
Semester Thesis
Speech Synthesis with Hidden Markov Models

Stephan Weiss
Supervisor: Dipl.-Ing. Harald Romsdorfer

Computer Engineering and Networks Laboratory
Speech Processing Group

ETH Zurich

13.07.2007

1

Abstract

This work presents first steps in synthesising speech with statistical para-
metric models. Previous works served as base and reference. The present
work provides in particular tools and knowledge for training Hidden Markov
Models in the speech processing tool HTK as well as the extraction of the
models to implement them in MATLAB. In the MATLAB environment the
models can be used to estimate speech parameters in order to achieve a text
to speech synthesis. A synthesis filter finally converts the parameters into
audio. In the present report different approaches for estimating the parame-
ters and training the models will be discussed. In particular, on the training
side, the improvement of the synthesis when taking dynamic features into
account is explained. Furthermore issues of context dependent versus con-
text independent models and the necessity of clustering is discussed always
keeping an eye on how to use and adapt the tools made for the specific task.
On the parameter estimation side, challenges in calculation speed and state
selection are described. The solutions are here as well accompanied with ex-
planations of how to use and adapt the appropriate tools. In particular an
iterative algorithm for the estimation and the mixture selection is presented.

As speech data base a German corpora with 186 high quality utterances of
approximatively 27 minutes was used. The utterances are recorded from a
professional speaker in a echo damped studio.

Keywords: speech synthesis, statistical parametric synthesis, HMM train-
ing in HTK

1

Contents

1 Introduction 4
1.1 Estimation of the Parameters . 5
1.2 Training the Models . 5
1.3 Structure . 5

2 General Speech Synthesis with Hidden Markov Models 7
2.1 Speech Data Base . 8
2.2 Training Phase . 8

2.2.1 Segmentation and Labeling 8
2.2.2 Monophone Models . 9
2.2.3 Triphone Models . 10

2.3 Synthesis Phase . 11
2.3.1 Parameter Estimation . 11
2.3.2 Audio Synthesis . 14

3 Feature Selection and Quality Measurement 15
3.1 Feature Selection . 15

3.1.1 Mel Frequency Cepstral Coefficients: MFCCs 15
3.1.2 Dynamic Features . 16
3.1.3 Other Features . 17

3.2 Quality Measurement . 18
3.2.1 Mel Cepstral Distortion: MCD 18

3.3 Used Speech Database . 19

4 Monophone Models 20
4.1 General Model-Training in HTK . 20

4.1.1 Setting the Parameters . 20
4.1.2 Building the Prototype Models 21
4.1.3 Setting the Paths and Training the Models 22

4.2 Parameter estimation . 22
4.2.1 Importing the HMMs to Matlab 22
4.2.2 Estimating the Parameters 24
4.2.3 Synthesising the Audio Signal 28

4.3 Results from Monophone Models 28
4.3.1 MFCCs Only . 29
4.3.2 MFCCs with 1st Derivatives 31
4.3.3 MFCCs with 1st Derivatives and 2nd Derivatives 32
4.3.4 Limitations . 34

2

5 Triphone Models 36
5.1 Triphone-Model Training in HTK 36

5.1.1 Building Triphone Models 37
5.1.2 Data Based Clustering . 39
5.1.3 Tree Based Clustering . 40

5.2 Parameter Estimation . 42
5.3 Results from Triphone Models . 42
5.4 Future Considerations . 43

6 Conclusion and Outlook 45
6.1 Conclusion . 45
6.2 Outlook . 45

7 Bibliography 47

3

1 Introduction

To synthesise speech a commonly used technique is the unit selection synthesis
where pieces of speech are concatenated in the desired order. This implies that
for each phone which should be synthesised an equivalent has to be recorded and
labeled properly. To build such a database with sufficient well labeled phones not
only needs time but also requires an appropriate size of a database with high qual-
ity utterances. As the synthesised parts are concatenated parts from the database
the synthesis quality always is at most as good as the recordings and therefor
directly related to the database quality. Moreover the synthesised speech natu-
rally sounds equal to the recorded utterances with respect to intonation, emotion
and style. To build synthesisers with more variations much larger databases are
required. Nevertheless unit selection synthesis has shown itself to be capable of
producing high quality natural sounding synthetic speech when constructed from
large databases of well-ordered and well-labeled speech. Figure 1 shows the rough
unit selection method and its direct dependency on the speech database. Note
that the extraction and concatenation is made from middle to middle of one to
the other phone and not from the beginning to the end of a phone. With this,
context dependent structures can be taken into account and smooth concatenation
boundaries are achieved, however larger databases are needed to cover all context
dependencies.

Figure 1: Rough schema of the unit selection process

If more variation and emotion is required from the synthesisers, a parametric model
approach reduces the problem of large databases and database dependent quality
of the synthesised speech. Moreover it is more robust to errors and unavailable
utterances in the database. In particular in this work a speech synthesiser with
Hidden Markov Models (HMMs) is described. It is, similar to the unit selection
synthesis, trained with natural speech, however due to the parametric model ap-
proach, it allows a better modeling of variation.
The work can be divided into two main parts which represent the topology of the
synthesiser itself. For the synthesiser parametric models have to be trained first
in order to afterwards estimate parameters from the models. In the present work

4

the parameter estimation is discussed first because of less variation possibilities in
the process compared to how training the models.

1.1 Estimation of the Parameters

The first part of the work shows how to estimate the parameters from the models to
synthesise a given part of speech. The models are trained in the speech processing
tool HTK [3]. Afterwards they have to be extracted and saved into a MATLAB
compatible database in order to perform all estimations in MATLAB functions.
The MATLAB environment was chosen for this task because of the necessity of
calculations with extremely large (sparse) matrices. This environment allows fast
calculations and provides good analysis tools for signals ans matrices. Even though
fast calculations are possible, the size of the matrices asks for a special algorithm
to estimate the parameters in a reasonable time frame (i.e. seconds or minutes
and not hours). Such an algorithm has been implemented following the ideas in
[6].

1.2 Training the Models

The second part of the work was to find an accurate training for the models.
This part consists of finding training parameters and in particular evaluating dif-
ferent base types of models such as models with and without dynamic features.
Moreover differences between context dependent and context independent models
are discussed in particular compared to the speech data base size and estima-
tion robustness. Besides the evaluation of the trained models this part consists of
providing the tools for setting up the trainings for the HTK speak processing tool.

1.3 Structure

In this report all tools for the model training with HTK and the parameter es-
timation from the models are described. Moreover different models are analysed
and compared in order to provide a first overview of speech synthesis with Hidden
Markov Model. In section 2 the general procedure of parametric speech synthesis is
described. It shall give an overview of the topic in order to be able to follow easily
the rest of the report. In section 3 the setup of the whole environment during the
work is described. In particular the features used for the models are discussed and
the method to compare different models (i.e. the error measurement) is explained.
The section provides the information to understand the differences between the
models trained later. Section 4 treats then the first group of models, the context
independent models. First it describes shortly which tools are already provided.

5

Then it is explained how the parameter estimation is solved, and after the dif-
ferent model options are described together with improvements of the parameter
estimation process. In the next section, in 5, the context dependent models are
discussed and the necessary additional tools for HTK and the parameter estima-
tion are described. Note that in this work no training parameter optimisation is
made, however, problems and solutions with respect to context dependent models
are presented. The report ends with the conclusion and the outlook for future
work in section 6.

6

2 General Speech Synthesis with Hidden Markov

Models

This section gives a general overview about speech synthesis with parametric prob-
abilistic models and goes then further into details of the present work. In General
the speech synthesis with Hidden Markov Models can be divided into two phases.
First the training phase where the models are trained based on a speech data base
and second the synthesis phase where the parameters are estimated from the mod-
els. Figure 2 shows the schematic procedure of the synthesis. For more details in
particular about the training phase please refer as well to [2].

Figure 2: Schematic HMM synthesis

7

2.1 Speech Data Base

A speech data base serves for adequate training of the models. It is advantageous
if the database consists of high quality phonetically balanced utterances from a
professional speaker. The bigger the data base the better is the training because it
contains more occurrences of each phone model and thus can be trained more accu-
rately. Moreover small data bases are likely to have a relatively restricted selection
of phones which can be trained. This means that some models of special phones
needed during the synthesis do not even exist and workarounds or interpolations
have to be found if possible. A critical and difficult decision is whether to use a
smaller database of very high quality or a larger data base with low quality. In
general the amount of data should receive more priority than the quality because
of “perfect” trained models which can cause singularities during the calculations.
This topic, however, is treated more in detail in section 4.

2.2 Training Phase

At this stage the user has to decide which features the models should be trained for.
In general as well as in this work Mel Frequency Cepstral Coefficients (MFCCs) and
their first and second derivatives (deltas and deltadeltas) are used. The MFCCs
are explained in section 3.1.1. Other works also include the fundamental frequency
and the duration together with other phonological properties such as sillable, word
and phrase boundaries or different accentuation. In section 3 some features are
described in more detail. The features are extracted from the original audio files
and used for all future training with the models.

2.2.1 Segmentation and Labeling

The first alignment consists of dividing the signal length by the number of phones
containing in the signal into equivalent segments. This results from a so called flat
start where all models are initialised with the same values. The extracted features
per frame of each utterance are put in a feature vector per frame. Usually a frame
is extracted every 2 to 5ms. With the feature vectors and a Baum-Welch algorithm
the models are then trained using the utterances in the speech data base. With
the training the audio signals are segmented and labeled more exactly step by step
converging to what manual segmentation would yield. Figure 3 shows a possible
segmentation before the training (flat start) above the signal and after the training
below the signal.

