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Abstract

In order to answer several remaining open questions in the area of flow-based anomaly detec-
tion, network traffic traces containing anomalies with selected characteristics are a prerequisite.
In this project the implementation of an anomaly injection framework called FLAME is presented.
The framework combines the controllability offered by simulation with the realism provided by
real traffic, by injecting hand-crafted anomalies into a given background traffic trace.
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Zusammenfassung

Auf dem Gebiet der Anomaly Detection gibt es immernoch etliche offene Fragen, die man zu
loesen versucht mit Hilfe von Netzwerk-Traffic-Traces, welche Anomalien mit ausgewaehlten
Charakteristiken enthalten. In dieser Arbeit wird die Implementation eines Frameworks namens
FLAME vorgestellt. Das Framework kombiniert die Kontrolle welche man ueber simuliertem
Netzwerktraffic hat mit dem Realismus von reelem Traffic, indem es von Hand konfigurierbare
Anomalien in gegebenen Hindergrund-Traffic einspeist.
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Chapter 1

Introduction

Network anomaly detection systems today are deployed in major backbone infrastructures. De-
tection systems that work on the flow level are used for a low footprint detection. To create a
tool to test these detection system, this framework for the generation of anomaly traffic traces
was designed and implemented in parallel with the paper by Brauckhoff et al [3] describing the
approach.

1.1 Motivation

Up to now there were generally two approaches to test anomaly detection systems. The first one
is to use existing traces of known attacks and anomalies in network traffic. The drawback of this
approach is that the data is either very short and static or the data is anonymized or sampled.
Both scenarios are not optimal to thoroughly test detection systems. Other approaches involve
the simulation and generation of complete traffic traces on the packet as well as on the flow
level. This approach has the drawback that even the background traffic is less realistic and is
therefore less optimal for testing. The approach taken here takes the best from the previous
approaches by combining the usage of collected traffic, which doesn’t contain any anomalies
as background traffic and injecting simulated anomaly traffic into those traces. We believe that
this gives a much better result in testing and developing anomaly detection systems.
The framework will also serve as a general tool when working with NetFlow data. It should be
easy to implement new components or modify existing ones and use them in combination with
the components implemented in this project.

1.2 The Task

The task of the this project was to implement a first prototype of an anomaly injection system
which runs on Unix-like environments and is able to inject handcrafted anomalies into existing
flow traces. The actual project assignment was divided into three major parts. The first part was
to analyze various kind of anomalies and to find and extract features to describe them. The main
part then was the design and implementation of the framework and all its components. The last
step of the assignment was to evaluate the implemented framework using real data from the
SWITCH [1] network.

11
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1.3 Related Work

This work was very much inspired by the paper on packet trace manipulation from Rupp et
al [10]. The authors present several basic manipulation operations for packet traces, namely,
merging, adapting, stretching or compressing, moving, and duplicating. The main difference is
that they work with packet traces, while we rely on flow traces. Moreover, they do not provide
methods for generating anomalous traffic, but rely on existing packet traces that already contain
attack traffic. In contrast, the focus of this work is to simulate the anomalous traffic since this
gives us full control about the characteristics of the anomalous traffic.

Another of inspiration was the work by Mirkovic et al [8] on modeling denial of service attacks
and countermeasures. We will try to explore the knowledge about DoS attack characteristics
gained in this work. This approach differs from that work in two ways: first we use an exist-
ing trace as background traffic, and second we do not restrict ourself to denial of service attacks.

Trident, developed by Sommers et al [12] is another tool for generating malicious and benign IP
packet traffic traces. Benign traffic is generated using application-specific automata and a tool
called Harpoon [11], which was developed earlier by the authors and by the work of Vishwanath
et al [14] who describe the creation of realistic traffic on the packet level. Attack traffic is
generated with MACE [12], which was extended to support 21 different attacks (e.g., Welchia,
teardrop, synflood) for this work. Trident focuses on the evaluation of packet-level NIDS such as
Bro, while our goal is to evaluate flow-based anomaly detection systems. In contrast to NIDS,
these systems do not rely on individual packet header or payload characteristics but on link- or
host-level statistics such as flow or packet counts.

To get an idea on how anomaly detection mechanisms work, several papers were consulted.
There is the work of Myung-Sup et al [4] which presents an anomaly detection algorithm using
flow data. The work of Gerhard Muenz and Georg Cale is on a real-time analysis of flow data
for anomaly detection and described in [9] and also helped me to gain inside into anomaly
detection. In the last paper by by Soule et al [13] filtering and statistical methods were used as
an anomaly detection approach.

Several other sources were used as inspiration for the first part of this work, where traffic and
anomaly features were listed and defined to create a usable set of description attributes for any
anomaly. Most notably there was the work from Lakhina et al [7] for mining anomalies using
traffic feature distributions. Two papers mainly contributed to the anomalies list in chapter 2.
First the work of Paul Barford and David Plonka [2] which is called "Characteristics of Network
Traffic Anomalies" and the very similar work by Anukool et al [5] named "Characteristics of
Network-Wide Anomalies in Traffic Flows".

1.4 Overview

Chapter 2 is all about the definition and modeling of network anomalies and network traffic in
general. The following chapter (3) continues with traffic generation theory and proposes a model
to create realistic results. The next chapter (4) presents the overall application design and briefly
describes all involved components. All components and their implementation are described in
more detail in chapter 5. The results and an evaluation of the project are presented in the 6th
chapter. In the 7th and last chapter various ideas for future work are proposed and a conclusion
about the project is given.



Chapter 2

Anomalies

In the first section of this chapter the term anomaly is defined. The next section gives an
overview over different anomalies that can surface when analyzing Netflow data. In the subse-
quent section a set of parameters is defined, which enables one to define all kind of anomalies
by assigning different values to the parameters. The next section shows an approach to de-
scribe insertion and deletion actions on the flow level and continues by using them to model
some anomalies.

2.1 What is an Anomaly

Before we start to define various kinds of anomalies we need a general definition of such an
anomaly. We define the term as follows: We speak of an anomaly when something happens on
the network that results in a significant change of the normal network traffic. An anomaly does
always have a reason: Either something goes wrong, something is changed or someone tries
to maliciously do harm.

13
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2.2 List of Anomalies

The following tables contain a categorized list of anomalies that can occur in networks and
netflow data analysis.

Operational Anomalies Description
Outages Outages can occur at various levels in a network. For example a

single server or a router can have an outage. When outages occur
all traffic from and to the device disappears. There are various
reasons for outages, it is for example possible that the device itself
has a failure or that the physical connection between two points
gets damaged.

Ingress shift Ingress shifts can occur for example when there are changes in
routing policies or when clients change addresses of services.
There are other type of intended change which result in ingress
shifts. The traffic affected by such changes does not disappear
but shifts. It is also possible that the traffic will be routed through
another router and it will appear like an outage on the monitored
device.

Export failure Netflow data is exported as UDP packets which can get lost in
between the router and the collector. It is also possible that the
export did somehow fail on the router itself.

Table contention The router which is exporting the netflow data has a table contain-
ing all active flows which have not reached one of their timeouts.
The space of that table is limited and when there arrive new flows
while the table is full, the new flows will be dropped. The netflow
export will then be missing that data.

Plateau behavior It is possible that a plateau behavior occurs on a link when envi-
ronmental limits are reached. This mean that no more traffic can
fit on that specific line and a plateau like graph will arise when
plotting traffic for that link.

Table 2.1: Operational Anomalies
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Abuse Anomalies
DoS A Denial of Service attack tries to overwhelm a victim by flooding it

with requests. There are various kinds of DoS attacks. Some try to
abuse implementation weaknesses such as the SYN-flood attack,
others just flood the line to the victim so that legitimate requests
can no longer arrive. DoS attacks are nicely described in [8]

DDoS Distributed Denial of Service attacks take this to the next level by
starting a coordinated attack from a big number of different hosts,
overwhelming their victim. DDoS attacks can succeed where nor-
mal DoS attacks fail for example due to a really high bandwidth
connection of the victim.

Scans Scans are anomalies that often precede an actual attack and are
used to get an overview over potential victims and vulnerabilities.
Network scans scan whole subnets or other IP ranges and are
usually limited to a specific port. While port scans are normally
only to one or few hosts scanning a wide range of ports.

Worms There are various kinds of worms. They can implement features
of the above abuse anomalies as well as other behavior. For a
taxonomy of worms see [15]

Table 2.2: Abuse Anomalies

Other
Flash crowds Flash crowds are similar to DDoS attacks because they generate

a large amount of incoming requests on a web server for example.
But unlike a DDoS attack flash crowds include only legitimate re-
quests from real clients. A flash crowd can for example occur when
a web site is highly advertised during a popular event or when a
long awaited software version is released. Flash crowds typically
start with a sharp peak in requests which gradually decrease over
time.

Alpha events We speak of an alpha event if a high (noticeable) amount of traffic
is flowing between few hosts, for example due to large file trans-
fers.

Table 2.3: Other Anomalies



16 CHAPTER 2. ANOMALIES

2.3 Parameterizing Anomalies

As seen in the previous section there are a lot of different anomalies and before we can begin
to model them, we have to define general traffic attributes. The goal of this section is to extract
a number of such attributes which should enable one to describe any anomaly. Using, amongst
others, ideas from [7], [11] and [14] table 2.4 was created showing the 7 main attributes which
were chosen for the characterization.

Attribute Description
Rate The rate at which the anomaly occurs. For example constant rate

from beginning to end. The rate is defined by a set of probability
distributions which are further discussed in the next chapter

Duration The points in time where the anomaly starts and ends.
Protocol The protocol of the anomaly traffic. For example TCP, UDP or

ICMP.
Topology The topology describes the source and destination points involved

in the anomaly traffic. This can be a big list of sources to one host
or from one source to many destination hosts. Any other combina-
tions are thinkable.

Ports The source and destination ports of the anomaly traffic. This can
be many to one, one to many or any other kind of combination.

Type There are two major types: Either the anomaly inserts traffic or it
deletes traffic.

Level This is not really an attribute, but one needs to be clear on what
level the traffic is generated or analyzed. We work either on the
packet level or on the flow level.

