ETH Distributed

Eidgenossische Technische Hochschule Ziirich Computing Gro

Swiss Federal Institute of Technology Zurich

Semester Thesis

Aggressive TCP

Serkan Bozyigit
bserkan@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Advisors: Thomas Locher, Stefan Schmid

Department of Computer Science
Swiss Federal Institute of Technology (ETH) Zurich
August 20, 2007

Contents

1 Introduction

2 TCP Examined
2.1 Slow Recovery

2.2 Second Working Point
3 The Protocol

3.1 From regular TCP to a self-made TCP

3.2 Description

3.3 Packets e

3.4 TImplementation

3.4.1 Sender

3.4.2 Receiver

4 Evaluation

4.1 TCP’s Slow Recovery
4.2 Difficulties with Wireless

5 Future Work

6 Remarks and Conclusions
6.1 Implementing a Transfer Protocol
6.2 Conclusion on Semester Thesis

7 References and Related Work

7.1 References . .
7.2 Related Work

Bibliography
List of Figures

Appendix: Formats

15
15
17

20

21
21
22

23
23
23

23

25

26

Chapter 1

Introduction

The goal of this thesis was to study a transport protocol in order to make the BitTorrent
client “BitThief” presented in [4] more selfish. In particular we wanted to find out if it is
possible for two collaborating BitThief clients to exchange data in a faster manner than
with a regular TCP connection.

First of all, TCP was examined to identify some weaknesses on which could be worked on.
One of them was found to be the “slow recovery” occuring during the process of a multiple
file download. Having started an n-files download at some point one file will eventually
be finished, but contrary to intuition the remaining n — 1 files will not immediately be
assigned the released bandwidth, they will rather get it with a delay of a few RTTs which,
depending on the connection quality, might be quite large.

When looking at the maximization of throughput TCP’s congestion control mechanism
and the acknowledgements needed for its proper function might be regarded as another
“weakness”. Data “overhead” is probably the better word for the second weakness and
consequently, with our goal in mind, it should be reduced as much as possible.

Second, a protocol had to be conceived which was more aggressive in the way that
it did not respect any congestion in the network and implicitly did not show the above
mentioned weaknesses. Both weaknesses are tackled by the fact that UDP is used as an
underlying transport protocol for the conceived protocol named “sTCP”. UDP’s missing
congestion avoidance mechanism could enable sTCP to achieve a higher throughput in
the ideal case or in the worst overwhelm the forwarding and/or receiving nodes with the
transmitted volume.

Chapter 2

TCP Examined

2.1 Slow Recovery

While surfing the Internet the user is downloading many different files, be it consciously
or unconsciously. To simplify things a bit, let us have a look at the case where the user
starts to download two sufficiently large files at the same time by clicking on according
links in his browser. We are considering this scenario, because downloads from a web
server are usually done using TCP!. “Sufficiently large” means TCP has a chance to find
its maximum of throughput, this of course depends on the connection bandwidth, RTT?2,
etc. and, of course, there is no other process downloading in the background. The con-
nections of both files are now sharing more or less the same amount of bandwidth, i.e.
half of the full bandwidth. At some point one of the files’ download terminates. What
one would expect is that the second file’s download, that is still going on, gets the full
bandwidth. If you take a look at the throughput display of your browser you see that
this is not the case and TCP just speeds up very slowly. Let us call this behavior “TCP’s
slow recovery”. As an example, which is shown in Figure 2.1, two files were downloaded
from the same server and the throughput was captured with the DUMeter? utility. The
obvious performance drop was caused at the termination of a file’s download. Again,
instead of recovering rapidly the throughput stays at the same value for quite a while
until it reaches the maximum throughput again.

B

465,32 kBJfsec

| DL:336.1 kBfsec UL: 7.1 kBjsec |

Figure 2.1: TCP’s slow recovery

What is the difference between the start of a connection and the above mentioned inci-
dent? In both cases the throughput has to be driven to a maximum, but they do not
behave the same way.

TCP has a built-in mechanism called “slow start” and it has two distinct phases: the

ITransmission Control Protocol
2round-trip time
Shttp:/ /www.dumeter.com/

“exponential growth” and the “linear growth” phase. The growth refers to the TCP con-
gestion window, which increases exponentially until either an acknowledgement gets lost
or a predetermined threshold value is reached?*.

If aloss occurs TCP assumes that it happened due to congestion in the network and there-
fore reduces the load. Once one of these events appear, TCP enters the linear growth
phase where the congestion window increases linearly until an acknowledgement drops
again.

Hence in the start phase of a download TCP reaches its maximum in a few RTTs, but
once it has switched to the linear phase, it has its difficulties to elevate the throughput of
a possible “half-used” connection and that is why we observe the slow recovery.

How the parameters for the growth- and stepping-back-rate of the algorithm are set highly
depends on the variant of TCP that is used. Since there is no way for the algorithm to
distinguish losses due to congestion from losses caused by other sources, this behavior can
have enormous consequences for certain networks such as wireless networks. These are
(more) susceptible to random packet loss due to signal attenuation etc. and thus might
have huge performance reductions since each time a packet is lost the congestion window
is being reduced and consequently the performance suffers.