8

Figure 3: Signal labeling of “Artists”: Above: Initial segmentation. Below: Final
segmentation

2.2.2 Monophone Models

With the above iteration by applying the Baum-Welch algorithm to train the
models with the feature vectors models for a single context independent phone
are obtained. One model usually consists of 3 emitting states which represent the
beginning, the middle and the end of the phone respectively. This approach is
also used in this work. An additional non emitting start and end node represent
the boundaries of the model and can be omitted when concatenating models as
they do not emit feature vectors. The model structure is chosen to be a left-to-
right HMM in order to credit the chronological character of the inner phone parts.
There might be an exception, however, and a transition from the first to the third
state can be introduced to shorten the phone by omitting the middle state. This
is often applied for silences in order to model short silences as well. Figure 4
shows a typical three state left-to-right model with the optional transition and the
transition probabilities.

Figure 4: 3 state left-to-right HMM with optional transition (dotted)

These context independent models can already be used for the synthesis phase.

Continuous Models with Mixtures

The HMMs discussed here are continuous models with more than one Gaussian
distribution. The number of the so called mixtures can vary. A state with more
than one mixture (i.e. Gaussian distribution) can model the probability distri-
bution of the feature vectors more adequate and is therefor preferred to single

9

Gaussian models. Each mixture is weighted with the weight factor wi for the i-th
mixture such that

N∑
i=1

wi = 1 (1)

for all N mixtures. Such a state can then be seen as N states with the transition
probabilities weighted with the mixture weight factor wi. Figures 5 and 6 depict
the structure.

Figure 5: Mixture HMM: Com-
pact

Figure 6: Mixture HMM: Fully drawn with 2
mixtures

Details on how to select the appropriate mixture and information about the number
of mixtures per state are discussed in section 4.

2.2.3 Triphone Models

If the database is large enough it is advised to refine the context independent mod-
els to context dependent models. The latter models take the co-articulation into
account and provide therefor more reliable parameters for the synthesis. For ex-
ample the l sound is different between two o’s as in “Bartholomeus” than between
two i ’s as in “Illinois”. Triphone models still model only one phone with a 3 state
left-to-right model, however, there are several different models for the same phone
but in other contexts. As context different variations can be implemented. In this
work only the left and right phone neighbour (indicated with - and + respectively)
are taken into account, therefor in this work context dependent models are equiv-
alent to triphone models. However, other features as stress, word boundaries etc
can be considered.
With this splitting the number of models increases dramatically and the speech
data base sizes must be very large in order to cover all models with enough oc-
currences for a good training. To overcome this problem, the models and their
states are clustered and tied. If a state of two models or the whole models do not
differe more than a defined threshold they can share the specific states together
such that they are both trained if either of the sequence occur in the training set.
An example might be the middle state of the triphone models of an l between

10

two a’s or between two e’s. If the middle state of these models is in the same
cluster it will be trained simultaneously whereas the first and third state only is
trained with the corresponding word to the model. Figure 7 shows an example of
clustering context dependent models of the l sound

Figure 7: Clustering of triphone models representing different l sounds

Different kinds of clustering with different thresholds and their advantages and
disadvantages are discussed in more detail in section 5. Note, however, that with
triphone models (i.e. context dependent models) clustering is a must in order to
adapt the number of models to the size of the speech database.
To train the triphone models the speech database has to be compatible to the
models which means that the utterances have to exist in context dependent nota-
tion otherwise a rewriting of the data has to be done. Then the already trained
monophone models can be refined by training them into triphone models. After
this step the training phase is completed and speech synthesis can be performed
as follows.

2.3 Synthesis Phase

The speech synthesis with the above trained models can be divided into two parts.
First the feature vectors for a given phone sequence have to be estimated and
second the estimated feature vectors have to be transformed into an audio signal.
Note that the synthesised text has to be written in its phonetic transcription
indicating the duration of each phone and its fundamental frequency. The phonetic
transcription serves in the model selection and parameter estimation process while
the fundamental frequency is necessary for synthesising the audio signal.

2.3.1 Parameter Estimation

The phonetic transcription together with the duration for each phone basically
dictate the state sequence which is to chose for the synthesis. However, because

11

each phone is not only modeled with one but with three states and each state
of those consists of usually more than one mixture a state sequence is to chose
through this network. Remember that one state with multiple mixtures can be
represented by multiple single mixture states with their transition probabilities
weighted according to the mixture weights. The network from which the sequence
has to be chosen consists therefor of concatenated phone models as depicted in
figure 6. Neither the feature vectors are known to estimate the state sequence
with a Viterbi algorithm nor the state sequence is known to estimate the feature
vectors. Hence other estimations must be used.

Estimating the State Sequence

Two estimations for retrieving the state sequence are applied. The total length
of each phone is known together with the phonetic transcription. First, the three
states of the phone model which fits the phonetic transcription have to be spread
over the total phone length. The number of beginning, middle and end states
are calculated by normalising their transition probabilities and dividing the total
phone length by the normalised probabilities. If for example the total duration
of the phone represented by the model in figure 5 is 40 states (calculated from
the given phone length in ms and the frame shift after each a feature vector is
extracted), the first state is repeated 0.6 ∗ n ∗ 40 = 11 times, the second state
0.8 ∗ n ∗ 40 = 15 times and the third state 0.7 ∗ n ∗ 40 = 14 times with n =
1/(0.6 + 0.8 + 0.7) being the normalisation factor.
Second, the best mixture for each state in the sequence has to be chosen to estimate
the feature parameters. In general the sharpest dominant mixture already yields
a good estimation, however, in section 4 a more sophisticated iterative algorithm
from [6] is presented. The selection of one particular mixture is done to reduce
computational complexity while at the same time - being an adaptive algorithm
- keep a detailed distribution curve of the features. Now the sate sequence is
definitely defined and the feature vectors can be estimated

Estimating the Feature Vectors [4]

First the feature vectors have to be described in more detail. Assumed that Mel
Frequency Cepstral Coefficients (MFCCs) and their derivatives are used as features
as it is done in the present work, the feature vectors for frame t can be written as
ot = [c′t,∆c′t,∆

2c′t]
′ where ct = [ct(1), ct(2), ..., ct(M)] is the vector with the first

M MFCCs and ∆nct are the n-th derivatives according to

∆nct =
Ln∑

i=−Ln

wn(i)ct+i n = 0, 1, 2 (2)

12

where L0 = 0, w0(0) = 1. Note that the formula also holds for the MFCCs
themselves in other words for the 0th derivative. Derivatives with neighborhood
one (i.e. L1 = 1, L2 = 2 because of neighborhood one relative to first derivatives)
would for example be calculated as follows

∆ct =
1

2
(ct+1 − ct−1) (3)

∆2ct =
1

2
(∆ct+1 −∆ct−1)

=
1

4
(ct+2 − 2ct + ct−2) (4)

where for the first derivative
w1(−1) = −0.5, w1(0) = 0 and w1(1) = 0.5

and for the second derivative
w2(−2) = 0.25, w2(−1) = 0, w2(0) = −0.5, w2(+1) = 0 and w2(+2) = 0.5

The calculation of the w-parameter is explained in detail in section 4. As for now,
with equation 2 the feature vector ot can be rewritten in linear dependency with
the MFCC vectors. All feature vectors can be taken together to one large vector
O = [o′

1,o
′
2, ...,o

′
T]′, similarly all MFCC vectors can be expressed in one large

vector C = [c′1, c
′
2, ..., c

′
T]′ where T denotes the number of states for the whole

synthesis part. Using the linear dependency derived above O can be expressed by

O = W ∗C (5)

The structure and calculation is left to the section 4 where it is described in full
detail for the present used settings.
To estimate the best feature vectors P (O|q∗, λ, T) has to be maximised. This is
the probability of a feature vector sequence O given the estimated state sequence
q∗, the Hidden Markov Models defined by λ and total length T (i.e. the total
number of states to synthesise). To this end

O∗ = arg max
O

P (O|q∗, λ, T) (6)

has to be calculated. With equation 6 the following term has to be maximised
with respect to O

P (O|q∗, λ, T) = P (WC|q∗, λ, T)

=
1√

(2π)fMT |U
exp

(
−1

2
(WC− µ)′ U−1 (WC− µ)

)
(7)

13

Where µ = [µ′
q∗1

, µ′
q∗2

, ..., µ′
q∗T

]′ and U = diag[U′
q∗1

,U′
q∗2

, ...,U′
q∗T

]′ and µ′
q∗t

and U′
q∗t

are the mean vector and the diagonal covariance matrix of the state q∗t of the
estimated state sequence q∗. The variable f denotes the number of used derivations
where f = 1 if O only consists of the MFCCs, f = 2 if the first derivatives are
implemented and f = 3 for including also the second derivatives of the MFCCs.
By setting

∂P (O|q∗, λ, T)

∂C
= 0TMx1 (8)

the equation

RC = r (9)

with

R = W′U−1W

r = W′U−1µ

is obtained and thus a MFCC sequence in C can be estimated. Considering that
W = [fTMxTM] and U = [fTMxfTM] a fast algorithm has to be derived to
compute C efficiently. As an example a short sentence might be 5 sec long and each
2ms a feature vector is extracted. To synthesise the sentence T = 5/0.002 = 2500
states have to be concatenated. Using 26 MFCCs with their first and second deriva-
tives yields M = 26 and f = 3. The W matrix will therefor be a [195’000x65’000]
matrix! Even though sparse (not diagonal like U), the required computational
power is huge. An iterative solution from [6] is described in detail in section 4.

