
Departement D-ITET Computer Engineering and Networks Laboratory (TIK)

Semester Thesis

Call Route Discovery
with Asterisk / DUNDi

André Wangler
awangler@ee.ethz.ch

September 5, 2007

Supervisor: Ulrich Fiedler

Prof. Dr. Bernhard Plattner

Institut für
Technische Informatik und

Kommunikationsnetze

Departement D-ITET Computer Engineering and Networks Laboratory (TIK)

Abstract

Starting point of the present work is a telephony system which is set up in a wireless mesh net-
work and consists of interconnected PBXs (Public Branch eXchange). The PBXs provide the
basic telephony services to the physical phones which are assigned to a specific PBX each and
not allowed to move to another one. Moreover we have users which are mobile and can affiliate
to arbitrary phones. After an affiliation to a phone the user is reachable at this phone under
his personal number. To provide the mapping of the users logical number to a physical device,
number and call route discovery is necessary. Already realized approaches using flooding does
not meet the defined requirements with respect to traffic generation and time consumption. So
a new event driven approach is introduced which is based on peer-to-peer trusted networks be-
tween the PBXs. For the implementation the open source PBX Asterisk as well as the number
discovery protocol DUNDi are used and extended in a way that the dynamic requirements of our
system can be fulfilled. The brought up procedure was tested on an emulated telephony network
and it pointed out to be an efficient and well working solution for a future telephony system.

Contents

1 Introduction 1

2 Implementation 6
2.1 Basic idea . 6

2.1.1 Affiliation . 6
2.1.2 Disaffiliation . 8
2.1.3 Call setup . 8

2.2 Node configuration . 9
2.2.1 Asterisk . 10
2.2.2 DUNDi . 11
2.2.3 IAX . 13
2.2.4 SIPp . 13

2.3 Tests . 13
2.3.1 Network setup . 13
2.3.2 Testing types . 15
2.3.3 Test execution . 15

3 Results 17
3.1 General Remarks . 17
3.2 Test network . 17
3.3 Test results . 17

3.3.1 Problem A: Static DUNDi weight . 18
3.3.2 Problem B: DUNDi protocol malfunction 18

3.4 Timing and time consumption . 19

4 Conclusion 21

A Configuration files 24
A.1 extensions.conf . 24
A.2 sip.conf . 25
A.3 dundi.conf . 25
A.4 iax.conf . 26
A.5 SIPp scenario of redirection server . 27

B Tests 29
B.1 Test sequences . 29

B.1.1 Function testing . 29
B.1.2 Failover and Recovery Testing . 31

B.2 Test protocols . 33
B.2.1 Functionality testing . 33

I

B.2.2 Failover and Recovery Testing . 36

II

List of Figures

1 Schematic network topology . 2
2 Registration of a physical phone . 7
3 Dynamic affiliation procedure . 7
4 Disaffiliation procedure . 8
5 Call setup with usage of a redirection server 9
6 Setup of a single node . 10
7 Affilation procedure . 12
8 Test network . 14
9 DUNDi problem case A . 18
10 DUNDi problem case B . 19

III

1 Introduction

In today’s world communication is omnipresent. Mainly telephony is available everywhere.
But one can think of situations where the present communication networks fail and backup
systems have to be provided quickly. One of the problems in a dynamically built telephony
system is the call routing within the changing topology of the telephony network.

The starting point of the current work is the scenario of a telephony system which is set up in
a wireless mesh network that is characterized by its flat hierarchy whereby every node is similar
and acts as host and as router.

In the assumed application there are three components which play an important role (see also
Figure 1):

• First there are the nodes of the mesh network which act as PBX (private branch exchange).
They are interconnected via a wireless interface and provide the necessary telephony func-
tions such as call establishment or call forwarding to their subscribers. This PBX nodes
are mobile which means that the topology of the network can change completely over
time. The core of each PBX is its dialplan wherein every supported phone is listed and
can be looked up by the local or a remote PBX.

• The second part of our system are the physical phones which are directly linked with the
PBXs. Every phone is assigned to a specific PBX and it is not allowed to move to an-
other one. The communication between the phones and the PBX can be managed through
different VoIP (Voice over IP) protocols such as SIP (Session Initialization Protocol) or
H.323.

• The last part is represented by the users. They are logical entities with an assigned number
and they are allowed to move within the network. A user gets connected to the telephony
system by affiliating itself or its number respectively to a physical phone. After an affilia-
tion the telephony system is able to retrieve which logical number is assigned to a physical
device and it will route future calls to the users number to this phone.

Let us have a look at an example of a possible scenario. One imaginable operational area is in
the field of disaster recovery whereby no public communication channels are available. So one
can erect antennas which are connected to boxes containing a PBX each. These are linked to
multiple phones. The system allows a user to affiliate its logical number through the dial of the
phone it wants to affiliate to. Then the user is reachable at this place up to the disaffiliation or up
to the affiliation to another phone. Referring to Figure 1 this looks at follows: user A arrives at
phone 11 which is connected to PBX node 1. User A affiliates itself to phone 11 which causes
that it is reachable by the other users (e.g. B or C). Later user A moves to phone 23 (with or

1

without disaffiliation from phone 11) and affiliates to the new phone. The system now routes all
calls to phone 23.

3André Wangler SA – Call Route Discovery

N 2

Node 1
Asterisk PBX

N

N

N

phone 11 user A

phone 13

phone 12

phone 14

user B

phone 21

user A’

phone 22

phone 23

N 3

phone 31user C

Figure 1: The network we deal with consists of three parts: First the main nodes which acts as
PBX and are organized as a wireless mesh network. The second part are the physical phones
which are connected to a PBX and are not allowed to move. The last part are the users which
affiliate to a specific physical phone. Users are mobile so they can affiliate to different phones
at different time.

To provide such a system one have to implement two network-side functions. The first one
is number discovery, which means that the system maps a called logical number to a physical
address or phone respectively. The second function is call route discovery, which performs the
routing of a call to a physical phone through the network. These basically different tasks will be
solved in the current work in a single step.

One can think of several algorithms to solve the call route discovery problem. One known
approach is based on flooding. This one is already implemented by the industry partner (AS-
COM Schweiz AG) and works as follows: The whole network is flooded to find a user. When
the searched phone with the specific number is found a message is sent back and the system
remembers the path to route the call. This is a low level approach and works without an IP like
addressing of the different PBX nodes. The disadvantage of this attempt is on one hand that

2

flooding produces a large traffic overhead in the network. On the other hand this is a connec-
tion oriented approach which is not sufficient when one wants to implement for example data
services in the same network.

To solve these problems and to improve the performance of the system, the goal of the current
work is to bring up an event driven approach providing call route discovery in an IP based
(packet switched) network wherein routing is done with OSPF. Since stability is one of the main
requirements a completely distributed number lookup attempt is chosen which works on the
basis of trusted partners which are organized in a peer-to-peer network. This allows us to do
number discovery in an efficient way.

Furthermore several user-side functions should be implemented. So a user should be able to
start the affiliation procedure by dialing a special code followed by his logical number. This
procedure should be executed in a convenient time and afterwards one should be able to find the
user from every phone in the network. Further a disaffiliation procedure should be implemented
after that no one is able to reach the user any more. It should also be possible that a user is mobile
without disaffiliating itself. This means at the affiliation the system should check whether the
user is already affiliated at another place. Basically we can state that affiliation and disaffiliation
have the goal to modify the PBX’ dialplan depending on the users behavior. In the further
paragraphs we will see where the problems of this simple attempt lie and how these will be
solved.

For the implementation of the system we use the existing open source PBX Asterisk (see
[1] and [2]) and its built in number discovery protocol DUNDi (Distributed Universal Number
Discovery, see [4]). DUNDi as well as Asterisk are open source projects and are freely available.
Furthermore the DUNDi protocol actually is independent of Asterisk but Asterisk is the only
PBX which implements DUNDi up to now.

