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Professor: Dr. Lothar Thiele

Start Date: 26th March 2007
Issue Date: 8th August 2007





Abstract

Low power listening combined with wake-up time estimation, as it is done by

WiseMAC [3], is a energy-saving concept for medium access control in wireless sen-

sor networks. WiseMAC bases on the transmission of a bit-stream preamble. If the

concept of wake-up time estimation wants to be taken for a sensor node that uses a

packet-based radio, the original protocol has to be adapted.

This thesis presents a protocol that provides low power listening with wake-up

time estimation (synchronous low power listening) for packet-based transmission.

It bases on the chipcon CC2420 radio stack of TinyOS, which already implements

packet-based low power listening but without wake-up time estimation.

The protocol and its implementation is described and several evaluations are dis-

cussed. The synchronous low power listening protocol turned out to be able to re-

duce the number of packets used per transmission and to decrease the interval of

idle listening.
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Introduction

Wireless Sensor Networks make high demands on saving as much energy as pos-

sible. Distributed nodes should be able to be in service self-sustaining for years.

Usually, wireless sensor nodes spend most of the energy in communication. Trans-

mitting, receiving and listening costs a lot of energy.

There are various concepts of wireless sensor MAC protocols that save energy by

turning on and off the radio (duty cycling). Low power listening [2] is one of these

duty cycling MAC protocol. It turned out to be very adapted for low-energy applica-

tions. The concept of low power listening can be improved by introducing wake-up

time estimation [3].

Low power listening bases on the transmission of a bit-stream preamble. But radio

modules that are packet-based are not able to send a bit-stream. Thus, protocols

implementing low power listening had to be developed.

The current radio stack for the chipcon CC2420 radio module of TinyOS [6] imple-

ments packet-based low power listening but without wake-up time estimation.

The goal of this thesis is to implement an energy-saving wireless MAC protocol

that provides packet-based low power listening with wake-up time estimation (syn-

chronous low power listening). The used hardware platform is the TmoteSky sensor

node on which TinyOS runs.

In Chapter 1 to 3 the existing work that builds the basis for our implementation is

discussed and analyzed.

Chapter 4 describes the concept and the implementation of the synchronous low

power listening protocol.

Chapter 5 presents the evaluation of the synchronous low power listening proto-

col. The performance is analyzed and the synchronous protocol is compared to the

asynchronous protocol.

ix





1
Related Work

1.1 Low Power Listening

Radio modules in sensor nodes are one of the main sources of energy consumption.

There are four sources of energy waste [1]: idle listening, overhearing, collisions and

protocol overhead. An energy efficient MAC protocol must minimize these sources

of energy waste. One concept to reduce energy consumption bases on the idea of

minimizing the listening interval.

B-MAC [2] is a CSMA protocol that allows low power communication in sensor net-

works. It duty cycles the radio through periodic channel sampling that is called Low

Power Listening (LPL). A sensor node periodically turns on its radio to sample the

channel to check whether another node is transmitting. If activity on the channel

is detected, the node stays listening and is therefore able to receive an incoming

packet. If the receiving is terminated, the node returns to sleep (radio is turned off).

If no activity is detected in a predefined interval, the node is forced back to sleep by

a timeout.

A node that wants to transmit a packet has to make sure that it occupies the channel

at the moment when the destination checks the channel. Therefore, a long pream-

ble is sent in front of the data of a packet. The preamble length is matched to the

interval that the channel is checked for activity (wake-up period ) and has to be at

least as long as the wake-up period. An example of transmitting is shown in Figure

1-1.

1.2 WiseMAC

For each packet sent with B-MAC, the preamble is of the same length. This leads to

an overhead since a sending node consumes more energy for sending the preamble

than for the data. WiseMAC [3] reduces the length of the preamble in certain cases

when some information about the receiver is given. WiseMAC bases on low power

listening, described in Section 1.1. It assumes all nodes in a network to sample the

medium with the same constant wake-up period TW .

1
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Figure 1-1
B-MAC [2]

The radio of duty cycling node is switched on only for a short interval (the sampling

interval) in order to minimize energy consumption. Thus, a transmitter has to send a long

preample to hit the sampling interval of the destination.
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Figure 1-2
WiseMAC [3]

Wake-up time estimation is used to reduce the length of the preamble. The synchronization

information is exchanged within the acknowledgement packet.

WiseMAC minimizes the length of the preamble by estimating the next wake-up

point of the destination node. For that a node has to learn the sampling schedule of

the destination node. WiseMAC ACK packets do not only carry the acknowledgment

but also information about the remaining time to the next wake-up. The receiver of

an acknowledgement can use this information to calculate the offset to its own wake-

up period. Figure 1-2 illustrates how the knowledge about the sampling schedule of

the destination node can be used to minimize the length of the preamble.

The duration of the preamble must cover the potential clock-drift between the

clock at the source and at the destination. Let L be the time since the last re-

synchronization and θ the frequency tolerance of the time-base quartz. Then the

necessary duration of the preamble TP can be calculated as follows:

TP = min(4Lθ, TW ) (1.1)

To center the preamble on the estimated wake-up time, the transmission has to be

2



1.3. IEEE 802.15.4

Frame type value Description

b2b1b0

000 Beacon

001 Data

010 Acknowledgement

011 MAC command

100 - 111 Reserved

Table 1-1: Values of the Frame Type subfield

started at time L − TP /2.

A node that wants to send a packet to a certain destination for the first time has not

yet any knowledge about the sampling schedule of the destination. Thus in the first

transmission the long preamble (at least TW ) has to be used.

1.3 IEEE 802.15.4

The IEEE standard 802.15.4 [4] is a wireless medium access control (MAC) and

physical layer (PHY) specification for low rate wireless personal area networks (LR-

WPANs). The Chipcon CC2420 radio module, which is used on the TmoteSky sensor

node, provides hardware support for this standard. In this section some specific

attributes that are relevant for our implementation of a MAC protocol are depicted.

1.3.1 Frame Format

The frame format defined by the IEEE 802.15.4 standard is shown in Figure 1-3.

The first part of a packet consists of preamble and the Start of Frame Delimiter

(SFD). The SFD allows the receiver of a packet to determine where a frame starts.

This first part is called Synchronization Header.

The first two bytes of the MAC Header are reserved for the Frame Control Field

(FCF)(Figure 1-4). The FCF contains information about the frame itself. Especially,

it defines the type of the frame in a 3 bit Frame Type subfield. The different frame

types are listed in table 1-1. The frame types 4, 5, 6 and 7 are reserved for future

expansions of the IEEE 802.15.4 standard.

The IEEE 802.15.4 allocates a frame format specifically for acknowledgement pack-

ets. Acknowledgement packets are of frame type 2 and always of a length of 5 bytes.

They do not carry any address information. Whether a received acknowledgement

refers to the last sent packet of a transmitting node can be evaluated by checking

the Data Sequence Number.

1.3.2 Address Recognition

The CC2420 provides hardware support for the address recognition defined by the

IEEE standard 802.15.4. The address recognition bases on requirements listed in

Section 7.5.6.2 in [4]. Received frames with frame type are only accepted if the

RESERVED FRAME MODE control bit in MDMCTRL0 is set.

3
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2
The Hardware: TMoteSky

2.1 The Microcontroller: TI MSP 430

2.1.1 The Clock System

The TMoteSky sensor node includes a low-frequency oscillator that is used with a

32768-Hz watch crystal. 32768 Hz correspond to 32 binary kHz. In the further dis-

cussion we use clocks32kHz as unit to describe 1 clock of the 32768-Hz watch crystal.

1 clock32kHz is the same as 3.05 ∗ 10−5s.

2.1.2 The Timer System

The TI MSP 430 of the TmoteSky provides two independent counters. The clock

which drives the counter can be chosen for each of them separately. In the current

implementation of the CC2420 radio stack TimerA used an internal digital clock.

This clock source allows the usage of high frequencies but offers only limited clock

stability. On the other Hand TimerB uses an external 32 kHz Quartz with appropri-

ate clock stability. The according clock drives a counter that is increased by one with

each clock. The counter can be read out by software. Hence it can be used in order to

measure time constraints in the program flow. TimerA is a 16-bit counter with three

compare registers while TimerB is also 16-bit, but features seven compare registers.

If a value is written into a compare register, the MSP 430 generates an interrupt if

the counter matches the value of the compare register. Thus the number of compare

registers determines the actual number of timers which can run in parallel.

2.2 The Radio Module: Chipcon CC2420

The Chipcon CC2420 is a packet based radio that implements the IEEE 802.15.4

standard in hardware. It provides an effective data rate of 250 kbps. One 128 byte

FIFO buffer (RX) stores the received data and another 128 byte FIFO buffer (TX) is

responsible for transmitting data.

5



Chapter 2: The Hardware: TMoteSky

2.2.1 Configuration and Interfaces

The CC2420 possesses 33 16-bit configuration and status registers, 15 command

strobe registers and two 8-bit registers to access the separated transmit and receive

FIFOS. These registers are accessed by a 6-bit address.

The CC2420 can be configured by programming the different configuration registers.

A detailed description of the registers can be found in the data sheet of the chipcon

CC2420 [5].

To allow the microcontroller to affect the operation of the radio module, the CC2420

supports so called command strobes. A command strobe can be viewed as a single

byte instruction to the chipcon CC2420 that starts an internal sequence by address-

ing a command strobe register.

There are specific registers reserved for command strobes. Addressing a strobe reg-

ister makes the radio module to run an internal sequence. In doing so, no data has

to be transferred. The internal sequence is started only by addressing the command

strobe register.

The CC2420 has several pins to indicate certain states or events. In the receive

mode, the SFD pin goes high if a full start of frame delimiter has been received and

goes low again, if the last byte of the message has been received. It also goes low

if the hardware-implemented address recognition fails. In the transmit mode, the

SFD pin is active during the transmission of a data frame. It goes high if the start

of frame delimiter has been transmitted completely and goes low again after the

transmission of the last byte.