2.3.2 Audio Synthesis

The estimated MFCC vectors allow now the synthesis of the audio signal. To this
end a synthesis filter is implemented. The most frequently used filter is a Mel
Log Spectral Approximation. Together with the excitation information from the
fundamental frequency and the flag if a phone is voiced or unvoiced, the MFCCs
are reversely calculated to the spectrum they represent. Then the audio signal
is generated based on the synthesised spectrum. For detailed information about
the calculation of the MFCCs refer to section 3. However, as this is not part
of the current work the exact transformation of the estimated MFCCs to the
corresponding audio signal is not discussed here.

14

3 Feature Selection and Quality Measurement

Prior to discuss the parameter estimation and the model training it is important
to define a quality measurement of the estimated parameters as well as of the
synthesised signal. In this section not only the error measurement is discussed but
also the general quality measurement and the selection of features.

3.1 Feature Selection

In order to synthesise the audio signal, representative features of the speech sig-
nal are needed. The most commonly used features in speech processing are Mel
Frequency Cepstral Coefficients (in short MFCCs). Other features as the funda-
mental frequency, accentuation, word boundaries etc can be added to refine the
model training. In the following some of these features are discussed.

3.1.1 Mel Frequency Cepstral Coefficients: MFCCs

The MFCCs contain the information for the synthesised signal. A feature for
speech processing should at the same time minimize the inner class variance while
maximising the outher class variances. Fullfilling this requirement fairly well the
MFCCs are similar for the same phone and different from one phone to another.
They are calculated from the spectrum of the audio signal by filtering it with a mel
filterbank and taking the logarithm. A filterbank converts the frequency to the mel
scale which represents the human perception sensitivity. Thus higher frequencies
are mapped closer together than lower frequencies. Equation 10 shows the relation
of the two frequency scales and figure 8 depicts the plot of the formula.

Figure 8: Mel-Hz plot

m = 1127 ∗ ln(1 + f/700) (10)

Where m is the frequency in mel and f the frequency in Hz.
In order to receive mel coefficients, the filterbank bins a range of frequencies.
Figure 9 shows a typical filterbank with 24 filters. Note that the bin sizes increase

15

with the frequency in Hz according to the mel transformation. In the mel scale
they are equally distributed.

Figure 9: Mel filterbank in Hz with 24 filters

The MFCC extraction can be summarised in figure 10.

Figure 10: Schematic MFCC extaction from audio signal

The discrete cosine transformation (DCT) simply represents the real |FFT |−1

transformation. This can be expressed with equation 11

c(m) =
1

J

J∑
j=1

(logSj)cos
[
m(j − 1

2
)
π

J

]
0 ≤ m ≤ D (11)

where D are the number of coefficients to be extracted, J the number of filters in
the mel filterbank and Sj is the Energy of the j-th filter.

3.1.2 Dynamic Features

Additionally to the MFCCs their derivatives can be added to the models as dy-
namic features. In the synthesis these features provide a certain smoothness and
thus better performance as it is discussed in section 4. Equation 12 shows the
general calculation of the derivatives of the MFCCs.

∆nct =

∑L̂n

i=−L̂n
ic

(n−1)
t+i∑L̂n

i=−L̂n
i2

=
Ln∑

i=−Ln

wn(i)ct+i n = 0, 1, 2 (12)

where L0 = 0, w0(0) = 1 and L̂n is the neighborhood of (n-1)th derivatives to build
the n-th derivative. Note that when L̂1 = 2 and L̂2 = 2 then L1 = 2 but L2 = 4.

16

3.1.3 Other Features

Generally two kinds of features can be distinguished. On one hand there are the
real features which contain the audio information to be synthesised from a given
model. These are namely the MFCCs with their derivatives in this work. On the
other hand auxiliary features can be defined which help to define whether another
model should be trained or synthesised. While the real features optimise the choice
of parameters within the the model, auxiliary features split the models into more
specific ones. For example considering the context in order to build triphone mod-
els splits the “l” model into an “o− l+o” model, representing the “l” in “olo” and
an “i-l+i” model representing the “l” in “ili” and so on. Thus auxiliary models
always carry the problem of adapting the speech database size upwards or need
better clustering.
Note that the real features mostly are independent of each other because of diago-
nal matrices. Thus the derivatives of the nth MFCC only optimise the choice of the
nth MFCC. If the speech data base is large enough more auxiliary features help to
diversify the phone caracteristics. The database must contain enough occurrences
of the distinct phone models to train each of them accurately. A training with a
small speech database according to the amount of auxiliary features will result in
either poorly trained models or, if tying is applied and big clusters are allowed,
the additional auxiliary features will vanish in the tying and clustering process.

Context Dependency

If context dependent models are trained this mostly includes considering some
phones previous and after the current phone, however the model itself is still
for only the present phone. In the present work one phone at each side was
taken into account. Considering this the amount of models increases dramatically
and the speech database must be of a certain size. In section 5 first steps with
different clustering methods are shown with a relatively small database. Tying
and clustering is a must.

Fundamental Frequency and Duration

Before adding the fundamental frequency its effect should be analysed. It occurs
in a continuous form in the database and has thus to be quantised accordingly.
For each bin a model can then be trained. However, as the MFCCs are usually
not supposed to be very sensitive to changes of the fundamental frequency the
small difference between the models might vanish in the tying or clustering pro-
cess unless a large speech database is used. Note that adding the fundamental
frequency as real feature in the models will not bring any quality improvement as
it is estimated independently from the MFCCs, for the dependency is not known

17

and diagonal matrices are used. Estmating the fundamental frequency only serves
if the synthesis is wanted to have the same fundamental frequency as the original
speaker and no extra information is provided.
The same holds for applying the duration as real or auxiliary feature. However the
differences of the MFCCs using the duration as auxiliary feature is more significant
than using the fundamental frequency.

Other Features

Given the database is large enough, adding more auxiliary features as sillable
and word boundaries, accentuation, intonation, phrase types etc can improve the
synthesis quality. For each of the features a specific quantisation has to be applied
in order to train the specific models.

3.2 Quality Measurement

For the quality measurement of the synthesised parameters and signal one objective
equation based and one subjective audio based measurement is used. The audio
measurement simply consits of synthesising the estimated parameters with the
synthesiser provided by H. Romsdorfer.

3.2.1 Mel Cepstral Distortion: MCD

This error measurement is an internationally used formula and applied in particular
in paper [11]. Equation 13 shows the calculation for the MCD of frame t.

EMCDt = 10/ln(10) ∗

√√√√2
dim∑
i=1

(mco
i,t − mce

i,t)
2 (13)

where dim is the dimension of the feature vector, mco
i,t and mce

i,t are the ith element
of the original and estimated vector of frame t respectively. Note that this formula
is not normalised and depends not only on the feature vector dimension but also
on the normalisation applied to the vectors. The higher coefficients being normally
smaller than the lower ones this formula also is more sensitive to minimise the error
of the lower coefficients. Even though internationally used comparison with other
works is restricted due to the mentioned weaknesses. However a lower error usually
implies a better synthesis. Thus equation 13 serves well for measuring the own
progress provided that the settings for the vector dimension and normalisation are
left unchanged. For this purpose equation 13 can be simplified to the root square
error as in equation 14 by eliminating the scaling factors.

18

RSE =

√√√√dim∑
i=1

(mco
i,t − mce

i,t)
2 (14)

Normalisation

Basically two different kinds of normalisations can be applied. First the normali-
sation over the actual sentence to be synthesised is fast and does not need other
information as the sentence itself. However in this work a normalisation over the
whole speech database is applied in order to have better comparison between the
synthesised sentences using equation 13. The normalisation type is a simple mean
and variance normalisation where all data of the database are considered as a
Gaussian distribution where mean and variance are estimated. This Gaussian is
then mapped to a normalised Gaussian with zero mean and variance one. With
the mapping information any synthesised values are mapped in the same way and
thus all synthesised data are normalised in the same manner.

3.3 Used Speech Database

The used database contains German utterances from a professional speaker. The
sentences are recorded in an echo damped studio and are thus of very high qual-
ity. There are 186 utterances in approximately 27 minutes which qualifies the
database as a relatively small data base. The recordings are sampled in 16KHz
mono and stored as wave files. Additionally the database contains manually seg-
mented files which contain the duration and fundamental frequency for each phone
per sentence, moreover the sentences are written in their phonetical transcription
as whole sentences and as sillables.

19

4 Monophone Models

Once the feature selection is made and the quality measurement defined different
models are to be trained to optimise the synthesis. In this section in particular
monophone models with different dynamic features are discussed. However prior
to the model discussion a short introduction is given on how to use the HTK
scripts to train in general the models. Moreover, the feature estimation does not
let as much of free space in the process as the model training with its different
parameters and thus the general feature estimation routine written in this work
will be presented first together with the HTK scripts. In section 5 where context
dependent models are discussed additional scripts will be highlighted.