DUNDi performs number discovery exactly in the way we require. Namely it supports a
completely distributed peer-to-peer event-driven approach to discover the location of a phone,
based on trusted partners. It sends requests to remote Asterisk instances which look up the
number in their dialplan. So DUNDi will deliver the address of the PBX to which the phone we
are looking for is connected to. This address yields the implicit path to the target phone, so we
have a convenient approach to solve the problem of call route discovery.

As already mentioned we use Asterisk to set up a PBX. Asterisk provides many telephony
features by default. It allows us to set up a communication between different partners inside
and outside the area of the local PBX, provides interfaces to telephony soft- and hardware and
implements multiple security and encryption features. It also allows us a wide range of personal
configuration possibilities: on the one hand in the programs source code and on the other hand

3

in the configuration files of Asterisk. From these configuration files at every reload of Asterisk
the dialplan containing all subscribers and forwarding rules is generated anew. According to
Asterisk all these subscribers are seen as physical phones with an assigned number, so it does
not support our concept of phone independent users by default.

Since we want to dynamically adjust the dialplan and since every reload can affect ongoing
calls and global variables, changing and reloading the dialplan can not fulfill our requirements.
So the objective of the present work is to bring up a procedure, how a dynamic affiliation and dis-
affiliation (creating and deleting dialplan entries) as well as call establishment based on Asterisk
could be done. Moreover we have to figure out how we can emulate mobile phone-independent
users based on Asterisks device-oriented view of the system. Further we will have to investigate
how DUNDi should be configured to gain the required performance.

In this work we will show an extension which uses a possibility Asterisk offers to SIP phones:
they can be added dynamically to the dialplan by sending a SIP REGISTER message. But since
we work with other protocols than just SIP, this alone will not help us. The fact that a SIP
entity can work as redirection server will lead us to the solution that we are starting a virtual SIP
phone for every affiliating user. Afterwards the virtual entity is responsible for forwarding every
incoming call to the assigned physical phone.

Besides the implementation, a further main objective of the work is to test the gained proce-
dure. Naturally it is too complex to build a real system. So we test our extensions in an emulated
system built by UML instances (User Mode Linux).

UML is running on Linux PCs and simulates a whole Linux environment. Every instance is
seen as a process by the host system so it is possible to start multiple UMLs. Furthermore one
is able to setup network interfaces on a UML therewith we are communicating over channels
simulated by link daemons. So we are able to emulate and test a whole telephony system of 17
PBXs, several phones and users on one PC.

To simulate the phones on the UML instances we use the call generator SIPp. It is able to send
user defined sequences of SIP messages to other phones or PBXs. It is also possible to realize
redirection servers with such SIPp scenarios. During the test the users which initiate affiliations,
disaffiliations and test calls will be emulated by shell scripts which start SIPp instances which
are responsible for this procedures.

The goal of these tests is to show the feasibility or the limitations of the chosen approach.
It should be investigated whether the requirements could be fulfilled by utilizing Asterisk and
DUNDi. Adjustments which should be done to Asterisk and DUNDi to work in a mature system
should be found and reported. Furthermore the implemented procedures should be tested on

4

their functionality and their stability against network and link failures. In the end we want to
have also a complete test environment that we can reuse for further tests.

The results will show us on one hand that we could have fulfilled the requirements of the aimed
telephony network. But on the other hand we will also see some inaccurate implementations
within the used open source projects which have led to unexpected results during the tests.

The rest of this thesis is structured as follows. Section 2 will explain the procedures of affili-
ation, disaffiliation and call setup in more detail. Furthermore, the adjustments which have been
made to Asterisk and DUNDi are stated and the test setup is introduced. In Section 3 we will
show the results and we will finish this thesis with the Conclusion in Section 4.

5

2 Implementation

2.1 Basic idea

As we have already seen that Asterisk is designed for static telephony setups whereby every
phone and its owner is known at the initialization time of the system. To fulfill the requirement
of a dynamic affiliation we profit from the way Asterisk handles SIP phones. The SIP protocol
as well as Asterisk allow us to register SIP phones dynamically in the dialplan by sending a
SIP REGISTER message to Asterisk (as stated in [3]). After the registration the number will be
added to a specified context.

Since there are phones with other protocols than SIP connected to our Asterisk instance, we
cannot directly make use of the dynamic SIP registration. So we implement a workaround by
starting a virtual SIP phone for every affiliating entity. The initialized SIP phone would first
register the logical number in the dialplan and will afterwards work as a redirection server for
incoming calls. So we have an entry in the dialplan which forwards the number to the virtual
SIP phone then the virtual destination knows the associated physical number and redirects the
call to the physical device.

For our intension to simulate and verify this concept we take SIPp described in [9], which is
a testing tool for the SIP protocol as well as for PBXs like Asterisk. There is the possibility to
write own XML configuration scripts, which allows us to give this virtual phone the required
behavior. Since SIPp can only be started either in server- or client mode we have to start SIPp
multiple times for each affiliation, whereby the last instance takes the role of the redirection
server and is running until the disaffiliation of the user.

The following sections show the basic ideas for the affiliation of the number ’abcd’ to the
physical device 1234. Because of simplicity, the physical device is represented as one instance,
other than in the test scripts where we also have multiple SIPp instances taking the role of this
phone.

For a final implementation of such a system, it would be a more proper solution to integrate the
virtual SIP phone directly into Asterisk via the programming interface functions or by extending
the source code of Asterisk itself.

2.1.1 Affiliation

Before we are able to start any affiliation during the tests, it is necessary to have a physical
device to which the affiliation is done. Therefore we first register a SIP phone - realized as SIPp
instance - as showed in Figure 2. This SIP phone stands for a physical phone communicating
with an arbitrary protocol. For the test we use a SIP phone thus we can introduce a physical

6

phone dynamically, as well as the future virtual phones. In the test sequences we have to perform
a physical phone which answers a call or a lookup respectively. So this ’physical’ phone has the
job to wait for calls, answer and finish them afterwards.

Figure 2: Before an Affiliation can be established, we register a SIP phone which stands for an
arbitrary physical phone. This SIP phone afterward has to initialize the affiliation procedure by
calling a specified number.

The user of the above registered SIP phone starts the affiliation process by dialing 871abcd
from the physical phone 1234 (see Figure 3). Asterisk decodes the 871 prefix as an affiliation
command and abcd as the users number. It starts a SIPp client, passing the number abcd. The
SIP client then performs a SIP register procedure with the number abcd to Asterisk. On reception
of the register, Asterisk adds a dynamically created entry for the number abcd to the dialplan.
The SIP phone in client mode then terminates since it is no longer required.

Figure 3: The afflilation procedure started by a physical phone results in the initialization of a
virtual SIP phone which registers to Asterisk. This is followed by adding an entry to the dialplan.
After the start of the redirection server the user gets a confirmative feedback.

2.1 Basic idea 7

Then a SIPp instance in server mode is started. This instance will be responsible for perform-
ing the actual redirection from the logical number to the physical device so at its initialization
both numbers are passed. When the affiliation is finished a conformation sound is played to the
user who then terminates the call.

2.1.2 Disaffiliation

The disaffiliation of a number is started according to the affiliation sequence by the code 870
and the logical number of the user (see Figure 4). Then Asterisk signalizes to the redirection
server that it can stop. This can be done through a special SIP message or through a system call
which kills the specific process. Afterwards we start a new SIPp instance in client mode which
sends a further SIP registration message with an expiration time of zero. This has the effect that
the number is removed from the dialplan. Finally an audible feedback is given to the user which
acknowledges the disaffiliation procedure.