The CCA pin is used for clear channel assessment. It indicates whether a signal is

detected on the channel.

2.2.2 Acknowledgments

The IEEE standard 802.15.4 (Section 1.3) bases on packet based transmission. Af-

ter each packet received, an acknowledgment packet of a certain frame format is

sent back. There are various possibilities how this acknowledgment packets can be

generated.

The chipcon CC2420’s hardware allows two kinds of acknowledgments. On one

hand, the hardware can be set to automatically send acknowledgment packets with

no influence of the software running on the TI MSP 430. The acknowledgment

packet is sent by hardware as soon as the message is accepted by the address

recognition.

On the other hand, the hardware can be set only to send back an acknowledgement

when the software initiates the transmission. This is done by using a command

strobe. The packet itself is generated automatically by hardware, but it is only

transmitted if the command strobe arrives.

2.2.3 The FIFO

128 byte RXFIFO and the 128 byte TXFIFO buffers are part of the internal 368 byte

RAM. If a data overflow occurs, the stored data remains in the buffer while new data

6
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arriving is discarded.
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3
TinyOS 2.0

TinyOS [6] is an open-source operating system for wireless embedded sensor

networks. It has component-based a structure and is programmed in nesC [7].

nesC(network embedded system C) is a component-based C dialect.

3.1 Operating System

3.1.1 Components and Interfaces

A nesC application consists of components. Each component can be seen as a black-

box that provides certain functionality. Interfaces represent this functionality to

other components. A component A that wants to use the functionality provided by

another component B can do this by linking to the corresponding interface of com-

ponent B.

Interfaces are bidirectional. Each interface can specify a set of commands, which

are functions that have to be implemented by the interface’s provider. On the other

hand, the interface specifies a set of events, which are functions that have to be

implemented by an interface’s user. A component that uses an interface by calling

its command has to implement an event handler for each event of the correspond-

ing interface. Both, commands and events are actually function calls. Commands

are called by the user of an interface while events are signaled by an interface’s

provider.

The interfaces of application components are directly wired to the interfaces of com-

ponents of the operating system. Thus there is no strong separation between ap-

plication and operating system. The application and the operating system are inte-

grated in one executable program. At compile time, it is already defined whether a

component is included in an application and thus only the components that another

component wires to have to be used to build the binary image. Hence the code size

of an application can be minimized by only compiling the actually used components.

Components can be divided into two types: configurations and modules. The differ-

ence of the two types lies in their implementation.

9



Chapter 3: TinyOS 2.0

component A

b

component B

b

Figure 3-1
Example of two components wired

Modules are components that actually implement the functionality of its provided

interfaces. They define functions and allocate state. A module must implement

every command of its provided interfaces and every event of its used interfaces.

Configurations do not implement any interface on their own. Indeed, configura-

tions can also provide and use interfaces, but the implementation is done some-

where else. Configurations wire used interfaces of itself or other components

with provided interfaces. They must guarantee that each of the used interfaces

is wired with an implementation of this interface.

3.1.2 Execution Model

An example of the execution model in TinyOS shall encourage a better understand-

ing. First, we assume a component A, which uses interface b. Interface b is provided

by component B (Figure 3-1). Somewhere in the code of A a command b.1 from the

set of interface b is called. This leads to a function call and the code implementing

b.1 in component B is executed. The code just described is synchronous. It runs in

a single execution context and does not have any kind of preemption. This means,

if synchronous code is once started, it runs to the end and can not be preempted

by other synchronous code. Thus, synchronous code is able to prevent other syn-

chronous code from running and should therefore be hold as short as possible.

To execute large computations, tasks can be used. Tasks allow the operating system

to defer large computations to a point of time where the CPU is not needed. A task

is a function that is not run just when it is called but some time later.

If a task is posted, it is added to an internal task queue which is processed in FIFO

order. A task which is once started runs to the end and can not be preempted by

another task or synchronous code in general.

3.1.3 Concurrency

As far, we have looked at synchronous code, which is run to the end if once started.

The execution is sequential. If a command is called, the execution is proceeded at

the point where the corresponding function is implemented. To call back the compo-

nent above which has called the corresponding command, an event can be signaled.

The mentioned program flow is deterministic and known at compile time.
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But synchronous code can not be used when it comes to time critical functionality. A

hardware interrupt for example can not be handled in a task. If an interrupt occurs,

the processor immediately jumps to the handling code. The interrupt handler has to

be executed as soon as possible after the interrupt occurs.

Therefore asynchronous function calls are introduced. These function calls are as-

signed with the async keyword. An asynchronous function call interrupts syn-

chronous code. This means, an event with the async keyword is a function call

that preempts already running synchronous code. Asynchronous code can only call

asynchronous functions. In the implementation of an asynchronous command it is

allowed to call another asynchronous command or to signal an asynchronous event

but calling synchronous functions has to be sourced out to a task. On the other hand,

asynchronous functions can be called from within synchronous code.

3.1.4 Generic Components

Normal components in TinyOS are singleton. This means that a component exists

only once. That is, a component’s name is a single entity in a global namespace. If

there are more than one component wired to it, their calls are handled always by the

same piece of code. A generic component is not singleton. A new instance of it can

be allocated within a configuration. For example the timer component TimerMilliC,

is generic. Hence, applications can instantiate a timer component for each differ-

ent timer used instead of accessing one single timer component. Using one timer

component on an application near layer would complicate the using of timers.

3.2 Hardware Abstraction Layers

The hardware abstraction in TinyOS can be divided into three layers. The low-

est and hardware nearest level is the hardware presentation layer HPL. The next

higher abstraction is called hardware adaption layer HAL and the hardware-

independent layer is called hardware interface layer HIL.

3.3 The Timer-System

Wake-up time estimation in a duty cycle based low power listening protocol requires

a timer system which provides timing with a constant period. To determine the duty

cycle behavior it is necessary to get a deeper view into the timer system of TinyOS

used on a TmoteSky.

3.3.1 Hardware Presentation Layer

The configuration Msp430TimerC implements the HPL. Both TimerA and TimerB

can each be controlled by a separate interface provided by the configuration. Each of

three and seven respectively registers can be set and read by a separate interface.

All the Msp430-specific interfaces are implemented with asynchronous commands

and events which means that corresponding commands and events are able to pre-

empt synchronous code. Thus a timer-interrupt on the HPL is not delayed by a

long-running task.

11



Chapter 3: TinyOS 2.0

Msp430Timer
as

TimerA

configuration Msp430TimerC

3x
 Msp430TimerControl

as
ControlA0-A2

3x
Msp430Compare

as
CompareA0-A2

3x
Msp430Capture

as
CaptureA0-A2

7x
 Msp430TimerControl

as
ControlB0-B6

Msp430Timer
as

TimerB

7x
Msp430Compare

as
CompareB0-B6

7x
Msp430Capture

as
CaptureB0-B6

generic configuration 

TimerMilliC

Timer<TMilli>

configuration TimerMilliP

Timer<TMilli>
as

TimerMilli[uint8_t num]

generic module 

VirtualizeTimerC

Timer<precision_tag>
as Timer[uint8_t num]

Timer<precision_tag>
as TimerFrom

Alarm<TMilli,uint32_t>

generic configuration 

AlarmMilli32C()

Init

Alarm<to_precision_tag, to_size_type>
generic module 

TransformAlarmC(...)

as Transform
Counter<to_precision_tag, to_size_type>Alarm<from_precision_tag,from_size_type>

as AlarmFrom

Alarm<frequency_tag, uint16_t>
as Alarm

generic configuration 

Msp430Alarm32khz16C()

as AlarmFrom

Init Counter<TMilli, uint32_t>

configuration 

CounterMilli32C()

as Counter

Counter<to_precision_tag, to_size_type>
as Counter

generic module 

TransformCounterC(...)

as Transform

Counter<from_precision_tag, from_size_type>
as CounterFrom

Msp430TimerControl

generic configuration 

Msp430Timer32khzC 

as Msp430Timer

Msp430CompareMsp430Timer
...

ALARM_ID = unique "Msp430Timer32khzMapC"

Msp430Timer = Map.Msp430timerControl[ALARM_ID];

Msp430TimerControl = Map.Msp430TimerControl[ALARM_ID];

Msp430Compare = Map.Msp430Compare[ALARM_ID];

...

 

Msp430Timer [uint8_t id]
only id’s 0 to 6 are wired 

configuration Msp430Timer32khzMapC

Msp430TimerControl [uint8_t id]
only id’s 0 to 6 are wired

Msp430TimerComparel [uint8_t id]
only id’s 0 to 6 are wired

...

Implementation {

  components TimerMilliP;

  Timer=TimerMilliP.TimerMilli[unique(UQ_TIMER_MILLI)];

}

... 

...

Implementation {

  components HilTimerMilliC, MainC;

  MainC.SoftwareInit->HilTimerMilliC;

  TimerMilli=HilTimerMilliC;

}

... 

Init

configuration HilTimerMilliC

Timer<TMilli>
as

TimerMilli[uint8_t num]

generic module 

AlarmToTimerC(typedef precision_tag)

Timer<precision_tag>

Alarm<precision_tag,uint32_t>

...

components Msp430Counter32khzC() as CounterFrom

components new TransformCounterC(TMilli,uint32_t,T32khz,uint16_t,5,uint_32_t) 

...

 

...

components new Alarm32khz16C() as AlarmFrom

components CounterMilli32C as Counter
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Figure 3-2
Upper level of the wiring of the timer system in TinyOS

12



3.3. The Timer-System

The complete wiring of the timer system form the HIL down to the HPL is shown in

Figure 3-2.