Some TCP variants were specially conceived for wireless networks, for example TCP West-
wood[5] or TCP Veno®. The latter tries to guess if the occured loss was due to a random
packet error or a congestion loss by considering a special threshold. Since this is beyond
the scope of this semester thesis, the interested reader might deepen his/her knowledge
in the corresponding literature.

2.2 Second Working Point

In order to come up with a protocol that has a higher throughput we will first have a look
at a characteristic of TCP.

The Slow Recovery discussed in the previous section only appears due to the built-in
congestion control and congestion avoidance mechansim of TCP. An Internet without
this mechanism would not work properly and we would not have any reliable and stable
network. In such a case, no protocol intrinsic property would prevent the sender from
overwhelming the receiver and/or the nodes in between. This issue is tackled by the
sender by constantly evaluating the acknowledgements returned by the receiver. The
evaluation results in an estimation of the congestion in the network and helps the sender
to accordingly adjust his sending speed. Obviously these acknowledgements are crucial
to the mechanism and have extra to be added to the raw data that has to be sent. From
a throughput point of view an overhead has been introduced with this mechanism, which
also means that we have found a “point of attack”.

The protocol presented in Chapter 3 will try to avoid this overhead as much as possible
by using UDP and a little bit of optimism®, but of course some kind of overhead has to
be present, since we want to be sure to receive the file without any missing segments.

4http://en.wikipedia.org/wiki/Slow-start

Shttp://linuxgazette.net /135 /pfeiffer.html

6We hope that the file will be transmitted on the first attempt and any possible reparations will be
undertaken after this attempt, contrary to regular TCP

Chapter 3

The Protocol

3.1 From regular TCP to a self-made TCP

TCP is widely used in the Internet and among others also for data transfer in the BitTor-
rent network. Every single peer of that network uses a client and each client on its part
uses TCP to send data packets to many other users.

To repair TCP’s slow recovery we can not simply build an additional layer on it that
manipulates the data, because the issue is inherent to TCP’s algorithms and we would
not get rid of the flaw by doing so. One possible way to tackle the issue would consist
of changing TCP itself. An obstacle that would lie in front of us is the fact that TCP is
implemented in the operating system. Besides the difficulties of understanding and editing
corresponding code in certain operating systems or even installing a client that changes
OS code, there is a great chance that the alteration of TCP might incur unforeseeable
side-effects, which would affect other applications. Of course before deploying such a
protocol on a broad audience one would need to perform a thorough analysis. Another
approach will be presented in this thesis because the previous approach would presumably
imply an effort which would go beyond the scope of this semester thesis.

Following the initial goal, to make BitThief more selfish in some way, and given the

hurdles above, a protocol was to be made that is situated between the transport layer
(without using TCP) and the application, i.e. BitThief. Since the remainder of this thesis
is about a self-made TCP-like protocol it is therefore referred to as “sTCP”.
A good protocol candidate to build upon is UDP!. It does not have any of TCP’s nice
features like reliability or ordering of data segments. But what it does is, it serves as a
underlying transporter of data. Consequently a custom-made protocol can be packed into
UDP packets with the properties the user wishes to have. This way reliability and as well
as control of order of the sent and received data can be guaranteed. The main reason why
a custom-made protocol was needed at all was TCP’s slow recovery. It only occurs because
TCP resides in the linear growth phase and cannot find the maximum in a fast manner.
sTCP addresses this issue by ignoring any possible congestion (there is no congestion
window or the like), meaning the sender of a file will transmit as fast as it can, possibly
overwhelming the receiver or the nodes in between or conversely, the transmission might
even be faster in an optimal situation compared to a TCP transmission. The ignoring
of congestion allows us to transmit with full bandwidth while in the same position the
TCP connection would still try to recover. Hence resulting in a more aggressive TCP-like
protocol.

1User Datagram Protocol

3.2 Description

There are at least two parties involved in a peer-to-peer network: a sender and a receiver.
sTCP assumes that the application which is using the protocol provides the file(s) and
the IP address to which these have to be sent.

First, both the sender and the receiver are in the first phase out of two: the initialization.
The receiver is completely unaware of what and how much it is receiving, so the sender’s
first step is to extract this information and put it into an initialization packet. The re-
ceiver, on the other hand, is listening on a well known port for this packet to arrive and
as soon as there is a proper initalization packet coming in, it forks a seperate thread that
will read the following transmitted data. The forking of a thread enables the receiver to
listen concurrently for further file transfers while it is already receiving the previous file.
If the receiver was able to understand the initalization message it sends back an initial-
ization acknowledgement so that both can enter the second phase of the protocol.

As soon as the sender gets the initalization acknowledgement it begins to transmit the
file. The UDP packets in transit consist, among other things, of a payload that is entirely
filled with sTCP’s data?. The sending part of the protocol is very optimistic and assumes
that all packets it sends will be received in one flow and that is also why it is “rushing”
through the file. “Rushing”, because there are no acknowledgement messages it has to
wait for. Arrived at the end of the file it sends a “through with the file packet” which tells
the receiver the sender has gone through the file and is finished with sending for now.

