
Diploma Thesis - Spring Term 2007/2008

Wireless Ad Hoc Podcasting on
Symbian

Ákos Bakos

akosb@tik.ee.ethz.ch

22nd May, 2008

Internal Supervisors: Dr. Vincent Lenders, ETH Zurich

Bernhard Distl, ETH Zurich

External Supervisor: Dr. Károly Farkas,

University of West Hungary

Host: Prof. Dr. Bernhard Plattner,

ETH Zurich

Abstract

Podcasting has become popular for dissemination of content over the
Internet. It is based on subscriptions where software clients query servers
for updates of subscribed content feeds. The main limitation with the cur-
rent system is the inflexible separation of downloading to a docked media
player and expending of the data when on the move. The solution proposed
here uses peer-to-peer synchronization to exchange content directly between
neighboring devices.

The goal of this thesis is to develop a prototype content distribution
application for Symbian phones which makes use of their ad hoc capabilities
(Wifi) in order to directly connect them. The application should allow users
to exchange pictures and videos that were generated on the mobile phones.

Thus, the existing podcasting code has been designed and implemented in
C++ from an earlier project that we have ported to Symbian by adapting the
platform independence library. We have developed a GUI in Symbian C++
that communicates with the core application. Our programs was primarily
designed for Nokia N93 and N95 handhelds.

Kivonat

A podcasting lehetővé teszi multimédia anyagok közzétételét az inter-
neten, úgy, hogy a felhasználók feliratkozhatnak az adott anyag újdonságait
tartalmazó feedre. A podcasting online tartalmak terjesztésének egy újszerű
formája a feliratkozásos modell miatt, amely egy feed seǵıtségével tájékoztatja
a felhasználót az új állományról.

Ennek a rendszernek a fő hátránya, hogy mozgás közben új tartalmakat
fogadjunk és küldjünk. Erre a problémára megoldást jelent a közvetlen
szinkronizáció, amely a közvetlen szomszédok között cseréli ki a tartalmakat.

Ennek a diplomamunkának a célja, egy olyan adatmegosztó alkalmazás
fejlesztése Symbian platformra, amely közvetlenül kommunikál a telefonok
interfészein keresztül (bwifi). A felhasználók ezzel a programmal a telefon
által késźıtett képeket és videókat tudják kicserélni egymás között.

A használt podcasting programot C++ programnyelven implementáltak
egy korábbi projekt során, amely a podcasting elvét kiterjeszti a mobil fel-
használókra. Ezt a podcasting alkalmazást ford́ıtottunk le Symbian platform-
ra, platformfüggetlen könyvtárak seǵıtségével. Továbbá egy Symbian C++
programnyelven meǵırt grafikus felhasználói felületet fejlesztettünk, ami a
központi alkalmazással kommunikál. A program Nokia N93-as és N95-ös
t́ıpusú mobil telefonokon működik.

Acknowledgements

During the work on this thesis a number of people supported me in their
own ways and I want to express my sincere gratitude to everybody who made
this thesis possible, especially to:

• Prof. Dr. Bernhard Plattner, for giving me the opportunity to write
my master thesis at the Communication Systems Group;

• Károly Farkas, for the supervision of my work.;

• Dr. Vincent Lenders, for the great guidance and support during the
whole project;

• Bernhard Distl, for interesting discussions and provided me with new
ideas;

• My parents, for the generous support during my whole diploma thesis
writing;

• Réka, for her inspiring ideas.

Zurich, May 22th 2008

Ákos Bakos

Table of Contents

1 Introduction 1
1.1 Wireless Ad Hoc Podcasting 1

1.1.1 Thesis Contribution . 3
1.2 Thesis Structure . 3

2 Related Work 5
2.1 Podcast . 5
2.2 Podnet . 6

3 Symbian OS overview 8
3.1 Design . 8
3.2 Competition . 10
3.3 Architecture . 10

4 Software paltforms 12
4.1 Nokia implementation . 12
4.2 Nokia Series 60 3rd edition application development 13

4.2.1 Architecture . 13
4.2.2 Development process 15

4.3 The structure of a Symbian OS application 17
4.3.1 Directory structure . 18
4.3.2 Project file structure 19

4.4 Used technologies . 19
4.4.1 Symbian C++ . 20
4.4.2 P.I.P.S. 20
4.4.3 Open C . 21
4.4.4 STLport . 22

5 Implementation 23
5.1 Platform independence . 23
5.2 Graphical User Interface . 24

v

TABLE OF CONTENTS vi

5.3 Conversions . 26

6 Evaluation 28
6.1 Testbed . 28
6.2 Testing process . 28

6.2.1 Testing on emulator 28
6.2.2 Testing with GUI . 29

7 Conclusions 31

A Task Description 32
A.1 Working Plan . 33

B Project definition file of PodNet 35

C Development Environments 37
C.1 Setting up the Environment 37
C.2 Installing the IDE . 38
C.3 Installing the SDK . 39
C.4 Additional installations required 39

D User’s guide 41

Bibliography 44

List of Figures

1.1 Contents are provided by means of podcast via gateways and
they are redistributed in the ad hoc domain. 2

3.1 Symbian OS architecture . 10

4.1 Nokia software platforms . 12
4.2 S60 platform architecture [10] 14
4.3 Development process for S60 3rd Edition [10] 15
4.4 Application structure . 18
4.5 P.I.P.S. and Open C important libraries 22

5.1 The platforms of PodNet program 24
5.2 Multiple views architecture . 25
5.3 GUI architecture . 26

6.1 Carbide.c++ emulator in command line mode 29
6.2 Datas for testing . 30

D.1 Licence of ETHZ D-ITET . 41
D.2 All available channels . 42
D.3 Menuitems in the startup screen 42
D.4 Show the list of channel episodes 43
D.5 Meta information of the episode 43

vii

Chapter 1

Introduction

1.1 Wireless Ad Hoc Podcasting

There are two modes of public content distribution that are commonly used
for mobile devices today. One is podcasting, where the device downloads
contents when docked to a computer with an internet connection and the
other is live streaming that is available in 3G cellular networks. Podcasting
is enabled by the massive storage that is available in mobile device. The
distribution is limited to the contents that are available at the time of the
downloading and contents published thereafter remain inaccessible. Even
further increases in storage capacity will not alleviate this. Wireless internet
access, via public IEEE 802.11 networks for instance, may provide more
frequent downloading opportunities when the devices are on the move. The
second alternative are the 3G systems. They provide good coverage and
thereby also continuous access to contents and do not require much storage
on the device. The technological limit is the capacity in a cell, around 5 Mb/s,
that quickly may become saturated if streaming becomes popular. Another
concern is that operators might limit the available contents to those that
they or their affiliated partners, provide (the so called wireless net neutrality
issue).

The system, PodNet, is based on WLAN mode and aims at increasing
the opportunities for devices to obtain contents while being mobile. Pod-
Net utilizes connections with access points, when in range and it distributes
contents opportunitistically from node to node otherwise. This opportunis-
tic node-to-node distribution is important for extending the availability of
contents beyond the reach of the infrastructure and it enables distribution
of contents that are generated by the mobile nodes without a supporting
infrastructure. It is possible to combine PodNet and 3G distribution so that

1

1.1 Wireless Ad Hoc Podcasting 2

contents are primarily received to a mobile device by one of the two systems.
The other serves then as a back up in case of unavalibility of contents through
the primary system.