3.3.2 Hardware Adaption Layer

On the HAL different components use the Msp430TimerC configuration to imple-

ment further abstractions. Various components are used to provide timers with dif-

ferent precision and width. In the coming explanations we will focus on the wiring

path that finally leads to the component TimerMilliC, which is used mostly on the

application layer.

The generic configuration Msp430Timer32khzC provides an Alarm interface that

is wired to Component TimerB. The Alarm Interface consists of the following com-

mands and events:

/**
* An Alarm is a low-level interface intended for precise

* timing.

*
* <p>An Alarm is parameterised by its "precision"

* (milliseconds, microseconds, etc), identified by a type.

* This prevents, e.g., unintentionally mixing components

* expecting milliseconds with those expecting microseconds

* as those interfaces have a different type.

*
* <p>An Alarm’s second parameter is its "width", i.e., the

* number of bits used to represent time values. Width is

* indicated by including the appropriate size integer type

* as an Alarm parameter.

*
* <p>See TEP102 for more details.

*
* @param precision_tag A type indicating the precision of this Alarm.

* @param size_type An integer type representing time values for this Alarm.

*
* @author Cory Sharp <cssharp@eecs.berkeley.edu>

*/
interface Alarm<precision_tag, size_type> {

async command void start(size_type dt);
async command void stop();
async command bool isRunning();
async command void startAt(size_type t0, size_type dt);
async command size_type getNow();
async command size_type getAlarm();

async event void fired();
}

Listing 3.1
Code: Alarm Interface

The access to Msp430TimerC is effected via the configuration MspTi-

mer32khzMapC. By providing a parameterized interface MspTimer[uint8 t],

MspTimer32khzMapC allows to use the seven compare registers of TimerB. Each

new instance of the generic configuration Msp430Timer32khzC uses another

MspTimer interface with a unique identifier. Since TimerB has only seven registers,

not more than seven new Msp430Timer32khzC components can be generated.

By hardware, TimerB provides a counter with a precision of 32 kHz and a width of

16 bit. On the HAL there are components that transform this precision and width.

Thus also a timer with the precision of milliseconds (Milli) can be used.

Above the just described mapping and transforming, the generic module AlarmTo-

TimerC is used to change the asynchronous Alarm interface into a synchronous

Timer interface. The Timer interface consists of the following commands and

events:

/**
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* A Timer is TinyOS’s general purpose timing interface. For

* more precise timing, you may wish to use a

* (platform-specific) component offering an Alarm interface.

*
* <p>A Timer is parameterised by its "precision" (milliseconds,

* microseconds, etc), identified by a type. This prevents,

* e.g., unintentionally mixing components expecting

* milliseconds with those expecting microseconds as those

* interfaces have a different type.

*
* <p>See TEP102 for more details.

*
* @param precision_tag A type indicating the precision of this Alarm.

*
* @author Cory Sharp <cssharp@eecs.berkeley.edu>

*/

interface Timer<precision_tag> {
command void startPeriodic(uint32_t dt);
command void startOneShot(uint32_t dt);
command void stop();
event void fired();

command bool isRunning();
command bool isOneShot();
command void startPeriodicAt(uint32_t t0, uint32_t dt);
command void startOneShotAt(uint32_t t0, uint32_t dt);
command uint32_t getNow();
command uint32_t gett0();
command uint32_t getdt();

}

Listing 3.2
Code: Timer Interface

The usage of the Timer interface instead of Alarm does not allow a timer-interrupt

to preempt tasks and event-handlers anymore. This means, an event generated by

a timeout that has been instantiated via a Timer interface will be asynchronous up

to the level of AlarmToTimerC and will then proceed as synchronous event. This

prevents an application using the timer interface from delaying other asynchronous

events by running oversized event-handlers. As mentioned above, TimerB provides

only seven compare registers. Virtualizing timers allows having more than seven

timers running at the same time. The virtualization is done by the generic module

VirtualizeTimerC which uses the Timer interface provided by AlarmToTimerC. One

generic module VirtualizeTimerC uses only one compare register but provides up to

256 parallel running timers via the parameterized interface Timer[uint8 t num] .

3.3.3 Hardware Interface Layer

On the HIL the configuration HilTimerMilliC provides access to the lower layers via

the interface Timer[uint8 t num]. This interface is wired to the VirtualizeTimerC

component and offers up to 256 timers.

On the application layer one normally uses the component TimerMilliC for timing.

This component is wired to HilTimerMilliC.

3.3.4 Measurements

The Timer interface consists of synchronous commands and events. Thus, for exam-

ple the command to start a timer or the event generated when a timer is fired is

not preemptive. Hence, it could happen that the handling of an event that signals

the firing of a timer is delayed by a task that has to run to its end yet. As described

above, on lower layers of the timer stack another interface for timing is used. The

interface Alarm completely consists of asynchronous commands and events.
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Figure 3-3
Distribution of the interval between the handling of two following timer firings

If wake-up time estimation is implemented, we want to be able to send a packet

at a certain point of time to hit the listening interval of the destination node. Thus

we have to look at the differences between timing with the Alarm interface and the

Timer interface.

3.3.4.1 Evaluation of the Timer Interface

In a first evaluation, a component that only uses one timer provided by the Timer-

MilliC component has been considered. Always when the timer is fired, it is started

anew with a timeout period of 100 binary milliseconds. 1024 binary milliseconds

are equal to one second. The timer is started with a synchronous command call from

within the event handler that handles a timer firing. Thus, the timer should fire

periodically all 3200 clocks of the 32 kHz quartz. Besides the handling of the timer

event, the evaluated component has no functionality. This is to prevent from tasks

that could run at the same time when a timer event is signaled. 2100 timer firings

have been evaluated. In 0.24 % of the considered samples, the timer event has not

been handled accurately. The handling has been done one clock too late. There have

been no discrepancies larger than one clock. This leads to 0.48 % of the periods that

are either one clock longer or one clock shorter than 3200.

Another test component has been executed where three timers were used at the

same time and several tasks were posted. Again 2100 timer firings have been eval-

uated. In 4.67% of the samples, the period between two handlings of a timer firing

differed from 3200 clocks. The distribution of the duration of the evaluated periods

is show in Figure 3-3. As expected, other timers and tasks running during a syn-

chronous timer event occurs lead to variable intervals between the handling of two

following timer firings.

3.3.4.2 Evaluation of the Alarm Interface

To evaluate the Alarm interface, the test components used were quite similar to

the components described in Section 3.3.4.1. The only difference was that instead of

the Timer interface the Alarm interface has been used. In the component to evalu-

ate a scenario with timers and tasks running, two Timer interfaces and one Alarm
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Figure 3-4
Form of transmission of a single packet

interface has been used. 2100 sample periods were measured. Neither in the sce-

nario with only one Alarm nor where tasks and timers were implemented, a period

differing from 3200 clocks could have been detected.

3.3.4.3 Summary

To make sure that the handling of a timer event is not delayed, an Alarm interface

should be used. In spite of tasks running, the Alarm interface allows handling a

timer event without delay and thus leads to a stable period.

3.4 The CC2420 Low Power Listening Radio Stack

The radio stack implements a packet-based asynchronous low power listening [9].

Instead of a long preamble several packets are sent to hit the listening interval of

the duty cycling destination node. The transmitter sends the full packet over and

over again for twice the receiver’s duty cycle period.

The transmission of on single packet is typically of the form shown in Figure 3-4.

Before the message is sent, the radio checks the channel for the duration of the LPL

Backoff period TLPLBackoff to ensure that no other node is transmitting at the same

time. After the transmission of the message the transmitter waits for the acknowl-

edgement packet. For this a period TAckWait, during which the transmitter waits for

an acknowledgement, is defined. If no acknowledgement is received within TAckWait

the message can be assumed as not acknowledged and has to be resent.

Thus the channel is only modulated during the actual transmission of the message.

During the period TCalm = TLPLBackoff + TAckWait the channel is calm. If several

packets are sent in order to execute acknowledged low power listening a period of

duration TCalm exists between two packets during which the channel is not mod-

ulated. In order to overlap the transmission period of a packet the duty cycling

receiver has the sample the channel a moment longer than TCalm.

Figure 3-5 and Figure 3-6 show the wiring of the whole radio stack from the appli-

cation layer represented by the component ActiveMessageC down to the Hardware

Presentation Layer. The stack can be divided into different layers, each providing a

set of the three interfaces, Send, Receive and SplitControl. A component providing

a certain interface to the layer above uses the corresponding interface of the layer

below. A message sent via the Send interface provided by the component ActiveMes-

sageC passes through all layers down to the hardware.

3.4.1 Hardware Abstraction of the Send and Receive Interface

As mentioned above, the stack consists of several layers. In the following sections

we will have a deeper look at how the two interfaces Send and Receive are wired
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through the radio stack.

3.4.1.1 Send Interface

The Send interface consists of the following commands and events:

interface Send {
command error_t send(message_t* msg, uint8_t len);
command error_t cancel(message_t* msg);
event void sendDone(message_t* msg, error_t error);

command uint8_t maxPayloadLength();
command void* getPayload(message_t* msg);

}

Listing 3.3
Code: Send Interface

An application can use the Send interface of the ActiveMessageC to send a message

of the type message t [8]. message t constitutes the standard message buffer in

TinyOS2.x. The structure of the type message t is defined in tos/types/message.h.

Roughly, the message t consists of a header, the data, a footer and additional meta-

data. The content of the metadata is not sent but used to exchange information

between the different layers of the radio stack.

The Send interface is wired via the configuration CC2420ActiveMessageC to the

module CC2420ActiveMessageP, where the CC2420 specific header is composed.

The message is passed to the UniqueSend layer where a unique sequence number

is added to the header of the message.