Figure 4: According to the affiliation procedure the code 870 starts the disaffiliation of the
number abcd. The redirection server is stopped and the dialplan entry is canceled by again
sending a registration message, this time with expiration time zero.

Since we have the mobility of the users within the network and we cannot expect the user
to disaffiliate every time leaving a phone, we have to take into consideration what is happening
when we have users which affiliate to different phones without disaffiliation. Of course it is
required to find the latest affiliation for every user since the probability is very high that the user
can be reached there (see Section 2.2.1).

2.1.3 Call setup

A call can be established by any phone in the network by dialing the logical number of the user
(see Figure 5). The location determination is not considered in the shown sequence because it is
done within the Asterisk object, which can also stand for multiple distributed Asterisk instances.

2.1 Basic idea 8

However, after dialing the number abcd, Asterisk forwards the call to the SIPp server which
number is registered in the dialplan. The SIPp instance acts as a redirection server and replies
with a "302 temporary moved" SIP message which contains the number of the physical phone -
the user is affiliated to - in the contact field (for a SIP reference see [8]). So Asterisk forwards
the call to the number 1234 which acknowledges the invitation. Finally the call information is
returned to the originally inviting phone and the call is initialized.

Figure 5: When anyone in the network dials the number abcd it gets forwarded to the redirection
server. It redirects the call to the physical phone the user abcd is affiliated to by sending a 302
SIP message.

2.2 Node configuration

Every node in the network has the structure denoted in Figure 6. The nodes have one or
multiple ethernet interfaces whereby to each an IP address is assigned. The routing between the
nodes is done with an OSPF daemon. Communication protocols between the nodes are DUNDi,
IAX (Inter Asterisk eXchange) and several VoIP (Voice over IP) protocols.

DUNDi is used for the dialplan discovery between the Asterisk instances. This protocol builds
up a peer-to-peer system of trusted partners. Requests are forwarded to adjacent nodes until one
knows the requested number or the whole network has been queried. IAX is responsible for
transmitting calls between the Asterisk instances. Whatever protocol the subscribed devices use
to communicate with Asterisk, the route between the participating Asterisk instances is bridged
by the IAX protocol. DUNDi and IAX use the underlying UDP (User Datagram Protocol).

The core of Asterisk are the configuration files and the resultant dialplan. Asterisk is respon-
sible for everything related to the handling of incoming and outgoing calls. They are generated
by SIPp. The behavior of SIPp instances can be specified using XML scenarios.

2.2 Node configuration 9

5André Wangler SA – Call Route Discovery

Method

Setting up Asterisk
Configs for dialplan, DUNDi-,
IAX-, VoIP-trunks
Dialplan functions for dynamic
affiliation of users

Simulation of affiliating and physical devices with SIPp
Testing tool for SIP protocol and PBX’s
Allows to determine specific behavior of instances by xml
Started from shell scripts or from Asterisk via shell script

Running different tests on setup of 17 UML (user mode
linux) instances

U
M

L

Asterisk

configurations

System
Functions

DUNDi IAX SIP
H.323

SIPp

UDP

SIP

UDP/TCP

IP (OSPF routing)

dialplan

OS

Figure 6: On every node there is an Asterisk instance as well as some SIPp phones. Asterisk
waits for events which are generated by SIPp phones through the SIP channel. SIPp phones
themselves are controlled by system functions or shell scripts respectively.

The last part is the system part of the node which is important when we want to execute
predetermined test scripts. It controls the interaction between the different SIPp instances and
Asterisk is starting the redirection server by calling a system function.

2.2.1 Asterisk

The core of Asterisk is the dialplan which is generated based on the configuration files. The
most important one is the file extensions.conf (see Section A.1). Therein we specify all
contexts, global variables, dialplan functions and macros.

Contexts are special parts of the dialplan which constitute independent sections which can be
used in predefined situations by other parts of the dialplan like the SIP or the DUNDi part. For
example the two DUNDi contexts in extensions.conf specifies the location where DUNDi
can look up a number on the local or a remote host.

In the contexts either we include other contexts or we determine extensions. An extension
denotes a step in a dialplan function sequence. Therefore in an extension we specify the (called)
number or number pattern for which this extension should be executed, the sequence number
of this extension and the in this step called function. So when we enter a context we search for
extensions which are matching the called number, and execute the specified functions according
to the sequence number of the extension.

A special context is the [sipregistration] context. It is specified as regcontext in the SIP
configuration file sip.conf (see Section A.2). This means that a SIP phone which makes a
registration is added to this [sipregistration] context at sequence number 1. Therefore the

2.2 Node configuration 10

sequence numbers in this context start at number 2. So when we call such a registered phone
we enter the context [sipregistration] by using the before inserted extension with sequence
number 1. The next matching extension is the one with sequence number 2 which matches for
all five digit numbers in this context and which executes the call establishment to the required
number.

The most important context is the [affiliation] context. Therein we specify what should
be done when an affiliation is initiated by a phone calling the affiliation code 871 and the ap-
pended five digit number. Since a disaffiliation is optional when a user leaves a physical phone
we have to make sure that we do not have multiple affiliations with the same logical number
in the network. Therefore we add a loop to the affiliation procedure which is first looking up
the number we have to affiliate. If the same number is found on other hosts in the network all
affiliations are remotely disaffiliated and afterwards we can run the local affiliation of the users
number (see Figure 7). Therefore we sequentially start two instances of a SIPp phone. The first
one registers the logical number to Asterisk by sending a SIP REGISTRATION message. The
second one is started in server mode and acts as redirection server for incoming calls.

For the tests Asterisk 1.4.4 is used. It could be installed as part of the debian standard distri-
bution by running the aptitude command. To run Asterisk on UML it is important to first adjust
the access authorization to all necessary directories. This is not done automatically in the UML
file system.

2.2.2 DUNDi

The number discovery between the different PBXs is done with the DUNDi protocol. DUNDi
is a fully distributed peer-to-peer system built as a network of communication servers. One
server can look up a number at a trusted peer. If the queried peer does not know the number,
it performs a query at its trusted peer and so on. A reply is sent back along the same route
and every node on this route caches the result of this lookup. A further request then could be
answered faster since more nodes know the location of the number.

The settings for DUNDi can be specified in the configuration file dundi.conf (see Section
A.3). This file contains basically the following things: the identification data of the local host
(e.g. the entity ID), the [mappings] context to specify where a DUNDi request is allowed to
lookup numbers, and all data used to communicate with other DUNDi peers.

In the configuration there are several parameters which could be changed and have an effect
on the performance of a DUNDi lookup. The cachetime (in seconds) can be set to a desired
value so looked up numbers would be stored for that time in every node on the lookup route
and a further lookup could be done in a shorter time using the cached information. Since we

2.2 Node configuration 11

8André Wangler SA – Call Route Discovery

SIPp

Affilation start
(1234, abcd)

Affilation done

Lookup abcd
in network

Result?

Disaffiliate abcd
Remotely

Start virtual SIP phone
(1234, abcd)

REGISTRATION msg
from abcd

Virtial SIP phone
abcd

Add abcd to dialplan

yes

no

Design of aff. procedure

Disaffiliation analogue
to affiliation
Manual disaffiliation
optional
Flow chart of dialplan
affiliation procedure

Figure 7: Before affiliating a new number we check whether there are other affiliations with the
same number and disaffiliate them. Afterwards the virtual SIP phone is started.

have mobility in our network, we can not allow nodes to cache a destination which is probably
invalid. So we set the cachetime to a low value.