4.1 General Model-Training in HTK

HTK is a public accessible speech processing tool based on Hidden Markov Models.
It implies several functions which facilitate the work with HMMs. Therefor it is
used here to train the different models. All details about the vast functions of HTK
can be read in the HTK manual [3]. Some preexisting scripts shall be described in
the following. Note that the paths and filename are related to the present scripts
and can be changed given the change is also made in the scripts. The training
philosophy of HTK is an iterative one meaning that first models are trained with
the basic settings and then refining steps are applied. This way manual refining
steps such as building triphone models from monophone models are also possible.

4.1.1 Setting the Parameters

All details about the settings can e found in the manual however the most impor-
tant ones are listed here. The settings on how to train the models are stored in
HCopy.wav.cfg in the htkscrips directory. To train the models with MFCCs use

TARGETKIND = MFCC D A E
TARGETFORMAT = HTK

where the optional parameters D stands for adding the 1st derivatives and A for
the 2nd derivatives. The parameter E optionally adds as well the zeroth MFCC -
which is the energy - to the feature vector. TARGETFORMAT should be HTK
for future work with the models. To define the neighbourhood window for the
derivatives use

DELTAWINDOW = L̂1 for the first derivatives and
ACCWINDOW = L̂2

for the second derivatives. Where L̂n defines the number of neighbours of each
side. Note that the window sizes are the L̂1 and L̂2 respectively in equation 12 in
section 3. This has in particular to be taken into account for building the values

20

of wn(i) relative to the MFCCs in the same equation.
To calculate the number of elements in a feature vector the number of MFCCs has
to be set with

NUMCEPS = N
and the dynamic features have to be added. If for example TARGETKIND =
MFCC D A E and NUMCEPS = 13 then the feature vector has a length of 42
elements with the following structure:

ct = [ct(1), ct(2), ..., ct(13), ct(0),

∆ct(1), ∆ct(2), ..., ∆ct(13), ∆ct(0),

∆2ct(1), ∆2ct(2), ..., ∆
2ct(13), ∆2ct(0)] (15)

Note that the energy term is always added at the end and counts additional to the
13 MFCCs. The window size and in particular the frameshift after each a feature
vector is extracted is defined here with

WINDOWSIZE = NWin

TARGETRATE = NFrm

and are represented in steps of 100ns, thus a frameshift of 2ms is achieved by setting
TARGETRATE=20000.0. The other parameters are self explaining or explained
in the HCopy.wav.cfg and in the HTK manual.

4.1.2 Building the Prototype Models

HTK uses prototype models to train the model for the speech data base. Thus
these prototypes have to be initialized properly. Also in the htkscripts directory
the file proto begin has to be changed as follows

∼ o
〈STREAMINFO〉 1 Ntot

〈V ECSIZE〉 Ntot 〈NULLD〉 〈TARGETKIND〉
where Ntot is the total number of elements calculated in one feature vector and
TARGETKIND has to be replaced by the expression used in HCopy.wav.cfg, for
example MFCC D A E. Similarly the header of the file prototype has to be
adapted. Moreover in that file at each state the number of mean values and
variances has to be adapted. This has not only to be done for the number itself but
also for the amount of numbers below the lines 〈MEAN〉 Ntot and 〈V ARIANCE〉
Ntot. However the values of these buffer numbers are irrelevant. If the number of
states change it has to be specified here as well by simply copying more states and
adapting the transition matrix below the line 〈TRANSP 〉 Nstates. Where Nstates is
counted with the start and end node included and possible transitions are marked
with a non-zero value in the matrix, the value then, however, is irrelevant and will
be trained.

21

4.1.3 Setting the Paths and Training the Models

At this stage all parameters for the HTK toolbox are set. To train the models
automatically a script segment in the segtools directory exists. However first it
has to be specified where to train and store the models with the corresponding
file. For this purpose the variables in the config.ger schu file have to be adapted to
the desired paths. The variables are self explaining and described in the file itself.
Note however that for the number of iterations the variables MIXTURESTEPS
and ERESTSTEPS have to be set as strings with increasing numbers. For example
for 3 iterations after each mixture duplication set ERESTSTEPS=’1 2 3’ because
the variables are read later on in other scripts step by step.
Once all paths are set all variables can be exported and the script segment in the
segtools directory can be started to start the automatic training. Depending on
the settings and parameters to train it can take a few hours to more than half
a day. The last built hmms.mmf file in the specified directory contains then all
the trained models. The segment script trains the models first without silences in
between the utterances to train the silence model and in a second training silence
models between the utterances are introduced where appropriate. First models
with only one mixture are trained and after completion of each training phase
with the defined loops in ERESTSTEPS the mixtures are doubled until the end
of MIXTURESTEPS is reached.

4.2 Parameter estimation

The basic schema for the parameter estimation from the HMMs is described in
section 2 under 2.3.1. The cost efficient routine described in [6] is implemented
here and explained in more details. The routine is written in MATLAB and thus
the models from HTK have to be imported first to a MATLAB format.

4.2.1 Importing the HMMs to Matlab

To import the HMMs from HTK to a mat file for MATLAB the function readHMMs
was written. The function not only saves a mat file calls cdhmms.mat but also
creates a lookup table in hmms.list for the values of the different phones and their
states. This lookup table is particularly useful if the amount of models is so large
that matlab cannot load the mat file because of memory issues. The lookup table
provides then a relatively fast and memory efficient way to read the needed values.
The function takes the following parameters in the given order

mmfile This is the master model file (.mmf) created by HTK containing the
trained models. The number of mixtures, states per model and the dimension of

22

the feature vectors are read automatically, however it is assumed that all models
have the same structure.

phonelist The phonelist with the entries if a model is tied is only necessary to
store the name of the file in the lookup table so it is not necessary to mention it
later in the synthesis process.

statesperphone, dim, mix They are also arguments which are written to the
lookup table and represent the number of states per model without the initial and
end state, the number of MFCCs used including the energy term and the number
of mixtures respectively.

resume With this feature, a broken readout can be continued at a specific model.
The name of the model has to be in HTK notation and without quotation marks.

If only one argument is given it is taken as mmfile, only two arguments are taken
as mmfile and resume. The stored cdhmms.mat file contains the struct cdhmm
with the fields

• .name: Name of the model

• .mu: [S x M x D] matrix containing the mean values of the Gaussians of
the model. Where S is the number of states in the model without initial
and ending state, M the number of mixtures and D the total dimension of a
feature vector.

• .sigma: [S x M x D] matrix containing the variance values corresponding to
the mean values.

• .c: [S x M] matrix containing the mixture wights for each mixture M in state
S.

• .a: [Ŝ x Ŝ] matrix containing the transition matrix, this time with the initial
and end states included.

The hmm.list file with the lookup table stores in the first line the master model
file name with the other arguments discussed above. Then each line starts with
the name of the model followed by the number for mean and variances for the first
state and all mixtures, then for the second state and all mixtures and so on until
the last two numbers declare beginning and end line of the transition matrix. A
model with 3 emitting states and 2 mixtures may have the following entry

“sample” M1,1 V1,1 M1,2 V1,2 M2,1 V2,1 M2,2 V2,2 M3,1 V3,1 M3,2 V3,2 PS PE

23

where the model name is “sample” and Ms,m and Vs,m is the line number in the
.mmf file for the mean and variance values of the sth state and mth mixture re-
spectively. PS and PE give then the star and end line for the transition matrix.
Each value is separated with a tab character.

4.2.2 Estimating the Parameters

Once the models are imported to the MATLAB notation the parameters can be
estimated. Remember that phonetic transcriptions as well as the fundamental fre-
quency and the duration of each phone to be synthesised is provided from the high
quality speech database. Thus to estimate the parameters in order to synthesise
the desired text, a sample from the speech database is taken and the parameters
read into MATLAB. First the state sequence has to be estimated as described in
2.3.1 which is to normalise the transition probabilities and divide the total length
of the phone by these normalised probabilities. The exact formula to chose the
appropriate mixture is given in equation 16

ît = arg max
it

(
ln(cqt,it) −

1

2
ln(|Uqt,it |

)
(16)

where cqt,it and Uqt,it is the mixture weight and diagonal covariance matrix of the
state q and the mixture i at time t. The equation therefor selects the feature vector
with the sharpest mixtures as an initial choice. Once having the state sequence
means and variances can be extracted and the maximization of equation 7 can be
performed.

The Function estimparam

The Matlab function estimparam automates these steps. It takes the following
arguments

• file: The label file .lab with the phonetic transcription and durations

• hmms: The models as .mat file

• tiefile: A list with all models and tied models in a separate column

• winshift: The frameshift after each a feature vector is extracted

• w: A [1xf] vector where f is the order of the last implemented derivative. The
elements of the vector are the neighbourhood for the (n− 1)th derivative to
calculate the nth derivatives. In other notation the L̂n in 12.

24

It calculates first the normalisation parameters over the whole speech data base
and reads the lengths for each phone and the total utterance to be synthesised.
The state sequence is then selected according to the discussion above in a loop
for each phone and the means, variances and mixture weights are concatenated
accordingly in vectors. After this step the matrices U and the vector µ used for
equation 9 are built. Then the W matrix is calculated and all information is passed
to the optimisation function opt c. This returns the estimated MFCCs which then
are normalised by using the above calculated normalisation parameters. Moreover
a smoothing filter is applied to eliminate disturbing fluctuations. The filter order
is given in the variable order. The MCD is calculated as described in 3.2.1 and
the estimated MFCCs are compared to the original MFCCs extracted from the
feature file .fea generated from HTK. The plots with the comparisons as well as
the MCD give then a rough image about the quality of the performed estimation.