Then the message is handed on the configuration CC2420AckLplC, which is linked

to the module CC2420AckLplP where the low power listening is implemented. The

AckLpl layer is responsible for adapting the transmission of a message to the duty

cycling of the receiver. Since the receiver is only listening during a short period of

time, a message is transmitted several times to guarantee the listening period of

the receiver is hit. In order to increase the possibility that a message is received at

the destination, the AckLpl layer sends the same message during a period as long as

two duty cycle periods. When a send done event is signaled from the layer below, it is

checked whether the message has been acknowledged. If not, the message is resent

by directly accessing the interface of the component TransmitC. If a message has to

be sent for the first time, it is handed over from the AckLpl layer to the component

CsmaC, which is linked to the module CsmaP. The module CsmaP defines the FCF

byte of the IEEE 802.15.4 header. It also determines the random backoff periods.

Finally the message is handled on the Transmit layer. This layer directly accesses

the SPI bus to interact with the CC2420. First, the TransmitP module loads the

message into the TXFIFO buffer. If this is done correctly the transmission of the

message is released by the command strobe STXON. A more detailed description of

the component TransmitP is given in Section 3.4.4.

3.4.1.2 Receive Interface

The Receive interface consists of the following commands and events:

interface Receive {
event message_t* receive(message_t* msg, void* payload, uint8_t len);

command void* getPayload(message_t* msg, uint8_t* len);
command uint8_t payloadLength(message_t* msg);

}
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Listing 3.4
Code: Receive Interface

If a message comes in, it is first loaded into the RXFIFO buffer. If a predefined num-

ber of bytes is loaded into the buffer, the FIFOP pin of the CC2420 is set to high.

This change of the FIFOP pin is captured and leads to an event signaled to the Re-

ceiveP module. In its event handler the receiving is started. First, the content of

the RXFIFO buffer is read out into the main memory via the SPI bus. Rather, at

the first step, only the length byte is read out. The length field is checked and if it

is within the predefined frame, the read is continued. If the message read out is of

the data type, a hardware generated acknowledgement packet is sent by calling the

SACK command strobe. At the end, a receive-done event is signaled to the component

above.

The CC2420CsmaC component’s Receive interface is directly wired to the Receive

interface of the component CC2420TinyosNetworkC whose Receive interface is im-

plemented in the module CC2420TinyosNetworkP. There, the network field of the

header is checked. If the network field indicates a TINYOS 6LOWPAN NETWORK ID
identifier, a receive event is signaled to the component UniqueReceiveC.

The Receive interface of the UniqueReceiveC configuration is implemented in the

module UniqueReceiveP, where the sequence number of the packet is checked. On

the next higher level, the module CC2420AckLplP implements the Receive inter-

face where a timer is started. Since the duty cycle is suspended in case of receiving

a packet, the radio has to be turned off by the AckLpl layer. This is done when the

mentioned timer runs out. At the AckLpl layer a receive event is signaled which is

handled by the CC2420ActiveMessageC.

3.4.2 Duty Cycling

The component CC2420DutyCycleC provides the interface State, CC2420DutyCycle

and SplitControl. The two interfaces CC2420DutyCycle and SplitControl are imple-

mented in the module CC2420DutyCycleP.

If duty cycling is enabled, the DutyCycleP module periodically turns on the radio

to sample the medium in order to check whether another node in the neighborhood

is transmitting. The command isChannelClear(), which is part of the interface

CC2420Cca, is called MAX LPL CCA CHECKS times to scan the channel. If another

node transmitting is detected, the CC2420DutyCyle event detected() is signaled.

After signaling this event, the CC2420DutyCycleP component stays idle. Duty cy-

cling is only resumed, if a radio stop done event form CC2420CsmaC is signaled.

Otherwise, if no other node transmitting is detected, the radio is stopped. The event

handler of the radio stop done event starts the timer again and initiates the next

sleeping phase. Another firing of the timer leads to starting the radio and wake up

procedure begins anew. Depending whether a node transmitting is detected or not,

the period between two wake-ups can strongly vary. The period also varies because

the clear channel assessment is done in a task and thus can be interrupted by asyn-

chronous commands and events.
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3.4.3 Acknowledged Low Power Listening

The configuration CC2420AckLplC provides the needed interfaces for acknowledged

low power listening. Besides the interfaces Send and Receive, the component also

provides the interfaces LowPowerListening, SplitControl and State. The SplitCon-

trol interface is wired to the DutyCycleC component. Thus, by calling the SplitCon-

trol interface of the CC2420AckLplC component, duty cycling is started. The low

power listening itself is started directly by the init() command of the MainC com-

ponent.

The LowPowerListening interface is used to adjust the duty cycle period. It pro-

vides also commands that return the wanted period, for example the current sleep

interval. Like the interfaces Send and Receive, the LowPowerListening interface is

implemented in the module CC2420AckLplP.

If a packet wants to be sent for the first time this is done by using the Send interface

of the CC2420TinyosNetworkC. The program flow on the CC2420AckLplP layer con-

tinues when the transmitting is completed, this means when a sendDone() event

is signaled from the component below. If the packet just sent has been acknowl-

edged, the procedure of sending is terminated and a sendDone() event can be sig-

naled to the component above. Otherwise, the packet has to be resent. To resend

the packet it is not necessary to go again the path down to the hardware over the

CC2420TinyosNetworkC component. Since the message is still stored in the TX-

FIFO buffer, the TransmitP component can be accessed directly. For the purpose of

resending a packet already existing in the TXFIFO buffer, the CC2420Transmit in-

terface offers the command resend().

Since the receiving node is only listening for a short listening interval, a packet has

to be resent repeatedly at least until the next wake-up of the destination node. Thus,

before abort transmitting, the packet has to be sent over a period of at least one duty

cycle to guarantee that the listening interval of the destination node can be hit. To

increase the possibility to hit the listening interval, the period over which a packet

is resent is set to twice the duty cycle period.

3.4.4 The Component TransmitP

3.4.4.1 General

The component TransmitP implements the hardware nearest layer of the CC2420

radio stack. Among other interfaces, it mainly implements the CC2420Transmit

interface, which consists of the following commands and interfaces:

/**
* Low-level abstraction for the transmit path implementaiton of

* the ChipCon CC2420 radio.

*
* @author Jonathan Hui <jhui@archrock.com>

* @version $Revision: 1.5 $ $Date: 2007/04/12 17:11:12 $

*/

interface CC2420Transmit {

/**
* Send a message

*
* @param p_msg message to send.

* @param useCca TRUE if this Tx should use clear channel assessments

* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t send( message_t* p_msg, bool useCca );
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/**
* Send the previous message again

* @param useCca TRUE if this re-Tx should use clear channel assessments

* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t resend(bool useCca);

/**
* Cancel sending of the message.

*
* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t cancel();

/**
* Signal that a message has been sent

*
* @param p_msg message to send.

* @param error notifaction of how the operation went.

*/
async event void sendDone( message_t* p_msg, error_t error );

/**
* Modify the contents of a packet. This command can only be

* used when an SFD capture event for the sending packet is

* signalled.

*
* @param offset in the message to start modifying.

* @param buf to data to write

* @param len of bytes to write

* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t modify( uint8_t offset, uint8_t* buf, uint8_t len );

}

Listing 3.5
Code: CC2420Transmit Interface

TransmitP directly accesses the pins and registers of the Chipcon CC2420

through the interfaces GpioCapture, GeneralIO, CC2420Fifo, CC2420Register and

CC2420Strobe. The execution of the send() command can roughly be divided into

two parts. First, the message to be sent is loaded into the TXFIFO buffer of the

CC2420. For doing this, the SPI bus has to be acquired. If the loading is completed,

an event is generated, which leads to phase two. If clear channel assessment is en-

abled, at this point the whole procedure is run through. If clear channel assessment

is disabled or already successfully terminated, next TransmitP attempts to send the

message, which also requires the SPI bus to be acquired. The transmission of the

message is released by a command strobe.

3.4.4.2 Clear channel assessment

Since clear channel assessment takes some time and thus affects accurate sending of

a message, we will have a closer look to the procedures implemented in the Trans-

mitP component. Before starting to send a message that has already been loaded

into the TXFIFO buffer, an initial backoff timer is set to a random period of time.

When the backoff timer is fired, the channel is checked whether it is clear. If the

channel is clear, the sending is delayed for another period of about 0.2 milliseconds.

This is done to prevent from conflict with a probable acknowledgment. After this

period if the channel is still clear, the message is sent. If the channel is used, the

component sets the congestion backoff timer.
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4
Synchronous Low Power Listening

4.1 Basic Concept

Our implementation of a synchronous low power listening bases on the idea of

WiseMAC. By means of the acknowledgment packets, timing information is ex-

changed between nearby nodes. A node can use this information to estimate the

wake-up time of the destination node. Thus the source gets able to synchronize its

transmission with the sampling schedule of the destination.

The existing radio stack in TinyOS should be modified as little as possible. Since

the CC2420 is packet-based while WiseMAC assumes a bit stream radio, no adap-

tive preamble can be transmitted. Instead of a preamble, a packet burst is used.

This means, the same packet is transmitted several times (Figure 4-1). Packet-based

synchronous low power listening reduces the number of packets that have to be sent

by starting the transmission only short before the wake-up time of the destination

node.

After the transmission of a single packet, which is part of a packet burst, the trans-

mitter waits a short interval. This is because the transmitter wants to allow the

receiver of the packet to send back an acknowledgment packet. Hence, the packet

burst is only as long as necessary since it is terminated after a successful acknowl-

edged packet.

In order to be able to estimate the destination’s next wake-up time, the transmitter

needs some information about the sampling schedule of the destination node. This

information is exchanged by each acknowledgement carrying 2 bytes with timing

information. An adjacent node can use this timing information to determine the rel-

ative wake-up schedule offset between its own wake-up and the one of its neighbor.
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Chapter 4: Synchronous Low Power Listening

Figure 4-1
Packet-based synchronous low power listening

Instead of a bit-stream preamble a packet burst is used. The length of the burst has to

guarantee that the sampling interval (TL) of the destination is hit.