A second parameter is the weight of a DUNDi mapping, which is the second parameter of
a mapping context entry. This weight is used to decide which destination is called in the case
of multiple DUNDi replies, whereby a smaller weight is preferred. A weight so far could be
specified as static. The support of dynamic weight is already announced to be introduced in
the next release of Asterisk (version 1.6). This would give us the possibility to transmit the
expiration time of a SIP phone through a DUNDi response and we could automatically choose
the latest registration of a number.

A third important parameter is the order of a trusted DUNDi peer. This can be set to primary,
secondary, etc. A flat hierarchy yields a faster lookup of a number, i.e. a breadth-first search.
The disadvantage of this setting is the generated network traffic and the less effective caching,

2.2 Node configuration 12

since we have shorter routes to a peer which knows the requested number.

It could be useful to declare every node in the network as DUNDi peer of a specific node,
since in a real dynamic network we could not foresee which are our directly linked neighbors.
While running the system only the directly connected nodes would become reachable for the
local DUNDi system.

2.2.3 IAX

IAX is the Inter Asterisk eXchange protocol. Through this channel calls and call initialization
messages are passed. The configuration is done in the configuration file iax.conf (see Section
A.4). In this configuration it’s important that IAX is binded to every network interface of the
node. Otherwise Asterisk would not or just restricted be able to forward calls to destinations
predetermined by DUNDi.

2.2.4 SIPp

SIPp is a testing tool for the SIP protocol and can act as a SIP server or client. This means
that we can simulate every behavior of a SIP phone. It allows us to specify our own scenarios
in simple XML files which contains the sequence of sent and received messages as well as the
messages content.

In Section A.5 we see the scenario for the SIP redirection server which is started at the affil-
iation of a logical number. This scenario waits until it receives a SIP INVITE message for the
assigned number at the specified port. Afterwards a SIP 100 Trying message followed by a SIP
302 Moved Temporarily message is sent which is containing the physical number in the contact
field. The SIPp instance then waits for an acknowledgment. After receiving this, the scenario
starts again and waits for an inviation message.

Starting multiple SIPp instances during the tests turned out to be a problem, since every
instance has to be bound to a communication port. A solution for this problem is to specify
the port as 0, so it takes the next free port by increasing ports from 5060. The solution for the
required media port was to remove the checking algorithm in the SIPp source code. This was
allowed because we don’t need any media stream in our tests, since we just want to set up and
terminate calls.

2.3 Tests

2.3.1 Network setup

The test network consists of 17 nodes whereby every node has one or multiple network inter-
faces according to Figure 8. There are also some subscribed physical phones which in the tests

2.3 Tests 13

would be initialized dynamically.

The network has the property that we can simulate many network failures by breaking a few
links. So we reach a partition of the network or an isolated node by just deactivating one link.

9André Wangler SA – Call Route Discovery

Design

Tests
Network with 17 nodes and
several subscribed phones
Testing on functionality

- Affiliation – lookup
- Affiliation – disaffiliation – affiliation – lookup (mobility)
- Affiliation – affiliation – lookup (mobility)

On robustness
- Isolated nodes, partitioned network
- With and without mobility
- Many node and link failures

0201 03

04 05 06

07 08 09

10

11

17

12

13

14

15

16

A

B

C

D

Subscriber

Trunk

1.1 1.2 2.1
2.2

3.5

3.6
6.6

9.2

1.5

1.6

2.5

2.6

3.1

3.2

4.5

4.6 5.6

5.5

4.1 4.2 5.1 5.2

6.2

6.1

9.1

7.5

7.6

10.1

10.2

13.9
12.2

12.1

12.5 12.6

15.1

15.2
13.5 13.6

13.1

13.2

6.5

7.1 7.2 8.1 8.2

13.10

Figure 8: The test network topology consists of 17 nodes and several subscribed phones.

In the tests every node is represented by a UML instance and the links are implemented with a
daemon which forwards every message to the adjacent node. On every node we install Asterisk
and SIPp according to the description in Section 2.2. To make the installation efficient, we first
install the programs to a dedicated file system. Afterwards we use this file system to start every
single UML instance. So just the changes with respect to the original file system have to be
saved for every instance, and we can install everything just once for all UMLs.

Since different UML instances have different configurations, after a first start of the UMLs
we run an installation script which on one hand installs all required daemons and on the other
hand copies all peer specific configuration files.

2.3 Tests 14

2.3.2 Testing types

The brought up approach should be tested on functionality and on robustness against node
and link failures.

The first test sequence should determine the behavior of the system in executing the basic
functions. The detailed functionality test sequences can be seen in Section B.1.1. We assume
the test network as seen in Figure 8 without any failures.

We first test the number discovery without and with affiliation, so in the first case we should
not get any result whereas in the second case we get the response with the users location. Further
the disaffiliation procedure is tested whereby a user or a SIPp phone respectively affiliates its
number. Then a disaffiliation and a new affiliation to another node is made. Independent of the
users mobility we should get the latest affiliation when we look up the users number. Also the
mobility of a user without disaffiliation is tested.

In the second test sequence we test the behavior in the case of isolated nodes, partitioned
network and node and link failures (see the test sequences in Section B.1.2). An interesting
situation is the mobility within partitions or over partition boundaries. Also interesting is the
case when we have only a single way to the destination left because of link failures.

2.3.3 Test execution

To run the tests we first have to boot all UML instances on a PC. Then on every node Asterisk
is started and allowed to reach steady state. We assume that before the start all installations as
well as the configuration updates has been done.

The first test script we start on a node in the test network. So we can transmit all commands
via a remote shell instruction which is a fast approach. In this script we start other shell scripts
which make affiliations, disaffiliations and the establishment of calls. In the scripts mainly the
interaction of the different SIPp instances is controlled.

Since we have network failures in the second test and we can not reach all other nodes any
more, the second test script is executed on the host PC and the commands are submitted to each
host through a TCP connection which is built up for every command we want to transmit.

To monitor the ongoing tests and to have a protocol afterwards, we write a log file on the host
PC (see the test protocols in Section B.2). This file is written by the test script and the different
SIPp instances. For instance at a lookup, the calling SIPp instance writes to the log file that it
is starting a request. The called SIPp representing a physical phone logs its physical number

2.3 Tests 15

everytime it is called. The calling part then logs when it gets an acknowledge from the dialed
partner.

So from the log file we will see what affiliations have been done, what numbers we tried to
look up and to which physical numbers the requested numbers have been mapped. The compar-
ison of the expected and the obtained number will give us the result of the test.

2.3 Tests 16

3 Results

3.1 General Remarks

We can state that we have successfully implemented the required functions affiliation and
disaffiliation as well as that we have found a procedure to make the mapping of the logical to the
physical phone numbers. So we were able to extend the static behavior of Asterisk and DUNDi
with dynamic features. This is done by introducing a virtual SIP device for every affiliating
user. The SIP phone takes the role of a redirection server which forwards an incoming call to the
accurate physical phone where the user is located. So we could adopt the concept of a device
independent user into the device-oriented view of Asterisk.

We also tested multiple settings in the usage of the DUNDi protocol and checked the effects
of different parameter values. In the end we have a configuration which is a practical solution
for a telephony system in wireless networks.

Further we have found a convenient way to emulate a test network and simulate subscribing
phones on a Linux PC. The affiliation functions as well as the simulation of the SIP phones
works with a reasonable time consumption. In the tests the establishment of the connections for
transmitting the test commands to the UML instances and the timing between the different SIPp
instances took most of the consumed time.

3.2 Test network

One goal of the work was the setup of the test network with UML. After several technical
difficulties we now have a working setup which can easily be rebuilt for further tests. One
of the main difficulty was the bounded memory of a UML instance to running processes. A
workaround for this was to kill the started SIPp processes as soon they are not used any more
during the tests. So it was possible to run the whole sequence in a row.