Table 2.4: Attribute descriptions
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2.4 Modeling Anomalies

This section is all about modeling anomalies. This is done on the flow level and using the pa-
rameterization defined in the last section. As seen in the introduction a flow is described by a
fixed five-tuple of attributes (source/destination IPs and ports, and the protocol). We first define
general insertion and deletion actions using flows. And in the next step some anomalies are
modeled with these general insertion and deletion actions using pseudo code. The modeling is
very much simplified and we will discuss more complex traffic generation in more detail in the
next chapter where we will see that most parameters used in this section to describe the traffic
will actually be picked from distributions.

2.4.1 General Insertion and Deletion Actions

All attributes are starting with a $-sign representing variables, which will have to be defined for
a concrete definition of the anomaly traffic. The flow-defining parameters are omitted in this first
definition.

I n s e r t $ ra te f lows between $ s t a r t and $end

This insertion action is defined as general as possible. The $rate only defines the load (number
of bytes) and the inter arrival times (time between packet arrivals), since we only look at single
flows. The arrival times distribution of various flows is to be included when combining various
insertions.

Delete f lows between $ s t a r t and $end

To form an anomaly by deleting certain flows, we will have to match all flows against a list of
masks and delete the matches.

2.4.2 DDoS

To model a distributed denial of service attack, we need to perform a number of insertion actions.
There will be traffic from many hosts (real or spoofed) to a single host and single port (usually).
To model the attack more realistically the $start and $end times need to be randomized a bit,
since not all attacking hosts will start and stop at exactly the same moment. There are many
variants of DDoS attacks using different protocols so I won’t specify it here. The following model
is a simple DDoS attack from a list of hosts to a single host and port. All attackers start at
approximately the same time.
Of course also the rate of each flow would have to be randomized a bit, since not all attackers
posses equally good connections.
I didn’t incorporate the flows coming from the victim, since this depends greatly on the attack.

/ / $ s t a r t : S t a r t t ime of the a t tack
/ / $end : End t ime of the a t tack
/ / $hosts : L i s t o f hosts p a r t i c i p a t i n g i n the a t tack
/ / $server : The v i c t i m host
/ / $por t : The po r t connected to on the v i c t i m
/ / rand ( ) : Small random time value

foreach ( host i n $hosts to $server : $por t ) {
I n s e r t constant ra te f low between $ s t a r t +rand ( ) and $end+rand ( )

}



18 CHAPTER 2. ANOMALIES

2.4.3 Flash Crowd

A flash crowd is quite similar to a DDos attack, but it normally originates from a majority of
known hosts or host groups, whereas a DDos attack originates at a big number of different and
mostly unknown host groups. Flash crowds are also characterized by a sharp request peak at
the beginning (not quite as sharp as an attack) and a gradual drop off in requests over time.
To model the flash crowd we can’t just insert all the requests with the mentioned rate, but the
distribution of simultaneous different requests has to display the overall rate of the event. There
is also no protocol specified here.
What we do is to pick a number of hosts from a host list, which simultaneously connect to a
server on a specific port. The number of hosts is picked dependent on the time of the distribution
(e.g. p(t) ) assigned to the event. For each inserted request flow, there is also an answer flow
back to the requesting host.

/ / $ s t a r t : S t a r t t ime of the anomaly
/ / $end : End t ime of the anomaly
/ / $hosts : L i s t o f hosts connect ion to the server
/ / $server : The v i c t i m host
/ / $por t : The po r t connected to on the v i c t i m
/ / $peak : The max number o f a r r i v i n g connect ions a t a t ime i n t e r v a l l
/ / $ r t t : Round Tr i p Time from r o u t e r to v i c t i m and back
/ / d i s t ( t ) : D i s t r i b u t i o n o f connect ion a r r i v a l s

for ( t from $ s t a r t to $end ) {
s e l e c t ( d i s t ( t ) ∗ $peak ) #hosts from $hosts to $server : $por t {

i n s e r t constant ra te f lows between t and t +$t ime
i n s e r t reverse f lows between t + $ r t t and t +$t ime+ $ r t t

}
}

2.4.4 Server Outage

If there is a server outage somewhere, all traffic from the server will immediately be dropped.
Packets to the server will remain unanswered and also disappear within a small delay.

/ / $ s t a r t : S t a r t t ime of the outage
/ / $end : End t ime of the outage
/ / $mask : mask to s e l e c t a l l f lows i n v o l v i n g the server
/ / $delay : Delay u n t i l t r a f f i c to the server stops
/ / rand ( ) : Randomization f o r delay

for ( any f lows matching $mask ) {
for ( f lows to server ) {

delete f l ows between $ s t a r t +$delay+rand ( ) and $end
}
for ( f lows from server ) {

delete f l ows between $ s t a r t and $end
}

}
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2.4.5 Ingress Shift

An ingress shift occurs if a party shifts traffic from one ingress point to another. So there will be
a decrease in traffic in one group of flows (which involve the old ingress point) and a spike for
new/other flows (which involve the new ingress point). Since this is a permanent change, there
is only a start time. If the shift is only for one service, a port would have to be specified too.
To model the change, insertion and deletion actions are combined accordingly. To implement
the change the existing flows would just have to be modifiied to reflect the change (replace
destination and source addresses respecively). The following pseudo code models an ingress
shift for a server or service change.

/ / $ s t a r t : S t a r t t ime of the change
/ / $mask : mask f o r s e l e c t i n g hosts , po r t s and p ro toco l implementing

the changes

for ( f lows matching $o ld_ ing ress_po in t AND $mask ) {
for ( f lows from $o ld_ ing ress_po in t ) {

delete f l ows beginning a t $ s t a r t
i n s e r t same f lows from $new_ingress_point beginning a t $ s t a r t

}
for ( f lows to $o ld_ ing ress_po in t ) {

delete f l ows beginning a t $ s t a r t
i n s e r t same to from $new_ingress_point beginning a t $ s t a r t

}
}
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Chapter 3

Traffic Generation: Theory

To actually be able to implement the modeling of anomalies as discussed in the previous chap-
ter, we now need to focus on the generation of the actual traffic. Various approaches have been
taken in this field, ranging from packet based traffic generation using the actual IP stack of the
Operating System as described by Sommers et al in [11] to traffic generation on the flow level as
described in a previous semester thesis by REF [SA Ref 8]. The approach taken in this project
is very closely related to the latter, with the difference that we don’t need to model a whole set
of traffic to simulate a complete trace going through a router, but only to inject, delete or modify
certain flows to simulate anomalies. Another fundamental difference is that the traffic generated
on the packet level is only simulated in software, there are no actual packets created using the
IP Stack of the operating system.

3.1 Traffic Generation Overview

To create realistic netflow records we are using a layered approach. In a first step IP packet
headers are generated which in a next step are collected and processed by a class simulating
an actual router. The flow records are created and output by the router simulator. Flow records
that are output have the following basic attributes:

Per flow settings
- Source address
- Destination address
- Source port
- Destination port
- Protocoll
- Start time
- End time
- Packet count
- Total size in bytes
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3.2 Packet Generation

This section describes how the traffic is generated on the packet level. These packets are
collected by the class simulating the router as mentioned in the last section. To generate
realistic traffic we need several distributions to model the desired network traffic. [11] proposes
the following 3 main distributions: 1. file size, 2. inter connection times, 3. active sessions. We
take a similar approach here and need the following distributions:

1. Distribution of packet sizes
2. Distribution of packet inter-arrival times
3. Distribution of inter-connection times
4. Distribution of session lenghts
5. Distribution of connection arrivals or active connections
6. Distribution of Round Trip Times

The file sizes used in [11] are indirectly modeled via the packet sizes, inter-arrival times and ses-
sion lengths. Distributions 1 and 2 need to be available for both directions, since in most cases
there will be a flow in each direction (e.g. TCP where every packet has to be acknowledged).
The RTT distribution models the latency between the requests and answers as observed on
the router. Furthermore we need distributions for source and destination IPs, as well as for ports:

7. Source/destination IPs distribution
8. Source/destination ports distribution

Using these 8 distributions the main packet generator (a script) creates packet generators which
simulate traffic between 2 hosts. All packet generators are created and instantiated before the
simulation can start. The basic packet generators are created with values picked from the global
distributions for start and end time, the source/destination hosts and ports, the session length,
as well as distributions for the packet sizes and packet inter-arrival times. All packets generated
by the packet generators are passed to the flow generator.
Differences between UDP, TCP and possibly ICMP traffic are modeled by choosing appropriate
distributions. For example UDP traffic is mainly dependent on the application that generates it
(UDP doesn’t have any flow or congestion control) and therefore produces quite different traffic
than TCP.
The more complex the anomaly one wants to simulate is, the more complex the main script will
be which creates all the configurations of the packet generators and spawns them.
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1. for ( t from $ s t a r t to $end ) {
2 . s e l e c t ( d i s t ( t ) ∗ $peak ) #hosts from $hosts to $server : $por t {
3 . i n s e r t constant ra te f lows between t and t +$t ime
4. i n s e r t reverse f lows between t + $ r t t and t +$t ime+ $ r t t
5 . }
6 . }

If we look at the above example from the last chapter (2.4.3) where a flash crowd was modeled
using basic insertion actions, we can now describe it more precisely using these distributions:

Line 1: The start end end times of the anomaly are modeled using the distribution of active
connections.

Line 2: The amount of active connections is maintained in an internal list in the genera-
tor and adheres to the distribution of active connections. The connections them-
selves are selected from the source/destination IPs and ports distributions. Same
connections can appear again after a time picked from the inter-connection times
distribution.

Line 3: This line stands for one basic packet generator. The start end end times of the
session are picked from the session length distribution, the rate represents the
inter-arrival times and packet sizes which are passed to the basic packet generator
as distributions.

Line 4: The traffic in the opposite direction is directly created by the same basic packet
generator using the roundtrip time and the packet size and inter-arrival time distri-
butions for the reverse direction.

Having a traffic generator which can be fully configured to create various kind of traffic is one
thing, but choosing reasonable distributions is a prerequisite to actually create realistic traffic.
It is not part of the scope of this work to propose how these distributions are gained or cho-
sen. This framework only provides the means of using and implementing them into the traffic
generation.