Figure 1.1. Contents are provided by means of podcast via gateways and they
are redistributed in the ad hoc domain.

This work describes how the podcasting concept can be expanded for
public (i.e., open and unrestricted) peer-to-peer delivery of contents amongst
mobile nodes. Contents are provided in a wireless broadcasting area either
by access points or by mobile nodes which have been filled with contents off
line (Figure 1.1). In the first case, each access point fetches contents from
podcast servers across the Internet and forwards them to mobile nodes within
its range. In the second case, a mobile node that has contents to share might
provide data to another mobile node when they pass within radio range of
one another. This is the new content distribution mode that we add to the
existing one. Our ad hoc podcasting mode brings the following advantages.
First, it provides nodes with contents when they are not connected to the
Internet; second, it provides a new ad hoc broadcasting domain when also
the sources of the data are mobile nodes (could be pictures or voice record-
ings from a mobile phone for instance). We will also refer to this wireless
ad hoc mode of broadcasting as podcast in the hope of broadening the cur-
rent concept (motivated by the use of the feet of a pod of users for content
distribution).

1.2 Thesis Structure 3

Wireless ad hoc podcasting, as we present in this work, is an application
based on the delaytolerant broadcasting concept that has been proposed in an
earlier paper [1]. The sharing of contents is based on a solicitation protocol
by which a node asks a peer node for content. Hence, there is no flooding
of contents in the broadcasting area. Contents are organized into channels,
and nodes solicit episodes for one or more channels.

The concept of channels allows for a higher hit rate of the queries than
if they were for individual episodes of contents. The episodes of a particular
channel will however reach a node in arbitrary order, and not all of them
will be received; it is therefore important that all contents are provided in
atomic units, which are short enough to be downloaded in a contact and
which may be replayed without relation to other units. We believe that the
podcasting application fulfills these requirements, since a channel could be
composed of a mixture of entries of music, news items, weather updates and
commentaries, such as the mix broadcast by many radio stations.

1.1.1 Thesis Contribution

This thesis is part of a larger research project (PodNet [3]) with the long-term
goal to develop a delay-tolerant network architecture for content distribution
on mobile phones. In this thesis we focus on implementation for Symbian
platform an ad hoc wireless networking protocol for opportunistic exchange of
podcasts between the mobile devices. We have read and analyzed the C++
ad hoc podcasting developed code in the Master thesis work of Clements
Wacha [4] then we have created the GUI on Symbian platform.

1.2 Thesis Structure

The rest of this document is structured as follows:

• This chapter provides an introduction to this thesis.

• Traditional podcasting, as existing in the Internet and other concepts
used in this work are described in the next chapter.

• Chapter 3 gives an introduction to the Symbian OS.

• Chapter 4 reviews briefly the Nokia platforms and gives an overview
about the Series 60 3rd edition.

• Chapter 5 describes our current implementation of this concept as a
Symbian C++ application for Nokia N95 and Nokia N93 handhelds.

1.2 Thesis Structure 4

• Chapter 6 lists the hardware and software used for the implementation
and contains the testing process.

• And Chapter 7 gives summary and conclusions.

Chapter 2

Related Work

2.1 Podcast

From Wikipedia [11]:

A podcast is a series of digital-media files which are dis-
tributed over the Internet using syndication feeds for playback
on portable media players and computers. The term podcast,
like broadcast, can refer either to the series of content itself or
to the method by which it is syndicated; the latter is also called
podcasting. The host or author of a podcast is often called a
podcaster.

The term is a portmanteau of the words iPod and broad-
cast, the Apple iPod being the brand of portable media player
for which the first podcasting scripts were developed (see history
of podcasting). These scripts allowed podcasts to be automati-
cally transferred to a mobile device after they are downloaded.

Though podcasters’ web sites may also offer direct download
or streaming of their content, a podcast is distinguished from
other digital media formats by its ability to be syndicated, sub-
scribed to, and downloaded automatically when new content is
added, using an aggregator or feed reader capable of reading feed
formats such as RSS or Atom.

From a technical point of view a podcast is very similar to a regular news
feed in RSS or Atom format. Both news feed formats divide content into
channels (i.e. podcasts or feeds) and episodes (i.e. news items, entries). An
episode may contain an enclosure (i.e. attachment). When talking about
podcasts the enclosure is usually an MP3-file or another sort of audio file.

5

2.2 Podnet 6

A podcast with one episode therefore consists of two files. The MP3-
file and the XML file containing the Atom or RSS meta information. This
concept gets very interesting if we use a podcasting application that is able
to check the meta file automatically if new episodes have arrived. iTunes is
one of those applications and it is also able to automatically download new
episodes.

As podcasts as well as news feeds have become very popular the idea
arises to extend their usage to wearable devices such as Nokia N93 and Nokia
N95 handhelds. Unfortunately these devices are not always connected to the
internet which prevents them from periodically updating their content. This
in turn leads to our goal of creating an application that is able to fetch
new episodes not only from the internet but also from other handhelds that
happen to be in WLAN range.

2.2 Podnet

PodNet is a research project with the goal to build a communication in-
frastructure out of human-carried personal devices equipped with wireless
capabilities like WLAN or Bluetooth. The portable devices include media
players, digital cameras, PDAs, mobile phones and game consoles.

Inspired by social networking, we conceive a communication network
which mimics how people spread information: data is exchanged between
two devices based on solicitations during contacts, i.e., whenever two per-
sons come into wireless range.

The contents in the system are made available either from the Internet or
in the mobile domain (Figure 1.1). The contents are provided as channels,
where each channel gathers contents for a specific topic. A mobile user that
is interested in one or more particular topics subscibes to the corresponding
channels on his mobile device. This subscription has only a local scope: it
simply informs the user’s device which channels it should retrieve contents
for and does not involve any remote logging of the subscription. As we will
see later in this section, channels are identified with a globally unique chan-
nel identifier. Therefore, a user subscribes to the channel by specifying the
desired channel identifier. A user might learn about available channels and
their identities when connected to the Internet, for example through repos-
itories or search engines like iTunes, Google or Yahoo. However, PodNet
also provides it own channel discovery mechanism. Users can subscribe to
a well known discovery channel that includes meta information as well the
identifiers of the available channels in the network. This channel is handled
as a regular channel and it thus updated as nodes peer with each other on

2.2 Podnet 7

the move. After a user has subscribed to a list of channels, his or her device
is ready to download contents. Every time the device has a connection to
another mobile node, it will try to download episodes from the subscribed
channel. A user may typically want to define some local policies. For exam-
ple, if subscribed to many different channels, he or she might want to assign
channel preferences to ensure that the favorite channels are downloaded first
during the transfer opportunities. Another policy could control what spe-
cific items of contents are downloaded from an individual channel. The user
might for example be intrested only in the latest episode on a news channel,
whereas files from music channels are more independent of time and do not
have to be updated on a regular basic. Also, users should be able to specify
contents that are not of interest within a channel. If a user has for exam-
ple already downloaded, consumed and deleted content, the device should
obviously not try to download the same content again in the future.