Calculating W

As the W matrix reflects the equations of calculating the derivatives in 12 it’s
structure and entries depend on the neighbourhoods L̂n. With the parameter w
these neighbourhoods are passed to a function makeW which generates a template
matrix wt for calculating the nth derivative of frame t. To this end the first
equation in 12 is applied to each derivative recursively in order to calculate the
wn(i) of the second equation in 12 and thus having the direct relation between the
nth derivatives and the MFCCs. Note that only the coefficients in the mentioned
equations are calculated. The code for calculating the coefficients for the first
derivatives is therefor

% Build divisors of deltas after HTK definition (p.68 in HTK book)

dDiv = sum((1:delta).^2)*2;

% Calculate deltas

wt(1,n+1)=1;

for i=1:delta

wt(2,n+1+i)=i/dDiv;

wt(2,n+1-i)=-i/dDiv;

end

where delta is the L̂1 neighbourhood. For the argument w=[1] this yields a tem-
plate matrix wt

0 1 0
−0.5 0 0.5

which leaves the current MFCCs unchanged (first row) and calculates the first
derivative with one MFCC neighbour at each side. For w=[1 1] the coefficients
for the second derivatives will be present accordingly in a third row to wt.

25

0 0 1 0 0
0 −0.5 0 0.5 0

0.25 0 −0.5 0 0.25

note here that L̂2 = 1 but the neighbourhood which is directly dependent from
the MFCCs is L2 = 2 each side and thus the template matrix is a [3x5] matrix.
The size always is [f+1 x 2Lf+1] where f is the order of the highest derivative and
Lf is the neighbourhood for the f th derivative with respect to the MFCCs. The
template is now concatenated such that

O = WC
O being the feature vector and C being the MFCC vector as described in 2.3.1.

To explain the W matrix it is split in different blocks according to the structure of
O. The first M elements of O is the MFCC vector extracted from the first frame.
Remembering that C is a [MTx1] vector where M is the number of MFCCs per
frame and T is the number of frames in the audio signal to be synthesised, the
first MxMT rows of W are

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1 · · · 0
then in the O vector the next M elements are the first derivatives of the first
MFCC vector. With a neighbourhood of L̂1 = 1 the following MxMT rows in W
are

0 0 0 · · · 0.5 0 0 0 · · · 0
0 0 0 · · · 0 0.5 0 0 · · · 0
0 0 0 · · · 0 0 0.5 0 · · · 0
...

.
...

0 0 · · · · · · 0.5 0

Note that the -0.5 term vanishes because of boundary conditions. The mth block
will therefor look like

0 · · · −0.5 0 0 · · · 0 0 0 · · · 0.5 0 0 · · · 0
0 · · · 0 −0.5 0 · · · 0 0 0 · · · 0 0.5 0 · · · 0
...

...
. . .

...
.

...
0 · · · 0 · · · −0.5 · · · 0 0 0 · · · · · · 0.5 · · · 0

if second derivatives are applied another similar MxTM block will follow and the
first feature vector in O for the first frame is built. This is now repeated for all
T frames by shifting the MxTM blocks by M columns each frame. One realises
that the blocks can be built by multiplying the elements in the template matrix
wt with an identity matrix of the size MxM. These matrices can be concatenated

26

along the columns in the order as the elements in wt appear while leaving the rest
of the MxMT block at zero. Thus each row in the template matrix builds a MxMT
block. Using all f rows for the T frames will yield a W matrix of size [fMTxMT].
If for example second derivatives are used (this yields 3 rows in the wt template)
with 24 MFCCs each frame with a shift of 2ms in a sentence of 5 seconds length,
then f=3, M=24 and T=2500 and thus W=[180’000x60’000]! Eventhough W is
sparse, it is not diagonal.

Iterative Estimation in opt c

Once all needed matrices are built to estimate C in equation 9 there are two
implementations which can be evaluated. Either the direct way to build one whole
sentence HMM and estimate all parameters at once solving 9 or the iterative way
where only a few parameters are estimated at each loop. Considering the above
calculation of the size of W the first way only works for very small sentences,
else MATALAB does not have the necessary calculation power. The iterative
way is described in [6]. Function opt c estimates the MFCCs given the following
arguments

• W: The above discussed W matrix

• mu: The concatenated mean vector for the whole utterance

• sigma: The concatenated variance vector for the whole utterance

• feats: The number of derivatives applied +1 (i.e. the number of rows in the
template matrix wt

• pruning: a pruning factor to handle very small variances and their inverse
values

At the initialisation state a first choice of mixtures in the state sequence is made
according to equation 16 then the mean values are read from the selected mixtures
as initial MFCC solution. Note that if no dynamic features are applied this would
already be the final solution.
Then the initialisation loop starts as described in [6]. The function does not per-
form the calculations with the whole variance and mean vector but only includes
a given neighbourhood specified in the variable Neigh. It was shown that the in-
fluence of neighbour states more than 20 states away from the actual considered
one do not influence the actual iteration step in a significant manner, thus by set-
ting Neigh=30 or more calculation time is significantly reduced while the result is
basically the same.
Optionally the optimisation loop can be uncommented to reestimate the mixtures

27

for the calculations. This loop follows the algorithm described in [6] and thus
compares ln(P [O,q|λ]) which is the probability of the best feature vectors and
sate sequence given the model. For each iteration the algorithm changes the ac-
tual mixture to the new mixture in the state where the best improvement was
achieved. This is repeated until the improvement drops below a threshold defined
in the variable thres or the maximal number of loops defined in the variable loops
is reached.
However the initial mixture selection is fairly well so that nearly no changes were
observed while running the mixture optimisation loops. Compared to the con-
sumed calculation time it is therefor recommended to disable the mixture optimi-
sation loop. Tests have shown that only at the beginning and end of the utterance
some adaptions are made. This may also be due to boundary conditions. An effort
has been made to include the boundary conditions as HTK does when calculat-
ing the feature vectors and in particular the derivatives. However, the utterances
begin and end with a silence and only the first few frames are touched by the
boundary conditions. Thus this is ignored. The other boundary conditions are
present by selecting only a neighbourhood around the actual iteration step. Han-
dle these conditions properly also has only a small effect as the neighbourhood
should be chosen in a way that the last few neighbours anyway have only a very
small influence on the actual estimated frame. By selecting Neigh=40 boundary
conditions of this kind can be ignored as well.
The function returns at the end the estimated MFCCs in a vector c with size
[MTx1].

4.2.3 Synthesising the Audio Signal

The function estimparam is embedded in a function test mfcc synthesis written by
H. Romsdorfer. The function is self explaining, however verify that all parameters
such as the frameshift, windowsize, number of MFCCs per feature vector and so
on are set correctly in both the test mfcc synthesis as well as on the line where
estimparam is called! Note that this is a first step in building a synthesiser and
thus the quality still can be improved. It is suggested to synthesise first the audio
signal by vocoding the feature vectors directly from HTK and only then compare
this result to the estimated feature vectors. By comparing the vocoded signal with
the original audio file the error of the synthesiser is shown.

4.3 Results from Monophone Models

With the above training and estimation tools first steps in monophone models are
made. In the following three different types of models are presented, first with only
the MFCCs as feature vectors then adding the 1st derivatives and finally adding

28

the 2nd derivatives to the vectors. For all models the MCD error measurement
is applied. However, as mentioned in 3.2.1 this error measurement is sensitive
to the training parameters. Thus a more general view of the different model
types is given here rather than sophisticated statistics. The examples are taken
from sent 002.wav which is the German sentence “Beteiligung von Passanten”. It
contains 25 phones including the silence at the beginning and excluding the silence
at the end. The sentence is 1.622 seconds long and has 811 states, for each 2ms
a feature vector of 12 MFCCs plus the energy term is extracted. Models with a
5ms frameshift were trained but did not perform better. The time measurement
are made on a Pentium 4 with 2GHz. The results shall not represent professional
statistics, however, they give a good overview about the calculation power needed
and the achieved synthesis quality. The neighbourhood in the models with the
derivatives included is always set to 2 neighbours each side with reference to the
(n − 1)th derivative. In other notation L̂1=L̂2=2.

4.3.1 MFCCs Only

If no dynamic features such as the derivatives of the MFCCs are taken into account
the estimation of the MFCCs yields the mean values of the mixtures of the selected
state sequence. The estimation process is very fast, however the achieved quality
is low. Figures 11 to 14 show the curve of the estimated MFCCs in red and the
original MFCCs from HTK in blue. Both normalised as discussed.

Figure 11: 1st MFCC

Note that the 3 mean values of each state per phone are good visible due to the
lack of dynamic features. The smoothing only results from applying the mentioned
filter after estimating the MFCCs. The stair like form with the significant steps is
also audible in the synthesis. However, as the quality of even the vocoded signal
is relatively poor, it is difficult to hear the impurities caused by the estimation.
The MCD in this example is 15.54 and is taken as reference for the other models.
The estimation times for this example are the following:

• Overall: 13 seconds

29

Figure 12: 3rd MFCC

Figure 13: 11th MFCC

Figure 14: 12th MFCC

30

• Reading the sates: 8 seconds

• Building the W matrix: 3 seconds

• Estimating the parameters: 2 seconds

Thus the real estimating time is neglectable compared to the reading time.