3.3 Flow Generation

The flow generator receives settings to simulate an actual router. These settings include for
example active and inactive timeouts. The Netflow generator maintains a hashtable of active
connections. Arriving packets are added to an already active session or a new session is cre-
ated. When a session times out (due to one of the timeout parameters) a netflow record is
created in the internal format and emitted by the Netflow generator. Further details follow in
chapters 4 and 5.
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Chapter 4

Framework Design

This chapter describes the application design, design choices and problems encountered dur-
ing the design phase. The first section shows an overview over the main components of the
framework including a short description of each one and a description of the overall data flow.
The following section describes how the components are decoupled from each other and how
the inter process communication and data flow works inside the framework. The data format for
the communication is defined in the last section of this chapter.

4.1 Overview

The anomaly injection framework consists of 5 major components which are very loosely cou-
pled to allow maximum flexibility. Figure 4.1 shows these components in a sample data flow
arrangement. The first component is the NetflowReader, it takes as input a file that contains a
flow trace and outputs Netflow Packet in the internal format. From now on we call those packets
NFPs. The next component on the upper data flow lane is the NetflowDeleter. It takes as input
NFPs and deletes certain records according to its configuration. Starting in the lower lane is the
TrafficGenerator which is actually a component split into various sub-components. The Traffic-
Generator creates network traffic in the form of IP packet headers using PacketGenerators.
These packet headers are passed to the NetflowGenerator which then outputs NFPs as usual.
Two NFP streams can be merged into a new NFP stream by the NetflowMerger. The final com-
ponent in this setup is the NetflowWriter which again takes NFPs and writes them back to disk
as a netflow trace. Components can be freely rearranged according to their interfaces to handle
different tasks.
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Figure 4.1: Framework Overview

4.2 Inter Process Communication

As previously mentioned a loose coupling allows for maximum flexibility and easy extensibility
of the components and the framework as a whole. Therefore a format for IPC had to be de-
fined which all components have to use for communication. For that reason each component
implements interfaces to receive and send records in that defined format. In the C++ part of the
framework this interface is implemented in the FlowForwarder class.
This approach allows us to rearrange the components in any order or insert new ones into the
data flow. It furthermore enables the framework to work with components written in different
programming languages or even scripting languages, since some languages are better fit for
some tasks.
To setup a working data pipeline using components of the framework, a shell script is written
which connects them to each other and starts the simulations.
Another characteristics of this approach is that the chain of components is processed in a top
down approach. This means that data needed by a component is evaluated in a lazy way. The
last component "requests" new data from the previous component in the chain which is waiting
for that request. The request is propagated backwards through the component chain until every
component has everything it needs. We almost automatically get this behavior by connecting the
components using named pipes (the above statement is not completely accurate, since the pipe
written to by the previous component has a buffer of a certain size which will be filled even if the
data hasn’t been read by the next component yet). Furthermore a certain degree of parallelism
of the components is achieved by this approach since all components run as different processes
and can run on different processors or processing cores.

4.3 Internal Netflow Packet Format

The format for the internal netflow packets is defined as follows:
First there is a header describing the packet and defining the number of records it contains. The
header is followed by the amount of packets as described in the header. The data structure of
the records as shown below are defined in the netflowvxplusplus framework and used unaltered
in this project.
An NFP is at least 76 bytes long (the header + one record) and is 1468 bytes long when it
contains 30 records.
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struct NetflowHeader {
/ / Header Version F ie ld , must be 5 , 9 or 254 ( gener ic )
u in t16_ t vers ion ;
/ / Number o f f lows f o l l o w i n g t h i s header or the number o f f l owse ts i f v9
u in t16_ t count ;
/ / The t ime since the device was s ta r ted , i n m i l l i seconds
u in t32_ t sysUptime ;
/ / The cu r ren t t ime of the device , i n seconds s ince 1970
u in t32_ t unixSecs ;
/ / Only i f v5 : Current t ime of the device , i n nanoseconds s ince 1970
u in t32_ t unixNSecs ;
union {

/ / Only i f ve rs ion i s 5 : Sequence counter value o f t o t a l f lows seen
u in t32_ t flowSequence ;
/ / Only i f ve rs ion i s 9 : Sequence number o f t h i s paket
u in t32_ t packageSequence ;

} ;
/ / Only i f ve rs ion i s 5 : Type of device
u i n t 8 _ t engineType ;
/ / Only i f ve rs ion i s 5 : S lo t number o f the f low−sw i t ch ing engine
u i n t 8 _ t engineId ;
/ / Only i f ve rs ion i s 9 : Device i d e n t i f i c a t i o n
u in t32_ t sourceId ;

} ;

Listing 4.1: NFR Header: 28 bytes
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struct Netf lowRecord {
/ / Source IPV4 address
u in t32_ t addr ;
/ / Des t i na t i on IPV4 address
u in t32_ t dstAddr ;
/ / Nexthop IPV4 address
u in t32_ t nextHop ;
/ / SNMP inpu t device index
u in t16_ t i npu t ;
/ / SNMP output device index
u in t16_ t output ;
/ / Number o f pakets i n t h i s f low
u in t32_ t dPkts ;
/ / Number o f bytes i n t h i s f low
u in t32_ t dOctets ;
/ / Sysuptime value a t s t a r t o f t h i s f low
u in t32_ t f i r s t ;
/ / Sysuptime value a t end of t h i s f low
u in t32_ t l a s t ;
/ / Layer4 source po r t
u in t16_ t po r t ;
/ / Layer4 d e s t i n a t i o n po r t
u in t16_ t ds tPor t ;
/ / Unused padding
u i n t 8 _ t pad1 ;
/ / TCP f l a g s
u i n t 8 _ t tcpFlags ;
/ / IP p ro toco l number
u i n t 8 _ t p ro t ;
/ / Type of se rv i ce
u i n t 8 _ t tos ;
/ / Source BGP autonomous system number
u in t16_ t as ;
/ / Des t i na t i on BGP autonomous system number
u in t16_ t dstAs ;
/ / Source IPV4 mask ( subnet mask i n s lash no ta t i on )
u i n t 8 _ t mask ;
/ / Des t i na t i on IPV4 mask ( subnet mask i n s lash no ta t i on )
u i n t 8 _ t dstMask ;
/ / Unused padding
u in t16_ t pad2 ;

} ;

Listing 4.2: NFR Record: 48 bytes



Chapter 5

Implementation Details

This chapter contains implementation details of the components of the injection framework. It
is important to know that the system is for testing purposes and therefore the code does not
contain much error checking. If the components are not used as intended, unexpected behavior
and errors may occur.

5.1 FlowForwarder

The FlowForwarder class is a helper class which defines interfaces which use named pipes to
read and write NFPs (as defined in the last chapter). It has by default one input and one output
pipe. The class is supposed to be inherited from by a child class to use either the input, output
or both interfaces. The default run() function does a processing step after each read before it
writes the records to the output pipe. The functions are defined using the virtual keyword by
the FlowForwarder. This allows for a dynamic redefinition by the class inheriting from the FF
to change the behavior. The functions of the runtime object are then chosen according to the
dynamic binding principle. For example if the process() function is redefined by the child class,
that function is used even when the parent class calls it in its run() function.

class FlowForwarder {
public :

/ / Const ruc tor _ in : name of the i npu t pipe , _out : name of the output pipe
FlowForwarder ( char∗ _in , char∗ _out ) ;
v i r t u a l ~FlowForwarder ( ) ;

/ / S t a r t the processing loop of the f lows
v i r t u a l void run ( ) ;

/ / Things done a f t e r the loop
v i r t u a l void af terRun ( ) ;

/ / Stop processing
v i r t u a l void stop ( ) ;

/ / Helper f u n c t i o n to p r i n t some record i n f o s
void p r i n t ( Netf lowRecord &rec , NetflowHeader &header ) ;

protected :
/ / Funct ions to read or w r i t e the next f low packet from the pipes
v i r t u a l void readPacket ( ) ;
v i r t u a l void wr i tePacket ( ) ;

/ / Funct ion where the processing o f the cu r ren t packet i s done
v i r t u a l void process ( ) ;

} ;

Listing 5.1: FlowForwarder Class Definition
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5.2 NetflowReader

The NetflowReader reads Netflow traces from files. It outputs netflow packets in the internal for-
mat. The reader can read generic traces as well as v5 and v9 traces. The NetflowReader builds
on the FlowForwarder and therefore has the same basic functions. The readRecord function is
redefined since the NR no longer reads from a pipe, but from a file. In addition the NR uses a
NetflowInput class from the NetflowVxPlusPlus package.

Important: All values are read in network byte-order and converted to host byte-order. Internally
all components work with values in host byte-order.

Usage: ./NetflowReader inFile outPipe

/ / I n h e r i t s from FlowForwarder
class NetflowReader : public FlowForwarder {

public :
/ / Const ruc tor _ in : name of the i npu t f i l e , _out : name of the output pipe
NetflowReader ( char∗ _in , char∗ _out ) ;

private :
/ / Redefines readPacket to read from f i l e
void readPacket ( ) ;

/ / use Net f lowInpu t to read from a f i l e
Netf lowVxPlusPlus : : Ne t f l owInpu t ∗ reader_ ;

} ;

Listing 5.2: NetflowReader Class Definition

5.3 NetflowWriter

The NetflowWriter takes as input NFPs from a named pipe and writes them to disk. Currently
the only format supported for writing by the NetflowVxPlusPlus packet is v5. Like the NR the
NW builds on the FlowForwarder and has the same basic functions. It redefines the writeRe-
cord function to write to the specified file instead of the pipe. The NetflowOutput2 class of the
NetflowVxPlusPlus package is used for the actual writing to the file. If the output filename has a
.bz2 oder .gz extension the output is automatically compressed in that format.

Important: All values are written in network byte-order.

Usage: ./NetflowWriter inPipe outFile

/ / I n h e r i t s from FlowForwarder
class Net f l owWr i te r : public FlowForwarder {

public :
/ / Const ruc tor _ in : name of the i npu t pipe , _out : name of the output f i l e
Net f l owWr i te r ( char∗ _in , char∗ _out ) ;
~Ne t f l owWr i te r ( ) ;

private :
/ / Redefines wr i teRecord to w r i t e to f i l e
void wr i tePacket ( ) ;

/ / use Netf lowOutput2 to w r i t e to a f i l e
Netf lowVxPlusPlus : : Netf lowOutput2∗ w r i t e r _ ;

} ;

Listing 5.3: NetflowWriter Class Definition
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5.4 NetflowMerger

The NetflowMerger takes as input two NFP streams as sources and outputs the records to one
new NFP stream. The inputs can be from any component implementing the flow forward inter-
face. The NME checks if both streams are compatible by comparing the first header versions. To
be able to read from 2 different pipes, the NME extends the FlowForwarder and implements an
additional read and write function as well as a new run function which calls the correct writer and
reader for the next record. Internally there is alway one record cached from each input stream.
The record with the smaller time stamp gets written to the output pipe and a new record will
be fetched from the according input stream. The comparison of the time stamps first compares
the seconds stamp and when they match compares the nanoseconds stamp to decide which
record has to be written first. The sequence number is also reset for both streams to an internal
counter starting at the value 1 to create a correctly numbered flow packet stream.

