
Institut für
Technische Informatik und
Kommunikationsnetze

Noé Lutz

Towards Revealing Attackers’ Intent by
Automatically Decrypting Network Traffic

A joint project between the ETH Zurich and Google, Inc.

Master Thesis MA-2008-08
January 2008 to July 2008

ETH Tutor: Bernhard Tellenbach
Google Tutors: Niels Provos and Thomas Dübendorfer
Supervisor: Prof. Bernhard Plattner

Abstract

Researchers and commercial security companies are constantly improving
their techniques to detect and prevent malicious software (malware) pro-
liferation. Unfortunately, at the same time malware authors continuously
improve their techniques to evade detection. One recent development in
this arms race is the use of encrypted network communication by malware
authors to prevent the analysis of malware capabilities and hide malicious
activities.

To date, researchers have manually analyzed malware binaries to reverse
engineer their decryption algorithms. Manual malware analysis, however,
is very labor intensive and does not scale as the number of malware bina-
ries that use encryption increases. To address these shortcomings of man-
ual analysis we present a generic and automatic tool for the decryption of
encrypted communication received by a binary. Our tool does not break
cryptography but leverages the fact that the binary decrypts the encrypted
input it receives during its execution. We use a dynamic binary analysis ap-
proach to run the binary and identify where and when the decrypted input
is located in the system’s memory.

We provide evidence that our tool effectively locates decrypted input for
various linux cryptographic libraries. We also present a case study of the
ability of our tool to decrypt the network communication of a real malware
bot sample.

We argue that our approach can be used as a tool for revealing the
intent of attackers that try to masquerade their activities using encrypted
communication.

1

Contents

1 Introduction 4
1.1 Motivation . 4
1.2 Problem Statement . 4
1.3 Solution Approach . 5
1.4 Evaluation and Results . 5
1.5 Scope and Limitation . 6
1.6 Structure of this Report . 6

2 Related Work 6

3 Design and Architecture 7
3.1 Approach and Assumptions 8
3.2 Design Overview . 9
3.3 Memory Tainting . 10

3.3.1 Taint Source . 11
3.3.2 Taint Propagation . 11
3.3.3 Tainted Memory . 12
3.3.4 Limitations of Memory Tainting 12

3.4 Feature Extraction . 12
3.4.1 Function Detection . 12
3.4.2 Control Flow Graph 13
3.4.3 Loop Detection . 17
3.4.4 Cryptographic Constants 19

3.5 Heuristics and Detection Algorithm 20
3.5.1 Loop Input and Output 21
3.5.2 Entropy Measures . 21
3.5.3 Decryption Loop Detection Algorithm 23
3.5.4 Retrieving Decrypted Input 23

3.6 Big Picture . 23

4 Implementation 24
4.1 Approach . 24
4.2 Instrumentation Framework 24
4.3 Valgrind . 25
4.4 Our Valgrind Plug-in . 25

4.4.1 Shadow Memory . 25
4.4.2 Instrumentation . 26
4.4.3 System Call Wrappers 27
4.4.4 Memory Allocation and Deallocation 28
4.4.5 Control Flow Graph 28

4.5 Detection Algorithm . 28
4.6 Optimizations . 29

2

5 Experimental Evaluation and Results 30
5.1 Entropy Metrics . 30
5.2 Effectiveness and Performance 33

5.2.1 Walk Through Example: libgcrypt and AES 33
5.2.2 Additional Evaluations 36
5.2.3 Performance . 37

5.3 Case Study: Kraken . 37
5.3.1 Evaluation Setting . 38
5.3.2 Collecting Interesting Malware Binaries 38
5.3.3 Infrastructure Challenges 40
5.3.4 Measurements and Results 41

6 Limitations and Future Work 41

7 Conclusions 42

8 Acknowledgements 43

9 Appendices 44
A Libgcrypt Decryption Method 44
B The Kraken Bot . 45

B.1 Communication Protocol 45
B.2 Encryption Algorithm 46
B.3 Binary Packing . 47

C Loop Type Detection Algorithms 48

3

1 Introduction

1.1 Motivation

Researchers and commercial security companies constantly improve their
techniques to detect and prevent malicious software (malware) proliferation,
while malware authors routinely improve their techniques to evade detection.
An example of this arms race is the use of binary packing and encryption
to prevent straight forward, signature-based detection. More recently, mal-
ware has been observed that encrypts network communication rendering
signature-based network intrusion detection more challenging than in the
past. In the case of botnets, encrypted traffic prevents automatic analysis
of the bot’s capabilities by observing network payloads. While in some cases
the malware authors use simple encryption schemes, such as a substitution
cipher, in others they use well-known cryptographic encryption algorithms
such as the RC4 algorithm [3].