4.3.2 MFCCs with 1st Derivatives

Including the first dynamic feature makes the steps caused by the previous model
disappear. Figures 15 to 18 show the estimated and original MFCC curves for
the same sentence. The models are again trained with 12 MFCCs plus the energy
term per vector this time with the 1st derivatives included. All other training
parameters are left unchanged.

Figure 15: 1st MFCC

Figure 16: 3rd MFCC

The improvement is also audible in the synthesised audio file. An MCD of 14.84 is
calculated which is an improvement of 4.5% compared to the above models without
dynamic features. The calculation times are the following:

• Overall: 44 seconds

• Reading the sates: 9 seconds

• Building the W matrix: 11 seconds

31

Figure 17: 11th MFCC

Figure 18: 12th MFCC

• Estimating the parameters: 24 seconds

It is obvious that the building of the W matrix increases significantly because of the
adding of the dynamic features. W being more complex and less sparse than in the
first models without derivatives, the estimation time also increases significantly.
However, the improvement of quality legitimises the calculation power.

4.3.3 MFCCs with 1st Derivatives and 2nd Derivatives

Again here an additional dynamic feature is included in the models. Besides adding
the second derivatives to the MFCC vector with the first derivatives no parameters
have been changed. Figures 19 to 22 show the results.

Figure 19: 1st MFCC

Observe the smoothing which is introduced by adding the second derivative. Even
though the MCD is 14.65 which is a further improvement of 1.5% the quality

32

Figure 20: 3rd MFCC

Figure 21: 11th MFCC

Figure 22: 12th MFCC

33

of the synthesised uterance is lower compared to the models with only the first
derivatives included. This might be the result of the oversmoothing caused by the
second drivatives. Having a look at the calculation time it is questionable if the
inclusion of second derivatives leads to the desired goal:

• Overall: 115 seconds

• Reading the sates: 10 seconds

• Building the W matrix: 28 seconds

• Estimating the parameters: 77 seconds

As the W matrix gains on complexity the matrix building and parameter estimat-
ing time increase significantly.

4.3.4 Limitations

From the plots above one sees that the higher MFCCs are as expected estimated
like strongly smoothed compared to the original curve. This is caused from the
averaging during the training process. While different versions of the same phone
have similar curves on the lower MFCCs the higher ones fluctuate more and more
representing the small differences of each version. Thus lower MFCCs are trained
more constant than higher ones and the averaging effect changes less the appear-
ance. This can be taken into account by diversifying the models more and more.
One solution is using triphone models. Other solutions are to implement other
auxiliary features like sillable and word boundaries, intonation, accentuation and
so on.
The advantage of monophone models is that the number of models is very low
and handy. Thus each phone model receives an accurate training because enough
occurrences of each phone are available in even small databases as the used one.

Calculation Problems

An issue which occurred from time to time are small variances in the mixtures.
Because the speech database is of high quality, mixtures tend to be peaky, even
more if a lot of mixtures are used. In the above estimations 8 mixtures per state
are used. If a phone is recorded very constant without much of variation sharp
mixtures are trained with low variance. They are highly probable to be selected
according to the selection criteria discussed. Because the inverse of these values
is built during the estimation process divisions by nearly zero occur which cause
high peaks in the estimated MFCCs. One possibility to avoid these peaks is to
clip these values to zero if a variance is too small, this is done with the pruning

34

parameter passed to the opt c function. Another solution would be to reduce the
number of mixtures to 4 or even 2. In general, however, this is also a hint that high
quality data bases not necessarily are better for the synthesis. More important is
the amount of occurrences to train the phone model accurately. This appears even
more in the triphone models discussed in the following section.

35

5 Triphone Models

In order to have more detailed models of the different variations of the phones
the context is taken into account. The most common step is to build triphone
models out of the already trained monophone models. Only the left and the right
phone of the actual one are considered her as context. Otherwise with a larger
neighbourhood the number of models increase to the infinite and no database
would be large enough to train all variations accurately. As in section 4 first the
handling of the HTK tools is described before explaining the MATLAB tools to
estimate the parameters and finally discussing the results.

5.1 Triphone-Model Training in HTK

At this stage it is assumed that monophone models are already trained. They will
be retrained then to triphone models. If each monophone model is split in to its
various triphone representations a method has to be applied to handle the number
of models compared to the speech database size. Otherwise the data base does not
contain sufficient occurrences to train each model which results in poorly trained
models and thus low quality synthesis. Mainly two different methods are used to
cluster the triphone models. The data based clustering is a method which bins all
“similar” models. Where “similar” is defined by a threshold value and a distance
measurement described in the HTK manual [3]. This method is very simple and
straight foreward. However it has the big disadvantage that only trained triphones
can be synthesised. If during a synthesis a new triphone occurs no hint is given
which of the trained models are closest to the new triphone and thus cause the
least error. The scheme of data based clustering is shown in figure 23.

Figure 23: Data based clustering using the TC command in HTK: [3] p. 153

Conversely the tree based clustering method uses a decision tree to bin the tri-

36

phones. If a new triphone occurs during the synthesis stage, it can proceed the
decision tree until it reaches a leaf, all models in that leaf are usable to synthesise
most closely the new triphone. The disadvantage is the tree construction which
has to be performed for each language. Figure 24 shows such a decision tree.

Figure 24: Decision tree:R=right side, L=left side of actual phone [3] p. 155

The training for each method is different and is explained in the following. First,
however, the general steps to transcribe the monophone models to triphone models
is explained

5.1.1 Building Triphone Models

The following steps have to be applied to gain the unclustered triphone models

• Untie tied monophone models in the master model file (.mmf)

• Build a triphone list by transcribing all monophones to triphones

• Tie all transition matrices of each phone in a triphone set

• Clone the monophone models to triphone models

• First training of the triphone models

Untying the Monophone Models

Up to now this step has to be done manually. It consists in untying the models
which are tied according to the HMM list file which is per default hmm.list. Un-
tying means simply copying the model as many times as the model is tied and
renaming it according to the different tied models written in the HMM list file.
An entry in hmm.list of

ph2: ph2 tied
ph9 ph2 tied

means thus that the model named ph2 tied in the .mmf file has to be copied once
by renaming the original model to ph2: and the copied one ph9.

37

Triphone Transcription

In this step a list of all triphones occurred in the speech database is generated in
the file triphones, moreover the list is written to the master label file wintri.mlf
for future use in HTK. The transcription of the .tr files (i.e. the HTK label
files) is performed from the $SEGDIR/trans to the $SEGDIR/tritrans directory
by maintaining the filenames. Note that the HTK command file mktri.led contains

WB sp
WB sil
TC

which keep all silences in the utterances and thus builds biphone models accurately.
With the maketritrans script

maketritrans traintrifiles.scp triphones wintri.mlf mktri.led $SEGDIR/trans
$SEGDIR/tritrans
the files are generated. The file traintrifiles.scp contains a list of all .tr files to be
transcribed with path and filename per row.

Tie Transition Matrices

Because the transitions do not differ much from one variation to another within
the same phone the transition matrices are tied together. This also allows a better
training of the transition probabilities. In order to tie the matrices later with the
HHed command of HTK a command file has to be written with the maketrihed
script

maketrihed $SEGDIR/hmms orig.list triphones
the HTK command file mktri.hed is generated. The file hmms orig.list contains
all untied (original) HMMs, one name per row and the file triphones is the file
generated in the previous step being the analogue to hmms orig.list but for the
triphones. The file mktri.hed contains the tying information for the transition
matrices as follows

CL triphones1
TI T ph2: {(*-ph2:+*,ph2:+*,*-ph2:).transP}
TI T ph9 {(*-ph9+*,ph9+*,*-ph9).transP}
...

where the CL command specifies the triphone list and the TI commands ties all tri-
phones *-[ModelName]+*, and all biphones [ModelName]+* and *-[ModelName]
for the phone [ModelName] being in the middle, on the left or right side of an-
other phone respectively. This is repeated for all existing (mono-)phones. In the
maketrihed script further tieing such as tieing all middle states etc. can be included

38

by simply adding the corresponding lines in the script. The following sample ties
all middle states of the triphones corresponding to the phone ph2:

TI T ph2: 2 {(*-ph2:+*,ph2:+*,*-ph2:).state[3]}
where the model state name T ph2: 2 can be arbitrarily chosen.

Cloning to Triphone Models

Once the HTK command file for the tieing is written, the cloning from monophone
models to triphone models can be made with

HHEd -B -H $SEGDIR/HMM/hmmN1/hmms.mmf
-M $SEGDIR/HMM/hmmN2 mktri.hed $SEGDIR/hmms orig.list
where the monophone models are stored in $SEGDIR/HMM/hmmN1/hmms.mmf
and the triphone models saved in binary format to $SEGDIR/HMM/hmmN2.

First Triphone Training

The freshly transcripted triphone models are now trained for the first time unclus-
tered to obtain a statistic file stats which contains among other information the
occurrences in the speech database. This will be useful for the future clustering.