Call: ./NetflowMerger inPipe1 inPipe2 outPipe

/ / I n h e r i t s from FlowForwarder
class Netf lowMerger : public FlowForwarder {

public :
/ / Const ruc tor _in1 : name of the f i r s t i npu t pipe ,
/ / _ in2 : name of the second inpu t pipe _out : name of the output pipe
Netf lowMerger ( char∗ _in1 , char∗ _in2 , char∗ _out ) ;

/ / Redefines the run f u n c t i o n to c a l l the c o r r e c t reader / w r i t e r
void run ( ) ;

private :
/ / implements an a d d i t i o n a l read f u n c t i o n to read from the 2nd pipe
void readPacket2 ( ) ;

/ / Implements an a d d i t i o n a l w r i t e f u n c t i o n to w r i t e data from the 2nd pipe
void wr i tePacket2 ( ) ;

} ;

Listing 5.4: NetflowMerger Class Definition
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5.5 NetflowDeleter

/ / I n h e r i t s from FlowForwarder
class Net f lowDele te r : public FlowForwarder {

public :
/ / Const ruc tor : _ s c r i p t : name of the python s c r i p t
Net f lowDele te r ( char∗ _in , char∗ _out , char∗ _ s c r i p t ) ;
~Net f lowDele te r ( ) ;

/ / Redefined FF f u n c t i o n s
void wr i tePacket ( ) ;
void af terRun ( ) ;
void process ( ) ;

/ / f u n c t i o n wi th the de le te dec is ion
v i r t u a l void del ( ) ;

/ / Set cu r ren t record / packet to be dele ted
void delRec ( ) ;
void delPacket ( ) ;

/ / Funct ions to access cu r ren t record
u in t32_ t get_addr ( ) ;
u i n t 32_ t get_dstAddr ( ) ;
u i n t 32_ t get_nextHop ( ) ;
u i n t 16_ t ge t_ inpu t ( ) ;
u i n t 16_ t get_output ( ) ;
u i n t 32_ t get_dPkts ( ) ;
u i n t 32_ t get_dOctets ( ) ;
u i n t 32_ t g e t _ f i r s t ( ) ;
u i n t 32_ t g e t _ l a s t ( ) ;
u i n t 16_ t ge t_por t ( ) ;
u i n t 16_ t ge t_ds tPor t ( ) ;
u i n t 8 _ t get_ tcpFlags ( ) ;
u i n t 8 _ t ge t_pro t ( ) ;
u i n t 8 _ t get_ tos ( ) ;
u i n t 16_ t get_as ( ) ;
u i n t 16_ t get_dstAs ( ) ;
u i n t 8 _ t get_mask ( ) ;
u i n t 8 _ t get_dstMask ( ) ;

/ / Funct ion to access header t ime i n m i l l i seconds
u in t64_ t get_headerTime ( ) ;

/ / Helper f u n c t i o n f o r cu r ren t record t ime ( ca l cu la ted using header )
/ / Return mi l iseconds s ince 1970 ( un ix t ime ∗ 1000)
u in t32_ t g e t _ s t a r t ( ) ;
u i n t 32_ t get_end ( ) ;
u i n t 32_ t get_dur ( ) ;

/ / Helper f u n c t i o n s to access IPs from records
u i n t 8 _ t get_addr1 ( ) ;
u i n t 8 _ t get_addr2 ( ) ;
u i n t 8 _ t get_addr3 ( ) ;
u i n t 8 _ t get_addr4 ( ) ;
u i n t 8 _ t get_dstAddr1 ( ) ;
u i n t 8 _ t get_dstAddr2 ( ) ;
u i n t 8 _ t get_dstAddr3 ( ) ;
u i n t 8 _ t get_dstAddr4 ( ) ;

} ;

Listing 5.5: NetflowDeleter Class Definition
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The NetflowDeleter gets a NFPs and deletes records from it using a python script. The script
extends the NetflowDeleter with a new function to decide if the current record will be deleted.
It outputs the modified NFPs. To still have a correct sequence number all packets get new
sequence numbers counted by an internal counter which starts at 1. If all records in a packet
are deleted, the deleter doesn’t write anything and continues with the next packet.

The loaded python script has to define a class called Deleter which inherits from the Net-
flowDeleter class and has to define a function called delete. The currently active record in the
NetflowDeleter can be accessed through getter methods and the record can be deleted by call-
ing the method self.delRec(). The following 2 python script code samples show examples on
how to access the fields as well as how to delete the according record.

class Dele te r ( Net f lowDele te r ) :
def de le te ( s e l f ) :

i f s e l f . get_addr1 ( ) == 129:
s e l f . delRec ( )

return

Listing 5.6: Sample python script to delete records having source address starting with 129

class Dele te r ( Net f lowDele te r ) :
def de le te ( s e l f ) :

i f ( s e l f . g e t _ s t a r t ( ) > 1189385993872) and
( s e l f . get_end ( ) < 1189385994128):

s e l f . delRec ( )
return

Listing 5.7: Sample python script to delete records in a specific time intervall

class Dele te r ( Net f lowDele te r ) :
def de le te ( s e l f ) :

i f ( s e l f . get_headerTime ( ) > 1188196352000) and
( s e l f . get_headerTime ( ) < 1188196805000):

s e l f . delPacket ( )
return

Listing 5.8: Sample python script to delete whole flow packets using header timestamp

The function delete is called by the derived python class which inherits from the NetflowDeleter
class. For a more detailed description of the approach see 5.10.2.

Important: All time values returned are in miliseconds since 1970 (Unixtime * 1000). One needs
to convert time values to that format before putting them into the script.
All IP addresses given as 32 bit integers are in host byte-order.

Usage: ./NetflowDeleter inPipe outPipe script.py
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5.6 PacketGenerator

The PacketGenerator is responsible for the simulation of actual network traffic. It uses settings
and distributions passed to it to create that traffic. The PacketGenerator outputs packet headers
as defined below. The packet headers are collected by the NetflowGenerator and converted to
NFPs for further processing.

struct GenericPacket {
/ / Source Address
u in t32_ t srcAddr ;
/ / Des t i na t i on Address
u in t32_ t dstAddr ;
/ / P r o t o c o l l
u i n t 8 _ t p ro t ;
/ / To ta l header leng th i n bytes
u in t16_ t len ;
/ / Source po r t
u in t16_ t s rcPor t ;
/ / Des t i na t i on po r t
u in t16_ t ds tPor t ;
/ / TCP f l a g s
u i n t 8 _ t f l a g s ;
/ / ICMP Type
u i n t 8 _ t icmpType ;
/ / ICMP Code
u i n t 8 _ t icmpCode ;

/ / Load i n bytes
u in t32_ t load ;
/ / Timestamp i n micro seconds s ince 1970
u in t64_ t t ime ;

} ;

Listing 5.9: GenericPacket Struct

There are 2 implemented PacketGenerator classes, one is for unidirectional traffic and the other
for bidirectional traffic. The correct class gets automatically chosen by parsing a configuration
file which which has to be passed by the main function of the PacketGenerator. To create a
bidirectional class object, some additional parameters need to be set: a round trip time and
a packet size in the opposite direction. In the bidirectional case for every created packet in
the main direction a packet in the other direction is also created (switched source/destination
IP and port plus another packet size). To create dynamic values for any field one can enter
python scripts instead of values in the config file. The PacketGenerator then creates objects for
all classes passed in the scripts. The objects all get individual names and are all in the same
python namespace. This namespace is passed to the PacketGenerator objects to allow the
extraction of the values in the according functions. The PGs internally use function pointers
which either point to the function returning static values or calling the python objects in the
passed python namespace. The following attributes are needed to create a PacketGenerator
(the values in brackets are optional if you want a bidirectional PacketGenerator):

- Source Address - Start Time - Packet Size
- Destination Address - End Time - (Round Trip Time)
- Source Port - Protocol - (Packet Size Back)
- Destination Port - Inter Arrival Time

All values are set in a config file. Instead of fixed values one can pass python scripts for all the
values except the start time and the end time.



5.6 PacketGenerator 35

class PacketGenerator {
public :

/ / Const ruc tor & Des t ruc to r
PacketGenerator ( char∗ _out , u i n t 32_ t _prot , u i n t 32_ t _sIP , u i n t32_ t _dIP ,

u i n t32_ t _sPort , u i n t 32_ t _dPort , u i n t 64_ t _s ta r t , u i n t 64_ t _end ,
u i n t32_ t _pSize , f l o a t _IAT ) ;

v i r t u a l ~PacketGenerator ( ) ;

/ / S t a r t c rea t i ng packets
v i r t u a l void run ( ) ;

/ / Pass a python namespace to get values from
void setPyNamespace ( ob jec t ∗ _ns ) ;

/ / Set to use python f u n c t i o n ins tead of s t a t i c value
void setPySourceIP ( ) ;
void se tPyDest ina t ion IP ( ) ;
void setPySourcePort ( ) ;
void se tPyDes t ina t ionPor t ( ) ;
void setPyProtoco l ( ) ;
void se tPy In te rA r r i va lT ime ( ) ;
void setPyPacketSize ( ) ;

/ / P r i n t s t a t i s t i c s
void p r i n t S t a t s ( ) ;

protected :
/ / Funct ions to access the s t a t i c values
u in t32_ t getSourceIP ( ) ;
u i n t 32_ t ge tDes t i na t i on IP ( ) ;
u i n t 32_ t getSourcePort ( ) ;
u i n t 32_ t ge tDes t i na t i onPor t ( ) ;
u i n t 32_ t ge tPro toco l ( ) ;
u i n t 32_ t g e t I n t e r A r r i v a l T i m e ( ) ;
u i n t 32_ t getPacketSize ( ) ;