The Storm and Kraken bots are the most recent and widely publicized ex-
amples of malware that encrypt their communication. In order to study the
behavior and capabilities of these bots and to effectively slow their spreading,
it is important to be able to decrypt their network traffic. In their analysis of
the rustock rootkit and spam bot, Chiang and Lloyd [3] demonstrate the dif-
ficulty of manual malware analysis. The use of manual malware analysis to
decrypt network traffic does not scale with the increasing number of malware
binaries that use custom encryption techniques. In addition to the rapidly
growing number of malware in the wild, analysis is also time-sensitive. In
some cases malware authors very quickly adapt their encryption scheme af-
ter it has been broken. As an example, the decryption algorithm used by
Kraken version 316 was published on a blog in April of 2008 [11][19]. Just
ten days later another security blogger reported a new version of the Kraken
bot (v.317) [25]. This version uses a different encryption scheme, rendering
the manual analysis of previous Kraken versions irrelevant. While we have
no evidence to suggest that the motive for updating the bot was publication
of its decryption algorithm, a cause-effect relationship seems likely here.

To effectively cope with an increasing number of malware binaries that
use encryption and with the quick response time of malware authors an
automatic binary analysis approach appears necessary.

1.2 Problem Statement

This thesis seeks to alleviate the bottleneck incurred by manual analysis
of binaries that use encrypted network communication by automating the
analysis process. The goal is to automatically decrypt any encrypted com-
munication received by the binary under analysis.

4

1.3 Solution Approach

Rather than attempting to break cryptography we leverage the fact that the
binary decrypts the encrypted input it receives during its execution. In our
research, the challenge is to know when the input gets decrypted and where
the decrypted data is located in the memory. Apart from technical chal-
lenges, the difficulty of this problem is to find a generic solution that is not
tailored to a particular malware binary or cryptographic algorithm. Instead
we strive for a solution that works for a multitude of different encryption
algorithms and implementations.

The main contribution of our research is the design and implementation
of an automatic binary analysis tool that can effectively decrypt program
input for a variety of cryptographic algorithms and implementations. We
use dynamic binary instrumentation to monitor a binary’s execution as it
decrypts the encrypted input. The first step of our analysis extracts various
features from the binary’s execution, such as: information regarding memory
access patterns and the control flow including program loops, and function
calls. In the second step, we search the extracted data for features indicative
of the decryption process. Once these features are extracted, we search for
information entropy decreasing loops that use a proportionally high number
of integer arithmetic operations. This heuristic is based on three observa-
tions: First, decryption most likely happens in a loop. For example, in the
case of a block cipher it is likely that there is a loop over the input buffer
that decrypts the input block-by-block. Second, encrypted data is likely
to have a higher information entropy than decrypted data. This observa-
tion certainly holds true for cryptographically secure algorithms. Third,
most cryptographic algorithms are related to number theory and so natu-
rally involve integer arithmetic operations. Once we pinpoint the potentially
multiple locations of the decryption process, we output all memory locations
that we presume contain the decrypted data.

We use dynamic tainting techniques to track the dependencies of en-
crypted input in memory. Taint-tracking helps us to find candidate memory
locations that contain the decrypted data, effectively reducing the search
space.

1.4 Evaluation and Results

To explore the effectiveness of our approach we developed an implementation
of our design using Valgrind, a dynamic binary instrumentation framework
[17]. Our experiments demonstrate that our implementation successfully
decrypts the encrypted input of common Linux programs that use various
cryptographic algorithms and implementations. For example, we can de-
crypt content fetched by curl over an HTTPS connection.

In order to show that our approach also applies to malicious software

5

we ran our analysis tool on a version of the Kraken bot. The Kraken bot
uses a custom encryption algorithm described by Ligh [11]. The experi-
ment shows that our analysis tool successfully decrypts Kraken’s encrypted
network traffic.

1.5 Scope and Limitation

By using binary instrumentation instead of whole system instrumentation
we limit our analysis to binaries that decrypt their input in user mode and do
not instrument code that is running in the kernel. A limitation of Valgrind is
that it only runs on Linux and not on Windows. This limits our evaluation
of malicious binaries that run on Linux or in Wine. We leave it for future
work to port our proof-of-concept implementation to Windows.