Chapter 3

Symbian OS overview

Symbian OS is a proprietary operating system, designed for mobile devices,
with associated libraries, user interface frameworks and reference implemen-
tations of common tools, produced by Symbian Ltd. It is a descendant of
Psion’s EPOC 1 and runs exclusively on ARM 2 processors [5].

3.1 Design

Symbian OS is characterized by: [6]

• Integrated multimode mobile telephony: Symbian OS integrates
the power of computing with mobile telephony, bringing advanced data
services to the mass marke;

• Open application environment: Symbian OS enables mobile phones
to be a platform for deployment of applications and services (programs
content) developed in a wide range of languages and content formats;

• Open standards and interoperability: with a flexible and mod-
ular implementation, Symbian OS provides a core set of application
programming interfaces and technologies that is shared by all Symbian
OS phones. Key industry standards are supported;

1EPOC is a family of operating systems developed by Psion for portable devices, pri-
marily PDA’s. Epoc is rumoured to derive from “Electonic Piece Of Cheese”, or from
epoch - the beginning of an era.

2The ARM architecture (previously, the Advanced RISC Machine and prior to that
Acorn RISC Machine) is a 32-bit RISC processor architecture developed by ARM Limited
that is widely used in a number of embedded designs.

8

3.1 Design 9

• Multi-tasking: Symbian OS is based on a micro kernel architecture
and implements full multi-tasking and threading. System services such
as telephony, networking middleware and application engines all run in
their own processes;

• Fully object-oriented and component based: the operating sys-
tem has been designed from he ground up with mobile devices in mind,
using advanced object oriented techniques, leading to a flexible com-
ponent based architecture.

• Flexible user interface design: by enabling flexible graphical user
interface design on Symbian OS, Symbian is fostering innovation and
is able to offer choice to manufacturers, carriers, enterprises and end-
users. Using the same core operating system in different designs also
eases application porting for third party developers.

• Robustness: Symbian OS maintains instant access to user data. It
ensures the integrity of data, even in the presence of unreliable commu-
nication and shortage of resources such as memory, storage and power.

Symbian OS’s major advantage is the fact that it was built for hand-
held devices with limited resources that may be running for months or years.
There is a strong emphasis on conserving memory, using Symbian-specific
programming idioms such as descriptors and a clean up stack. Together
with other techniques these keep memory usage low and memory leaks rare.
There are similar techniques for conserving disk space (though the disks on
Symbian devices are usually flash memory). Furthermore, all Symbian OS
programming is event-based and the CPU is switched off when applications
are not directly dealing with an event. This is achieved through a program-
ming idiom called active abjects. Correct use of these techniques helps ensure
longer battery life.

Unfortunately, Symbian C++ programming has a steep learning curve as
Symbian requires the use of techniques that are not common on PC platforms
such as descriptors and the cleanup stack. This can make even relatively sim-
ple programs harder to implement than in other environments. It is possible
that the techniques, developed for the much more restricted mobile hardware
of the 1990s, do cause unnecessary complexity in source code; programmers
are required to concentrate on bug-prone low-level routines instead of truly
applications-specific features. It is difficult however, to make a move towards
a more high-level and modern programming paradigm in Symbian, because
the platform is so tightly bound to semi-obsolete thinking models about mo-
bile software development.

3.2 Competition 10

3.2 Competition

Symbian OS EKA2 3 also supports sufficiently-fast real-time response. It is
possible to build a single phone in which a single processor core executes both
the user applications and the signalling stack. This has allowed Symbian OS
EKA2 phones to become smaller, cheaper and more power efficient.

3.3 Architecture

Symbian OS architecture is designed to meet a number of requirements (Fig-
ure 3.1). It must be hardware independent so it can be used on a variety of
phones types, it must be extendable so it can cope with future developments
and it must be open to all to develop for.

Figure 3.1. Symbian OS architecture

• Base: Symbian OS base is common to all devices, i.e. kernel, file server,
memory management and device drivers. Above this base, components
can be added or removed depending on the product requirements.

• System layer: the system layer provides communication and comput-
ing services such as TCP/IP, IMAP4, SMS and database management.

3EKA2 is the second-generation kernel for Symbian OS.

3.3 Architecture 11

• Applications engine: above the System layer sit the Application
engines, enabling software developers (be they either employed by the
phone manufacturer or independent).

• User interface software: it can be made or licenced by manufactur-
ers (for example in the case of the Nokia Series 60 platform).

• Applications: they are slotted in above the User interface.

Chapter 4

Software paltforms

4.1 Nokia implementation

Nokia develops and maintains several advanced software platforms that en-
able different user interfaces and displays, product concepts, and feature
configurations (see Figure 4.1).

Figure 4.1. Nokia software platforms

• Series 30: is the lowest-cost platform, designed for entry level mobile
phones that feature voice and basic messaging functionalities.

12

4.2 Nokia Series 60 3rd edition application development 13

• Series 40: is a versatile, efficient and highly cost effective feature phone
platform, particularly suited for the mobile phone product range.

• Series 60: is the world’s leading rich smartphone software platform
[7], available for OEM 1 licensing.

• Series 80: is a high-end software platform optimized for enterprise
communicators and smartphones, enabling a two-hand operated QW-
ERTY 2 keyboard and a wide screen.

4.2 Nokia Series 60 3rd edition application de-

velopment

The S60 platform is the market-leading smartphone platform built on Sym-
bian OS. It incorporates all key mobile technologies expected by increasingly
sophisticated enterprise users and consumers and it provides revenue oppor-
tunities for the full range of stakeholders in the mobile marketplace. As the
S60 platform has developed it has raised the bar on smartphone feature provi-
sion by taking the lead in developing and implementing many innovations [8].

S60 platform has different editions. It has experienced 1st Edition, 2nd

Edition, and the latest 3rd Edition. In each of the edition, it also introduces
different feature packs, which incorporate some of the advanced features on
each release. Symbian OS is based on open standard, which makes the devel-
opment on Symbian/S60 open for the developers. The development for the
S60 platform is backward compatible although there was a break between
the 2nd Edition and the 3rd Edition, which was introduced by the platform
security and new compiler used in the platform.

4.2.1 Architecture

Figure 4.2. illustrates the high level architecture of the S60 platform. The
platform is based on Symbian OS but also provides additional features [9].

The Symbian OS Extensions are a set of capabilities that allow the
S60 platform to interact with device hardware functions such as vibration
alert, device lights, and battery charge status.

1Original Equipment Manufacturer an organization that sells products that are made
by other companies.

2QWERTY is the most common modern-day keyboard layout on English-language
computer and typewriter keyboards.

4.2 Nokia Series 60 3rd edition application development 14

Figure 4.2. S60 platform architecture [10]

S60 Platform Services are the fundamental services provided by the
S60 platform, these include:

• Application Framework Services: providing the basic capabilities for
lounching applications and servers, state persistence management, and
UI (User Interface) components.

• UI Framework Services: providing the concrete look and feel for UI
components and handling UI events.