/ / Funct ions to access the values from python
u in t32_ t getPySourceIP ( ) ;
u i n t 32_ t ge tPyDest ina t ion IP ( ) ;
u i n t 32_ t getPySourcePort ( ) ;
u i n t 32_ t ge tPyDes t ina t ionPor t ( ) ;
u i n t 32_ t getPyProtoco l ( ) ;
u i n t 32_ t ge tPy In te rA r r i va lT ime ( ) ;
u i n t 32_ t getPyPacketSize ( ) ;

} ;

Listing 5.10: Unidirectional PacketGenerator Class
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class BiPacketGenerator : public PacketGenerator {
public :

/ / Const ruc tor
BiPacketGenerator ( char∗ _out , u i n t 32_ t _prot , u i n t 32_ t _sIP , u i n t32_ t _dIP ,

u i n t32_ t _sPort , u i n t 32_ t _dPort , u i n t 64_ t _s ta r t , u i n t 64_ t _end ,
u i n t32_ t _pSize , f l o a t _IAT , f l o a t _ r t t , u i n t 32_ t _pSize2 ) ;

void run ( ) ;

/ / Set to use python f u n c t i o n ins tead of s t a t i c value
void setPyRoundTripTime ( ) ;
void setPyPacketSizeBack ( ) ;

private :
/ / Helper f u n c t i o n s
void deQueue ( ) ;
void wr i tePacket ( GenericPacket∗ _p ) ;

} ;

Listing 5.11: Bidirectional PacketGenerator Class

Important:

• It is important that created packets always increase time to their previous packet (using
the inter arrival time) if this is not the case there may be unexpected output from the flow
generator.

• The PacketGenerator (as well as the NetFlowGenerator) internally works using micro sec-
onds time values. But all values passed via the config or the python functions are in
miliseconds!

Limitations:

• Currently the PacketGenerator does not support the following fields: icmpType, icmpCode.

• It is currently not possible to create answer packets only for some packets. For this reason
one can use the PythonPacketGenerator or use the workaround to delete the according
flows with a deleter.

Usage: ./PacketGenerator outPipe config
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5.6.1 Configuration

As mentioned before the PacketGenerator is configured via a configuration script. This section
describes the fields of the configuration file and gives some samples for python scripts.

SourceIP = 244.12.1.12
Des t i na t i on IP = 172.34.12.165
SourcePort = 423
Des t i na t i onPor t = . . / s c r i p t s / packetgenerator / por tscan . py
Pro toco l = tcp
Star tT ime = 100
EndTime = 5000000
I n t e r A r r i v a l T i m e = 10.0
PacketSize = 4540
RoundTripTime = 7.8
PacketSizeBack = 10

Listing 5.12: Sample Config File

The sample configuration file contains almost all possible fields for the packet values. There
is only one additional field which is called StartScript which sets the name of a python script
that executes some needed includes or other settings. For example global variables could
be set which can then be accessed by all other python classes set in the other fields of the
configuration file. The StartScript is executed prior to all other scripts.

A python script to replace a value in the config has to fulfill some definitions to work:

1. The script has to define a class called PacketGenerator
2. The class has to have at least a function called getXxx, where Xxx is the name of the configu-
ration field it represents. The function takes as argument a variable self which is used to access
other members.
3. The scripts for SourcePort, DestinationPort, Protocol and PacketSize have to return integer
values.
4. The scripts for SourceIP and DestinationIP have to return 32bit integer values (IPs have to be
converted prior to using them since a conversion for every packet would be too computationally
expensive).
5. All time values are in miliseconds and in case of the InterArrivalTime and RoundTripTime
have to be floating point values.
6. The InterArrivalTime script or value is read first for each step. If a global counter or so it to
be used the scripts are called in the following order: InterArrivalTime, SourceIP, DestinationIP,
SourcePort, DestinationPort, Protocol, PacketSize, (RoundTripTime), (PacketSizeBack).

class PacketGenerator :
po r t = 1023
def ge tDes t i na t i onPo r t ( s e l f ) :

s e l f . po r t = s e l f . po r t + 1
i f s e l f . po r t <= 65535:

return s e l f . po r t
else :

global stop
stop = True
return 0

Listing 5.13: Sample python script for DestinationPort: portscan.py

The python script may abort the generation of packets by setting the global variable stop =
True. This global variable gets tested after the creation of every packet in the PacketGenerator
classes.
It is also possible to pass values between different classes by using global variables or other
means, since the objects all reside in the same python namespace.



38 CHAPTER 5. IMPLEMENTATION DETAILS

5.7 PythonPacketGenerator

The PythonPacketGenerator is a more flexibel implementation of a PacketGenerator, which can
be configured much more freely but is therefore more complicated to configure. It basically is
just a skeleton to send correct packet headers to the NetflowGenerator, most of the logic has
to be implemented in a Python class by the user. The PythonPacketGenerator only ensures
that packets in both directions are sent in the correct order and that they have the correct format.

The PythonPacketGenerator is extended by a Python class which has to implement the request
and requestBack methods... those methods are called in the main loop in run. The request and
requestBack methods have to call the send and senBack methods to actually send packets... If
no packet is sent anymore when calling request the main loop stops and the PythonPacketGen-
erator halts. A sample implementation of a Python class extending the PythongPacketGenerator
is given on the next page.

Important: It is important that there is some kind of abort condition that will be met in the
request method implemented in python, since the C++ part will keep running until there is
no more packet after the request method was called. In the example on the next page this
condition is simply the reaching of a certain time value.

For the NetflowGenerator not to abort due to packets arriving in the wrong order, the user has
to make sure that consecutive packets always increase their time values. This doesn’t have to
be true for the answer packets, those get sorted automatically in the right order using a priority
queue in the C++ part of the class. The only condition for answer packets is of course that it
has to arrive after its request packet.

All time values used in the PythonPacketGenerator are in micro seconds! This is due to the fact
that internally the NetflowGenerator as well as the normal PacketGenerator work using micro
seconds.

All IP addresses given as 32 bit integers are in host byte-order.

Usage: ./PythonPackGenerator outPipe script.py
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class PythonPacketGenerator {
public :

/ / Const ruc tor & Des t ruc to r
PythonPacketGenerator ( char∗ _out ) ;
v i r t u a l ~PythonPacketGenerator ( ) ;

/ / S t a r t the main processing loop
void run ( ) ;

/ / Send a packet
void send ( u i n t32_ t _srcAddr , u i n t 32_ t _dstAddr , u i n t 32_ t _prot ,

u i n t 32_ t _srcPort , u i n t 32_ t _dstPor t , u i n t 32_ t _load ,
u i n t64_ t t ime , u i n t 8 _ t f l a g s ) ;

/ / Send an answer packet
void sendBack ( u i n t32_ t _srcAddr , u i n t 32_ t _dstAddr , u i n t 32_ t _prot ,

u i n t 32_ t _srcPort , u i n t 32_ t _dstPor t , u i n t 32_ t _load ,
u i n t64_ t t ime , u i n t 8 _ t f l a g s ) ;

/ / Request a packet ( Implemented i n Python )
v i r t u a l void request ( ) ;

/ / Request an answer packet ( Implemented i n Python )
v i r t u a l void requestBack ( ) ;

private :
void deQueue ( ) ;
void wr i tePacket ( GenericPacket∗ _p ) ;

} ;

Listing 5.14: PythonPacketGenerator Class definition
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import random

class PacketGenerator ( PythonPacketGenerator ) :
# Some Var iab les ( t ime values are i n micro seconds )

# Daniela ’ s IP as i n t
src IP = xxx # ( censored )
s rcPor t = 423
ds tPor t = 563
s t a r t = 1188196352 ∗ 1000000
end = 1188196385 ∗ 1000000
i a t = i n t (0 .01 ∗ 1000)
s ize = 20
r t t = i n t (7 .8 ∗ 1000)
sizeBack = 10
f l a g s = 2
f lagsBack = 18

t ime = s t a r t
timeBack = s t a r t + r t t

# Read addresses to be scanned from a f i l e
f = open ( ’ unique_addresses ’ , ’ r ’ )
ds t IP = i n t ( f . r ead l i ne ( ) )

# Send a scan packet when requested by the c++ pa r t
def request ( s e l f ) :

i f s e l f . t ime >= s e l f . s t a r t and s e l f . t ime < s e l f . end :
s e l f . send ( s e l f . srcIP , s e l f . dst IP , 6 , s e l f . s rcPor t , s e l f . ds tPor t ,

s e l f . s ize , s e l f . t ime , s e l f . f l a g s )

# Choose an answer packet randomly , e i t h e r SYN/ACK, RST or ICMP
def requestBack ( s e l f ) :

ran = random . r a n d i n t (1 ,3 )
i f ran == 1:

s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 6 , s e l f . ds tPor t ,
s e l f . s rcPor t , s e l f . sizeBack , s e l f . timeBack , 18)

e l i f ran == 2:
s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 6 , s e l f . ds tPor t ,

s e l f . s rcPor t , s e l f . sizeBack , s e l f . timeBack , 4)
e l i f ran == 3:

s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 1 , 0 , 0 , s e l f . sizeBack ,
s e l f . timeBack , 0)

s e l f . next ( )

# Prepare the values f o r the next packet
def next ( s e l f ) :

s e l f . t ime += s e l f . i a t
s e l f . timeBack = s e l f . t ime + s e l f . r t t
s e l f . ds t IP = i n t ( s e l f . f . r ead l i ne ( ) )

Listing 5.15: Implementation of a host scan using the PythonPacketGenerator
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5.8 NetflowGenerator

The NetflowGenerator is the class that simulates the router. It receive packets from a list of
PacketGenerators and assigns them to currently running flows or creates new ones. It keeps
track of the actives flows in a hashtable. Flows can either timeout due to an active timeout which
states the maximum length a flow can be active before it gets split in another flow (the old one is
passed to the outpu) or a flow can timeout after some inactivity. Therefore the NetflowGenerator
periodically checks all active flows and compares their time of the last update to the current
router time and forwards flows to the ouput if the flow was inactive for a certain time. When
there are no more packets arriving (all PacketGenerators have stopped sending packets) the
NetflowGenerator flushes the hash table and outputs all remaining flows. The NetflowGenerator
takes a configuration file as second argument which sets some fields in the flow packet header.

