending or nodes in reach not blocking their own transmission
based on the LED function.

The CSMA functionality can so far not be implemented a hundred percent accurately in the Sinalgo
simulator.

Furthermore we used the UDG connectivity model, which makes it impossible to overhear a message for
a node out of reach, even if there is very little noise. This restriction does not allow the LED mechanism
to work properly.
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5.2 Protocols

In this section the protocols’ performance in general are described and some issues are taken out and
explained in detail.

5.2.1 Aloha

The performance of Aloha protocol is strongly dependent on the sending probability used by each node.
A higher density results in less data throughput for all sending probability coefficients (k). The fairness
index and the time until success per message increase with the density, the other performance indicators
are almost stable. The change of k changes all performance indicators. For k equal one the sending
probability is very high and a lot of nodes attempt to send messages in high frequencies. This frequency
lowers, but the probability of a collision increases, with an increasing density. Therefore the data re-
ception efficiency and the collision index is stable. With low k and high density more data is send and
more data collides, the time until success rises in value, all messages need more time and the protocol
becomes fairer, but the throughput decreases.

A k between two or three deliveres the best performance since in terms of data throughput the value
falls with an increasing k and all others improve in big steps until two (fairness, time to success) or three
(data reception efficiency and collision index) and then stay in that region. The throughput means to
keep the value as low as possible and the other values mean to keep it up. The balance is found with a
value of two or three.

5.2.2 MACAW

The MACAW protocol, independent of the backoff scheme, shows always more collisions than the DCF
based protocols, but a higher data reception efficiency. The collision index must be caused by control
messages. It takes long for a node to establish a connection but then the reliability of the connection
is high. This effect is caused by the transmission sequence used. Upon overhearing an RTS packet the
node only backs off until there is a DS package, otherwise it does not set the NAV to the value of a
full message transmission time. Shorter NAV periods per connection cause more control message traffic
and so more collisions. The fact that only virtual carrier sensing is applied (no CSMA) enhances the
probability of a control message collision.

The MACAW protocol is cautious and takes more time to establich a connection, this can be seen in all
graphics showing the time to success per message. This behaviour of the protocol is reflected in the data
throughput.

The fairness of the protocols is mostly determined by the backoff scheme used. The MILD backoff
algorithm has much longer times to success per message but is more fair (fairness index: ∼0.55) than
the BEB (fairness index: ∼0.35). Also the collision index and the throughput suffer from the fairness.
To achieve fairness the protocol must forfeite other performance values.

5.2.3 DCF

The DCF protocol shows best performance regarding the data flux, collision index, and time until success
per message. The data reception efficiency is always over 80% and the fairness index is in the region of
0.4 for all simulations. This protocol has a good data throughput and performs not bad in all scenarios.
It is a protocol suitable for multiple purposes.
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5.2.4 LED

The location enhancement to DCF performs always a little wors than the original DCF. As explained in
the first section the sequential call of the nodes’ sensing function and the usage of the UDG connectivity
model causes the LED concept not to work. The idea of local enhancement is to reconsider the blocking
decision due to the position information. This is only useful and causes improvement in low noise regions
where a CTS or RTS message is overheard and the node does not block its own transmission because the
node knows that its influence at the connecting nodes is not significant. This scenario does not happen
with the UDG model and so the LED protocol does not bring any improvement.

But why is it performing worse then? It may happen that a connecting node senses very low noise at
sending time even if there is much noise because it is called at the beginning of the round. Since the
noise at sending time matters in the LED protocol an overhearing node will then decide not to block its
own transmission due to the SINR interference model used to calculate the influence over the distance.
The noise level then experienced at the connecting node is much higher than estimated and there occurs
a collision.

The LED protocol has no chance to establish its advantage but is evendisturbed in its functionality and
so performs always a little worse than DCF.

5.3 Comparing Protocols

In this section the impact of certain parameters, such as the density, the message length, and the topology
of the network are examined in general terms and comparing the protocols simulated.

5.3.1 Density Analysis

The density analysis shows clearly that the performance of all protocols gets worse the denser the
network is. Collisions increase, throughput, and the reliability decrease, fairness remains stable. In a
denser network it is difficult to make a protocol work properly since due to the high number of nodes in
reach it is more coincidential and so more difficult to control.