• Graphics Services: providing capabilities for the creation of graphics
and their drawing to the screen.

• Location Services: allowing the S60 platform to be aware of a device’s
location.

• Web-Based Services: providing services to establish connections and
interact with Web-based functionality, including browsing, file down-
load, and messaging.

• Multimedia Services: provodong the capabilities to play audio and
video, as well as support for streaming and speech recognition.

• Communication Services: providing support for local and wide are
communications, ranging for Bluetooth technology to voice calls.

4.2 Nokia Series 60 3rd edition application development 15

S60 Applications Services are a set of capabilities that are used by
the S60 applications and can be used by third-party developers to provide
basic functionality for applications.

S60 Java Technology services support the JavaTM Platform, Micro
Edition (JavaTM ME) Java Technology for the Wireless Industry (JTWI)
specification.

S60 Applications are available to a device’s user, include personal in-
formation manager (PIM), messaging, media applications, profiles, etc.

The S60 platforms defines UI style and API’s, but it does not mandate
the screen size or input methods. Licensees are free to implement their own
customized UIs. Developers must program UI applications with scalability
in mind because specific UI dimensions cannot be assumed.

4.2.2 Development process

The development process itself is very similar to desktop C++ or Java de-
velopment. The process is presented in Figure 4.3.

Figure 4.3. Development process for S60 3rd Edition [10]

• Building in C++:

In C++ development, builds are tested in two different environments:
in the emulator and on the device. Typically, builds are first tested
in the emulator and then final testing is performed on the target de-
vice. Because the operating systems in these environments are different,

4.2 Nokia Series 60 3rd edition application development 16

there are two different types of build targets. The build for the device
use another type of compiler. The actual type of compiler used when
creating builds for devices depends on the device and project require-
ments.
Once the build and test cycles have been completed, then the applica-
tion can be signed.
The platform security model requires mandatory .sis file signing. The
build process can be done in a command line or in an IDE (Integrated
Development Environment).

• Testing in the emulator:
C++ developers should be aware of the fact that altough the emula-
tor is an extensive tool for application testing, it’s functionality differs
from the devices. This is quite natural because the devices vary and
some features are device specific, like memory capacity.

The functionality differences include:

i. Because the emulator uses threads and not processes like the de-
vice would use, bad pointers can exist.

ii. The emulator uses default or set heap and stack sizes, which are
device specific in the actual devices.

iii. The emulator has the whole memory capacity of the test PC, but
the device has the limited amount of embedded memory.

iv. The processor capacity of a normal PC exceeds the processor ca-
pacity of a target device. This can make big differences on actual
performance of an application.

v. The emulator can be run without platform security, which is not
possible in mobile devices based on Symbian OS v9.1 and later.

Java developers can also test their applications with the emulator in-
cluded in the Java SDK (Software Development Kit).

• Signing process:

It is compulsory to sign all S60 applications before deploying the ap-
plication onto a real devices. There are two kinds of signing:

i. Self-Signed: for applications using UID’s between 0x80000000 -
0xFFFFFFFF, which belong to the unprotected range and the
application, can only use some of the basic set of capabilities.

4.3 The structure of a Symbian OS application 17

ii. Symbian Signed: for applications using UID’s between 0x00000000
0x7FFFFFFF, which belong to the protected range and the ap-
plication, may use some of the sensitive API’s.

• Distributing:

Several transfer methods can be used: WAP, e-mail attachment, in-
frared, Bluetooth, USB. Over-the-Air (OTA) is also suppoerted for
commercial distribution.

4.3 The structure of a Symbian OS applica-

tion

The S60 App Wizard (supplied with the S60 SDK) is the recommended way
to start a new application project. The wizard creates an empty application
with a menu, which is ready to add features and run. Figure 4.4 demon-
strates the structure of a Symbian OS application [12].

The structure contains the following classes:

• The application class is responsible for seting up and executing the
application. It supplies a globally unique 32-bit identifier (UID) which
is always associated with the application (both in the build project and
at run time). Changing the UID during the lifetime of the project is not
advisable since it is used in a number of places through the application
source files.

• The document class is created by the application class. It usually has
strong ownership of application data and is responsible for persisting
and iternalizing the data. This class also instantiates the application
user interface (AppUi) class. It is feasible for the document class not
to implement anything other than creating the application’s instance
of the AppUi.

• The application user interface is used for event handling. The Ap-
pUi acts as a global event, and command, handler. It processes key
presses and menu selections and can pass these events on to the views
and container classes the make up an application. The AppUi is a
controller that has no visible presence on the screen.

• Views and container classes provide the screens of the application.
They are handled by the view architecture. A view is essentially a con-
tainer class associated with an ID. A particular view can be activated

4.3 The structure of a Symbian OS application 18

Figure 4.4. Application structure

from within the application or from another application by supplying
the UID of the application and the ID of the view.

Figure 4.4 shows the minimum number of classes that need to be created
to run an application. More classes may be added as the application evolves
and other screens or views are needed.

4.3.1 Directory structure

A standard directory structure for an application is recommended, in order
to maintain clarity as the application evolves. If we use a common strucure
for the project we will have at least six folders and and a build descripton
files:

• The application interface (/aif) directory contains two icons and
their marks. One icon is, a 42 x 29-pixel image, is for the main menu

4.4 Used technologies 19

and a larger 44 x 44-pixel icon is for the application’s context pane. A
resource file is also stored here for the icons.

• The data directory hold files that define the specific resource utilized
by the application. For applications using Symbian OS v9 and higher,
these files address the new security implications.

• The group directory holds the resource files for each of the compilers,
a UID source file, the bld.inf file (which tells the compiler wherethe
project file is) and the project file itself.

• The include directory holds the header files, global files and localiza-
tion files.

• The install directory contains the package files (.pkg) and Symbian
installation file (.sis). The package file lists all resources and files
required by the project. When compiled, using the makesis command,
the installation file is created.

• The source directory stores all the source files (.cpp) which implement
the functionality of the system. Other folders to storage graphics and
sounds may also be added here.

4.3.2 Project file structure

The .mmp file is the project definition file. This file lists and describes each
of the individual source code files and libraries required by the application or
component, as well as directory locations and other project-defined assets.
This file can be used to generate the appropriate project files for your chosen
IDE, and so allows for a software-independent definition of the application.

The project file defines all the components that the project requires,
source files, bitmap and library files are examples of a view. As an example,
our applications PodNet.mmp file is given in the Appendix B.

4.4 Used technologies

These subsections contain the programming technologies used to port the
C++ code to the Symbian platform.

4.4 Used technologies 20

4.4.1 Symbian C++

Symbian OS was built using C++ and this development language provides
the fullest access to the feature-rich S60 platform. All versions of the S60
platform suppor C++ development and various integrated development en-
vironments (IDEs) are available for each version.

Symbian C++ development for the S60 platform requires two compo-
nents: a suitable development environment and an sofware development kit
(SDK) for the edition and feature pack(s) at which the application will be
targeted. SDks are provided free of charge.

Symbian C++ development for the S60 platform is supported by Car-
bide.c++, a member of the Carbide family of tools from Nokia. Carbide.c++
is based on Eclipse IDE and is being made available in four versions: Car-
bide.c++ Developer, Carbide.c++ Professional, Carbide.c++ Express and
OEM editions.