Usage: ./NetflowGenerator outPipe config [PG inPipes]+

class Netf lowGenerator : public FlowForwarder {
public :

/ / Const ruc tor : takes outPipe name and a vec to r o f i npu t pipe names
/ / to rece ive packets from PacketGenerators
Netf lowGenerator ( char∗ _outPipe , vector < s t r i n g > _pipes ) ;
~Netf lowGenerator ( ) ;

/ / Run the main l o g i c
void run ( ) ;

/ / Change r o u t e r or f low s e t t i n g s
void r o u t e r S e t t i n g s ( RouterSet t ings _s ) ;
void f l ow Se t t i n gs ( F lowSet t ings _ f ) ;

private :
/ / Process a packet from a PacketGenerator
void processPacket ( PacketContainer∗ _pc ) ;

/ / Output an en t ry from the hash tab l e
void outpu tEn t ry ( F lowtab leEnt ry ∗ _ent ry ) ;

/ / Output the NFP packet to the outPipe
void outputPacket ( ) ;

/ / Check f o r i n a c t i v e t imeouts
void inact iveCheck ( ) ;

/ / Flush the hash tab l e ( c lean up at the end )
void f l ushTab le ( ) ;

} ;

Listing 5.16: NetflowGenerator Class Definition
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5.8.1 Configuration

The configuration file is mandatory and the 4 fields can be defined and should match the field
of the router where you’re background traffic traces come from (when merged). The fields are:
Version, EngineId, EngineType and SourceId (If settings get left away they are set to 0 except
Version which is set to 5 by default.

Version = 5
EngineId = 6
EngineType = 0
SourceId = 0

Listing 5.17: NetflowGenerator Sample Config File

5.8.2 Remarks

It has to be noted that the NetflowGenerator is a very basic router implementation. It misses
for example the ability to dynamically set certain fields of the flow like "as", "mask", "tos",
"nextHop". Furthermore does the NG not act upon any received TCP flags (like FIN, RST), but
handles everything with the 2 timeouts (which are the same for all protocolls).

We didn’t use already implemented functionality from other tools for the reasons described in
the following. The main reasons are that the performance of the outcoming solution would have
been kind of bad and the implementation cost wouldn’t have been smaller than when the imple-
mentation was done from scratch. The reason for this is that in order to achieve the following
data chain: [PacketGenerators] –> [NetflowGenerator] –> NFP; we would have had to build a
chain that looks something like this: [PacketGenerators] –> [PacketCollector –> Converter to
used format] –> [Existing Router Simulator] –> [NetflowReader] –> NFP; which is clearly less
effective due to various data format conversions.

5.9 Other Components

Additionally to the 5 main components there are some helper components which can be used
to analyze or test existing or new components. First there is the NetflowSplitter which is the
opposite of the NetflowMerger and was basically created to test the latter. It takes one input
pipe and two output pipes and randomly writes the current NFP to one of those output pipes.
The other component, the NetflowHelper has no fixed purpose and can very easily be changed
and recompiled as it contains almost no code. It is used to do things like printing every NFP on
screen and waiting for a key press by the user before it continues with the next packet. The
NetflowHelper is also a good starting point if a new component needs to be written.
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5.10 Encountered Problems

5.10.1 Inter Process Communication - Internal Packet Format

The NetflowVxPlusPlus package provides the structs as described in 4.3. What is not mentioned
is that a NetflowRecord also has place for a destructor. This lead to some problems when
passing whole structs instances between components, since the destructor addresses were
passed along and consequently the objects containing the NetflowRecords couldn’t be deleted
properly. To solve the problem, the records sent between the components skip the destructor
when writing and reading and start at the address of the first field of the struct (because the
destructor reference is at the beginning of the struct).

/ / Ca lcu la te how much bytes have to be skipped to exclude the d e s t r u c t o r
/ / Workaround i n order to work on both 32 and 64 b i t systems
u in t64_ t sk ip = ( ( u i n t64_ t )&( records_ [ 0 ] . addr ) − ( u i n t 64_ t )&( records_ [ 0 ] ) ) ;
recordSize_ = sizeof ( records_ [0] )− sk ip ;

/ / Ex t rac t from the readPacket f u n c t i o n
i f ( read ( inPipe_ , &( records_ [ i ] . addr ) , recordSize_ ) <= 0) {

Listing 5.18: Code from FlowForwarder.cpp

5.10.2 NetflowDeleter

The first version of the NetflowDeleter used to execute the python script internally and recre-
ated a python object each time the delete decision had to be made. Therefore the whole Deleter
became slower by a factor of about 10. The new and correct approach was to create a derived
python class which inherits from the NetflowDeleter class and is then instantiated in python and
afterwards started as a casted NetflowDeleter object in C++. The trick to achieve a correct poly-
morphism between C++ and python was to write a wrapper class which enables one to replace
the C++ del() function with a python function. This is necessary because the del() function is
called from within the C++ code. This approach was then also used for the implementation of the
PythonPacketGenerator and a very similar one for the implementation of the PacketGenerator.

struct Netf lowDeleterWrap : Net f lowDele te r
{

Netf lowDeleterWrap ( PyObject∗ se l f_ , char∗ in_ , char∗ out_ )
: Net f lowDele te r ( in_ , out_ ) , s e l f ( s e l f _ ) { }

void del ( ) { cal l_method <void >( s e l f , " de le te " ) ; }
PyObject∗ s e l f ;

} ;

Listing 5.19: Code from NetflowDeleter.cpp: Wrapper Class
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Chapter 6

Evaluation

The main purpose of the evaluation was to test the functionality of the framework as e whole
and of all the individual components. Therefore three different kind of anomalies were modeled
using the flame implementation and injected into real flow traces. The modeling of the anomalies
is done as described in the flame paper [3].
At the end of the chapter performance, limitations and possible artifacts are discussed.

6.1 Subtractive Anomaly: Loss event

I tried to simulate a loss event using a real event as template. The original loss event occurred
due to an outage of the NetFlow packet collector. The simulated loss event was injected 24
hours before the original event to get conditions as similar as possible.
As a result of the packet collector outage, the 1 hour trace packet running at that time got cut
off. After its re-initialization the packet collector skipped the next sequence number (for the next
1 hour trace file). Therefore we observe an apparently missing file in our sequence of one hour
trace files. The time of the outage was calculated to be approximately 453 seconds (time stamp
of the first packet after the outage minus time stamp of the last packet before the outage). The
figures on the following pages show the UDP flows count plots of the original event as well as
the injected loss. The plotted interval length is different due to the shorter first data packet in the
original event. Other differences can be explained by the different time of the original and the
injected event (24 hours). On the plot of the simulated loss the solid line represents the injection
and the dotted line the original data.

45
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6.1.1 Configuration: Loss Event

The following two boxes show the main script which is run for the loss injection as well as the
deleter script which is used to delete the records in the desired time frame. The configuration is
very simple and all it does is delete all flows in the specified intervall.

# ! / b in / sh

DIR=" . / Release "
DATA=" xxx " # ( censored )
OUT=" loss91_1 . dat . bz2 "

# Create pipes
mkf i f o pipe1
mk f i f o pipe2

$DIR / NetflowReader $DATA pipe1 &
$DIR / Net f lowDele te r pipe1 pipe2 loss . py &
$DIR / Ne t f l owWr i te r pipe2 $OUT

Listing 6.1: Script for running the Loss ’Injection’

class Dele te r ( Net f lowDele te r ) :
def de le te ( s e l f ) :

i f ( s e l f . get_headerTime ( ) > 1188196352000) and
( s e l f . get_headerTime ( ) < 1188196805000):

s e l f . delPacket ( )
return

Listing 6.2: Deleter Script for the Loss Event
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6.1.2 Plots: Loss Even
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Figure 6.1: UDP Flows count of the original loss event
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Figure 6.2: UDP Flows count with (solid line) and without Injection
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6.2 Additive Anomaly: TCP SYN Host Scan

The host scan is a simulated anomaly where one "attacking" host scans a range of IP addresses
to determine if the hosts are alive and how they respond. The scan packets are TCP SYN
packets. In our simulation there is always an answer seen on our router which will either be a
TCP SYN/ACK, RST packet or an ICMP destination unreachable packet.

6.2.1 Configuration: Host Scan

To keep the simulation as simple as possible one of the three possible answer packets is chosen
randomly (SYN/ACK, RST, ICMP destination unreachable). The inter arrival time was set to a
constant 0.01 ms and represents the scanning rate of the scanning host. The round trip time
was also set to a constant value as we think for this test it wouldn’t make much of a difference.
The packet size in both directions was set to 40 bytes (only headers). The IP address range that
was "scanned" was chosen arbitrarily as 100.0.0.0 - 100.255.255.255.
The following boxes show the bash script which is used to set up and start the simulation as
well as the configuration/implementation of the PacketGenerator used.