5.3.2 Message Length Analysis

With a longer message length the throughput improves for all protocols, less collisions occur. Also the
fairness decreases because longer messages make nodes wait longer and the traffic is less fair. Longer
messages have a greater impact on the collisions for MACAW. Longer messages mean that there is less
overhead and since the high collision rate for MACAW was caused mostly by the control messages it
decreases.

For DCF the reliability of a data transfer suffers with an increasing message length. The DCF protocol
uses no DS messages to indicate a successful handshake and nodes overhearing an RTS message back
off for a whole message transmission length in vain if the CTS or DATA transmission is disturbed. The
longer waiting times make the moment when a node which waited in vain and becomes active again more
random. If then the CSMA functionality is not granted it may interrupt an ongoing data transmission.

5.3.3 Topology Analysis

For all topologies simulated the throughput of all protocols is the same and dependent on the density.
The MACAW performance indicators are stable for all topologies, except the reliability, this improves
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the same as DCF. It improves due to less interfering actions by other nodes transmitting, explained in
further text.

The DCF performance indicators increase all the more linear a topology is. With a line topology the
performance does decrease very little even for a high density. This improvement of performance can
be explained by less unexpected interference. If interference comes only from two sides, as given in a
line topology it can better be estimated and so the sensing algorithm has more grip, even though its
functionality is not a hundred percent accurate.

Furthermore in a linear topology the backoff algorithms work more appropriate due to the less random
behaviour caused by the symmetry of a line or a circle.

The higher fairness with the linearity has to be seen like the following. When one connection is estab-
lished, many nodes wait due to the high density and nodes just out of reach are in contend state (ready
to transmit) and only hold back by either the CSMA or the random time to wait before transmission.
Like this some kind of alternating behaviour comes up and the nodes able to send a messagecan do this
quite sequentially. So few, but many different nodes can send their messages and the fairness increases.
Because of the higher density and more efficient backoff schemes for linear networks only few , but well
organized, traffic takes place. So the performance is better but the throughput is stable.
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Appendix A

Tutorial simtest

A.1 Introduction

simtest is an extension to a framework which runs bunches of simulations with Sinalgo simulator to
analyse Media Access Control (MAC) protocols and to generate automatically graphics to interpret the
results. simtest runs a simulation and gathers afterwards the specified values to store them to data files
from which it will draw graphics.

To achieve this settings and filestructures must be in a proper shape. The file with the simtest input
settings must be named ’simtestParameters.xml’ and reside in the simtest root folder. This tutorial helps
you customize the framework to your specific needs. Refer to the README file in the simtest root folder
for quick access. If you run Linux, put a copy of the ’runsinalgo’ bashscript from the simtest root folder
in the root folder of Sinalgo. Too much output to the console can cause a buffer overflow in the executor
class.

For further information or questions about Sinalgo refer to the Sinalgo homepage.

A.2 Inputfile

Delivered with the simtest package there is a simtestParameters TEMPLATE.xml file explaining itself
so far as ready to start. For a deeper understanding the functions will be explained more in the following
sections. A simtest parameter file can look as follows.

<?xml version="1.0" encoding="UTF-8"?>

<Document>

<input>

<execpath value="/home/nick/Sinalgo/"/>

<sinalgologfile value="/home/nick/Sinalgo/logs/log.xml"/>

<logpath value="/home/nick/Sinalgo/SimData/"/>

<rawdatapath value="/home/nick/Sinalgo/SimData/RawData/"/>

<gnuplotCommand value="gnuplot"/>

<OS value="linux"/>

<fileModification value="yes"/>
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<outputformat value="png"/>

<numberOfSimulationCallsPerConfiguration value="30"/>

<nodename value="2" value0="LED:LEDNode" value1="DCF:DCFNode"/>

<noOfNodes step="4" Min="100" Max="400"/>

<rounds step="0" Min="500" Max="1000"/>

<overwrite value="2" value0="SINR/alpha=2" value1="SINR/alpha=3"/>

<distributionModel value="1" value0="Random"/>

<connectivityModel value="1" value0="UDG"/>

<interferenceModel value="1" value0="SINR"/>

<runningParameter type="overwrite" value="7" value0="UDG/rMax=100"

value1="UDG/rMax=150" value2="UDG/rMax=200" value3="UDG/rMax=250"

value4="UDG/rMax=350" value5="UDG/rMax=450" value6="UDG/rMax=600"/>

</input>

<output>

<!--outputnames matter for logging and have to correlate with Sinalgo logs-->

<roundanalyse>

</roundanalyse>

<parameteranalyse>

<!--TEMPLATE: <plotpair XValue="" YValue=""/> -->

<plotpair XValue="AverageNumberOfNeighbors"