Carbide.c++ Developer was used in podcast application development,
that is designed for application developers with more stringent application-
quality requirements. It provides the ability to perform on-device debugging
and includes a UI design tool that helps simplify S60 development.

4.4.2 P.I.P.S.

P.I.P.S is termed to be P.I.P.S Is POSIX on Symbian and it is the first
stage in the implementation of POSIX (Portable Operating System Interface
for uniX) standard libraries for Symbian OS. Also P.I.P.S is termed to be
a subset of POSIX libraries. The implementation of these libraries onto
Symbian OS will make it easier for C developers in order to develop and
build or port their applications to Symbian and as a platform independent
one.

POSIX basically contains API’s that are compatible across many Oper-
ating Systems.

P.I.P.S includes four standard libraries and they are listed below:

1. libc: Includes standard C libraries - I/O routines, database routines,
Bit operator, String Operator, Character Test and Character Opera-
tors, Storage Allocations and Signal Handling.

2. libpthread: Thread creation and destruction, interface to thread sched-
uler, mutex.

3. libm: Arithmetic and Mathematic functions as per Standard C library.

4. libdl: Loading of Dlls.

4.4 Used technologies 21

The main entry point of P.I.P.S application is similar to normal C appli-
cation main() and not as native Symbian C++ entry point - E32Main().

Advantages of P.I.P.S:

• Can port existing middleware to Symbian OS.

• Can port existing C applications to Symbian OS.

• Developers can create their applications on Symbian OS by using C
libraries natively.

• There are lots of Linux Open source projects written on POSIX.

Disadvantages of P.I.P.S:

• User cannot create UI’s using P.I.P.S for their applications.

• Symbian P.I.P.S stdio is different from old stdio and user cannot make
use of the old stdio library.

4.4.3 Open C

Open C is a set of Industry Standard C libraries and it is an extension of
P.I.P.S. Open C brings to S60 well-known C libraries, including subsets of
POSIX, OpenSSL, zlib, and GLib.

Open C extends PIPS to include libz, libcrypt, libcrypto, libglib, and
libssl. These will effectively required porting a large number of existing
Linux applications (see Figure 4.5).

Apart from the above four libraries explained in P.I.P.S., Open C also
includes the below given libraries:

1. libz: Zlib compression library which provides memory compression and
decompression functions which in turn includes integrity checks.

2. libcrypt: Cryptography libraries - encrypting blocks of data and mes-
sages.

3. libcrypto: Used by Open SSL implementations of SSL, TLS and
S/MIME and also been used to implement SSH, OpenPGP and other
cryptographic standards.

4. libglib: General purpose utility library that provide macros, data
types, type conversions, string utilities and file utilities.

5. libssl: Transport layer security protocols.

4.4 Used technologies 22

Figure 4.5. P.I.P.S. and Open C important libraries

4.4.4 STLport

STLport is a high-quality implementation of the C++ Standard Template
Library (STL), a library that is part of the ISO/IEC C++ Standard and
that is not included natively in the Symbian OS platform. By supporting
the STL, Symbian applications can benefit from a wide range of existing
C++ code that can now be ported easily.

The STLport works on all Symbian OS 9.x devices, both S60 and UIQ
variants. The library has been succesfully compiled with (and binaries are
provided for) following platform SDKs:

• S60 3rd Edition 1.1 Maintenance Release

• S60 3rd Edition Feature Pack 1

• UIQ 3.0

The only dependency is a conforming Standard C library, that is provided
by either the P.I.P.S. library or Nokia’s Open C plugin.

Chapter 5

Implementation

This chapter explains all important details of the current implementation.
Clements Wacha has written in an earlier master thesis the core program in
C++ [4]. Although it was thoroughly tested on Windows CE, it also compiles
and works on Windows XP/2000, Linux and Mac OS X. The PodNet core
application is based on the measurement application developed in an earlier
thesis [13]. The PodNet application was ported to the Symbian platform
and the existing software was extended with a GUI that was implemented in
Symbian C++.

5.1 Platform independence

The podcast application makes a lot of use of low-level system calls which
introduce problems when porting the application to another platform. The
original measurement application used a simple wrapper to overcome this
problem.

The three difference platforms of PodNet application is presented in Fig-
ure 5.1. The core program and the part of Windows Mobile platform has
been implemented by Clements Wach. In this thesis we have extended the
core application with the Symbian platform independence libraries and a
Symbian GUI.

The following system calls are platform specific where we need include
the following libraries and capabilities: (see Appendix B)

• threads in general: libpthread.lib library

• semaphores and mutexes to protect critical sections: libpthread.lib

library

23

5.2 Graphical User Interface 24

Figure 5.1. The platforms of PodNet program

• network access: esock.lib library and NetworkServices capability

• file system access other than open, read, write and close: ReadDeviceData
and WriteDeviceData capabilities.

All these functions are collected in the PI (Platform Independence) library
which Clements Wacha has originally created in [13] and extended in this
work to Symbian by adapting the platform independence library.

5.2 Graphical User Interface

Model View Controller

To make the Graphical User Interface (GUI) optional we had to separate it
from the main application core in a clean way. This was done by using the
Model-View-Controller (MVC) approach 1.

The view architecture allows to register views and switch between them,
with one view running at a time. This requires the use of unique identifiers
(UIDs) with each view requiring its own UID.

Three Views have been created:

1See http://wiki.forum.nokia.com/index.php/Design_Patterns_in_Symbian for
a good explanation.

http://wiki.forum.nokia.com/index.php/Design_Patterns_in_Symbian

5.2 Graphical User Interface 25

• CPodNetGUIListBoxAllChannels: in this view we can see all available
channels.

• CPodNetGUIListBoxDetails: show all available episodes within a chan-
nel.

• CPodNetGUIListBoxEpisodes: this screen shows the episode meta in-
formation.

A common approach allows each view class to be initiated in the appli-
cation user interface and this user interface class is the main event handler.
Control can be passed down to specific view classes that own a container,
which is where the functionality of the view is implemented (see Figure 5.2).

Figure 5.2. Multiple views architecture

In every view, we created a ListBox. It was the easiest way that we can
insert new items in a list. For example in the first case when we show the
All available channels in a list box, the list box item is the title of channel.

You can switch between the views if you press on the selected list box
item with the middle button or choose the correct menu item (All channels,
Show episodes, Show info) from the menu list.

5.3 Conversions 26

Figure 5.3. GUI architecture

5.3 Conversions

In many cases, we need convert our Symbian descriptors to Open C strings
and vice versa because the GUI that had been developed in Symbian C++,
communicates with the core application that had been written in C++.