If the receiver got all packets in order in one flow, we are almost finished now with the
whole procedure, but that is rarely the case since we are using unreliable UDP. Each data
packet, besides the data itself, consists of a packet identifying byte and start position byte
number which determine the payload’s position in the file. The actual length of the raw
data can be calculated by looking at the UDP packet size and subtracting preceding bytes.
With this information the receiver can store the data and keep track of which data chunks
are missing. Once it receives the sender’s “through with the file packet” it assembles the
positions of the missing bytes in a list and transfers this list to the sender, who is either
waiting for this list or a “final acknowledgement packet” to arrive. If the sender receives
the list the whole procedure of the second phase starts all over again except that the
sender processes the data chunks from the list instead of the whole file.

Once the receiver got all bits and bytes it finally transmits the “final acknowledgement
packet”. The protocol’s sequence diagram is shown in Figure 3.1.

Why is this list-based “repair strategy” used? In an earlier version of the protocol there
was a third phase, where the reparation took place. The receiver still had his missing-
bytes-list but it used to request each missing data chunk individually. A coarse overview of
the steps that had to be gone through would be: sending one request by the file receiver,
reading one request by the file sender, reading the corresponding data from harddrive or
main memory, sending back of the requested data, and rechecking of data by the receiver.
Because these steps depend on each other they cannot be done concurrently. The little
delays introduced by each step finally add up and deposit themselves in a bad overall
throughput in this phase.

Therefore the more sophisticated way of repairing the missing parts was to request the
data in a more compact form by gathering the missing-parts information and sending
them all at once. Like this, the protocol was reduced from three to two phases, it got
simplified and code had been reused.

2UDP has a length field in its header which specifies the theoretical size of the whole Datagram. Tt is
given by a 16-bit number which amounts to 216 — 1 = 65535 Bytes, inculding the header with 8 Bytes.
The IP packet has a maximum of 65535 Bytes as well from which we also have to substract its header of
20 Bytes, finally giving us an effective payload size of 65535 — 8 — 20 = 65507 Bytes.

Schematic sequence diagram

sender Listener
T InitFackn
AckinitPack)
- receiver
==create==
B u ReceiverThread) |
ataPac
I = s |
: T U I
| | Many DataPacks | |
| I : I
| | DataPack(-, |
| T |
: ThraughWithFilePackd |
P

I
: a RepairListPackp NS |
AR | | I I
I ' I
. FinAckPack) et e | |
| | I
I

Figure 3.1: Protocol’s Sequence Diagram

3.3 Packets

The following section is dedicated to the cornerstones of every protocol: the packets. See
the Appendix on Page 26 for the exact format of each packet.

Additionally to the described fields in each packet below there is always one byte that
identifies the packet as such in order to distinguish packets from one another.

Ping Packet (PingPacket):

There are seven different kinds of packets introduced in this protocol. In Figure 3.1 you
can only see six of them in action, the missing one is the “Ping Packet”. This packet is
used at regular intervals throughout the second phase of sTCP and is needed to estimate
the RTT between the peers which in turn is needed to compute the timeouts. The Ping
Packet is sent every second® by the receiver and as soon as the sender receives the ping it
responds with a “pong”. If several ping messages stay unanswered the file receiver assumes
that the file sender timed out and it will not get any further data packets, therefore it
cancels the unfinished file transfer. On the sender’s side there is only a “static” timeout
used, if the receiver does not respond within a specific amout of time (15 seconds) after
the last data packet’s transmission it also assumes a timeout on the receivers part and
terminates the file transfer.

In general it was rather difficult to find a good metric for the estimation of the RTT
and hence calculating the timeouts out of it. If we used the RTT directly from the
measurement we would get a very fluctuant estimation of the timeout. Since the Internet

3There is no specific reason why exactly one second has been chosen

and its connections are very dynamic the receiver would detect an ill-founded timeout in
case of a small RTT followed by a relatively large one. But the following formula that I
rediscovered in the “Vernetzte Systeme” lecture’s slides seemed to be pretty reasonable:

EstimatedRTT = (1 —) - EstimatedRTT + o - SampleRTT (3.1)

With this equation, where a is 0.125 and Sample RTT is the latest RTT measurement, an
exponential weighted moving average is achieved and we end up with a “smoother” RTT
estimation.
For the timeouts a similar formula was used which was as well taken from the above
mentioned slides:

Timeout = EstimatedRTT + 4 - Deviation (3.2)

Deviation = (1 —) - Deviation + 3 - |SampleRTT — EstimatedRTT|

This formula, with 3 being 0.125, also makes sure that if we have large variations in
the EstimatedRTT we also get a larger safety margin, because we do not want the file
transfer to be aborted too early.

In an earlier version of sTCP both peers used to play a continuous “ping-pong”. As soon
as one of them received a ping packet it immediately returned a pong and vice versa.
Turns out this high frequency of RTT estimation is way too often and consumes too much
of the cpu time resulting in a very bad throughput.

Initialization Packet (InitPacket):
The receiver does not know much about the file it is going to receive, so the sender uses
this packet in the beginning of a file transfer to inform the receiver about file name and size.