3.3 Test results

According to the test sequences in Section B.1 we have executed the test scripts. The gener-
ated log file can be seen in Section B.2. According to this protocol we see that the functionality
test yields the correct results. In the case that no number is returned at a lookup, Asterisk 1.4
answers with a SIP 503 Service Unavailable message to the requesting phone, other than earlier
releases of Asterisk which made a distinction between different request failures.

The second part of the tests could also be executed correctly except for two problem cases
(therefore see Sections 3.3.1 and 3.3.2). These failures are based on incompletely implemented
features in Asterisk and could be fixed with little effort by adjusting the source code of Asterisk.

17

3.3.1 Problem A: Static DUNDi weight

A first problem which appeared in the tests is the static DUNDi weight we have seen in
Section 2.2.2. This becomes a real problem when we have a partitioned network (see Figure 9)
whereby in at least two partitions an affiliation is done. The first affiliation is not removed since
the destination is not reachable for the second host. So after restoring the network, at a lookup
we have multiple DUNDi answers whereby in most cases the first incoming answer is taken
since all DUNDi weights are static and equal. A fix of this problem is coming up in the next
Asterisk release (version 1.6). The new feature would allow us to dynamically set the DUNDi
weight for every new request. For example we can set it dependent of the expiration time so in
the case of multiple answers we can find the latest affiliation in the network.

11André Wangler SA – Call Route Discovery

Results
2 special failure cases:

Partitioned network with mobility
- Multiple DUNDi responses at lookup
- DUNDi weight static
- Weight e.g. according to expiration time
- Will be fixed in next release of Asterisk (1.6)

Many link failures with rewinding query
path

- DUNDi attaches the node on query path to
request message

- Makes no distinction between reachable and
unreachable peers

- DUNDi doesn’t forward request to already
asked nodes

0201 03

04 05 06

07 08 09

10

11

17

12

13

14

15

16

A

B

C

D

Subscriber

Trunk

1.1 1.2 2.1
2.2

3.5

3.6
6.6

9.2

1.5

1.6

2.5

2.6

3.1

3.2

4.5

4.6 5.6

5.5

4.1 4.2 5.1 5.2

6.2

6.1

9.1

7.5

7.6

10.1

10.2

13.9
12.2

12.1

12.5 12.6

15.1

15.2
13.5 13.6

13.1

13.2

6.5

7.1 7.2 8.1 8.2

13.10

X

X

X

X

0201 03

04 05 06

07 08 09

10

11

17

12

13

14

15

16

A

B

C

D

Subscriber

Trunk

1.1 1.2 2.1
2.2

3.5

3.6
6.6

9.2

1.5

1.6

2.5

2.6

3.1

3.2

4.5

4.6 5.6

5.5

4.1 4.2 5.1 5.2

6.2

6.1

9.1

7.5

7.6

10.1

10.2

13.9
12.2

12.1

12.5 12.6

15.1

15.2
13.5 13.6

13.1

13.2

6.5

7.1 7.2 8.1 8.2

13.10X

Figure 9: Problem case A: At first the link between node 13 and 17 is broken. When we have
mobility between the partitions and the failed links are restored, on a lookup we have multiple
DUNDi answers which do not yield a basis of decision to chose the right one.

3.3.2 Problem B: DUNDi protocol malfunction

The second problem case is based on the DUNDi protocol or the interpretation thereof by
Asterisk respectively. We have a look at the situation showed in Figure 10.

For example node 7 starts a request of a number which is located at node 16. So the only
possible route for node 7 to look up a number which is affiliated to this number is 7-4-1-2-5-8.

3.3 Test results 18

11André Wangler SA – Call Route Discovery

Results
2 special failure cases:

Partitioned network with mobility
- Multiple DUNDi responses at lookup
- DUNDi weight static
- Weight e.g. according to expiration time
- Will be fixed in next release of Asterisk (1.6)

Many link failures with rewinding query
path

- DUNDi attaches the node on query path to
request message

- Makes no distinction between reachable and
unreachable peers

- DUNDi doesn’t forward request to already
asked nodes

0201 03

04 05 06

07 08 09

10

11

17

12

13

14

15

16

A

B

C

D

Subscriber

Trunk

1.1 1.2 2.1
2.2

3.5

3.6
6.6

9.2

1.5

1.6

2.5

2.6

3.1

3.2

4.5

4.6 5.6

5.5

4.1 4.2 5.1 5.2

6.2

6.1

9.1

7.5

7.6

10.1

10.2

13.9
12.2

12.1

12.5 12.6

15.1

15.2
13.5 13.6

13.1

13.2

6.5

7.1 7.2 8.1 8.2

13.10

X

X

X

X

0201 03

04 05 06

07 08 09

10

11

17

12

13

14

15

16

A

B

C

D

Subscriber

Trunk

1.1 1.2 2.1
2.2

3.5

3.6
6.6

9.2

1.5

1.6

2.5

2.6

3.1

3.2

4.5

4.6 5.6

5.5

4.1 4.2 5.1 5.2

6.2

6.1

9.1

7.5

7.6

10.1

10.2

13.9
12.2

12.1

12.5 12.6

15.1

15.2
13.5 13.6

13.1

13.2

6.5

7.1 7.2 8.1 8.2

13.10X

Figure 10: Problem case B: A bug in Asterisk interpreting the DUNDi protocol leads in this
situation to the problem that a request form node 7 is not forwarded at node 2 because of the
presence of node 5 in the list of already queried nodes.

According to the DUNDi protocol, when we send a request the protocol attaches the route the
message has taken to the payload. So at every node an entry is made that the message has passed
this specific node. Additionally the node adds the peers which are known as trusted partners and
to which the request is forwarded to. This is done by reason of aborting the lookup flooding
procedure when all nodes are reached.

The problem with this is now that Asterisk adds the neighbour peers even if they are unreach-
able or offline at the moment. So in the above example the flooding stops at node 2 because node
4 added node 5 to the already queried list. This leads to the malfunction in failure test 11 (see
B.1.2). This problem must be a bug in Asterisk or in DUNDi respectively and may be solved by
adjusting the source code of Asterisk.

3.4 Timing and time consumption

For the tests it turned out to be necessary to give enough time to the different events. Since
the communication between the host and the UML instances for example is done over a TCP
connection, it takes a while to initiate it. Another reason is that different programs are writing

3.4 Timing and time consumption 19

in the log-files and we want to make sure that the order of this log messages doesn’t get mixed
up. So most of the used time has to be spent because of the testing environment.

Another aspect which takes some time concerns the communication between the Asterisk
instances or the DUNDi protocol respectively. Namely when one or more links are stopped and
restored, it takes a while till the adjacent nodes recognize the new DUNDi peers. This could
take up to a minute and have to be considered within the test sequence.

A last point which takes time is the affiliation procedure in the Asterisk dialplan. Depending
on how many other affiliations with the same number are found, we have to wait some time
to finish the remote disaffiliation. The wait values in the affiliation procedure are chosen very
tolerant. It would be possible to shorten the affiliation procedure by waiting just half of the
specified time.

Taking into account these points the functionality test script takes about 15 minutes and the
failover test script takes about 20 minutes. By testing the affiliation and call procedure manually
in the test environment, one can see that affiliations are accomplished in a short acceptable time
span and calls are established in an almost real time manner.

3.4 Timing and time consumption 20

4 Conclusion

To provide the accessibility of a user in a telephony network, call route discovery is necessary.
Additionally, when we have mobile users which are independent of the physical phones, we need
number discovery which determines the phone the user with his number is affiliated to.