Converting Open C string to HBufC16 descriptor

This way is relying on a dynamic buffer, using HBufC16 for instance:

TPtrC8 pt(reinterpret_cast<const TUint8*>(get_episode.c_str()));

HBufC* temp_get = HBufC::NewLC(pt.Length());

temp_get->Des().Copy(pt);

Converting TDesC8 descriptor to Open C string

This way had been chosen, using char* for instance:

TInt length = aCustomMessage.Length();

HBufC8* buffer = HBufC8::NewLC(length);

buffer->Des().Copy(aCustomMessage);

char* episodes = new(ELeave) char[length + 1];

Mem::Copy(episodes, buffer->Ptr(), length);

episodes[length] = ’\0’;

5.3 Conversions 27

Converting HBufC16 to HBufC8

This example is conversion from 16-bit to 8-bit data where we are just copy-
ing:

HBufC8 *get = HBufC8::NewLC(temp_get->Length());

get->Des().Copy(*temp_get);

Chapter 6

Evaluation

6.1 Testbed

The ad hoc network consisted of Nokia N95 and Nokia N93 mobile devices.
Both devices communicated over their integrated WLAN interface. The pod-
casting application core is written in C++. The graphical user interface is
written in Symbian C++.

6.2 Testing process

Before we tested on the real devices we used the Symbian OS emulator that
is a Windows application called epoc.exe, which simulates phone hardware
on the PC. The emulator enables software development for Symbian OS to
be substantially PC-based in its early stages, although the final develop-
ment stages will require the use of phone hardware. After the command line
testing, we created a Symbian C++ GUI.

6.2.1 Testing on emulator

As first step, the PodNet core application had been compiled and tested
like a command line project. In Carbide.c++, the emulator path had been
changed to point at a file called eshell.exe. The core application can be tested
in this command line (see Figure 6.1).

A lot of commands had been tested in command line mode in the emulator
but we could not connect to the access point because the emulator does not
provide a WLAN interface. Because of that, we were not able to test the
commands that need the network access capabilities like my ip.

28

6.2 Testing process 29

Figure 6.1. Carbide.c++ emulator in command line mode

6.2.2 Testing with GUI

Channels and episodes with meta information had been created for testing.
The list boxes had been tested with these test items:

//for example one channel

DS_Channel* chan1 = new DS_Channel();

chan1->updated = PI_GetTime();

chan1->channel_id = "ch1_id";

chan1->title = "channel1";

app->datastore->Channel_Add(chan1);

//for example one test episode (with meta information)

DS_Episode* ep1 = new DS_Episode();

ep1->updated = PI_GetTime();

ep1->episode_id = "ep1_id";

ep1->title = "episode1 ch1";

ep1->subtitle = "ep1 subtitle";

ep1->author = "ep1 Author";

app->datastore->Episode_Add(chan1->ref_id,ep1);

6.2 Testing process 30

We used with test data for the following tasks:

• list available channels (with Display/All channels menu item)

• list channel episodes (with Channel/Show episodes menu item)

• show the episode meta information (with Show info menu item)

Test episodes had not been created under the channel4 because of if you
click on this channel item you can see the No epsiodes found listbox item in
the episode list box (see Figure 6.2).

Figure 6.2. Datas for testing

In the 3rd view (Details), the right soft key is BACK. The handling is not
working correctly yet. In the 2nd view (Episode List), this menu item is not
fully functionality.

The following menu items are working:

• in 1st screen: All channels, Show episodes and Exit

• in 2nd screen: Show info and Back

• in 3rd scrren: Back, is not working correctly.

Chapter 7

Conclusions

This master thesis consists of three part:

• port the existing podcasting code to Symbian by adapting the platform
independence library

• extend the existing software with a GUI

• testing of this application on Nokia N93 and N95 handhelds.

The existing podcasting code has been designed and implemented in C++
from an earlier project. This software uses peer-to-peer synchronization to
exchange content directly between neighboring devices. We have ported this
existing podcasting code to Symbian by adapting the platform independence
library. We have tested this program in Carbide.c++ using the command
line emulator. Then we have developed a GUI in Symbian C++ that com-
municates with the core application. Our programs runs on Nokia N93 and
N95 handhelds. We have tested and used the application under Windows
XP.

We have created channels and episodes for testing. We can show all
available channels, episodes within a channel and details of these episodes
when the corresponding menu items has been choosen.

Our future plan is to develop the GUI that allow users to subscribe to
channel, to publish new content to channels, and to listen or watch down-
loaded channel contents. Furthermore, extend the existing software with
a tracing module that traces the WLAN link conditions between PodNet
devices and the GPS coordinates of the devices.

31

Appendix A

Task Description

This appendix contains the official task description of the thesis project is
presented.

The goal of this thesis is to develop a prototype content distribution
application for Symbian phones which makes use of their ad hoc capabili-
ties (Bluetooth, Wifi) in order to directly connect them. The application
should allow users to exchange pictures and videos that were generated on
the mobile phones. Further, as a background process, the application should
constantly log all devices that it sees within communication range together
with a timestamp and the duration of the cantact. Whenever there is an
opportunity, these logs are uploaded to a server at ETH Zurich.

The application should be developed for the Symbian OS [2] since (i)
Nokia has the highest market share and (ii) a partnership with Nokia is
under discussion. A major goal of the thesis is to make it run on many
devices as possible in order to potentially attract as many users as possible.
In order to meet these goals, the thesis is split into the following tasks:

1. Literature exploration: Familiarize with the Podnet project [3] and the
Master thesis work of Clemens Wacha on wireless podcasting [4].

2. Identify steps : Identify the necessary steps to port the existing pod-
casting code to the Nokia N95 Symbian platform.

3. Port the code: Port the code to Symbian by adapting the platform
independence library.

4. Extend the existing software with a GUI : The GUI should at least allow
the users to (i) create channels, (ii) to subscribe to channels, (iii) to
publish new content to channels, and (iv) to listen or watch downloaded
channel contents.

32

A.1 Working Plan 33

5. Extend the existing software with a tracing module: The tracing module
should trace the WLAN link conditions (packet loss rates, RSSI values,
etc) between PodNet devices and the GPS coordinate of the devices.
Extend the tracing module with a mechanism to automatically upload
traces to a data sink (a gateway in the Podnet system architecture).

6. Test the application: It should test on Nokia N95 and Nokia N93.
In addition test the application for compatibility with the Windows
Mobile and the N810 Linux implementation.

7. Setup a Web page: Create the Web page so that people can install the
developed software by means of docking as well as by direct installation
without docking.

8. Thesis writing : A detailed report of the performed work will be written.

A.1 Working Plan

Table A.1 shows the working plan of this thesis. The task numbers refer to
the points defined above.

Week Date Tasks
1 2 3 4 5 6 7 8

1 11th Febr. - 17th Febr. X
2 18th Febr. - 24th Febr. X
3 25th Febr. - 2nd March X X
4 3rd March - 9th March X X
5 10th March - 16th March X
6 17th March - 23rd March X
7 24th March - 30th March X
8 31th March - 6th April X X X
9 7th April - 13th April X X X
10 14th April - 20th April X X X
11 21th April - 27th April X X X X
12 28th April - 4th May X X X
13 5th May - 11th May X X X
14 12th May - 18th May X X

Table A.1. Working plan of the thesis project

A.1 Working Plan 34

Start: Monday, 11th February 2008
End: Friday, 9th May 2008

Zurich, 22nd February 2008
Ákos Bakos

Appendix B

Project definition file of
PodNet

The PodNet.mmp project definition file specifies the properties of a project
in a platform and compiler independent way.