Initialization Acknowledgement Packet (AckInitPacket):
As soon as the receiver got the initialization packet it has to tell the sender by sending
an initialization acknowledgement that it is ready to receive the file.

Data Packet (DataPacket):
This is the packet that is used the most. After the initialization the sender splits the file
into many segments and sends them in such packets to the receiver. Besides the raw data
there is also the starting position within the original file included.

Through With File Packet (ThroughWithFilePacket):
After many Data Packets the sender is finally finished with his job so far, and tells this
the receiver by sending him a ThroughWithFilePacket. If the receiver does not respond
with a FinAckPacket within 15 seconds it assumes his counterpart has timed out or has
successfully received all parts, but the FinAckPacket got lost in transit. Either way the
sender is finished with his job. It is not finished if a RepairListPacket arrives.

Repair List Packet (RepairListPacket):
This packet is used if the receiver did not get the entire file and suddenly receives a
ThroughWithFilePacket from the sender. Then it assembles the information of all his
missing parts into this packet and sends it to the sender and waits for them to be retrans-
mitted.

Final Acknowledgement Packet (FinAckPacket):
In case the receiver got all segments of the file it finally sends a FinAckPacket to the
sender stating that it is finished now.
The simple hierarchy of all packets can be seen in Figure 3.2. Again, see the Appendix
on page 26 for the exact format of the packets.

10

Packet

+ todatagramPackef] | DatagramPackot

AN

I I I
AckInitPacket RepairListPacket FinAckPacket

InitPacket DataPacket Through\WithFilePacket PingPacket

Figure 3.2: Class diagram of the involved packets

3.4 Implementation

There are basically three categories of classes: One category consists of classes belonging
to the sender, one category belonging to the receiver and the third one are several auxiliary
classes which do not have a side-specific purpose and may be used by both participants.
Some of them are used as “surrounding” classes which for example instantiate the sender’s
or receiver’s main classes or manage their connections, others are rather utilities which
visualize the throughput and the like. The most important classes and their methods are
presented in the following subsections.

3.4.1 Sender

In Figure 3.3 you can see the sender’s class diagram and at the top of the figure its most
basic class: the DataPacketFactory. As the name suggests, here are the packets are
created and sent, but of course it is a bit more intricate than that. First, sendInit ()
has to be invoked to provide the receiver with the necessary file information. After the
receiver acknowledged the initialization, sendFile() is invoked. Because we want to be
able to send and receive data at the same time two threads are forked in this method, one
— simply called DataSender — sends out the demanded data, while the other one takes
care of the “control messages” which come in from the file receiver.

The corresponding ControlPacketReceiver class handles these control messages by lis-
tening with a blocking receive(...) method to Ping-, FinAck- or RepairListPackets in
a while(true)-loop. A responding “pong” (actually still a PingPacket) will be returned
in case of a PingPacket coming in. If a FinAckPacket arrives the loop is exited and a flag
in the data sending object is set accordingly by invoking setFinAckReceived() on the
sender, finally enabling threads of both to terminate. Also on arrival of the third packet
a flag is set in the concurrently running sender thread and the repair list is passed on.
Prior to starting the blocking receive(...) method the used DatagramSocket socket’s
timeout was set to 15 seconds, which is a constant defined in an auxiliary class called
SomeUtilities. By the way, this class contains various global constants and commonly
used converter methods.

On the other hand, the DataSender is busy with sending DataPackets. It also con-
sists of a while-loop which will break as soon as a final acknowledgement comes in. The
corresponding flag, as mentioned before, can be set by the concurrently running Control-
PacketReceiver object who has a reference to the DataSender. The readListAndResend ()
method can as well be invoked by that receiver to set a boolean flag in case of an incoming
ReadListPacket. This flag causes the DataSender to fork another thread that runs an in-
stance of ListReaderAndSender which simply fills the PacketQueue with the receiver’s
missing file segments. The DataSender also utilizes an instance of the class Packetizer

11

which takes care of the file’s readout and conversion of it into DataPackets.

The Packetizer creates DataPackets by invoking addToQueue(. . .) which actually does
the readout of the file (with the help of some auxiliary classes like FileReader) and adds
them to a PacketQueue. Its hasPacket () method is convenient for callers and enables
them to check for any waiting packets in the PacketQueue. If there is at least one packet,
getPacketToSend () can be invoked which causes the PacketQueue length to be reduced
by one and the according packet is handed over to the caller.

That PacketQueue is accessed by two threads, namely DataSender and ListReaderAnd-
Sender. Thus it has the special property that it is thread-safely accessible, meaning
tail-insertion and head-retrieval are possible. Besides DataPackets this queue can also
contain ThroughWithFilePackets, since it is able to insert any subclass of Packet.