After each packet the channel is calm for a certain period to allow the reception of a possible

acknowledgment packet. The sampling interval has to be larger than this period to

guarantee that no burst is missed because the radio waked up between two packets.

4.2 Duty Cycling with a Constant Period

4.2.1 Concept

As described in Section 3.4.2 the current radio stack of the CC2420 in TinyOS al-

ready implements duty cycling but with a variable period. To be able to determine

the wake-up point of a destination node, all nodes in a network have to sample the

medium with a constant period TW . Hence, the current CC2420 radio stack has to

be modified to that effect that a constant wake-up period TW is given.

The interval between two wake-ups of duration TW basically consists of two phases.

In one phase nothing has to be done and the radio is turned off. This phase we call

the sleep interval. In the other phase, called active interval, the radio is started and

the medium is checked for other nodes transmitting. The active interval starts when

the wake-up timer is fired and ends when the radio is turned off again.

4.2.1.1 The Active Interval

According to the adjusted value, an alarm fires periodically. This point of time is the

wake-up time tW . In the event handler of the alarm, at first a new alarm has to be

started to guarantee a constant wake-up period TW . Figure 4-2 shows the events

and processes going on during the active interval.

The duration of sampling the medium is determined by the time it takes from re-

ceiving a data packet and sending back an acknowledgement packet on the one hand

and the time needed for the backoff because of the clear channel assessment on the

other hand. We call the period in which the channel is sampled either sampling

interval or listening interval TL.
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4.3. Acknowledgements

Figure 4-2
Active interval

An alarm firing at the wake-up time tW initiates the start of the active interval. At first, the

alarm for the next wake-up is set (1). Afterwards the radio is started up. The termination of

the radio starting is indicated by a start-done event (2).

If the radio is on, sampling of the channel is started at tL. During the whole sampling

interval TL the channel is checked for a possible modulation.

After the end of the sampling interval, the radio is turned off again (3). The stopping of the

radio is signaled by a stop-done event (4).

Figure 4-3
Acknowledgment concept

In order to minimize the period between two packets of the packet burst, a combination of a

hardware acknowledgment and a software acknowledgment is used. First a fast hardware

ack is transmitted and afterwards a software ack, which carries the synchronization

information follows.

If no hardware ack is received, the transmitter immediately sends the next packet of the

burst without waiting for a software ack.

4.2.2 Implementation

In the asynchronous low power listening radio stack the duty cycling is handled by

the component CC2420DutyCycleP. In order to achieve duty cycling with a constant

period, we have introduced the component CC2420DutyCycleSyncP, which bases on

the duty cycle component of the asynchronous protocol.

The component of the synchronous protocol uses an alarm instead of a timer in-

terface to initiate the wake-up. At first, the event handler OnTimer.fired, which

handles the wake-up alarm, sets up the alarm for the next wake-up. By setting up

the alarm in the event handler a duty cycling with a stable period can be guaran-

teed.
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Chapter 4: Synchronous Low Power Listening

4.3 Acknowledgements

4.3.1 Concept

As it is shown in section 5.2, the software generated acknowledgements possess a

turnaround time of about 108 clocks32kHz. Since we do not want to implement an

acknowledgement that is slower than the acknowledgement of the current radio

stack version, we propose another idea for acknowledging a received packet.

If a packet is received, the new protocol first sends an acknowledgement that is

generated and automatically launched by hardware. In the following step, the soft-

ware generates a second acknowledgement packet, which also carries the synchro-

nization information, and sends this packet to the original transmitter of the data-

packet (Figure 4-3). As the original transmitter receives an acknowledgement, it

first checks if it is the hardware or the software acknowledgement. In case of a

hardware acknowledgement it elongates the countdown of the running timer to per-

mit the reception of a software acknowledgement. Otherwise, in case of a software

acknowledgement, the timestamp carried by the acknowledgement packet is used

to calculate the offset between the duty cycle of the transmitting and the receiving

node.

If no hardware acknowledgement is received within a certain period of time, a timer

expires and an event signals to the components on higher layers that the trans-

mission failed. The component on the Low Power Listening layer will then decide

whether to send another data packet or to abort the transmission.

4.3.2 Implementation

4.3.2.1 Hardware Acknowledgement

In order to automatically generate and transmit hardware acknowledgements, the

AUTOACK bit of the MDMCRL0 configuration register has to be set to one. This is done

in the component CC2420ControlP when the CC2420Power.startOscillator()
command is called.

4.3.2.2 Software Acknowledgement

The IEEE standard 802.15.4 defines four different message types. They all have a

predefined frame format. Since synchronous low power listening uses acknowledge-

ment packets to transport additional timing information, the defined frame type 3,

which specifies acknowledgement packets, cannot be used for a software acknowl-

edgement. If we would use the IEEE 802.15.4 acknowledgement frame format and

extend it by two additional bytes for the timing information, the packet would not

be accepted by the address recognition performed in hardware. Such an acknowl-

edgement is discarded.

However, in order to stay compatible with the IEEE standard, we use one of the

reserved types (Section 1.3.1). Frames with a reserved type identifier are accepted

by hardware, if the corresponding control bit RESERVED FRAME MODE in MDMCTRL0
is set.

The synchronous low power listening protocol introduces the new frame type
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4.4. Wake-up Time Estimation

IEEE154 TYPE SYNC ACK. Additionally to a normal acknowledgement, the new syn-

chronization acknowledgement provides two bytes to transport information about

the destinations sampling schedule. The definition of the new frame type is de-

scribed in the file IEEE802154.h.

The transmitted sampling schedule information consists of the difference ∆W,next =
tW,next − tnow where tnow is the time at which ∆W,next is calculated and tW,next is the

next wake-up time of the node. The calculation is done short before the software

acknowledgement packet is written to the TXFIFO buffer.

4.3.2.3 Extension of the CC2420Transmit-Interface

In the current version of the CC2420 radio stack in TinyOS, the transmission of

the hardware generated acknowledgement is released by a command strobe that

is called from within the ReceiveP component. In order to be able to transmit an

acknowledgement that carries a timestamp, the software generates the second (be-

sides the one automatically sent by hardware) acknowledgement. To avoid con-

flicts by several components that want to access the TXFIFO-Buffer, we decided

to implement the generation of the acknowledgement packet in the component

CC2420TransmitP. Hence, it can be ensured that CC2420TransmitP is the only com-

ponent that accesses the TXFIFO buffer.

To allow the component CC2420ReceiveP to access the mentioned generation pro-

cedure, a new command is integrated in the existent interface. This new command

is called sendAck() and needs the sequence number of the packet that has to be

acknowledged as argument.

4.3.2.4 Handling an Acknowledgement Packet

The component CC2420TransmitP is also responsible for the handling of a re-

ceived acknowledgement. When a packet arrives, it first passes the component

CC2420ReceiveP over which it gets to the component CC2420TransmitP. This

component first checks whether the received packet is an acknowledgement. In

case of a hardware acknowledgement the running alarm is stopped and set

to the period CC2420 SYNCACK WAIT DELAY, which is defined in file tos/chip-

s/cc2420/CC2420.h.This period roughly corresponds to the difference between the

turnaround time of a complete hardware acknowledgement and a software acknowl-

edgement.

4.4 Wake-up Time Estimation

4.4.1 Concept

Each node in a network samples the channel according its own sampling schedule

with the constant period TW . Since the clocks of the different nodes are not synchro-

nized, there is a relative offset between the different sampling schedules. We call

this offset the sampling offset ∆L (Figure 4-4).

The sampling offset ∆L can be calculated by taking the difference between

∆W,Dest,next, which can be extracted from the received acknowledgement and

∆W,Own,next, which is the time left to the next wake-up of the node itself.
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Figure 4-4
Parameters needed for wake-up time estimation

∆L: Offset between the two sampling schedules

∆W,next,Own: Time until the next own wake-up will occur

tW,Dest,next: Newt wake-up time of the destination

If a message is to be sent at time tnow, the destination’s next wake-up time tW,Dest,next

can be estimated by using the stored ∆L and the source node’s own next wake-up

time:

testW,Dest,next = tW,Own,next + ∆L (4.1)

4.4.2 Implementation

The calculation of ∆L is added to the existing Module CC2420TransmitP and is

done immediately after an acknowledgement packet is received. The generated

∆L = ∆W,Dest,next − ∆W,Own,next does not exactly correspond to the real sampling

offset ∆real
L since there exists a hardware-caused offset between the sent ∆W,Dest,next

and the actual ∆real
W,Dest,next at the point of time when the acknowledgement is trans-

mitted. This offset is compensated when the estimated wake-up time of the destina-

tion testW,Dest,next is used for accurate sending.

The estimation of the destination’s next wake-up time is done in the Component

CC2420WakeUpEstP (Section 4.5.2.3).

4.5 Accurate Sending

4.5.1 Concept

Using the estimated wake-up time testW (Section 4.4), a transmitting node has to be

sending the packet burst just at the right moment to hit the sampling interval of

the destination node.

A receiving node that wakes up at tW , has to turn on its radio first. Therefore, the

destination node actually starts sampling at a certain period after tW called tL. The

node samples the channel for the duration of TL (listening) and then turns the radio

off again.
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4.5. Accurate Sending

A source node that transmits a message modulates the channel for the duration of

period TM , which depends on the packet length. TM can consist of one packet but

also of more. TM has to be long enough in order to guarantee that the packet or the

packet burst overlaps the sampling interval of length TL.

If a packet burst of npkt packets is used, we call the period in which the channel is

modulated by a packet TM,pkt, while the period between two packets is called TM,calm.

Hence TM of the packet burst is of length TM = npkt∗TM,pkt+(npkt−1)∗TM,Calm. Since

the sampling interval of length TL is larger than the period between two packets

(TM,Calm) at least one packet of the burst overlaps the sampling interval (Figure

4-5).