TARGET PodNetGUI.exe

UID 0x100039CE 0xEAE869F1

VENDORID 0

TARGETTYPE exe

EPOCSTACKSIZE 0x5000

SYSTEMINCLUDE \epoc32\include

SYSTEMINCLUDE \epoc32\include\variant

SYSTEMINCLUDE \epoc32\include\ecom

SYSTEMINCLUDE \epoc32\include\stdapis

SYSTEMINCLUDE \epoc32\include\stlport

SYSTEMINCLUDE \epoc32\include\libc

USERINCLUDE ..

USERINCLUDE ..\inc

USERINCLUDE ..\data

USERINCLUDE ..\PI

USERINCLUDE ..\tinyxml

SOURCEPATH ..\data

START RESOURCE PodNetGUI.rss

HEADER

TARGETPATH resource\apps

END //RESOURCE

START RESOURCE PodNetGUI_reg.rss

TARGETPATH \private\10003a3f\apps

END //RESOURCE

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib avkon.lib

LIBRARY commonengine.lib efsrv.lib estor.lib eikcoctl.lib eikdlg.lib

LIBRARY eikctl.lib bafl.lib fbscli.lib aknnotify.lib aknicon.lib

LIBRARY etext.lib gdi.lib egul.lib insock.lib

LIBRARY ecom.lib InetProtUtil.lib http.lib esock.lib libc.lib libm.lib libpthread.lib

35

APPENDIX B. PROJECT DEFINITION FILE OF PODNET 36

LANG 01

START BITMAP PodNetGUI.mbm

HEADER

TARGETPATH \resource\apps

SOURCEPATH ..\gfx

SOURCE c24 podnet_icon_w.bmp

END

SOURCEPATH ..\src

#ifdef ENABLE_ABIV2_MODE

DEBUGGABLE

#endif

SOURCE PodNetGUIApplication.cpp PodNetGUIAppUi.cpp PodNetGUIDocument.cpp

SOURCEPATH ..\PI

SOURCE pi_filesystem.cpp pi_socket.cpp pi_string.cpp pi_tcpsocket.cpp

pi_threads.cpp pi_time.cpp pi_udpsocket.cpp

SOURCEPATH ..\tinyxml

SOURCE tinystr.cpp tinyxml.cpp tinyxmlerror.cpp tinyxmlparser.cpp xmltest.cpp

SOURCEPATH ..

SOURCE analyser.cpp automator.cpp bloom_filter.cpp datastore.cpp debug.cpp

flexpacket.cpp message.cpp ndishelper.cpp rc_commands.cpp router.cpp

simple_rpc.cpp sync.cpp transfer.cpp main.cpp

STATICLIBRARY stlport_s.lib

SOURCEPATH ..\src

SOURCE PodNetGUIListBoxAllChannelsView.cpp PodNetGUIListBoxAllChannels.cpp

PodNetGUIListBoxEpisodesView.cpp PodNetGUIListBoxEpisodes.cpp PodNetGUIListBoxDetails.cpp

PodNetGUIListBoxDetailsView.cpp

Appendix C

Development Environments

C.1 Setting up the Environment

In order to get started we need a couple of tools installed on our PC,
these include an Integrated Development Environment (IDE) for building
our applications and a suitable Software Development Kit (SDK). The SDK
contains Application Programming Interface (API) documentation, example
code, and a number of development tools, including an emulator for test-
ing and debugging our application before actually deploying it on the target
phone.

The recommended IDE by Symbian and Nokia are currently the Eclipse
based Carbide.c++. The Carbide.c++ IDE is available in three different
versions:

• Carbide.c++ Express Free version for non-commercial developers

• Carbide.c++ Developer Additional capabilities for commercial devel-
opers

• Carbide.c++ Professional For advanced commercial developers

In the following we will be using the Carbide.c++ Developer IDE. It is
recommended that we have a fairly fast development PC. For running the
Carbide.c++ Developer edition, the following configuration is recommended:
Windows XP (SP2) or Windows 2000 (SP4), 1800MHz processor, 1024 MB
RAM, and enough free hard drive space for the IDE and a SDK - typically
around 650 MB (additional installs such as Java Runtime Environment and
Perl are not included in the 650MB, but commonly required).

The choice of SDK to install depends on the target device. As we may
have noticed, the UI and input capabilities of Symbian OS based devices

37

C.2 Installing the IDE 38

can vary from phone to phone. Some phones provide pen-based input while
others are designed for one-hand use with a numeric keypad. This flexibility
means that we have to use the SDK matching the UI capabilities of our
target device. Currently the majority of Symbian phones use the S60 UI.
S60 is available in a number of revisions; these are shown in the list below.

• S60 3rd Edition Symbian OS v9.1

• S60 2nd Edition Feature Pack 3 Symbian OS v8.1

• S60 2nd Edition Feature Pack 2 Symbian OS v8.0a

• S60 2nd Edition Feature Pack 1 Symbian OS v7.0s enhanced

• S60 2nd Edition Symbian OS v7.0s

• S60 1st Edition Symbian OS v6.1

Symbian maintains a list of phones using each version of the Series 60
SDKs. Here we can check the device section for the platform and feature
pack version of a specific phone model. As mentioned previously, we will be
using the S60 3rd Edition Maintenance Release. As seen on the list from
Symbian our application will be targeting the following phones: Nokia N95
and Nokia N93. However, there is a large chance that our application will
also run on other phones within the S60 3rd Edition Maintenance Release
category.

C.2 Installing the IDE

In order to download the IDE we need a Forum Nokia account. If we are not
yet a registered member go to registration to create an account first. We will
also need to register the SDK so if we do not have an account, now is a good
time to get one. In addition to allowing us to register the IDE and SDK for
free, we will also be able to use the development-related community forums
at Forum Nokia.

The Carbide development tools can be downloaded from Forum Nokia
webpage. Choose the free Carbide.c++ Express version. If we want to
implement graphical UI design we need the Carbide.c++ Developer version.
After installing the IDE let us quickly move on and install a SDK.

http://www.forum.nokia.com/devices/matrix_all_1.html
http://www.forum.nokia.com/main/registration/registration.html
http://www.forum.nokia.com/main/resources/tools_and_sdks/carbide_cpp/

C.3 Installing the SDK 39

C.3 Installing the SDK

The different Symbian SDKs can be found on Forum Nokia’s C++ SDK. Be
careful to download an SDK compatible with Carbide.c++. This means that
we can currently choose between the following SDKs:

• S60 3rd Edition, FP2

• S60 3rd Edition, FP1

• S60 3rd Edition Maintenance Release

• S60 2nd Edition, FP3

• S60 1st Edition, FP1

In our case we will download the 3nd Maintenance Release.
Note that the installation directory must be on the C: drive and its name

must not contain spaces (the best thing to do is just to accept the default
installation directory).

C.4 Additional installations required

Perl (www.activestate.com)
We also need to install Perl as several of the build scripts in the SDK rely

on this.

• ActivePerl-5.6.1.635

Java (www.java.com)
In order to utilize the phone emulator fully, we also need a working in-

stallation of Java Runtime Environment.