DataPacketFactory

+ sendInitd : void
+ sendFiled :woid

¥ (¥
DataSender ControlPacketReceiver

+ runf) ;woid + rung ;woid
+readlistandResend{list : bytef) : void
+ setFinAckReceivedival . boolean) ;woid

J :

Packetizer ListReader AndSender
+ getPacketToSend? : Packet + FUNG - waid
+ hasFacket() : boolean
+ addTolueuestart fint, end [int) it ConcurrentLinkedQueue<Packet>
l I le
PacketQueue

+ containsinterval(start : int, end ; inf) : boolean

Figure 3.3: Most important classes and methods used by the sender

3.4.2 Receiver

The receiver’s class diagram shown in Figure 3.4 is a little bit simpler. The UDPServer-
Socket class is in some way the counterpart of the initialization message. The idea how
to use this class would be to have a while(listening)-loop in which an instance of
UDPServerSocket is called with its accept () method. In this method there is the Data-
gramSocket’s blocking receive(. ..) method used that waits until a user connects to the
known port 11111. When a user connects to this socket, the initialization is handled in
accept () with the helper method receiveInit(), and it is finished by sending back an
initialization acknowledgement. After the initialization acknowledgement went out the
method returns a DataAssembler-instance which operates on a different port and is going

12

to receive the following DataPackets.

The DataAssembler has one important public method: receive(). Besides timeout
handling with the help of an Estimator, there is a switch statement which distinguishes
the following packet types: DataPacket, PingPacket and ThroughWithFilePacket.

The handleDataPacket (...) method is called when a DataPacket is received. The re-
ceived packets are redirected to a MergingLinkedList which manages the received and
missing file segments.

Each second a PingPacket is sent out by sendPingPacket () and eventually there will be
a PingPacket that returns, upon the arrival the ping will be registered in the Estimator.
An arriving ThroughWithFilePacket has the effect that sendRepairList () will be invoked
which on its part requests the MerginLinkedList for missing packets and consequently, if
there are any, they will be transmitted to the file sender.

And finally sendFinAck() is invoked if the MergingLinkedList reports that all segements
are received.

The MeringLinkedList appeared quite a lot of times until now because it is an in-
tegral part of the receiver’s classes. It is a special linked list that can incoporate Interval
objects by using addSorted(Interval). These Intervals can have three states: miss-
ing, received or requested, which are used to keep the overview over the file’s segments.
According to state and position in the linked list, the intervals can be merged by using
mergeListEntries () to melt consecutive intervals into one interval. The missing-interval-
list can be requested by invoking getMissingIntervals() like it is done by DataAssem-
bler’s sendRepairList () method. isCompletelyReceived() returns true as soon as the
list contains only one element with the size of the transmitted file and is in the state
“received”.

The Estimator class was already partly described in Chapter 3.3 within the PingPacket
description. Its method log(...) can take two kind of arguments. If a ping comes in, the
RTT and timeout are calculated and updated according to Formula 3.1 and 3.2, the latter
can be retrieved by calling getTimeoutValue (). Otherwise, if data arrives, the size of the
received data can be passed to log(...) to keep track of the throughput. The current
download speed can always be retrieved by using getCurrentSpeed() which returns the
moving average over the last ten inserted values. A moving average is used in order to
even out sharp peaks and drops.

Favorably at the end of the transmission one can call printDiagram() to see a visualiza-
tion of the throughput over the elapsed time.

13

DataAssembler UDPServerSocket

+ receive) Dwoid + gccept] Datasssembler

- sendRepairList) ; void - receivalnitd) | Datafssembler
- sendFinAckd | waid

- sendRingPacketd :waid

- handleDataPacket : woid

o :

Estimator MergingLinkedList
+ logipackefType [int, data © int) - woid + mergelistEntriesd :waid
+ getTimeoutvalued : int + getMizsinglntervals . RepairListFacket
+getCurrentSpeedd [int +izCompletelyReceived() ;. boolean
+ printDiagram ; void + addSorted(pard : Interval) : boolean

Figure 3.4: Most important classes and methods used by the receiver

14

Chapter 4

Evaluation

4.1 TCP’s Slow Recovery

In order to compare a TCP transmission and a transmission with sTCP, similar experi-
ments have to be performed, i.e. the same file(s) have to be transmitted over the same
physical connection for both protocols.

After having implemented sTCP, an implementation for TCP had to be composed.

To see if the implementation is correct I first tried to send only one file. There should
not be any problem due to TCP’s slow recovery since we only have one file in one thread
using one socket connection. If you compare the plots in Figures 4.1 and 4.2 which were
captured in a wireless LAN, you can see that TCP has a lower throughput and thus must
have overhead compared to our protocol. In these figures the TCP connection had an
average speed of 596 kBytes/s as opposed to sTCP’s 711 kBytes/s. The more or less 16%
lower throughput is probably due to TCP’s acknowledgements which implicitly cause a
contention between data packets and themselves in the medium (air). Both packets have
to compete for the medium because only one of them can be in the air at a given time,
otherwise boht their signals will distort each other and will be unreadable by the receiver.
It must also be mentioned that we were lucky in Figure 4.2 since there was no packet loss
which had to be repaired.
The Figure 4.3 shows an example where some packet losses happened right at the begin-
ning of the transmission. These consecutive losses are rather special and are discussed in
Chapter 4.2 on page 17. The second drop at almost the end of the transmission is due to
the sending of the RepairListPacket(s) which contain the missing segments from the drop
in the beginning.