(a) Parameters concerning the transmitter of a message

(b) Parameters concerning the receiver of a message

Figure 4-5
Important parameters of the synchronous low power listening protocol

The modulation interval of a packet burst consists of the actual modulation of the channel

(TM,pkt) and the period between two following packets of the burst. The length of the packet

burst (TM ) has to be long enough to make sure that the sampling interval of the destination

is hit.

In order to prevent from missing a packet burst the minimal length of the sampling interval

TL,min has to be larger than the maximal time between two packets of the packet burst

TM,Calm,max. Thus TL,min > TM,Calm,max has to hold.

In order to be modulating the channel at same time as the destination node is sam-

pling, the point of time tM at which the transmission of the single packet or the

packet burst respectively starts has to satisfy the following inequality.

tL − TM < tM < tL + TL (4.2)

However, the clocks might drift which needs to be taken into account. For the further
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calculations, the maximal frequency tolerance of the quartz is called θ. In a worst

case scenario one clock runs too fast (f +θ ) while the other clock goes too slow (f−θ).

Thus, the clockdrift θ has to be compensated twice which leads to Expression 4.3.

tL + 2Aθ − TM < tM < tL − 2Aθ + TL (4.3)

A is the age of the stored ∆L.

From Inequality 4.3 the minimal needed TM at a certain age of the synchronization

information can be derived.

TM > 4Aθ − TL (4.4)

TM,min leads to a minimal number of packets needed for the burst.

npkt,min = ⌈
TM,min + TM,Calm

2(TM,pkt + TM,Calm)
⌉ (4.5)

4.5.2 Implementation

4.5.2.1 Basics

We’ve added the Component CC2420WakeUpEstP in the radio stack to allow wake-

up time estimation and accurate sending. In order to keep the packet burst as short

as possible, the transmission of the first packet has to be deferred to tM . A message

that arrives at the CC2420WakeUpEstP component is first prepared, which means

it is loaded into the TXFIFO buffer. This preparation is done by using the Interface

AccSend, which is provided by the Component CC2420TransmitC. If the prepara-

tion is terminated, the point of time tSendNow at which the command sendNow()
of the AccSend interface has to be called is determined. tSendNow is calculated by

adding an offset ∆ModulationP lacing to the estimated wake-up time testL . The offset

∆ModulationP lacing is used to place the modulation interval TM in the middle of the

estimated sampling interval T est
L . ∆ModulationP lacing can be determined by an empir-

ical evaluation.

4.5.2.2 Increasing TM

Since we want to keep the sampling interval as short as possible, we increase TM .

This can be done by using two packets as described in Section 4.5.1. If we set TM to

3ms, which corresponds to the interval between two messages sent, we are on the

secure side, since TM is actually higher. In the case of two packets used, tM has to

be chosen so that TM is placed in the middle of T est
L .

4.5.2.3 CC2420WakupEstC Component

The configuration CC2420WakeUpEstC wires the interfaces used by the module

CC2420WakeUpEstP to the component CC2420TransmitP. The interfaces provided

by the CC2420WakeUpEstC component are used by the component CC2420CsmaC.

Compared to the initial CC2420 radio stack where the Component CC2420CsmaC

directly wires to the Component CC2420TransmitC, our implementation inserts a

sublayer between the CSMA layer and Transmit layer. This sublayer is responsible

for deferring the packet burst to keep it as short as possibel.
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4.5.2.4 AccSend Interface

The newly introduced interface CC2420AccSend consists of the following commands

and intefaces:

/**
* Interface which allows accurate sending of packets on the

* ChipCon CC2420 radio.

*
* @author Roman Amstutz <amstutzr@ee.ethz.ch>

* @version $Revision: 0 $ $Date: 2007/05/21 17:11:12 $

*/

interface CC2420AccSend {

/**
* Prepare sending a message

*
* @param p_msg message to send.

* @param useCca TRUE if this Tx should use clear channel assessments

* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t prepare( message_t* p_msg, bool useCca );

/**
* Send the message which is already in the buffer

* Use this command only when the event prepareDone is

* signaled

*
* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t sendNow();

/**
* Send the previous message again

* @param useCca TRUE if this re-Tx should use clear channel assessments

* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t resend(bool useCca);

/**
* Cancel sending of the message.

*
* @return SUCCESS if the request was accepted, FAIL otherwise.

*/
async command error_t cancel();

/**
* Signal that a message has been sent

*
* @param p_msg message to send.

* @param error notifaction of how the operation went.

*/
async event void sendDone( message_t* p_msg, error_t error );

/**
* Signal that the message has been loaded into the buffer

*
* @param p_msg messsage to send.

* @param error notifaction of how the operation went.

*/
async event void prepareDone( message_t* p_msg, error_t error);

}

Listing 4.1
Code: AccSend Interface

The interface allows executing the functionality of the normal Send interface split

into two parts. In a first phase, the message is loaded into the TXFIFO buffer by

calling the command prepare(). In the second phase, the message loaded into the

buffer can be accurately sent by calling sendNow(). Accurately sending does not

mean that the message leaves immediately when the command is called, but the

delay is deterministic, since it does not depend on the length of the packet and all

the function calls involved are asynchronous.
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5
Design Evaluation

This section presents the performance analysis of the synchronous low power listen-

ing protocol and lists comparisons with the asynchronous protocol.

5.1 Duty Cycling

A synchronous low power listening protocol, which bases on wake-up time estima-

tion, requires a duty cycle with a constant wake-up time period. Otherwise, the

wake-up time of the receiver would not be deterministic. The stability of the new

implemented synchronous duty cycling is therefore evaluated in this section.

As mentioned in Section 3.4.2, the original asynchronous implementation of the

CC2420 low power listening radio stack of TinyOS changes to a sleep interval after

the listening interval is terminated. The length of the listening interval depends

on whether another node transmitting is detected or not. The sleep interval starts,

when the radio is stopped. This results in a wake-up period that can strongly vary.

In order to allow wake-up time estimation, the component CC2420DutyCycleSyncC

whose interfaces are implemented in the module CC2420DutyCycleSyncP provides

a duty cycling with a stable period. This stability of the duty cycle period has been

evaluated considering 4500 duty cycles. In only 0.22% of the evaluated cycles, the

period differs from 3200 clocks. The difference is always only one clock (Figure 5-1).

Thus, the duty cycle period can be assumed as constant.

5.2 Acknowledgements

In the context of acknowledgement packets, we define the period that it takes from

sending a message out of the TXFIFO buffer until the corresponding acknowl-

edgement is received as turnaround time. This period is of importance since it

determines the acknowledgement waiting period TAckWait, which again affects the

lower bound of the sampling interval TL.

To determine the lower bound of the wait period between two packets (TAckWait),

we are going to evaluate the resulting turnaround time for the three different types
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Figure 5-1
Distribution of the Wake-up Period

of acknowledgments. These are hardware acknowledgments (HW Ack ), software

controlled hardware acknowledgments (SWHW Ack ) (both Section 2.2.2) and

software acknowledgments (SW Ack ). For the evaluation one node is listening all

the time while the transmitting node tries to send a message every second.

5.2.1 Hardware Acknowledgement

The CC2420 supports acknowledgements that are completely generated and re-

leased by hardware. In this case, the software does not have to care about the

transmission of an acknowledgement. The drawback of using hardware acknowl-

edgements is that it could lead to packets that get acknowledged by the hardware

but are never recognized by the software.

To evaluate the turnaround time of a hardware acknowledgement a test component

that periodically (every second) transmits a packet is used. To study the influence

of the packet length, packets of different payloads have been used. The results are

listed in Table 5-1 and show a slightly increased turnaround time of 0.19 clocks32kHz

in average if additional bytes are sent.

Figure 5-2 shows the distributions of the turnaround times using variable packet

length. Since the maximal payload length of the implemented radio stack is set to

28 bytes, the maximal expected turnaround time is limited to 40 clocks32kHz.

5.2.2 Software controlled Hardware Acknowledgements

The original, asynchronous CC2420 radio stack in TinyOS uses hardware acknowl-

edgements that are initiated by software. 98.42% out of 760 messages sent have

been acknowledged. The resulting turnaround time can be seen in Table 5-1 while

the distribution is shown in Figure 5-2.

The turnaround time of software controlled hardware acknowledgment is about 30

clocks32kHz higher than the one of hardware acknowledgments.
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Figure 5-2
Distribution of the turnaround time for different acknowledgment types

5.2.3 Software generated acknowledgement

With a maximal measured value of 109 clocks32kHz (Table 5-1), software generated

acknowledgments show the longest turnaround time. This result is not surprising

since it takes additional time to firstly generate the acknowledgment packet in soft-

ware and load it into the TXFIFO buffer.

5.2.4 Summary

The evaluation clearly shows that hardware acknowledgments have the shortest

turnaround time. Sending an acknowledgment completely generated in software

takes more time than sending a software controlled hardware acknowledgment.

Thus the synchronous protocol, which uses hardware acknowledgments in a first

step, shows a decreased TAckWait compared to the asynchronous protocol, which uses

software controlled hardware acknowledgments.

But the synchronous protocol uses the acknowledgment packets to carry synchro-

nization information, which cannot be included in standard hardware acknowledg-

ment packets. Thus, software acknowledgments have to be used combined with

hardware acknowledgments.
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5.3 Wake-up Time Estimation

The wake-up time estimation is based on the synchronization information in the ac-

knowledgment packet. With the help of this scheduling information, the transmitter

is able the transmit a message exactly during the time slot when the destination

node is active.

In order to exactly determine the next wake-up time of the destination, the synchro-

nization information has to be as accurate as possible. If the time interval between

the generation and the interpretation of the synchronization information is not con-

stant, it is not possible to predict the next wake-up time of the destination.

In this section the accuracy of the timestamp and the wake-up time estimation is

evaluated.