HERest -B -t 250.0 150.0 1000.0 -s stats
-H $SEGDIR/HMM/hmmN2/hmms.mmf -I wintri.mlf -X tr
-L $SEGDIR/tritrans -M $SEGDIR/HMM/hmmN3

-S trainfiles.scp triphones1
the models are taken from $SEGDIR/HMM/hmmN2/hmms.mmf and saved in bi-
nary format to $SEGDIR/HMM/hmmN3. Note that the file trainfiles.scp contains
all training data, namely the feature files .fea extracted from the speech data base.
The binary format is advisable here to maintain the master model file .mmf as
small as possible.

5.1.2 Data Based Clustering

For the data based clustering only a few steps are needed. First a command list
with the clustering commands has to be generated, then the clustering has to be
applied and a re-training with the clustered models has to be performed. The
command list is best generated with the maketiehed script

maketiehed $SEGDIR/hmms orig.list stats TRO TTC trilist
where the stats file contain the statistics received from the first training of the
triphone models. TRO and TTC are the outliner threshold for the RO command
and the distance threshold for the cluster command TC. These parameters decide
the size of the built clusters and must be chosen carefully. Too small clusters yield
a high number of models which most probably will be poorly trained because of

39

missing occurrences in the speech database. Too large clusters will destroy the
advantage of triphone models because differences are simply clustered together.
More information about these threshold can be found in the HTK manual [3].
The output of the script is on one side the HTK command list file mktie.hed and
the new model list trilist. This list has to be provided later to the MATLAB
functions, for it not only contains all models but also the information about which
models are tied and clustered together. The beginning of mktie.hed may look like

RO 20 ”stats”
TC 300 ”ph2:S2” {(*-ph2:+*,ph2:+*,*-ph2:).state[2]}
TC 300 ”ph2:S3” {(*-ph2:+*,ph2:+*,*-ph2:).state[3]}
TC 300 ”ph2:S4” {(*-ph2:+*,ph2:+*,*-ph2:).state[4]}
...

where each state of the phone ph2: is allowed to be clustered if its distance is less
than 300.
Once having the command list file, clustering can be applied

HHEd -B -H $SEGDIR/HMM/hmmN3/hmms.mmf
-M $SEGDIR/HMM/hmmN4 mktie.hed triphones1
where the models are read from $SEGDIR/HMM/hmmN3/hmms.mmf and written
in binary format to $SEGDIR/HMM/hmmN4. Then re-training the models yields
to the desired result. This step can also be repeated several times in order to train
the models more accurately:

HERest -A -t 250.0 150.0 1000.0 -s stats tri
-H $SEGDIR/HMM/hmmN4/hmms.mmf
-I wintri.mlf -X tr -L ../seg/tritrans
-M $SEGDIR/HMM/hmmN5 -S trainfiles.scp triphones1CO
the models are again taken from $SEGDIR/HMM/hmmN4/hmms.mmf and stored
in ASCII format in $SEGDIR/HMM/hmmN5. This format is mandatory in order
to apply the MATLAB function readHMMs to translate the models into MATLAB
notation as described in 4.2.1. The new statistics about the training are stored
in the stats tri file. At this stage more mixtures can be included with the HTK
command HHed.

5.1.3 Tree Based Clustering

Tree based clustering is not as straight foreward as data based clustering already
because this kind of clustering is only allowed to 1-mixture models in HTK. Be-
cause of this, the process described in 5.1.1 has to be applied to the corresponding
models.

40

In this work general questions for the decision tree have been used which are
applicable language independently. In [13] some suggestions are presented from
which the most general were token. Similar to the data based clustering a command
list file for HTK has to be generated. This list first contains the questions and
then the clustering commands similar to the mktie.hed file.
To build the questions the MATLAB function buildquestions is used. It takes as
arguments

• ROThres: The threshold for the RO command similar to the data based
clustering

• Statsfile: The path and name of the statistic file provided from the first
training of the triphone models with one mixture

It then generates the questionnaire in mktree.hed following the structure
QS “L Name” {affirmative models}
QS “R Name“ {affirmative models}

where R and L name stands for the question considering the right and left side
respectively of the actual phone. The name can be chosen arbitrarily. The affir-
mative models are those models which can answer the question with “yes”. For
example the question if the left phone is an “i” or an “e” would be

QS “L ie” { phi-*, phe-* }
the script automatically generates an left and right question for each question
entered in the code.
The next step is to add the cluster commands to the file. The script maketreehed
appends these commands to the mktree.hed file built previously with MATLAB.
The script is invoked as follows

maketreehed $SEGDIR/hmms orig.list TTB trilist
where the arguments are basically the same as in maketiehed in the data based
clustering except that the statistic file and the threshold value for the RO com-
mand already were given to the MATLAB function buildquestions. Thus only the
distance threshold for the tree clustering command TB together with the original
monophone list hmms orig.list and the new clustered list trilist as output have to
be passed as arguments. Here again experience and several tests reveal the best
cluster size thresholds. After running the maketreehed script the HTK command
list file mktree.hed is complete and clustering can be applied.
Applying the clustering is done similar to the databased clustering with

HHEd -B -H $SEGDIR/HMM/hmmN3/hmms.mmf
-M $SEGDIR/HMM/hmmN4 mktree.hed triphones
where the models are taken from $SEGDIR/HMM/hmmN3/hmms.mmf and stored
in binary format in $SEGDIR/HMM/hmmN4. Remember that the file triphones
is the triphone model list generated in 5.1.1.

41

The training is then performed with
HERest -A -t 250.0 150.0 1000.0 -s stats tri

-H $SEGDIR/HMM/hmmN4/hmms.mmf -I wintri.mlf
-X tr -L $SEGDIR/tritrans -M $SEGDIR/HMM/hmmN5

-S trainfiles.scp trilist
By saving the models in ASCII format they can be extracted to MATLAB notation
using the MATLAB function readHMMs described in 4.2.1. The new statistics
about the training are again stored in the stats tri file.

5.2 Parameter Estimation

For the parameter estimation of triphones the MATLAB function estimparamTri
is used. It is basically identical to the estimparam function. However, it builds
internally the triphones from the monophones read in the label file .lab. This
feature takes also silences into account and builds biphones where necessary. The
rest is equivalent to the estimparam function described in 4.2.2

5.3 Results from Triphone Models

During the training i was realized that the database used in this work is too small
to apply accurate triphone models. Both data based clustering as well as tree
based clustering performed similarly. This is also because the full advantage of
tree based clustering was not needed, for training sentences were taken for the
synthesis. These sentences obviously contain no new triphones and thus the data
clustered models always had a model at hand to be synthesised. The lowest Mel
Cepstral Distortion MCD achieved was 17.2 which still is higher than with only
MFCC feature vectors in monophone models. Given this it is assumed that with
the perfect cluster size a value below the MCD with monophone models and second
derivatives applied can be achieved. However the search of that perfect cluster size
is a time consuming procedure and is recommended to do with a larger database
where triphone models are more appropriate. This kind of search is done for
example in [11]. In figure 25 the dependence of occurrences for training the model
and accuracy in estimating the parameter is depicted.
The plot shows the initial frames of the sentence sent 002.wav “Beteiligung von
Passanten”. The green square represents the triphone model ph¿-pht+pha in
“Beteiligung” which occurs 107 times in the data base and thus estimates the
parameter fairly well. The model phE-ph¿+pht right before only occurs 38 times
and already shows weaknesses. However the most important ones are those which
only occur under 10 times and thus cannot be trained accurately at all. Such
an example is the model phi-phl+phI with 4 occurrences. Figures 26 to 29 show

42

Figure 25: MCD per MFCC (y) and time frame (x)

entire MFCC estimation over the sentence also used in 4.3. The TC and TB com-
mand threshold was set to 500 and the RO command threshold to 30. All other
parameter are equal to the ones in 4.3.

Figure 26: 1st MFCC

Figure 27: 3rd MFCC

5.4 Future Considerations

In order to provide a good modelling for the middle part of the phone which is
probably not very context dependent the middle states could be tied together.

43

Figure 28: 11th MFCC

Figure 29: 12th MFCC

Leaving the outer states free results in diversifying the transitions between two
phones.
Moreover to verify the difference between the data based and tree based clustering
utterances with new triphones should be tried to synthesise. In this case, however,
the MATTLAB function estimparamTri has to be adapted to proceed the decision
tree upon new triphones. Currently an error message is printed if a triphone is
not found in the HMM list.

44

6 Conclusion and Outlook

6.1 Conclusion

With this work a solid base for speech synthesis with Hidden Markov Models is
constructed. First steps are made and fairly well results are achieved. The results
show that dynamic features are a must to obtain good synthesis quality. How-
ever doubts are shown in using as well the second derivatives as dynamic features.
The calculation power needed is increased significantly compared to the gained
improvement. Thus only using the first derivatives as dynamic features might be
sufficient for the synthesis.
A calculation problem of divisions by zero which occur with very narrow mixtures
(i.e. small variances) shows that more mixtures not necessarily increase the syn-
thesis quality. Using less mixtures yield to a broader distribution and thus could
eliminate the problem of small variances. In the same context falls the database
size and its quality. If the database has a lower quality the models are trained less
constantly and thus the mixtures will be broader. Moreover this together with the
result from the triphone models lets assume that the size of the data base is much
more important than its quality.
On the audio synthesis side it is difficult to measure the quality because of ad-
ditional errors are introduced by the synthesiser itself. However, the estimated
MFCCs are found to reproduce very similar audio signals compared to the original
MFCCs. Thus future work should be concentrated on the synthesiser to be able
to hear more accurately the quality differences between the trained models.