In this work we brought up an approach how these two things can be realized with the open
source PBX Asterisk and the number discovery protocol DUNDi which is implemented in As-
terisk. We have adopted the static device-oriented behavior of Asterisk to be able to handle users
which are independent of physical phones and are mobile within the network. This was done by
introducing a virtual SIP phone for every affiliating user. Since SIP phones are given the pos-
sibility to register dynamically to the Asterisk dialplan we use them as substitute for the users.
The virtual SIP phones act as redirection server and forward the incoming calls to the accurate
phone which does not have to use the SIP protocol.

This extension of Asterisk was necessary to make use of the DUNDi protocol which directly
accesses the PBX’ dialplan. So we now are able to discover the number through the DUNDi pro-
tocol. Aditionally we showed the effects of different DUNDi parameter settings to the behavior
of the system. E.g. we can set the caching time of the PBXs on the path on which a lookup is
performed. So we can adjust the sluggishness of the system and the reaction time on disaffiliat-
ing users. Further we can adjust for example whether DUNDi should perform a breadth-first or
a depth-first search. So to perform a call to a user which is affiliated to a remote PBX, Asterisk
starts a DUNDi request to its trusted partners and so is able to detect the current system state at
every call. DUNDi yields the IP address of the PBX the user is affiliated to. With this address
and the underlying OSPF routing we also have found the implicit route to the target phone.

We can state that it was possible to improve the existing flooding based approach by imple-
menting an event driven procedure using DUNDI and Asterisk. This leads to a better perfor-
mance with respect to traffic overhead and call setup delay.

Tests on the implementations functionality and stability were performed in an emulated net-
work realized with UML instances on a single PC. We installed a test network of 17 nodes and
several physical phones and users which affiliate and disaffiliate. The tests showed that we could
meet the determined requirements. So our system manages for example multiple affiliations of
the same user without disaffiliation in between. Also the number discovery was successful even
in the case of multiple link or node failures. Two exceptions are represented by the pointed out
incomplete implementations of the DUNDi protocol by Asterisk. These bugs could be fixed
with little effort in the case of realizing the telephony system with the DUNDi protocol.

Future work has to be done in evaluating other approaches to perform call route discovery in
wireless mesh networks. So one could use multicasting to map the logical user numbers to the

21

physical phone numbers. Advantages and disadvantages of the different approaches should be
investigated and evaluated.

22

References

[1] Mark Spencer et. al., The Asterisk Handbook - Version 2, http://www.digium.com/-
handbook-draft.pdf, last visited 07/2007.

[2] Leif Madsen et. al., The Asterisk Documentation Project: Volume One: An
Introduction to Asterisk, http://www.asteriskdocs.org/modules/tinycontent/-
content/docbook/current_v1/docs-pdf/vm1.pdf, last visited 07/2007.

[3] J.R. Richardson, Using DUNDi with a Cluster of Asterisk
Servers, http://www.astricon.net/files/usa06/Friday-General_Conference/-
JR_Richardson_Whitepaper.pdf, last visited 07/2007.

[4] Mark Spencer, DUNDi Internet Draft, http://www.dundi.com/dundi.txt, last visited
05/2007.

[5] Antti Kallaskari (ASCOM Finland), Mobile numbers in Access Node networks.

[6] Andrew Lunn (ASCOM Switzerland), Nomadic Telephony - Techniques for Locating
Nomadic Users.

[7] Andrew Lunn (ASCOM Switzerland), Nomadic Telephony - Throw away Prototype Sys-
tem Test Plan.

[8] J. Rosenberg et. al., SIP: Session Initiation Protocol (Reference), http://www.ietf.org/rfc/-
rfc3261.txt, last visited 07/2007.

[9] Olivier Jacques, SIPp reference documentation, http://sipp.sourceforge.net/-
doc/reference.html, last visited 07/2007.

REFERENCES 23

A Configuration files

A.1 extensions.conf
[general]

static=yes

writeprotect=no

autofallthrough=yes

clearglobalvars=no

[globals]

LOCALPORT=5200

MEDIAPORT=6011

[local]

include=>affiliation

exten=>_XXXXX,1,Dial(SIP/${EXTEN})

exten=>_XXXXX,2,Macro(dundi-lookup,${EXTEN})

[priv-local]

include=>sipregistration

[affiliation]

exten=>_871XXXXX,1,Set(DEST=${DUNDILOOKUP(${EXTEN:3},virtsip,b)})

exten=>_871XXXXX,2,GotoIf($["${DEST}" = ""]?6:3)

exten=>_871XXXXX,3,System(sh /etc/asterisk/sippscr/rdaff ${EXTEN:3} ${DEST})

exten=>_871XXXXX,4,Wait,4

exten=>_871XXXXX,5,Goto(1)

exten=>_871XXXXX,6,System(sh /etc/asterisk/sippscr/aff_init ${EXTEN:3} ${LOCALPORT}

${MEDIAPORT})

exten=>_871XXXXX,7,Wait,2

exten=>_871XXXXX,8,System(sh /etc/asterisk/sippscr/aff_serv ${EXTEN:3} ${CALLERID(num)}

${LOCALPORT} ${MEDIAPORT})

exten=>_871XXXXX,9,Set(GLOBAL(LOCALPORT)=$[${LOCALPORT}+1])

exten=>_871XXXXX,10,Set(GLOBAL(MEDIAPORT)=$[${MEDIAPORT}+10])

exten=>_871XXXXX,11,Answer

exten=>_871XXXXX,12,Wait,5

exten=>_871XXXXX,13,Hangup

[default]

include=>local

[sipregistration]

exten=>_XXXXX,2,Dial(SIP/${EXTEN},10)

exten=>_XXXXX,3,Hangup

exten=>_XXXXX,103,Hangup

[dundi-incoming]

include=>sipregistration

24

[dundi-lookup]

switch=>DUNDi/virtsip

;---

;MACRO-BLOCK

;---

[macro-dundi-lookup]

;check local context first, then lookup in a dundi context

exten=>s,1,Goto(${ARG1},1)

include=>priv-local

include=>dundi-lookup

A.2 sip.conf
[general]

context = local

allow=all

regcontext=sipregistration

bindport=5060

autocreatepeer=yes

insecure=very

A.3 dundi.conf
Code example from node 4 in the test network:

[general]

organization=ETHZ

locality=Zurich

country=CH

email=awangler@ee.ethz.ch

bindaddr=0.0.0.0

port=4520

entityid=FF:00:00:00:00:04

cachetime=2

ttl=32

autokill=yes

A.2 sip.conf 25

[mappings]

virtsip=>sipregistration,100,IAX2,dundi:${SECRET}@${IPADDR}/${NUMBER}

;04->01

[FF:00:00:00:00:01]

model=symmetric

host=192.168.1.5

outkey=keyuml4

inkey=keyuml1

include=all

permit=all

qualify=yes

order=primary

;04->05

[FF:00:00:00:00:05]

model=symmetric

host=192.168.4.2

outkey=keyuml4

inkey=keyuml5

include=all

permit=all

qualify=yes

order=primary

;04->07

[FF:00:00:00:00:07]

model=symmetric

host=192.168.4.6

outkey=keyuml4

inkey=keyuml7

include=all

permit=all

qualify=yes

order=primary

A.4 iax.conf
Code example for node 4 in the test network:

[general]

port=4569

bindaddr=192.168.1.6

bindaddr=192.168.4.5

bindaddr=192.168.4.1

A.4 iax.conf 26

[dundi]

type=friend

dbsecret=dundi/secret

context=sipregistration

disallow=all

allow=ulaw

allow=g726

allow=all

[priv]

type=friend

dbsecret=dundi/secret

context=dundi-incoming

disallow=all

allow=ulaw

allow=g726

allow=all

A.5 SIPp scenario of redirection server
<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE scenario SYSTEM "sipp.dtd">

<scenario name="Asterisk Wait INVITE">

<recv request="INVITE" crlf="true">

</recv>

<send>

<![CDATA[

SIP/2.0 100 sip:[local_ip] SIP/2.0

Via: SIP/2.0/UDP [local_ip]:[local_port]

Max-Forwards:5

[last_To:]

[last_From:]

Call-ID: [call_id]

[last_CSeq:]

]]>

</send>

<send>

<![CDATA[

SIP/2.0 302 sip:[local_ip] SIP/2.0

Via: SIP/2.0/UDP [local_ip]:[local_port]

Max-Forwards:5

[last_To:]

A.5 SIPp scenario of redirection server 27

[last_From:]

Call-ID: [call_id]

[last_CSeq:]

Contact: <sip:[physnr]@[local_ip]>

Expires: 10

Content-Length:0

]]>

</send>

<recv response="200" optional="true">

</recv>

<recv request="ACK">

</recv>

</scenario>

A.5 SIPp scenario of redirection server 28

B Tests

B.1 Test sequences

B.1.1 Function testing

1. Not affiliated

• The network is started and allowed to reach steady state.