The performance of our approach depends on input taint-tracking since
it greatly reduces the search space of decrypted input. Cavallaro et al.
[12] illustrated with practical examples how dynamic taint analysis can be
evaded. We did not investigate how these evasion techniques can be detected
or circumvented.

Making the assumption that the decryption algorithm decreases memory
entropy introduces another limitation. Simple substitution ciphers, such
as the Caesar cipher, typically do not affect entropy, i.e. encrypted and
decrypted messages have the same entropy. Since substitution ciphers can
easily be broken we believe that malware authors will prefer more secure,
readily available encryption tools that do change entropy. If needed, our
analysis tool could be extended to support multiple heuristics that look
for different features. For example, the Caesar decryption loop could be
detected by doing a frequency analysis on the data before and after each
loop.

1.6 Structure of this Report

This report is organized as follows: The next section presents related work.
Section 3 discusses the design and architecture of our approach. Section 4
talks about our implementation. Section 5 presents the experimental setup
and evaluation results, and Section 7 concludes our report.

2 Related Work

In this section, we discuss related work that gives background on the general
problem of malware analysis and the specific problem addressed in this thesis
(the decryption of network communication).

Generally, malware analysis encompasses two main techniques: static
and dynamic analysis. Static analysis uses reverse engineering techniques
to disassemble the malware and extract its features. Early work in static

6

malware analysis has tended to focus on approaches to malware detection
[5]. Unfortunately, static analysis of malicious software has been chal-
lenged by obfuscation techniques used by malware authors for decades [26].
Christodorescu et al. analyze the semantic behavior of code as a way to
thwart some binary obfuscation methods [4]. More recently Moser et al.
provide evidence of the limitations of static analysis by showing that even
advanced semantics-based malware detectors can be evaded [14]. Their work
demonstrates that static analysis techniques alone are no longer sufficient
for malware identification. The dynamic analysis approach circumvents the
problem of binary obfuscation by running the malware binary and extracting
information from its execution rather than from its code. Recent research
efforts around automatic malware analysis have therefore been biased to-
wards dynamic analysis. Dynamic analysis comes with its own limitations
most notably performance issues induced by instrumentation and detec-
tion of the analysis by the malicious binary. Kirda et al. [9] introduce a
novel technique to the detection of spyware based on the characterization
of spywarelike behavior. They present a hybrid approach combining both
static and dynamic analysis to evaluate the malicious behavior of spyware.
CWSandbox [28] analyzes the execution of a malware binary by observing
the sequence of invoked system calls. Portokalidis et al. present Argos, a
more fine grained dynamic analysis environment designed to automatically
detect zero-day attacks [21].

In this thesis we opted for a dynamic analysis approach. Unfortunately
while a large body of research exists on dynamic analysis techniques, the
problem of decrypting network communication has received considerably
less attention. To the best of our knowledge there is no published work that
takes an automatic and generic approach to decrypting network traffic.

Chiang and Lloyd present a detailed, manual analysis of the Rustock
Rootkit and Spam Bot [3]. Their static analysis of the malware focuses on
the necessary steps to decrypt the communication over the command and
control channel between the spam bot and its bot master. Our approach
achieves the same decryption without the limitations of manual analysis to
enable scaling.

Given a particular cryptographic algorithm, there are ways to automat-
ically find cryptographic keys stored on a machine’s hard drive [24] or in a
program’s memory [7]. However, in the case of malware, the cryptographic
algorithm is in general unknown. Our approach tries to be more generic and
not assume the use of any particular cryptographic algorithm.

3 Design and Architecture

In this section we describe the design and architecture of our approach.
We first elaborate the assumptions that form the basis of our approach in

7

Section 3.1. An overview of our system is presented in Section 3.2. Sections
3.3, 3.4 and 3.5 provide a detailed discussion of the specific techniques used
in our approach. Finally, Section 3.6 puts it all together.

3.1 Approach and Assumptions

Given an unknown program to analyze, we wish to automatically decrypt
all encrypted input it receives from either the network or the file system.
Some malware authors use simple substitution ciphers that can be bro-
ken automatically. However, focusing on breaking encryption algorithms
used by malware authors presently would not be very effective in the fu-
ture, as malware authors would quickly adapt their techniques and use well
known, cryptographically secure algorithms. In this research we do not try
to break cryptography. Instead we aim for a solution that works for any
kind of encryption algorithm including cryptographically secure algorithms.
To achieve this objective, we make a series of assumptions. One fundamen-
tal assumption of this research is that the program decrypts the encrypted
input it receives.