5.3.1 Accuracy of the Timestamp

As mentioned above, each acknowledgement packet carries a timestamp that indi-

cates the time difference between the point of time short before the acknowledge-

ment is loaded into the FIFO buffer and the next wake up time. Knowing this period

of an adjacent node, a node is able to calculate the mentioned offset.

The problem that occurs concerns the accuracy of the described timestamp. It takes

a certain period form generating the timestamp until the acknowledgement can be

evaluated at its receiver. In order to being able to reconstruct the point of time when

the stamp has been generated, the period from stamping to evaluate should be con-

stant.

Before a message can be transmitted by the CC2420, it has to be loaded into the

FIFO buffer and afterwards it can be sent by calling the corresponding command

strobe.

The time from building the timestamp until the TXFIFO write-done event occurs

TStampToWrDone has been evaluated. 2800 samples have been considered. Figure 5-3

shows the distribution of the duration of mentioned interval of time. We found fol-

lowing results:

Mean σ Min Max

22.65 clocks32kHz 0.51 clocks32kHz 22 clocks32kHz 26 clocks32kHz

TStampToWrDone is part of the interval from taking the timestamp until the start of

frame delimiter is sent TStampToSend. This period is of importance for a node which

want to interpret an acknowledgement for wake-up time estimation. We have eval-

uated TStampToSend of 1640 messages. The results are shown below:

Mean σ Min Max

40.69 clocks32kHz 0.54 clocks32kHz 38 clocks32kHz 44 clocks32kHz

5.3.2 Arrival Offset

in order to verify that our wake-up time estimation is correct, we have measured the

arrival offset (Figure 5-4). In order to measure this period an always listening re-

ceiver is needed. Otherwise the packet would not be detected, if it is not sent within

the sampling interval. Therefore the component CC2420DutyCycleSyncP has been
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5.3. Wake-up Time Estimation

Ack Type Payload [byte] Turnaround Time [clocks32kHz] # Samples

Mean σ Min Max

HW 1 37.86 0.34 36 38 4000

HW 28 38.05 0.33 36 40 4000

SWHW 1 69.29 0.55 64 72 760

SW 1 108.03 0.17 108 109 1000

Table 5-1: Turnaround time for different acknowledgment types
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Figure 5-3
Distribution of the time from timestamping until TXFIFO write done event
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Figure 5-4
The arrival offset is the period between the point when the receiver starts listening and the

point when the packet of the transmitter arrives. It is the delay of the arriving packet that is

caused by the hardware on one hand and the offset of the timestamp on the other hand.
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Distribution of the arrival offset

modified to that effect that the radio is always left on, but nevertheless a timer

indicates the wake-up time.

Figure 5-5 shows the results of a test run where the transmitter sends the message

at the point of time at which it assumes the destination node to wake-up. The arrival

offset differs from 86 by maximal 1 clocks32kHz. Allowing a tolerance of ±1clock32kHz,

the arrival offset can be assumed to be 86 clocks32kHz.

5.4 Protocol Performance

Finally, we are evaluating the synchronous low power listening protocol.
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5.4. Protocol Performance

5.4.1 Receiver: Sampling Interval TL

The duration of the sampling interval TL, which is part of the active interval, is an

important parameter since the radio consumes the more energy the longer TL is.

Duty cycling causes the radio of a possible receiver to be powered off most of the

time. A node that wants to transmit a packet to other nodes has to be modula-

ting the channel during the short interval in which the destination is sampling the

channel (TL). This means, the transmitter has to ensure that its modulation inter-

val TM overlaps the listening interval TL of a receiving node. Hence, several packets

are sent in short intervals after each other. After each packet sent, the transmitter

waits for a certain period of time (TAckWait) to check whether the packet has been

acknowledged.

If no acknowledgement arrives within TAckWait, the packet is resend. Hence, there is

a period between the sending of two packets in which the channel is not modulated.

We call this period resend calm interval TM,Calm. The maximal occurring TM,Calm

determines the minimal allowed TL. If TL,min would be smaller than TM,Calm,max it

could happen, that the destination node misses the channel modulation of the source

TM since it exactly samples between the two packets transmitted shortly after each

other (Section 4.5).

For the synchronous LPL, the evaluation of 3200 sendings, with TAckWait =
64clocks32kHz , has presented a TM,Calm,max of 118 clocks32kHz, while the mean value

lies at 111.1clocks32kHz . The distribution of TCalm is shown in Figure 5-6. The vari-

ance is caused by the random LPL backoff, which is in maximum 10 clocks32kHz.

The resulting values and distribution of the evaluation of 3200 sendings in the asyn-

chronous listening protocol can also be seen in Table 5-2 and Figure 5-6 respectively.

It can be seen that the synchronous LPL protocol reduces TM,Calm by at least 64

clocks32kHz.

Consequently, the sampling interval TL of the synchronous protocol could be de-

creased by 64 clocks32kHz

Protocol Resend Calm Interval TM,Calm [clocks32kHz]

Mean Standard Deviation Minimum Maximum

Sync 111.07 1.51 109 118

Async 176.12 12.81 167 320

Table 5-2: Values of the resend calm interval TM,Calm for synchronous and asynchronous

LPL

In order to determine tM according Inequality 4.3, we have to know TL. For this rea-

son 50000 sampling intervals have been evaluated. The resulting values are shown

in Table 5-3 while the distributions for a different number of CCA pin samplings can

be seen in Figure 5-7. In general it can be said that the standard deviation is only

small and all values lie within 4 clocks32kHz. Hence, for our requirements TL can be

assumed as constant.
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Figure 5-6
Distribution of TM,Calm

# CCA Checks Sampling Interval TL [(clocks)32kHz]

Mean Standard Deviation Minimum Maximum

500 (async protocol) 172.28 0.48 171 174

400 (sync protocol) 139.22 0.41 139 141

Table 5-3: Values of the sampling interval TL
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Distribution of the sampling interval TL for a different number of CCA pin samplings

40



5.4. Protocol Performance

0 1 2 3 4 5 6 7

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Difference between two modulations detected [clock
32kHz

]

O
cc

ur
re

nc
es

Figure 5-8
Distribution of period between two

modulations detected

−5 0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

2000

2500

Modulation interval T
M

 [clock
32kHz

]

O
cc

ur
en

ce
s

Figure 5-9
Distribution of TM

5.4.2 Transmitter: Modulation Interval TM

The duration of the modulation interval TM depends on the length of the message

sent. The length consists of the Synchronization Header, the Physical Header, the

MAC Header, the Payload and the MAC Footer. In order to make a general esti-

mation of the optimal start of sampling tM , we have to know the minimal occuring

TM . This can be done by sending a packet of 1 byte payload. The transmission of

4500 message has been evaluated. We have measured TM at the destination node

by looking at the period over which the CCA pin sampling detected a modulation of

the channel. Figure 5-8 shows the distribution of the periods between two detected

modulations. Only the samples with a difference from the previous modulation of the

channel between 35190 clocks32kHz and 35210 clocks32kHz can originate from the mes-

sages sent by the transmitting node. This is because the transmitting node sends a

message always 1 second after the transmission of the previous message which re-

sults in a constant period. Thus the detected transmissions can not be caused by

the transmitter. They are caused by noise that is detected by the CC2420 or other

sources that use the same frequency as the CC2420.

If we only consider samples that exhibit a difference between each other of about

35200 clocks32kHz, a minimal duration of TM,min = 20clocks32kHz and a maximal du-

ration of TM,max = 23clocks32kHz is obtained. All the values of the evaluation are

shown below:
Mean σ Min Max

21.43 clocks32kHz 0.55 clocks32kHz 20 clocks32kHz 23 clocks32kHz

Figure 5-9 shows the distribution of TM .

The duration of the modulation interval of about 21 clocks32kHz can be explained as

follows:

The length field of a message with 1 byte payload shows a packet length of 13 bytes.

This length consists of the payload, the MAC header and the MAC footer (Section

1.3). By adding the preamble of 4 bytes, the SFD of 1 byte and the length field of

another byte, overall 18 bytes are transmitted. With a bit rate of 250 kbps, this leads

to a needed time for the transmission of the packet of about 19 clocks32kHz.
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5.4.3 Comparison of the Synchronous and the Asynchronous

Low Power Listening

The goal of the synchronous duty cycling implementation has been to estimate the

wake-up time of the receiver. The information about the wake-up time of the receiver

can be used to reduce the number of packets that are sent for each transmission.

Thus, the number of packets sent per transmission can be used to compare the

performance of the synchronous and the asynchronous protocol. The fewer packets

are needed until an acknowledgement is received, the less energy is consumed.

The protocol parameters are shown in the following table:

Parameter Sync proto-

col

Async proto-

col

Description

TW 100 ms 100 ms Wake-up period

TAckWait 64 clocks32kHz 128 clocks32kHz Time after which a resend is

triggered if no acknowledge-

ment is received

MAX LPL
CCA CHECKS

400 500 Maximal number of CCA pin

samples executed before a

listening phase is termi-

nated

In order to determine the start of the of the packet burst tM , the values

TL = 120clocks32kHz and TM = 100clocks32kHz have been applied to equation

4.2. The packet burst consisted of two packets. An overview of the results can be

seen in Table 5-4.

A component that sends messages in random intervals between 5 and 10 seconds

has been used for a first evaluation. 230 transmissions have been executed. The

synchronous low power listening protocol needs to send only one packet for each of

the 230 transmissions. Hence, the only packet sent with wake-up time estimation

exactly matches the listening interval of the receiver.

On the other hand the asynchronous low power listening protocol needs in average

9.34 packets per transmission (standard deviation 5.36).

Another evaluation has been made in which the messages were sent in random

intervals between 0.5 and 1 second.

In order to analyze the synchronous low power listening protocol we look at 39000

samples. In only 3 cases more than 1 packet has been need for the transmission.