Before we extend the current implementation to more than one connections let us sum-
marize what possiblities we have to do so:

e The most straightforward way to send multiple files is to have a TCP socket for
each file and each socket gets its own thread for the transmission.

e The second way to send multiple files is almost the same as before, but instead
of having n threads for n files, we just use one thread for n files combined with
Time Division Multiplexing. This means after each send(data_segment) method’s
execution it is another socket’s turn until all files are transmitted.

e The third way of sending multiple files is rather intricate. The idea consists of
only using one socket and one thread for all files, but then the data segments from
different files have to be made distinguishable on the application layer. But this
method does not work if you try to send files to more than one user, because we
only have one socket which cannot have multiple destination addresses.

15

B speed Measurement for Speed Measurement for all files - ol x|
Speed Measurement
T L —— e
800 s —
560
500
480
5 40
[=]
=
= 350
5
=
=
= 300
2
=
= 250
200
160
100
50
o
] 2500 5000 7500 10000 12500 15000 17,500 20000 22,500 25000 27500 30,000 32,500
Transmission duration [Milisgconds]
— Throughput
Figure 4.1: One file transmission using TCP
ESpeed Measurement for Speed Measurement for all files =101 x|
Speed Measurement
800
750 ==
. e — e - . — —
700
50
00
550
7 %0
(i)
= 280
=
£ amo
)
5
2 350
=
=
300
250
200
150
100
50
o
o 2,500 5000 7.500 10,000 12,500 15,000 17.500 20,000 22,500 25,000 2750
Transmission duration 1ds]
— Throughput

Figure 4.2: One file transmission using sTCP

The abstraction of the first approach to use a thread for each transmission is very appeal-
ing and thus the decision which one of these possibilities to take was made pretty fast.
In Figure 4.4, you can see the graph of two files whose transmission started at the same
time but where one of these is smaller in size than the other. At about 18 seconds the first
file was finished transmitting, but there is no noticeable change of performance. In fact
that is not only the case in this picture, but also there was not one single measurement
where I was able to detect TCP’s slow recovery!

What went wrong? Since it also turned out that my decision to take the first approach
was rather thriftless with resources, because I did not know how many simultaneous
threads one can use at a time (around 13 threads/connections/files), I decided to change
the implementation to the second approach, on the one hand to rule out the probability
of some kind of “mis-implementation” and on the other hand to make the whole program
a bit more efficient. “Mis-implementation” is between quotation marks because the files
the sender transmits to the receiver arrive like they ought to, we just do not experience
the slow recovery.

16

Speed Measurement for Speed Measurement For all files =]

Speed Measurement

Throughput [kBis]
&
g

100 |\ | |

[} 5000 10,000 15.000 20,000 25,000 30,000 35,000 40,000 45,000
Transmission duration [Miliseconds]

— Throughput

Figure 4.3: Transmitting two files using sTCP

Having changed the code to the second approach, I made remeasurements only to find
the same result again.

A reason we do not see any slow recovery-like thing might be the low RTT. The measure-
ments were all done in a wired or wireless LAN and might not quite be compareable with
downloads from the Internet. TCP’s linear growth rate is based on some RTTs and is
updated accordingly. This means if we have a RTT of a few milliseconds the performance
will also be “updated” within some milliseconds and thus will not be visible in the graphs
which are only visualized every second. If we made the update intervals narrower down
to 100ms like in Figure 4.5 you cannot see anything conspicuous. This tells us that either:

e TCP’s slow recovery does not occur at all
e or it occurs but the variance in the graph is too high so that we do not notice it
e or the update intervall is still too broad.

In Figure 4.6 you can see a measurement with an update interval of 10ms which obviously
makes the graph unreadable and useless.

4.2 Difficulties with Wireless

After some experiments in a wired LAN, I observed an interesting behavior of sTCP in
the wireless LAN which did not happen when TCP was used for file transfers. In the
already mentioned Figure 4.3 you can see a quite long drop in the beginning. With no
obvious reason the transmission resumes again after about 7 seconds. Because the two
laptops which were used to measure the transmission stood right next to each other, we
can exclude the unavailability of the link due to long distance. Additionally the receiving
laptop has a LED installed which is blinking if it receives any data. This LED was blink-
ing the whole duration in which the sender was transmitting, including the part where
allegedly there was not any throughput.

With some debugging effort it was possible to localize the piece of code where the execution
got stuck. In fact it was the datagram receive () method of Java’s UDP implementation
which was waiting for packets. Since this bug did not appear in the wired LAN there
must be something wrong below the transport layer.

17

With these observations I conclude to a possible explanation: It might be that the 802.11b
link layer protocol has its difficulties with the full-packed UDP packets that are used in
sTCP and this leads to some kind of congestion or packet unreadability. It would have
been interesting to find out why the reception was detained, since I can rule out the pos-
sibility of a mis-implementation.