6.2 Outlook

The next step to this work is undoubtedly the improvement of triphone models by
using a larger database. As mentioned in the conclusion the database could be of
lower quality if only it provides enough data to train the models accurately. To
find the best cluster size it is recommended that an automated setup is written
which looks for the performance curve demonstrated in [11]. Beginning with a
small clustersize a reinforcement learning algorithm can be applied. Each time
the MCD on the test set is lower than before the step by which the clustersize
is increased, is augmented as well until the MCD is higher, then the stepsize is
adjusted accordingly. Figure 30 shows a possible search path.
Another step, given the data base is large enough, is to introduce even more fea-
tures to refine the models. In particular phonological features can help to model
different variations of a phone. The features are discussed in 3.1. Note that fea-
tures trained with the MFCCs do generally not improve the quality because the
dependency between the MFCCs and the feature is normally not known. Thus the

45

Figure 30: MCD compared to cluster size: from [11]

feature is trained and estimated separately from the MFCCs. Only the derivatives
of the MFCCs which stand in direct relation with the coefficients are usefull to train
with the models. The phonological features are thus to be added as the context
dependency by splitting existing models into new and more detailed models. Ex-
amples of phonological features can be sillable or word boundaries, accentuation,
in general all prosodic attributes. Including the phrase type.
Once having achieved a fairly good synthesis, speaker adaption can be attacked.
The idea is to train HMMs with a database of one speaker. Then by only having
a few utterance from another speaker the models are re-trained to sound like the
new speaker. First steps in this direction were made in [4].

46

7 Bibliography

References

[1] Beat Pfister, René Beutler, “Sprachverarbeitung I, Skript zur Vorlesung”, ETH
Zurich, Switzerland

[2] Beat Pfister, René Beutler, “Sprachverarbeitung II, Skript zur Vorlesung”,
ETH Zurich, Switzerland

[3] Steve Young, Gunnar Evermann, Mark Gales, Thomas Hain, Dan Kershaw,
Xunying (Andrew) Liu, Gareth Moore, Julian Odell, Dave Ollason, Dan Povey,
Valtcho Valtchev, Phil Woodland, “The HTK Book (for HTK Version 3.4)”,
2006

[4] Junichi Yamagishi, “An Introduction to HMM-Based Speech Synthesis”, 2006

[5] Keiichi Tokuda, Takayoshi Yoshimura, Takashi Masuko, Takao Kobayashi,
Tadashi Kitamura, “Speech Parameter Generation Algorithm For HMM-Based
Speech Synthesis”, Nagoya Institute of Technology, Tokyo Institute of Tech-
nology, Japan

[6] Keiichi Tokuda, Takashi Masuko, Tetsuya Yamada, Takao Kobayashi, Satoshi
Imai, “An Algorithm For Speech Parameter Generation From Continuous Mix-
ture HMMs With Dynamic Features”, Tokyo Institute of Technology, Japan

[7] Keiichi Tokuda, Takashi Masuko, Jun Hiroi, Takao Kobayashi, Tadashi Kita-
mura, “A Very Low Bit Rate Speech Coder Using HMM-Based Speech Recog-
nition/Synthesis Techniques”, Nagoya Institute of Technology, Tokyo Institute
of Technology, Japan

[8] Toshiaki Fukada, Keiichi Tokuda, Satoshi Imai, Takao Kobayashi, Tadashi
Kitamura, “An Adaptive Algorithm For Mel-Cepstral Analysis Of Speech”,
Tokyo Institute of Technology, Japan

[9] Takashi Masuko, Keiichi Tokuda, Takao Kobayashi, Satoshi Imai, “Speech Syn-
thesis Using HMMs With Dynamic Features”, Tokyo Institute of Technology,
Japan

[10] Keiichi Tokuda, Takao Kobayashi, Satoshi Imai, “Speech Parameter Gener-
ation From HMM Using Dynamic Features”, Tokyo Institute of Technology,
Japan

47

[11] Alan W. Black, “CLUSTERGEN: A Statistical Parametric Synthesiser Using
Trajectory Modeling”, Carnegie Mellon University, USA

[12] Alan W. Black, Tanja Schulz, “Speaker Clustering For Multilingual Synthe-
sis”, Carnegie Mellon University, USA, 2006

[13] Julian James Odell, “The Use Of Context In Large Vocabulary Speech Recog-
nition”, Queen’s College, UK, 1995

[14] Harald Romsdorfer, Beat Pster, “Phonetic Labeling and Segmentation of
Mixed-Lingual Prosody Databases”, ETH Zurich, Switzerland, 2005

48

 Institut für
 Technische Informatik und
Kommunikationsnetze

 Eidgenössische Technische Hochschule Zürich
 Swiss Federal Institute of Technology Zurich
 Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo

Sommersemester 2007
(SA-2007-46)

Semesterarbeitsaufgabenstellung
für

Herr Stephan Weiss

Betreuer: H. Romsdorfer ETZ D97.5
Stellvertreter: Dr. B. Pfister ETZ D97.6

Ausgabe: 18. April 2007
Abgabe: 13. Juli 2007

Sprachsynthese mit Hidden-Markov-Modellen

Einleitung

Eine neuere Methode zur Synthese von Sprachsignalen basiert auf kontextabhängigen
Laut-HMM (Hidden-Markov-Modelle). Diese Methode ist attraktiv, weil sie grundsätzlich
die Möglichkeit bietet, die stimmlichen Eigenschaften der Sprachsynthese auf eine neue
Stimme zu adaptieren, also eine Art der Stimmtransformation durchzuführen.

Aufgabenstellung

In dieser Arbeit soll unter Verwendung eines bestehenden Audiokorpus von phonologisch
annotierten, deutschen Sätzen ein Prototyp einer HMM-basierten Sprachsynthese ent-
wickelt werden. Dazu sind im wesentlichen folgende Schritte notwendig:

• Training der HMM-Laut-Modelle anhand des deutschen Audiokorpus. Ein Tool zum
Training dieser Modelle wird zur Verfügung gestellt.

• Implementierung eines Algorithmus zur HMM-Parametergeneration in Matlab. Ein
Algorithmus ist in [1, 2, 3] beschrieben.

• Synthese des Sprachsignals unter Verwendung der ermittelten HMM-Modelle ([4]).
Eine Funktion zur Synthese des Sprachsignals aus einer Sequenz von HMM-
Parametern und entsprechenden HMM-Laut-Modellen wird zur Verfügung gestellt.

• Implementierung eines Verfahrens zur Qualitätsbeurteilung der erzeugten HMM-
Parametersequenz. Ein mögliches Fehlermass wird in [5] präsentiert.

• Experimente zur Qualitätsverbesserung der Sprachsynthese durch Optimierung der
HMM-Laut-Modelle und der HMM-Parametergeneration. Dazu müssen Experimen-
te mit verschiedenen Konfigurationen von HMM-Eingangsgrössen, wie verschiedene
MFCCs (Mel Frequency Cepstral Coefficients), phonologische Merkmale und pho-
netischer Lautkontext (siehe z.B. [6, 5]), durchgeführt werden.

Die ausgeführten Arbeiten und die erhaltenen Resultate sind in einem Bericht zu do-
kumentieren (siehe dazu [7]), der in gedruckter und in elektronischer Form abzugeben
ist. Zusätzlich sind im Rahmen eines Kolloquiums zwei Präsentationen vorgesehen: etwa
drei Wochen nach Beginn soll der Arbeitsplan und am Ende der Arbeit die Resultate
vorgestellt werden. Die Termine werden später bekannt gegeben.

Literaturverzeichnis

[1] K. Tokuda, H. Matsumura, T. Kobayashi, and S. Imai. Speech coding based on
adaptive mel-cepstral analysis. In Proceedings of the ICASSP 1994, pages 197–200,
Adelaide, Australia, April 1994.

[2] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura. Speech para-
meter generation algorithms for HMM-based speech synthesis. In Proceedings of the
ICASSP 2000, pages 1315–1318, Istanbul, Turkey, June 2000.

[3] J. Yamagishi. An introduction to HMM-based speech synthesis. Technical report,
Tokyo Institute of Technology, October 2006.

[4] S. Imai. Cepstral analysis synthesis on the mel frequency scale. In Proceedings of
ICASSP 83, pages 93–96, Boston, USA, April 1983.

[5] Alan W. Black. CLUSTERGEN: A statistical parametric synthesizer using trajectory
modeling. In Proceedings of Interspeech 2006, pages 1762–1765, Pittsburgh, Pennsyl-
vania, September 2006.

[6] Alan W. Black and Tanja Schultz. Speaker clustering for multilingual synthesis. In IS-
CA Tutorial and Research Workshop on Multilingual Speech and Language Processing
(MultiLing 2006), Stellenbosch, South Africa, April 2006.

[7] B. Pfister. Richtlinien für das Verfassen des Berichtes zu einer Semester- oder Di-
plomarbeit. Institut TIK, ETH Zürich, März 2004.
(http://www.tik.ee.ethz.ch/˜spr/SADA/richtlinien_bericht.pdf).

2

[8] B. Pfister. Hinweise für die Präsentation der Semester- oder Diplomarbeit. Institut
TIK, ETH Zürich, März 2004.
(http://www.tik.ee.ethz.ch/˜spr/SADA/hinweise_praesentation.pdf).

Zürich, den 18. April 2007

3