# ! / b in / sh

DIR=" Release "
DATA=" xxx " # ( censored )
OUT=" injected_001ms . dat . bz2 "

# Create pipes
mkf i f o pipe1
mk f i f o pipe2
mk f i f o pipe3
mk f i f o pipe4

$DIR / PythonPacketGenerator pipe1 pypg . py &
$DIR / Netf lowGenerator pipe2 ng . conf pipe1 &
$DIR / NetflowReader $DATA pipe3 &
$DIR / Netf lowMerger pipe2 pipe3 pipe4 &
$DIR / Ne t f l owWr i te r pipe4 $OUT

Listing 6.3: Bash Script for the Host Scan
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import random

class PacketGenerator ( PythonPacketGenerator ) :
# Some Var iab les ( t ime values are i n micro seconds )

# Daniela ’ s IP as i n t
src IP = xxx # ( censored )
s rcPor t = 4231
ds tPor t = 145
s t a r t = 1188196352 ∗ 1000000
end = 1188196385 ∗ 1000000
i a t = i n t (0 .01 ∗ 1000) # I n t e r A r r i v a l Time => Scan Rate
s ize = 40
r t t = i n t (7 .8 ∗ 1000)
sizeBack = 40
f l a g s = 2

t ime = s t a r t
timeBack = s t a r t + r t t

# S t a r t w i th 100 .0 .0 .0
dst IP = 1677721600

# Send a scan packet when requested by the c++ pa r t
def request ( s e l f ) :

# Check i f IP i n i n t e r v a l and smal le r than 100.255.255.255
i f s e l f . t ime >= s e l f . s t a r t and s e l f . t ime < s e l f . end
and s e l f . ds t IP <= 1694498815:

s e l f . send ( s e l f . srcIP , s e l f . dst IP , 6 , s e l f . s rcPor t , s e l f . ds tPor t ,
s e l f . s ize , s e l f . t ime , s e l f . f l a g s )

# Choose an answer packet randomly , e i t h e r SYN/ACK, RST or ICMP
def requestBack ( s e l f ) :

ran = random . r a n d i n t (1 ,3 )
i f ran == 1:

s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 6 , s e l f . ds tPor t ,
s e l f . s rcPor t , s e l f . sizeBack , s e l f . timeBack , 18)

e l i f ran == 2:
s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 6 , s e l f . ds tPor t ,

s e l f . s rcPor t , s e l f . sizeBack , s e l f . timeBack , 4)
e l i f ran == 3:

s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 1 , 0 , 0 , s e l f . sizeBack ,
s e l f . timeBack , 0)

s e l f . next ( )

# Prepare the values f o r the next packet
def next ( s e l f ) :

s e l f . t ime += s e l f . i a t
s e l f . timeBack = s e l f . t ime + s e l f . r t t
s e l f . ds t IP += 1

Listing 6.4: Host Scan Python Script for the PythonPacketGenerator
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6.2.2 Plots: Host Scan
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Figure 6.3: Outgoing Flows Count: with (solid line) and without Scan Injection

2
4

6
8

1
0

1
2

1
4

2007!08!27 06:00:00

tc
p
_
e
s
ip

_
o
u
t

06:00 06:04 06:08 06:12 06:16 06:20 06:24 06:28 06:32 06:36 06:40 06:44 06:48 06:52 06:56

Figure 6.4: Destination IP Entropy: with (solid line) and without Scan Injection
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6.3 Interactive Anomaly: TCP SYN flooding DoS Attack

The DOS attack is an anomaly simulated which uses all the components of the framework as
illustrated in chapter 4.1. Flows are not only created for the scan event, but a loss of existing
flows originating from the victim host is also simulated using the deleter. The overall configura-
tion is very similar to the previous event (host scan). The attacker address is now the address of
the victim which is attacked by an unknown host that spoofs the source address. As expected
when we plot the event it looks practically identical to the host scan, since there’s also answers
created in the other direction. The answers correspond to the scan in the last event. And the
TCP/SYN packets represent the responses from the last event. The only differences in the plot
are noticed in the ICMP section, since in this event there are no ICMP packets created. If we
however start to set the source address to a fixed address (no spoofing) the event already be-
comes less visible as more and more packets fall into the same flows. If we then also set the
source port to a fixed value the event almost disappears from the plots (we only notice a slight
increase in the packet TCP in and out packet count which is even smaller than other normal
peaks). An event like this will be hard to detect.
The plots show the injection for spoofed source IP addresses and random source ports. We
noticed that the plot for the TCP out flows count looks almost identical to the previous host scan
injection. This is because this time the victim was inside the observed AS and all answer TCP
packets went outside. Whereas before the attacker was inside and the victims were outside the
observed AS and the attack. So previously the peak was due to the attack packets and this time
it’s due to the answer packets.

6.3.1 Configuration: DoS flooding Attack

! / b in / sh

DIR=" . / Release "
DATA=" xxx " # ( censored )
OUT=" injected_dos_001ms . dat "

# Create pipes
mkf i f o pipe1
mk f i f o pipe2
mk f i f o pipe3
mk f i f o pipe4
mk f i f o pipe5

$DIR / PythonPacketGenerator pipe1 pypg . py &
$DIR / Netf lowGenerator pipe2 ng . conf pipe1 &
$DIR / NetflowReader $DATA pipe3 &
$DIR / Net f lowDele te r pipe3 pipe4 de le te . py &
$DIR / Netf lowMerger pipe2 pipe4 pipe5 &
$DIR / Ne t f l owWr i te r pipe5 $OUT

Listing 6.5: Bash Script for the TCP/SYN Flood
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import random

class PacketGenerator ( PythonPacketGenerator ) :
# Daniela ’ s IP as i n t
dst IP = xxx # ( censored )
s rcPor t = 1025
ds tPor t = 80
s t a r t = 1188196352 ∗ 1000000
end = 1188196385 ∗ 1000000
i a t = i n t (0 .01 ∗ 1000) # I n t e r A r r i v a l Time => Scan Rate
s ize = 20
r t t = i n t (7 .8 ∗ 1000)
sizeBack = 10
f l a g s = 2

t ime = s t a r t
timeBack = s t a r t + r t t

# P r o b a b i l i t y answer gets l o s t
prob = 0.2

# Read addresses to be scanned from a f i l e
f = open ( ’ unique_addresses ’ , ’ r ’ )
s rc IP = i n t ( f . r ead l i ne ( ) )

# Send a scan packet when requested by the c++ pa r t
def request ( s e l f ) :

i f s e l f . t ime >= s e l f . s t a r t and s e l f . t ime < s e l f . end :
s e l f . send ( s e l f . srcIP , s e l f . dst IP , 6 , s e l f . s rcPor t , s e l f . ds tPor t ,

s e l f . s ize , s e l f . t ime , s e l f . f l a g s )

# Send TCP SYN/ACK wi th prob 1−prob
def requestBack ( s e l f ) :

ran = random . random ( )
i f ran >= s e l f . prob :

s e l f . sendBack ( s e l f . dst IP , s e l f . srcIP , 6 , s e l f . ds tPor t ,
s e l f . s rcPor t , s e l f . sizeBack , s e l f . timeBack , 16)

s e l f . next ( )

# Prepare the values f o r the next packet
def next ( s e l f ) :

s e l f . t ime += s e l f . i a t
s e l f . timeBack = s e l f . t ime + s e l f . r t t
s e l f . timeBack += i n t ( random . r a n d i n t (0 ,40)∗100)
s e l f . s rc IP = i n t ( s e l f . f . r ead l i ne ( ) )
s e l f . s rcPor t = random . r a n d i n t (1025 ,47000)

Listing 6.6: DoS Python Script for the PythonPacketGenerator
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import random

class Dele te r ( Net f lowDele te r ) :
matches = 0
dele ted = 0
# Daniela ’ s IP as i n t
src IP = xxx # ( censored )
s t a r t = 1188196352000
end = 1188196385000
prob = 0.2

def de le te ( s e l f ) :
# I f IP matches and i n c o r r e c t t ime i n t e r v a l . . .
i f ( s e l f . get_addr ( ) == s e l f . s rc IP and s e l f . g e t _ s t a r t ( ) >= s e l f . s t a r t

and s e l f . get_end ( ) <= s e l f . end ) :
s e l f . matches += 1
ran = random . random ( )
i f ran <= s e l f . prob :

s e l f . de le ted += 1
s e l f . delRec ( )

return

Listing 6.7: DoS Python Script for the NetflowDeleter
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6.3.2 Plots: TCP SYN DOS Attack
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Figure 6.5: Outgoing Flows Count: with (solid line) and without DoS Injection
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Figure 6.6: Destination Port Entropy: with (solid line) and without DoS Injection
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6.4 Performance

The performance of the framework depends greatly on the number of components used and
the complexity of the embedded Python Scripts.

When using a simple setup which only consists of pure C++ components we get a throughput
of about 140’000 flow records per second. When we then add a NetflowDeleter component
which uses a very simple Python script, the performance drops by about 50% already.
By then adding even more components like PacketGenerators, a NetflowGenerator and a
NetflowMerger we lose even some more performance and as in the case of the Host Scan
event are down to about 45’000 flow records per second.

The test system was running SMP Linux, had 2 dual-core AMD Opteron 275 CPUs running at
2200 MHz and had 8 gigabyte of main memory.

Setup: Flow Records Description
Basic Reader / Writer: 140’000 rec/s Setup using only pure C++ component: The Reader

and the Writer
Loss Event 70’000 rec/s Setup using also the Deleter component with a very

simple Python script
Host Scan 45’000 rec/s Setup using Reader/Writer components and 1

PythonPacketGenerator as well as the NetflowGen-
erator and the Merger
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6.5 Limitations

The main limitation of the framework is due to the fact that some components have no means
of communicating with each other during their anomaly injection. For example the flow stream
coming from the NetflowDeleter and the NetflowGenerator only meet for the first time after
the injection at the NetflowMerger. But at this point in time the injection at the two points has
already been made and the NetflowMerger only merges the two arriving streams. So it is up to
the user to model the anomaly injection in a way considering these limitations.
Another limitation of the framework is coming from the traffic generation part. The NetflowGen-
erator only simulates very basic router behavior. It does for example not add certain fields like
destination AS, source AS and others. Furthermore is the flow export only based on 2 different
timeout settings, namely an inactive and an active timeout.

6.6 Artifacts

Artifacts in the traffic traces may occur due to several reasons. Either because of the limitations
mentioned in the previous section or for other reasons which will be briefly discussed in this
section.

Overlap of injected and existing flows: When injecting anomalies into existing flows it can
happen that during that same time a flow with the same 5-tuple already exists. The new and
existing flow should then be merged into one flow record which is something the NetflowMerger
cannot do.
Missing fields from the NetflowGenerator: Some fields like source and destination AS
are not entered at the flow generation in the NetflowGenerator component and therefore this
introduces artifacts of that missing data.
NetflowGenerator only has basic timeouts: The NetflowGenerator outputs flows only based
on active and inactive timeouts and not for example based on TCP flags.
Configuration of the NetflowGenerator not matching the settings in the flow trace: If the
settings of the NetflowGenerator don’t match with the ones from the original flow trace, artifacts
will be introduced (The Netflow version for example will be checked by the Merger, but not
everything).
Bad configuration of the PG: Sending illogical answers or packets with impossible settings)

Most artifacts can be avoided by thinking about their possibility and designing the anomaly in a
according way to avoid these artifacts. So it is really essential that one thinks about the artifacts
before modeling the anomaly.



Chapter 7

Conclusion

7.1 Outlook

So far the evaluation of the framework had the main purpose of testing the functionality. So
the first and main task for future work would be to use the framework to actually test existing
anomaly detection mechanism.