• Telephone A looks up the number 19990.

⇒ No physical telephone is returned

2. Affiliation on same switch

• The network is started and allowed to reach steady state.

• The number 19990 is affiliated to telephone B.

• Telephone A looks up the number 19990.

⇒ The physical telephone number 11020 is returned

3. Affiliation on a neighbour switch

• The network is started and allowed to reach steady state.

• The number 29990 is affiliated to telephone C

• Telephone A looks up the number 29990.

⇒ The physical telephone number 10010 is returned

4. Affiliation on a remote Switch

• The network is started and allowed to reach steady state.

• The number 39990 is affiliated to telephone D.

• Telephone A looks up the number 39990.

⇒ The physical telephone number 16010 is returned

5. Mobility to the same switch with disaffiliation

• The network is started and allowed to reach steady state.

• The number 49990 is affiliated to telephone C.

• The number 49990 is disaffiliated from telephone C.

• The number 49990 is affiliated to telephone B.

• Telephone A looks up the number 49990.

⇒ The physical telephone number 11020 is returned

29

6. Mobility to a neighbour switch with disaffiliation

• The network is started and allowed to reach steady state.

• The number 59990 is affiliated to telephone B.

• The number 59990 is disaffiliated from telephone B.

• The number 59990 is affiliated to telephone C.

• Telephone A looks up the number 59990.

⇒ The physical telephone number 10010 is returned

7. Mobility to a remote switch with disaffiliation

• The network is started and allowed to reach steady state.

• The number 69990 is affiliated to telephone B.

• The number 69990 is disaffiliated from telephone B.

• The number 69990 is affiliated to telephone D.

• Telephone A looks up the number 69990.

⇒ The physical telephone number 16010 is returned

8. Mobility to the same switch without disaffiliation

• The network is started and allowed to reach steady state.

• The number 79990 is affiliated to telephone C.

• The number 79990 is affiliated to telephone B.

• Telephone A looks up the number 79990.

⇒ The physical telephone number 11020 is returned

9. Mobility to a neighbour switch without disaffiliation

• The network is started and allowed to reach steady state.

• The number 89990 is affiliated to telephone B.

• The number 89990 is affiliated to telephone C.

• Telephone A looks up the number 89990.

⇒ The physical telephone number 10010 is returned

10. Mobility to a remote switch without disaffiliation

• The network is started and allowed to reach steady state.

• The number 99990 is affiliated to telephone B.

• The number 99990 is affiliated to telephone D.

• Telephone A looks up the number 99990.

⇒ The physical telephone number 16010 is returned

B.1 Test sequences 30

B.1.2 Failover and Recovery Testing

1. Isolated switch, reachable affiliation

• The network is started and allowed to reach steady state.

• Node 10 is stopped

• The number 18880 is affiliated to telephone B.

• Telephone A looks up the number 18880.

⇒ The physical telephone number 11020 is returned

2. Isolated switch, unreachable affiliation

• The network is started and allowed to reach steady state.

• Node 10 is stopped

• The number 28880 is affiliated to telephone D.

• Telephone A looks up the number 28880.

⇒ No affiliation information is returned

3. Isolated pair of switches, reachable affiliation

• The network is started and allowed to reach steady state.

• Node 07 is stopped

• The number 38880 is affiliated to telephone C.

• Telephone A looks up the number 38880.

⇒ The physical telephone number 10010 is returned

4. Isolated pair of switches, unreachable affiliation

• The network is started and allowed to reach steady state.

• Node 07 is stopped

• The number 48880 is affiliated to telephone D.

• Telephone A looks up the number 48880.

⇒ No affiliation information is returned

5. Partitioned network, reachable affiliation

• The network is started and allowed to reach steady state.

• Link 1317 is removed

• The number 58880 is affiliated to telephone C.

B.1 Test sequences 31

• Telephone A looks up the number 58880.

⇒ The physical telephone number 10010 is returned

6. Partitioned network, unreachable affiliation

• The network is started and allowed to reach steady state.

• Link 1317 is removed

• The number 68880 is affiliated to telephone D.

• Telephone A looks up the number 68880.

⇒ No affiliation information is returned

7. Isolated node, recovering from partitioning, no mobility

• The network is started and allowed to reach steady state.

• Link 1011 is removed and the network is allowed to reach steady state.

• The number 78880 is affiliated to telephone D.

• Link 1011 is restored and the network is allowed to reach steady state.

• Telephone A looks up the number 78880.

⇒ The physical telephone number 16010 is returned

8. Isolated node, recovering from partitioning, with mobility

• The network is started and allowed to reach steady state.

• The number 88880 is affiliated to telephone C.

• Link 1011 is removed and the network is allowed to reach steady state.

• The number 88880 is affiliated to telephone D.

• Link 1011 is restored and the network is allowed to reach steady state.

• Telephone A looks up the number 88880.

⇒ The physical telephone number 16010 is returned

9. Recovering from partitioned network, no mobility

• The network is started and allowed to reach steady state.

• Link 1317 is removed and the network is allowed to reach steady state.

• The number 98880 is affiliated to telephone D.

• Link 1011 is restored and the network is allowed to reach steady state.

• Telephone A looks up the number 98880.

⇒ The physical telephone number 16010 is returned

B.1 Test sequences 32

10. Recovering from partitioned network, with mobility

• The network is started and allowed to reach steady state.

• The number 08880 is affiliated to telephone C.

• Link 1317 is removed and the network is allowed to reach steady state.

• The number 08880 is affiliated to telephone D.

• Link 1317 is restored and the network is allowed to reach steady state.

• Telephone A looks up the number 08880.

⇒ The physical telephone number 16010 is returned

11. Operation with many link failures

• The network is started and allowed to reach steady state.

• The number 17770 is affiliated to telephone B.

• The links 0708, 0405, 0203, 0506, 0917, 0617 and 1316 are removed and the network
is allowed to reach steady state.

• The number 17770 is affiliated to telephone D.

• Telephone A looks up the number 17770.

⇒ The physical telephone number 16010 is returned

12. Operation with many node failures

• The network is started and allowed to reach steady state.

• The number 27770 is affiliated to telephone B.

• The nodes 05, 06, 08, 09, 12, 14 and 15 are stopped and the network is allowed to
reach steady state.

• The number 27770 is affiliated to telephone D.

• Telephone A looks up the number 27770.