18

850

B speed Measurement for Speed Measurement for all files

Speed Measurement

o]

800

860

s00

450

400

Throughput [kB/s]

,_,.N-W/\/\,M———\f\m\/_ﬂ,.rk_,_,_

o
[:}

2500 5000 7.500 10,000 12500 15000 17,500 20,000 22500 25000 27,500 30,000 32500 35000 37.500 40000 42500

Transmission duration [Miliseconds]

— Throughput

Figure 4.4: Two files transmission using TCP

Speed Measurement for Speed Measurement for all files

Speed Measurement

=l

700

&50

&

550

500

450

400

Throughput [kB/s]

| lj ‘
‘,'\«h‘ul{’\l J'\ h“,” U‘mw wm“hﬁ\,/ MMA it

I

All H\

w" W A A “uhw
i

&”“'”'V"'”U“'Ww) ﬁv

5,000 10,000 15,000 20,000

Transmission duration [Miliseconds]

— Throughput

26,000 30,000 35,000 40,000

45,000

Figure 4.5: Two files transmitting with an update intervall of 100ms

Speed Measurement

Il

1,300

1,200

1,100

1,000

800

Throughput [kB/s]

500

400

300

5,000 10,000 15,000 20,000 25,000 30,000

Transmission duration [Miliseconds]

— Throughput

35,000 40,000

45,000

Figure 4.6: Two files transmitting with an update intervall of 10ms

19

Chapter 5

Future Work

This thesis might be used as a basis for further work. Here is some food for thoughts:

e It would be interesting to find out why the “wireless bug” described in Chapter 4.2
even occurs. Is the link layer really congested or is there another reason?
Before using this protocol any further it is important to correct this bug since
wireless access to the Internet becomes more and more important.

e In order not to be too aggressive, one could use some sort of mechanism that controls
the size of the UDP packets. But it is questionable if one should even tackle this
sort, of problem, since this approach would head towards TCP and its congestion
avoidance mechanism, which we tried to avoid on purpose.

e Due to lack of time I was not able to test sSTCP over connections with high(er)
delay. Before building the protocol into BitThief it would be a good idea to make
some measurements and compare the results to a TCP measurement and see if it is
worth to use this protocol instead of TCP.

e Some possible work for a more selfish BitThief: Instead of using sTCP, one could
try to extend BitThief with the ideas of the paper TCP Congestion Control with
Misbehaving Receiver|8]. In this paper three little, independent changes to the TCP
protocol on receiver’s side are presented to defeat the congestion control mechanism.
It would be in particular interesting, because one “only” needs to alter the receiver’s
side and thus is also able to use it with peers that do not need the altered version
of TCP, contrary to the protocol introduced in this thesis.

The paper is from ’99 so before trying to implement anything one should check if
the TCP versions of newer operating systems prevent this kind of spoofing.

20

Chapter 6

Remarks and Conclusions

6.1 Implementing a Transfer Protocol

“We will just make a protocol that has such-and-such properties and then ...”, as simple as
it sounds, I quickly observed difficulties as I elaborated on the matter. Under discussion
with some fellow students I realized that they were not aware of how intricate design-
ing a protocol was. The development of a protocol is not trivial, and I think it is a good
idea to show some example questions that arose and point out a few obstacles I ran across.

First of all, I was confused about the layered model, sure I knew the idea and heard
about it in lectures and as well programmed a little chat-client, but I was not really aware
of it until I truly had to think about, for example, packet delivery on the transport layer.
How do I distinguish a UDP packet from another one? Where does a packet start and
where is the ending in a data stream? Do I even have to care about it on my layer?

One category of difficulties I encountered were the various kinds of “variables” that had
to be considered and determined. What role does the packet size play? What about the
buffer size? And how much of the file can/should be read into the main memory at a
time? What about errors and timeouts? Should they be fixed or depend on RTT?

Another category was the clash of efficient-programming and object-oriented concepts
respecting-programming. Since we are computer scientists it is not a bad idea to stick to
the object-oriented concepts, but in favor of efficiency I sometimes decided against the
concepts.

For example: To prevent leaking or capturing (Aliasing)! of arrays one should make a
copy of the array under certain circumstances and not pass the reference of the object.
Copying the object would at least double the memory usage and include more work for the
garbage collector. Nowadays files up to many hundreds of megabytes are quite common,
so it is an important efficiency question.

Or what about getters and setters? Should I use getter and setter methods for object
fields or should I rather access the fields directly and save some computation time?

These and many similar questions arose and were often a reason I spent quite a lot
of time “googling” the answers, not always successfully though.

Thttp://sct.inf.ethz.ch/teaching/ws2006 /KOOP /date06/lecture 06 - _aliasing.pdf

21

6.2 Conclusion on Semester Thesis

The objective of this thesis, to create an aggressive TCP-like protocol, has been achieved.
Files can be sent and received successfully between two peers that both run sTCP. Files
are sent in a way such that congestion control mechanisms are not used and congestion is
totally ignored, which one might call “aggressive”. To decide whether sTCP is usable for
BitThief a more thorough analysis should be performed.

It was interesting and challenging to conceive my own protocol with all its odds and ends,
and during the thesis it turned out that developing a protocol takes more time than one
would anticipate.

Besides a more detailed comprehension of the upper part of the layered network model,
I also got a better understanding of the Java Technology which was very useful for other
lectures as well as instructive for myself.