• Download the latest version from www.java.com/download

Open C (Forum Nokia - Open C)
The provided Open C SDK plug-in is intended for developers porting

software using Open C.

• Download the free Open C SDK from www.forum.nokia.com

STLport (www.stlport.sourceforge.net)
We need still STLport, that a high-quality implementation of the C++

Standard Template Library (STL).

http://sw.nokia.com/id/d47c910f-755d-4e6a-99df-ac810d8c7a28
http://sw.nokia.com/id/178ab2d1-b59d-4236-96e6-215ae212c223/S60-SDK-200634-3.1-Cpp-f.1090b.zip
http://sw.nokia.com/id/4a7149a5-95a5-4726-913a-3c6f21eb65a5/S60-SDK-0616-3.0-mr.3.749.zip
http://sw.nokia.com/id/c98847e6-b922-40fa-8a7a-24ce8d677d52/s60_2nd_sdk_fp3.zip
http://sw.nokia.com/id/3700d7ff-8668-4313-a979-488b50bd9fdc/nS60_sdk_v1_2.zip
http://www.activestate.com/
ftp://ftp.activestate.com/ActivePerl/Windows/5.6/ActivePerl-5.6.1.635-MSWin32-x86.msi
http://www.java.com/en/
http://www.java.com/en/download/index.jsp
http://www.forum.nokia.com/main/resources/technologies/open_c/index.html
http://sw.nokia.com/id/eebd3308-4cb9-456f-ae6c-b404dd80fd1b/s60_openc_plugin_MR_2.0.zip
http://stlport.sourceforge.net/

C.4 Additional installations required 40

• We can download the prebuilt for S60 3rd Edition Maintenance Release
SDK

Nokia PC Suite (www.nokia.com)
A final tool that will come in handy is the PC Suite from Nokia. Installing

the PC Suite will enable us to easily transfer our application to the actual
phone.

• Download the latest version from http://europe.nokia.com/A4144905

This completes the installation of IDE and SDK - we are now ready to put
our tool to use and start creating Symbian C++ applications.

http://www.webalice.it/marco.jez/files/STLport-bin-5.1.3-symbian-r1-S60_3rd_MR.zip
http://www.webalice.it/marco.jez/files/STLport-bin-5.1.3-symbian-r1-S60_3rd_MR.zip
http://www.nokia.com/
http://europe.nokia.com/A4144905

Appendix D

User’s guide

Several transfer methods can be used that the PodNet application is sent
from development environment to our mobile phone such as via Bluetooth,
infrared, USB. After the transfer the application has been installed on the
device. Our own licence agreement had been used during the installation
(see Figure D.1).

Figure D.1. Licence of ETHZ D-ITET

After the installation, the application starts with a startup screen where
all available channels are shown in a list (see Figure D.2).

41

APPENDIX D. USER’S GUIDE 42

Figure D.2. All available channels

In this screen we can scroll with the arrow button from channel to chan-
nel and if we click the Menu button, we can choose from the menu items
presented Figure D.3.

Figure D.3. Menuitems in the startup screen

After this we can press on the selected channel with middle button of
mobile device and then we can see the list of channel episodes or we can use
the Show episodes menu item (see Figure D.4).

APPENDIX D. USER’S GUIDE 43

Figure D.4. Show the list of channel episodes

If we click in the right Figure D.5 of the screen on the selected episode,
we can see the episode details. In an other case we can see it, if we select
one episode and then we press on Show info menuitem.

Figure D.5. Meta information of the episode

From this screen you can go back to the episode list screen.

Bibliography

[1] Karlsson G., Lenders V., May M., Delay-Tolerant Broadcasting,
In Proceedings of the ACM SIGCOMM Workshops, Pisa, Italy, Septem-
ber 2006

[2] Symbian OS
http://www.symbian.com/

[3] The Podnet Project
http://podnet.ee.ethz.ch/

[4] Clemens Wacha, Wireless Ad Hoc Podcasting with Handhelds,
Master Thesis MA-2007-05,
TIK, ETH Zurich, May 2007

[5] Wikipedia, Symbian OS,
http://en.wikipedia.org/wiki/Symbian_os

[6] Jo Stichbury, Mark Jacobs, The Accredited Symbian Developer primer:
Fundamentals of Symbian OS,
John Wiley & Sonc Inc., 2006

[7] The world’s leading smartphone software S60 extends leadership with
six new devices
http://www.nokia.com/A4136001?newsid=1190186

[8] S60 3rd Edition: Application Development
http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:

_Application_Development

[9] Nokia and Symbian OS, White Paper
http://nds2.ir.nokia.com/NOKIA_COM_1/About_Nokia/Press/

White_Papers/pdf_files/symbian_net.pdf

44

http://www.symbian.com/
http://podnet.ee.ethz.ch/
http://en.wikipedia.org/wiki/Symbian_os
http://www.nokia.com/A4136001?newsid=1190186
http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:_Application_Development
http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:_Application_Development
http://nds2.ir.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/symbian_net.pdf
http://nds2.ir.nokia.com/NOKIA_COM_1/About_Nokia/Press/White_Papers/pdf_files/symbian_net.pdf

BIBLIOGRAPHY 45

[10] Forum Nokia, Developer Community Wiki
http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:

_Application_Development

[11] Wikipedia, Podcasting,
http://en.wikipedia.org/wiki/Podcast

[12] Paul Coulton and Reuben Edwards with Helen Clemson, S60 Program-
ming: A Tutorial Guide,
John Wiley & Sonc Inc., 2007

[13] Trajkovic I., Wacha C., Ad Hoc Communication with Handhelds,
Semester Thesis TIK-2006-02,
TIK, ETH Zurich, February 2006

http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:_Application_Development
http://wiki.forum.nokia.com/index.php/S60_3rd_Edition:_Application_Development
http://en.wikipedia.org/wiki/Podcast

	1 Introduction
	1.1 Wireless Ad Hoc Podcasting
	1.1.1 Thesis Contribution

	1.2 Thesis Structure

	2 Related Work
	2.1 Podcast
	2.2 Podnet

	3 Symbian OS overview
	3.1 Design
	3.2 Competition
	3.3 Architecture

	4 Software paltforms
	4.1 Nokia implementation
	4.2 Nokia Series 60 3rd edition application development
	4.2.1 Architecture
	4.2.2 Development process

	4.3 The structure of a Symbian OS application
	4.3.1 Directory structure
	4.3.2 Project file structure

	4.4 Used technologies
	4.4.1 Symbian C++
	4.4.2 P.I.P.S.
	4.4.3 Open C
	4.4.4 STLport

	5 Implementation
	5.1 Platform independence
	5.2 Graphical User Interface
	5.3 Conversions

	6 Evaluation
	6.1 Testbed
	6.2 Testing process
	6.2.1 Testing on emulator
	6.2.2 Testing with GUI

	7 Conclusions
	A Task Description
	A.1 Working Plan

	B Project definition file of PodNet
	C Development Environments
	C.1 Setting up the Environment
	C.2 Installing the IDE
	C.3 Installing the SDK
	C.4 Additional installations required

	D User's guide
	Bibliography