⇒ The physical telephone number 16010 is returned

B.2 Test protocols

B.2.1 Functionality testing

ASTERISK NUMBER AFFILIATION AND DISCOVERY TEST

Mon Jun 18 12:47:38 UTC 2007

DISAFFILIATION OF ALL RECENT NUMBERS

B.2 Test protocols 33

192.168.10.2 disaffiliated number 19990

192.168.7.6 disaffiliated number 29990

192.168.15.2 disaffiliated number 39990

192.168.10.2 disaffiliated number 49990

192.168.7.6 disaffiliated number 59990

192.168.15.2 disaffiliated number 69990

192.168.10.2 disaffiliated number 79990

192.168.7.6 disaffiliated number 89990

192.168.15.2 disaffiliated number 99990

1. NOT AFFILIATED

expected number: no number

192.168.10.2 tries to look up 19990

lookup gives no result (503 service unavailable)

2. AFFILIATION ON SAME SWITCH

expected number: 11020

192.168.10.2 affiliated 19990 to 11020

192.168.10.2 tries to look up 19990

192.168.10.2 mapped number to 11020

...lookup successful

3. AFFILIATION ON NEIGHBOUR SWITCH

expected number: 10010

192.168.7.6 affiliated 29990 to 10010

192.168.10.2 tries to look up 29990

192.168.7.6 mapped number to 10010

...lookup successful

4. AFFILIATION ON REMOTE SWITCH

expected number: 16010

192.168.15.2 affiliated 39990 to 16010

192.168.10.2 tries to look up 39990

192.168.15.2 mapped number to 16010

...lookup successful

5. MOBILITY TO THE SAME SWITCH WITH DISAFFILIATION

expected number: 11020

192.168.7.6 affiliated 49990 to 10010

192.168.7.6 disaffiliated number 49990

192.168.10.2 affiliated 49990 to 11020

192.168.10.2 tries to look up 49990

192.168.10.2 mapped number to 11020

B.2 Test protocols 34

...lookup successful

6. MOBILITY TO A NEIGHBOUR SWITCH WITH DISAFFILIATION

expected number: 10010

192.168.10.2 affiliated 59990 to 11020

192.168.10.2 disaffiliated number 59990

192.168.7.6 affiliated 59990 to 10010

192.168.10.2 tries to look up 59990

192.168.7.6 mapped number to 10010

...lookup successful

7. MOBILITY TO A REMOTE SWITCH WITH DISAFFILIATION

expected number: 16010

192.168.10.2 affiliated 69990 to 11020

192.168.10.2 disaffiliated number 69990

192.168.15.2 affiliated 69990 to 16010

192.168.10.2 tries to look up 69990

192.168.15.2 mapped number to 16010

...lookup successful

8. MOBILITY TO THE SAME SWITCH W/O DISAFFILIATION

expected number: 11020

192.168.7.6 affiliated 79990 to 10010

192.168.10.2 affiliated 79990 to 11020

192.168.10.2 tries to look up 79990

192.168.10.2 mapped number to 11020

...lookup successful

9. MOBILITY TO A NEIGHBOUR SWITCH W/O DISAFFILIATION

expected number: 10010

192.168.10.2 affiliated 89990 to 11020

192.168.7.6 affiliated 89990 to 10010

192.168.10.2 tries to look up 89990

192.168.7.6 mapped number to 10010

...lookup successful

10. MOBILITY TO A REMOTE SWITCH W/O DISAFFILIATION

expected number: 16010

192.168.10.2 affiliated 99990 to 11020

192.168.15.2 affiliated 99990 to 16010

192.168.10.2 tries to look up 99990

192.168.15.2 mapped number to 16010

...lookup successful

B.2 Test protocols 35

B.2.2 Failover and Recovery Testing

ASTERISK FAILOVER AND RECOVERY TEST

Mon Jun 18 18:09:11 CEST 2007

192.168.10.2 disaffiliated number 18880

192.168.7.6 disaffiliated number 28880

192.168.7.6 disaffiliated number 38880

192.168.7.6 disaffiliated number 58880

192.168.15.2 disaffiliated number 38880

192.168.15.2 disaffiliated number 28880

192.168.15.2 disaffiliated number 48880

192.168.15.2 disaffiliated number 68880

192.168.15.2 disaffiliated number 78880

192.168.15.2 disaffiliated number 88880

192.168.15.2 disaffiliated number 98880

192.168.15.2 disaffiliated number 08880

192.168.15.2 disaffiliated number 17770

192.168.15.2 disaffiliated number 27770

1. ISOLATED SWITCH, REACHABLE AFFILIATION

expected number: 11020

Node 10 stopped.

192.168.10.2 affiliated 18880 to 11020

192.168.10.2 tries to look up 18880

192.168.10.2 mapped number to 11020

...lookup successful

2. ISOLATED SWITCH, UNREACHABLE AFFILIATION

expected number: no number

Node 10 stopped.

192.168.15.2 affiliated 28880 to 16010

192.168.10.2 tries to look up 28880

lookup gives no relult (503 service unavailable)

3. ISOLATED PAIR OF SWITCHES, REACHABLE AFFILIATION

expected number: 10010

Node 7 stopped.

192.168.7.6 affiliated 38880 to 10010

192.168.10.2 tries to look up 38880

192.168.7.6 mapped number to 10010

...lookup successful

B.2 Test protocols 36

4. ISOLATED PAIR OF SWITCHES, UNREACHABLE AFFILIATION

expected number: no number

Node 7 stopped.

192.168.15.2 affiliated 48880 to 16010

192.168.10.2 tries to look up 48880

lookup gives no relult (503 service unavailable)

5. PARTITIONED NETWORK, REACHABLE AFFILIATION

expected number: 10010

Link 13-17 stopped.

192.168.7.6 affiliated 58880 to 10010

192.168.10.2 tries to look up 58880

192.168.7.6 mapped number to 10010

...lookup successful

6. PARTITIONED NETWORK, UNREACHABLE AFFILIATION

expected number: no number

Link 13-17 stopped.

192.168.15.2 affiliated 68880 to 16010

192.168.10.2 tries to look up 68880

lookup gives no relult (503 service unavailable)

7. ISOL. NODE, RECOV. FROM PART. NETWORK

expected number: 16010

Link 10-11 stopped.

192.168.15.2 affiliated 78880 to 16010

Link 10-11 restored.

192.168.10.2 tries to look up 78880

192.168.15.2 mapped number to 16010

...lookup successful

8. ISOL. NODE, RECOV. FROM PARTIT., WITH MOBILITY

expected number: 16010

192.168.7.6 affiliated 88880 to 10010

Link 10-11 stopped.

192.168.15.2 affiliated 88880 to 16010

Link 10-11 restored.

192.168.10.2 tries to look up 88880

192.168.15.2 mapped number to 16010

...lookup successful

B.2 Test protocols 37

9. RECOVERING FROM PART. NETWORK, NO MOBILITY

expected number: 16010

Link 13-17 stopped.

192.168.15.2 affiliated 98880 to 16010

Link 13-17 restored.

192.168.10.2 tries to look up 98880

192.168.15.2 mapped number to 16010

...lookup successful

10. RECOVERING FROM PART. NETWORK, WITH MOBILITY // problem case A

expected number: 16010

192.168.7.6 affiliated 08880 to 10010

Link 13-17 stopped.

192.168.15.2 affiliated 08880 to 16010

Link 13-17 restored.

192.168.10.2 tries to look up 08880

192.168.7.6 mapped number to 10010

...lookup successful

11. OPERATING WITH MANY LINK FAILURES // problem case B

expected number: 16010

192.168.10.2 affiliated 17770 to 11020

Links are stopped.

192.168.15.2 affiliated 17770 to 16010

192.168.10.2 tries to look up 17770

192.168.10.2 mapped number to 11020

...lookup successful

12. OPERATING WITH MANY NODE FAILURES

expected number: 16010

192.168.10.2 affiliated 27770 to 11020

Links are stopped.

192.168.15.2 affiliated 27770 to 16010

192.168.10.2 tries to look up 27770

192.168.15.2 mapped number to 16010

...lookup successful

B.2 Test protocols 38