Two of these 3 cases directly follow each other. The transmission of more than one

packet has been caused by a missing acknowledgement which forced the protocol

back to the asynchronous mode. In the third case two packets were needed instead

of one.

The asynchronous low power listening protocol exhibits in average 8.94 packets per

transmission (standard deviation 5.34). 4900 samples have been evaluated.

Figure 5-10 shows the distribution of the number of packets per transmission over

a randomly chosen segment of time.
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Figure 5-10
Comparison of the message generation between the asynchronous and the synchronous

protocol

Each point indicates the number of packets used of one transmission. The synchronous

protocol shows a clear enhancement compared to the asynchronous protocol.

Protocol Packet frequency [s−1] Mean number of pack-

ets of the burst

# Samples

Sync 0.1 - 0.2 1 230

Sync 1 - 2 1.01 39000

Async 0.1 - 0.2 9.34 230

Async 1 - 2 8.94 4900

Table 5-4: Comparison of the number of packets per transmission

43



Chapter 5: Design Evaluation

44



6
Conclusion

6.1 Achievements

The task of this thesis consists of an enhancement of the existion TinyOS 2.x radio

stack, which already implements a packet-based low power listening. We managed

to implement a wake-up time estimation on the basis of the existing radio stack.

The result is a prototype of a MAC protocol that works deterministic. The proper

working has been verified by various measurements and analyses. The prototy

decreases the number of packets needed per transmission and and reduces the

duration of the sampling interval.

The following components of the TinyOS 2.x radio stack have mainly been changed

or were added:

• CC2420DutyCycleSyncC (replaces CC2420DutyCycleC)

• CC2420DutyCycleSyncP (replaces CC2420DutyCycleP)

• CC2420Transmit (extended)

• CC2420TransmitP (extended)

• CC2420Receive (extended)

• CC2420ReceiveP (extended)

• CC2420WakeUpEstC (added)

• CC2420WakeUpEstP (added)

• CC2420AccSend (added)

Smaller changes have also been made in other components.
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6.2 Summary

Since the whole implementation bases on an existing protocol, at the beginning, at

lot of time has been spent on analysing the original code. If one component has to

be changed, the whole influence on other components has to be considered in order

to prevent from affecting the propper working of the protocol.

The implementation work has been an interesting challenge. Various aspects such

as theoretical concepts of sensor network MAC protocol or the component-based pro-

gramming language nesC had to be considered. The implementation of the protocol

has been an optimal opportunity to learn a lot about embedded devices and sensor

networks.

At the end, an evaluation took place. The meassurements verified the deterministic

working of the protocol and showed an obvious enhancement of the original asyn-

chronous protocol.
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Wake-up Time Estimation for a Wireless MAC Protocol

Einleitung

Ein drahtloses Sensor Netzwerk (WSN—Wireless Sensor Network) besteht aus einer Vielzahl von kleinen
resourcenbeschränkten Knoten welche mit Funkmodul und Sensoren bestückt sind. Diese werden in der
Umwelt (z.B. in einem Haus) verteilt und erstellen möglichst autonom ein Netzwerk. Ein solches Netz
ermöglicht den Knoten Sensor-Messungen auszutauschen und diese Daten gemeinsam zu verarbeiten. Nach
einer Vision von Stankovic et al. [?] soll dies die ’nahtlose Integration von Rechner mit der Umwelt mit Hilfe
von Sensoren und Aktoren ermöglichen’.

Ein Anwendungsszenario für solche WSNs ist die Sammlung der Sensordaten in einem designierten Knoten
(Senke/Zentrale), welcher anhand der erhaltenen Information Entscheidungen treffen muss. Vielfach sind die
Knoten physikalisch weiträumig verteilt, was der Mehrheit der Knoten verunmöglicht direkt mit der Senke
zu kommunizieren. Stattdessen müssen die Daten über mehrere Knoten/Hops zur Senke geschickt werden.

Ein zentraler Aspekt solcher Sensornetzwerke ist die Funkkommunikation. Einerseits ist diese aufgrund des
geteilten Mediums Luft nicht immer zuvelässig und vorhersehbar [?, ?], und andererseits wird für den betrieb
des Funkmodules (z.B. CC1000 [?] oder CC2420 [?]) sehr viel Energie benötigt. Um Energie zu sparen
wurde eine Vielzahl verschiedener “Medium Access Control (MAC)” Protokolle Entwickelt, die dies basierend
auf der Idee vom regelmässigen An- und Ausschalten (Duty Cycles) tun. Vor allem für sehr Energiearme
Anwendungen hat sich herausgestellt, dass das Prinzip von “Low Power Listening” kombiniert mit dem
Senden einer sehr langen Preamble (B-MAC [?]) als sehr geeignet herausgestellt. Dieses Prinzip wurde dann
von WiseMAC [?] verfeinert indem die asynchrone Kommunikation synchronisiert und dadurch die Preamble
markant verkürzt wurde. Das versenden von langen Preamble ist aber nicht mit allen Funkmodulen möglich.
Vor allem neuere Module, wie der CC2420, sind Paket basiert und erlauben dies nur noch sehr beschränkt.
Dies führte zu weiteren MAC Protokollen wie X-MAC [?] und eines welches zur Zeit unter TEP126 [?] von
der TinyOS-2.x Gemeinde diskutiert und implementiert wird.

Das TEP126 hat aber den grossen Nachteil, dass es das Energiesparpotential durch Synchronisation, wie
in WiseMAC vorgeschlagen, nicht nutzt. In dieser Arbeit soll nun basierend auf der Asynchronen Kommu-
nikation des TEP126 ein zusätzlicher synchroner Modus (wie in WiseMAC vorgeschlagen) implementiert
werden. Zwei wichtige Aspekte die dabei untersucht werden sollen sind die Hardwarebedingte Verzögerung
beim Versenden der Pakete sowie die unterschiedlich schnell laufenden Uhren (clock drift) der verschiedenen
Knoten.
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Aufgabenstellung

1. Erstellen Sie einen Projektplan und legen Sie Meilensteine sowohl zeitlich wie auch thematisch fest [?].
Erarbeiten Sie in Absprache mit dem Betreuer ein Pflichtenheft.

2. Machen Sie sich mit den relevanten Arbeiten im Bereich Sensornetze, Systeme, und MAC Protokolle
vertraut. Führen Sie eine Literaturrecherche durch. Suchen Sie auch nach relevanten neueren Publika-
tionen. Vergleichen Sie bestehende Konzepte anderer Universitäten. Prüfen Sie welche Ideen/Konzepte
Sie aus diesen Lösungen verwenden können. Im Speziellen studieren sie [?], [?] und [?].

3. Die Applikation soll auf dem Tmote Sky [?] entwickelt werden. Arbeiten Sie sich in die Software-
entwicklungsumgebung (TinyOS-2.x) der Knoten ein. Machen Sie sich mit den erforderlichen Tools
vertraut und benutzen Sie die entsprechenden Hilfsmittel (Versionskontrolle, Bugtracker, online Do-
kumentation, Mailinglisten, Application Notes, Beispielapplikationen). Schauen Sie dazu insbesondere
das TinyOS Webpage, sowie die Datenblätter des MSP430 und des CC2420 an.

4. Machen Sie sich mit der Ansteuerung des CC2420 auf dem Tmote Sky mit TinyOS-2.x vertraut.
Schauen Sie insbesondere auf den genauen zeitlichen Ablauf vom Senden und Empfangen von Paketen
bzw. wie dieser beeinflusst werden kann.

5. Erstellen sie basierend auf der asynchronen TEP126 Implementation [?] ein Konzept für einen syn-
chronen Modus.

6. Setzen Sie dieses Konzept um, d.h. implementieren Sie die Applikation auf dem Tmote Sky. Analysieren
Sie dazu die genauen zeitlichen Abläufe insbesondere auch die Clockdrifts der verschiedenen Power
Modes.

7. Dokumentieren Sie Ihre Arbeit sorgfältig mit einem Vortrag, einer kleinen Demonstration, sowie mit
einem Schlussbericht.

Durchführung der Semesterarbeit

Allgemeines

• Der Verlauf des Projektes Semesterarbeit soll laufend anhand des Projektplanes und der Meilensteine
evaluiert werden. Unvorhergesehene Probleme beim eingeschlagenen Lösungsweg können Änderungen
am Projektplan erforderlich machen. Diese sollen dokumentiert werden.

• Sie verfügen über einen PC mit Linux/Windows für Softwareentwicklung und Test. Für die Einhaltung
der geltenden Sicherheitsrichtlinien der ETH Zürich sind Sie selbst verantwortlich. Falls damit Probleme
auftauchen wenden Sie sich an Ihren Betreuer.

• Stellen Sie Ihr Projekt zu Beginn der Semesterarbeit in einem Kurzvortrag vor und präsentieren Sie
die erarbeiteten Resultate am Schluss im Rahmen des Institutskolloquiums.

• Besprechen Sie Ihr Vorgehen regelmässig mit Ihren Betreuern.

• Sie führen ein Researchtagebuch in welchem sie die Fortschritte täglich protokollieren.

Abgabe

• Geben Sie vier unterschriebene Exemplare des Berichtes, das Researchtagebuch sowie alle relevanten
Source-, Object und Konfigurationsfiles bis spätestens am 2. Juli 2007 dem betreuenden Assistenten
oder seinen Stellvertreter ab. Diese Aufgabenstellung soll im Bericht eingefügt werden.

• Räumen Sie Ihre Rechnerkonten soweit auf, dass nur noch die relevanten Source- und Objectfiles, Kon-
figurationsfiles, benötigten Directorystrukturen usw. bestehen bleiben. Der Programmcode sowie die
Filestruktur soll ausreichen dokumentiert sein. Eine spätere Anschlussarbeit soll auf dem hinterlassenen
Stand aufbauen können.
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