In the future more components may be added to further extend the framework for example with
functionality for working with flow data in general. Like a modifier component which basically
works like the deleter but has the ability to also modify all flow characteristics instead of just
deleting it by its characteristics.
A component to extract statistical data from the flow records has been developed by Daniela
Brauckhoff during the process of this work. She has also started the implementation of new
components such as a data sampler to sample existing flow traces.
Another thinkable component would be a data anonymizer to obfuscate existing flows traces.

To further extend the usability of the framework in the future, the support for new formats such
as NetFlow v.9 could be implemented.

7.2 Summary

The implementation and evaluation of the framework showed that it is fit for the task for which
it was designed. I think that this work can greatly contribute to the evaluation and also develop-
ment of anomaly detection systems in the future.
And the framework is also a great tool when working with flow data in general and can be easily
extended to be able to handle new tasks.
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Appendix A

Usage

This chapter is not explaining how the individual components are used since this is already
covered in chapter 5. Three configuration examples are also already given in the evaluation
chapter (6) and will not be covered here. Instead this chapter gives some examples and ideas
on how to use the framework and its components in a more sophisticated or different way.

In the end of the chapter platform requirements to compile and use the framework are given.

A.1 Using the NetflowDeleter

The deleter can be used to do other things. For example it was used to extract a list of IP
addresses n write them to a file which was then used in a PacketGenerator for source/destinaion
addresses.
Therefore the deleter’s python script had to be adjusted and the delete function just isn’t called.

class Dele te r ( Net f lowDele te r ) :
f = open ( ’ addresses ’ , ’ wt ’ )
def de le te ( s e l f ) :

i p = s e l f . get_dstAddr ( )
i p s t r = s t r ( i p )
s e l f . f . w r i t e ( i p s t r )
s e l f . f . w r i t e ( ’ \ n ’ )
return

Listing A.1: Deleter Python Script to extract IPs from a trace
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A.2 Processing Multiple Files

The framework comes with several scripts, one of which is a script to process a bunch of items
with the same components setup and write the output to a specific directory

! / b in / bash
# Se t t i ngs
EXT=" bz2 "
OUTDIR=" "

# Worker f u n c t i o n
# B r i e f : c reates the components and connects them to each other
worker ( ) {

i f [ $# −ne 2 ]
then

echo " Missing arguments − usage : worker i n F i l e o u t F i l e "
ex i t 1

f i

# Create pipes
mkf i f o pipe1

. / NetflowReader $1 pipe1 &

. / Ne t f l owWr i te r pipe1 $2

# Delete pipes
rm − f pipe1

}

i f [ $# − l e 1 ]
then

echo " Missing arguments − usage : $0 o u t p u t d i r / f i l e s ∗ "
ex i t 1

f i

i =0
for f i l e i n "$@"
do

i = ‘ expr $ i + 1 ‘
i f [ $ i −eq 1 ]
then

OUTDIR=" $ f i l e "
else

echo " ∗∗∗PROCESSING FILE : " $ f i l e " ∗∗∗ "
f i lename = ‘basename $ f i l e ‘ " . "$EXT
o u t f i l e =$OUTDIR" / " $f i lename
worker $ f i l e $ o u t f i l e

f i
done
ex i t 0

Listing A.2: Worker Bash Script to process multiple files
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A.3 Other Tips and Trick

• Writing to /dev/null: If no file output is needed for some reason (for example if you only
want to extract statistical data) instead of a pipe name one can just direct the output to
/dev/null which will just destroy any output but still allow all components to run.

• Using random pipenames: If you want to run a script more than once in parallel in the
same directory you need to make sure that they both use different pipes so they wont
interfere with each other. Therefore it would be a good idea to enhance the bash script to
use random names for the pipes and delete the pipes again at the end of the process.

A.4 Requirements

There are several requirements for the framework to compile and to run. The components
should be able to compile on any unix-like system, but it was only tested under Linux.
To compile the components, depending on the paths and versions of the libraries and header
files, the makefiles of the individual projects have to be adjusted.
The following things are necessary to compile the whole framework (might also work with older
version):

• GCC 4.1+

• Python library and headers 2.4+

• Boost Python library and headers 1.35+
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Appendix B

Time Table

The time period for the whole project was 4 months and the plan on how to spend the time was
rather simple. The first month was used for the theoretical part. The 2 months in the middle
were used for the detailed design and implementation of the components and the last month
was reserved for evaulation and minor implementation tweak and changes.
The following figure shows a graph of how the time was actually spent.

03.03.08 03.07.08

Part 1 - Theory

Documentation

Part 2 - Implementation

Part 3 - Evaluation

Figure B.1: Visualization of the Time Table
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Appendix C

Diploma Thesis Task

C.1 Introduction

Anomaly detection, also known as behavior-based intrusion detection, is a promising approach
for detecting interesting network events such as malicious attacks or failures. Anomaly detec-
tion systems can operate on different input data streams such as packets, system calls, or flows.
A flow is defined as a unidirectional sequence of packets sharing the same characteristic val-
ues, e.g., source and destination IPs. Flow-based anomaly detection systems, which operate
on aggregated packet header streams, represent a considerable alternative to packet-based
detection systems especially on fast network links and for encrypted traffic. However, albeit the
advantages flow-based anomaly detection systems face many challenges such as high false
alarm rates or insufficient attack classification. Moreover, today’s rudimentary evaluation meth-
ods, foremost the missing of suitable evaluation and benchmarking data, make a systematic
assessment of the advantages and drawbacks of anomaly detection systems practically impos-
sible. We believe that our approach, which aims at combining authentic background traffic with
synthetic anomalies provides an optimal trade-off between controllability of the environment and
authenticity of the generated traces since it guarantees for realistic and versatile background
traffic as well as adjustable and controllable anomalies.
The goal of this thesis is to design and implement a framework for injecting anomalies into
existing background traffic. First, the student needs to define a catalog of all possible insertion
and deletion actions that can be performed on a trace. These simple actions will then be used to
design more complex anomalies (e.g., scans, failures, or denial of service attacks). The student
will develop such a model for at least two anomalies. In a second step, the injection framework
needs to be developed. First priority is given here to implement the core functionality: the flow
generation and injection part. A user interface that allows for parameterizing existing anomaly
models and to design new anomaly models from the catalog actions completes the framework.
All developed code should be well documented. Finally, the framework is to be evaluated with
data from the SWITCH network [1].

C.2 The Task

This thesis is conducted at ETH Zurich. The task of this Diploma thesis is three-fold: First, the
student studies literature on existing anomalies and develops an action catalog, as well as two
models for more complex anomalies. Second, the core functionality and the user interface of
the injection framework will be implemented. In the last step, the implemented anomaly models
and the framework will be evaluated.

C.2.1 Action Catalog and Two Anomaly Models

Study literature [6, 7, 13] on frequent types of anomalies (e.g., scans, denial of service attacks,
failures, heavy-hitters), and the implications of these anomalies for network traffic. Develop a
catalog of possible insertion and deletion actions (e.g., insert constant-rate UDP traffic) that

65



66 APPENDIX C. DIPLOMA THESIS TASK

model specific parts of an anomaly. Show that actions from this catalog can be used to model
more complex anomalies by developing a model for at least two complex anomalies.

C.2.2 Injection Framework

Implement the core functionality of the injection framework in C++. This includes a traffic gener-
ation module, which takes the anomaly model as input and generates a list of trace manipulation
rules (e.g., remove all flows between time 1 and time 2 from source 1, insert constant-rate flow
from source 1 to destination 2 with n packets), as well as the trace modification module, which
takes the original trace as input and outputs a trace that is modified according to the manipu-
lation rules. Furthermore, the basic user functionality for parameterizing anomalies, and if time
permits, also for constructing new anomalies, is to be implemented. [11, 12] have done some-
thing similar on the packet layer.

C.2.3 Evaluation

Evaluate the implementation with Netflow data from the Switch network. In particular, you need
to show three things: first, that the modified trace created by the injection framework resembles
real anomalies in the traces; second, that the injection does not cause any artifacts; and third,
that the modified trace can be used to evaluate different detection systems.

C.3 Deliverables

The following results are expected:

• Catalog of possible insertion and deletion actions.

• Al least two anomaly models for, e.g., a scan, a loss event, or a denial of service attack.

• C++ implementation of the core functionality of the injection framework, i.e., the flow gen-
eration and the Netflow trace modification.

• A basic user interface to the injection framework that allows for parameterizing anomalies,
and if time permits to design new anomalies from the action catalog.

• A detailed evaluation of the approach.

• A concise description of the work conducted in this thesis (motivation, related work, own
approach, implementation, results and outlook). The survey as well as the description of
the prototype and the testing results is part of this main documentation. The abstract of the
documentation has to be written in both English and German. The original task description
is to be put in the appendix of the documentation. One sample of the documentation needs
to be delivered at TIK. The whole documentation, as well as the source code, slides of the
talk etc., needs to be archived in a printable, respectively executable version on a CDROM,
which is to be attached to the printed documentation.

C.4 Organizational Aspects

C.4.1 Documentation and presentation

A documentation that states the steps conducted, lessons learned, major results and an outlook
on future work and unsolved problems has to be written. The code should be documented well
enough such that it can be extended by another developer within reasonable time. At the end of
the thesis, a presentation will have to be given at TIK that states the core tasks and results of
this thesis. If important new research results are found, a paper might be written as an extract
of the thesis and submitted to a computer network and security conference.
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C.4.2 Dates

This Diploma thesis starts on March 3rd 2008 and is finished on July 3rd 2008. It lasts 4 months
in total. At the end of the second week the student has to provide a schedule for the thesis. It
will be discussed with the supervisors.
After a month the student should provide a draft of the table of contents (ToC) of the thesis. The
ToC suggests that the documentation is written in parallel to the progress of the work.
One intermediate informal presentation for Prof. Plattner and all supervisors will be scheduled
2 months into this thesis.
A final presentation at TIK will be scheduled close to the completion date of the thesis. The
presentation consists of a 15 minute talk plus 5 minutes for questions. Informal meetings with
the supervisors will be announced an organized on demand.

C.4.3 Supervisors

Daniela Brauckhoff, brauckhoff@tik.ee.ethz.ch, +41 44 632 70 50, ETZ G97

Arno Wagner, wagner@tik.ee.ethz.ch
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