22

Chapter 7

References and Related Work

7.1 References

TCP — http://en.wikipedia.org/wiki/Transmission _Control _Protocol

UDP - http://en.wikipedia.org/wiki/User _Datagram_Protocol

BitThief — http://dcg.ethz.ch/projects/bitthief/

“Vernetzte Systeme” lecture slides —
http://dcg.ethz.ch/lectures/ss07/vs/material /chapter3/chapter3_ 1.pdf

JFreeChart — http://www.jfree.org/jfreechart/

7.2 Related Work

In order to get a general overview of computer networks, network layers and protocols,
in particular TCP, the reader is referred to [3], [11] and [12]. A very thorough summary
of TCP, especially about the differences between the various TCP versions and their
implications is given in [7]. Another analysis of TCP’s evolution over the years is done in
[6]-

A different approach on aggressiveness (using TCP, though) compared to this thesis by
altering the ACK sending is examined in [8], as already mentioned before. The TCP
ACK problem, whether to use cumulative ACKs and risk a false congestion detection or
acknowledgement of every packet, has received attention in [2].

Wireless links are more susceptible to random packet loss and thus impact the performance
of TCP. Concerned with their improvement, alterations were proposed at different layers
for example at the transport layer [5] and at the network layer [1].

This thesis evolved through the idea to extend the BitTorrent client presented in [4]. [10]
is a paper concentrating on faithfulness in BitTorrent networks. By analyzing existing
algorithms, they help building provably faithful Internet protocols.

23

Bibliography

2]

3]

4]

[5]

16]

7]
18]

[9]

[10]

[11]

[12]

Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. Improving
tcp/ip performance over wireless networks. In MobiCom ’95: Proceedings of the 1st
annual international conference on Mobile computing and networking, pages 2—-11,
New York, NY, USA, 1995. ACM Press.

Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement
and other stories about e/(e-1). In STOC “01: Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages 502-509, New York, NY, USA, 2001.
ACM Press.

James F. Kurose and Keith Ross. Computer Networking: A Top-Down Approach
Featuring the Internet. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free Riding
in BitTorrent is Cheap. In 5th Workshop on Hot Topics in Networks (HotNets),
Irvine, California, USA, November 2006.

Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren Wang.
Tcp westwood: Bandwidth estimation for enhanced transport over wireless links.
In MobiCom ’01: Proceedings of the Tth annual international conference on Mobile
computing and networking, pages 287-297, New York, NY, USA, 2001. ACM Press.

Alberto Medina, Mark Allman, and Sally Floyd. Measuring the evolution of transport
protocols in the internet, 2004.

Wael Noureddine and Fouad Tobagi. The transmission control protocol.

Stefan Savage, Neal Cardwell, David Wetherall, and Tom Anderson. TCP congestion
contorl with a misbehaving receiver. Computer Communication Review, 29(5), 1999.

Stefan Schmid and Roger Wattenhofer. A tcp with guaranteed performance in net-
works with dynamic congestion and random wireless losses. In WICON ’06: Pro-
ceedings of the 2nd annual international workshop on Wireless internet, page 9, New
York, NY, USA, 2006. ACM Press.

J. Shneidman, D. Parkes, and L. Massoulie. Faithfulness in internet algorithms. In
Proc. SIGCOMM Workshop on Practice and Theory of Incentives and Game Theory
in Networked Systems (PINS’04), Portland, OR, USA, September 2004.

W. Richard Stevens. TCP/IP illustrated (vol. 1): the protocols. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1993.

Andrew Tanenbaum. Computer Networks. Prentice Hall Professional Technical Ref-
erence, 2002.

24

List of Figures

2.1

3.1
3.2
3.3
34

4.1
4.2
4.3
4.4
4.5
4.6

TCP’s slow recovery o 5
Protocol’s Sequence Diagram, 9
Class diagram of the involved packets 11
Most important classes and methods used by the sender 12
Most important classes and methods used by the receiver 14
One file transmission using TCP 16
One file transmission using sTCP 16
Transmitting two files using sSTCP 17
Two files transmission using TCP 19
Two files transmitting with an update intervall of 100ms 19
Two files transmitting with an update intervall of 10ms 19

25

Appendix: Formats

Table 1: InitPacket’s format

26

Offset 0 8 16 272 336
Length 8 8 256 64 32
Content 1 0x0...0 blabla | 0x0...0 0x0...0
Description | packet kind | filename’s length | filename | filesize | return port
Table 2: AckInitPacket’s format
Offset 0 8
Length 8 32
Content 2 0x0...0
Description | packet kind | receiver’s port
Table 3: DataPacket’s format
Offset 0 8 40
Length 8 32 n
Content 3 0x0...0 | 0x0...0
Description | packet kind | segment start position data

Table 4: PingPacket’s format

Offset
Length

Content
Description

0
8
)
d

packet kin

Offset
Length

Content
Description

0
8
6
d

packet kin

Table 5: FinAckPacket’s format

Table 6: ThroughWithFilePacket’s format

Offset 0
Length 8
Content 7
Description | packet kind

Table 7: RepairListPacket’s format

Offset 0 8 40 72
Length 8 32 32 32
Content 8 0x0...0 0x0...0 0x0...0
Description | packet kind | # missing segments | start segmentl | end segmentl

27