YValue="AverageReceivedMessagesPerRoundAndNode"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="NumberOfNodes"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="NumberOfReceivedMessagesOverall"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="MessageCollisionsOverAll"/>

<plotpair XValue="UDGrMax"

YValue="AverageNumberOfNeighbors"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="ReceivedDATAMsgToDATAMsgBroadcastsRatio"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="FairnessIndex"/>

<plotpair XValue="AverageNumberOfNeighbors"

YValue="AverageDATAMessageReceptionPerRoundAndNode"/>

</parameteranalyse>

</output>

</Document>

In this example 8 graphics with the averages of 30 simulation calls per 56 different configurations will be
drawn. Each will contain 8 lines with 7 datapoints per line. Raw data will be stored in
/home/nick/Sinalgo/SimData/RawData/

and the graphics in
/home/nick/Sinalgo/SimData/.
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inputparameters

paths Execution path, path to Sinalgo log file, simtest log path, raw
data log path. Put here the correct paths, do not forget the
slash at the end of a path declaration.

gnuplot command The gnuplot command line command may be different for dif-
ferent systems, usually it is gnuplot for Linux systems and
pgnuplot for Windows.

OS Operating system, Windows or Linux.

file modification tag This tag determines if the database in the log path is modified
rerunning all simulations or just the graphics are drawn from it,
useful for automatic plot, if you changed the database (erased
or added a data block) or want to create another outputformat.

output format Can be either PNG or EPS, PNG is colored, EPS is more
readable included in documents, but in vertical format, use
\includegraphics[angle = -90]{imgName} to put them into
a document

No
¯

of simulation calls per configu-
ration

The amount of similar sinalgo calls to minimize variance. The
raw data will be stored in the folder specified in the general
settings. The variance is always plotted besides the graphic,
the same filename with an appended _variance.

Sinalgo parameters Node name (containing project name) No
¯

of nodes to create,
No

¯
of rounds to run before termination, models (distribution,

interference, connectivity), and the rest has to be introduced
as overwrite statement. The overwrite statement makes the
simtest program flexible if you introduce new parameters.

runnning parameter Also a Sinalgo parameter, but due to this sequence the graph-
ical output is adjusted. The line break in the plot is according
to this parameter. All other parameters are represented as
different lines in the same plot.

parameteranalyse parameters Plotpairs with an X tag and a Y tag to retrieve information
from the Sinalgo log file and to determine which graphics to
draw. The X value should covary with the running parameter,
else the plots are unreadable. These tags have to be introduced
in the Sinalgo log file as XML tags with the same String.

Table A.1: simtest Input Parameters
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A.3 Configure Sinalgo Output

The Sinalgo log file must be named as written into the ’sinalgologfile’ tag. XML format can be obtained
by using the following instructions and functions:

Logging log = Logging.getLogger("log.xml");

public void preRun() {

// A method called at startup, before the first round is executed.

log.logln("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n <Document>\n<simtest>");

log.logln("<!--*****************SIMTESTDATA*********************-->");

}

public void onExit() {

// logXMLln("", +"");

logXMLln("recMsgOverall", ""+numberOfReceivedMsgOverAll);

logXMLln("noOfNodes",""+noOfNodes);

log.logln("<!--**************SIMTESTDATA************************-->");

log.logln("</simtest>\n</Document>");

}

public void logXMLln(String name, String value){

log.logln("<"+ name + " value=\""+value+"\"/>");

}

public void logXMLcomment(String comment){

log.logln("<!--"+comment+"-->");

}

The first line will generate log file called log.xml. The PreRun() method creates the necessary XML
tags at the beginning and the last line of the onExit() function writes the closing tags. Its first three
lines are an example of how to create two entries, recMsgOverAll and noOfNodes using the logXMLln
method declared below. Introduce these methods to the CustomGlobal class of your project and these
entry names can be used to generate the graphics.

All the tags used to generate the log file entries have the same name as in the simtestParameters.xml
file under the output section.

A.4 Execution

You can execute simtest, like Sinalgo, either from the eclipse development environment or from command
line interface. In eclipse the jdom.jar binaries must be included to the project, if not done on project
generation. From command line change to the root folder and type
java -cp "binaries/jdom.jar:src:bin" simtest.Main

for Linux and
java -cp "binaries/jdom.jar;src;bin" simtest.Main

for Windows.
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