While we are not aware of any malware that violates this assumption it
may not hold true. Imagine malicious software that receives encrypted input
but instead of decrypting the input, the program is written in such a way
that it acts upon encrypted messages. In this scenario bot commands could
be encrypted strings instead of cleartext strings. Due to the theoretical
existence of this type of malware we did not consider this case in our design.

Given this assumption, our approach relies on the program under analy-
sis to decrypt the encrypted input for us. To determine where the decryption
process occurs within the program we utilize a program analysis approach.
Automatically analyzing malicious programs is a challenging task. There is
no source code available and thus the analysis has to be done on the malicious
binary, which are often obfuscated to purposefully confuse examination.

There are two main approaches to automatic program analysis: static
analysis and dynamic analysis. As previously stated, malicious software
binaries are often packed or obfuscated to evade purely static analysis and
reverse engineering of the source code. Dynamic analysis circumvents this
problem because the instructions have to be unpacked before they can be
executed. This advantage is the primary reason for which we decided to use
dynamic analysis in this research.

Dynamic analysis involves instrumenting the binary with analysis code.
The analysis code runs as part of the program and collects information about
its execution. The analysis code should not affect the program’s normal exe-
cution other than possibly slowing it down. By slowing down the malware’s
execution, we risk that it detects the ongoing analysis and stops exhibiting
the interesting behavior - in our case the decryption of encrypted input. We
assume that the program under analysis does not detect the analysis pro-

8

cess and continues to exhibit the behavior of interest. Our current design
does not take any particular steps to avoid such detection. Ferrie discusses
several methods for detecting virtual machines and emulators that are fre-
quently used for dynamic analysis [6]. We leave it for future work to make
our analysis approach more stealthy.

In addition, we assume that we can repeat the analysis for a particular
binary. This supposes either that the other communication endpoint, e.g.
the bot master, is still up and running or that we can replay previously
recorded traffic. Running malicious software and letting it communicate
with a live bot master may negatively impact Internet users, e.g. malware
could start sending spam. Therefore, we prefer replaying existing network
traffic when possible. If the software to analyze uses randomized encryption,
i.e. encryption that uses nonces or initialization vectors, replaying network
traffic is not feasible. In this case we limit the malware’s network accessibility
and only allow the encrypted network traffic that we want to decrypt.

3.2 Design Overview

Based on the assumptions described above, our approach is to dynamically
analyze the binary to extract the decrypted input from its memory. Given
this approach, the problem we are trying to solve can be reformulated as:
when does the encrypted input get decrypted and where is the decrypted
input located in memory?

At a high level, the system that we designed to address this problem is a
three step process. The first step runs the binary and extracts key features
from its execution. In the second step, an offline detection algorithm uses
the extracted features to find where the decryption process occurs and where
the decrypted input is located in the memory. Finally, in the third step, the
binary is dynamically analyzed a second time, but this time with knowledge
of the time and place at which decryption occurs. The output of the third
step is the decrypted version of the input. Figure 1 shows an overview of
this system.

We chose this simple and flexible architecture because it allows us, in
an exploratory phase of the research, to investigate multiple features and
detection algorithms. This framework can be easily extended by adding
new features and/or modifying the detection algorithm to iteratively find
an effective algorithm. In addition this approach simplifies the design of
the detection algorithm. Dynamic analysis and feature extraction operate
at the instruction level. By separating the feature extraction from the de-
tection algorithm, we avoid needing to write the detection algorithm at the
instruction level.

One disadvantage of this approach is that the dynamic analysis extracts
features from the entire program and not just from the decryption process.
This fact negatively impacts performance because more information is pro-

9

Binary to Analyze

Dynamic Analysis

Encrypted Input

Binary to Analyze
Binary to AnalyzeMeasurement Data

Set of Features

Offline
Detection Algorithm

Binary to Analyze

Dynamic Analysis

When decryption occurs
and

where in memory

Encrypted Input

Decrypted Input

Figure 1: System Overview

cessed than is really needed. In addition, by running the binary twice, we
prolong the time required for analysis. To cope with this decrease in perfor-
mance, once an effective detection algorithm has been designed, one could
merge the three steps of our system into one single step.

The following sections describe the evolution of the features extracted
and the detection algorithm as they were modified and improved. Before
this detailed discussion, we briefly describe a technique used to reduce the
number of candidate memory locations that may contain the decrypted in-
put.

3.3 Memory Tainting

To help identify where in the program’s memory the decrypted input is
located, we use memory tainting techniques. Memory tainting helps us
to address the where question by reducing the search space and limiting
the number of candidate memory locations that may contain the decrypted
input. This technique also helps to focus further analysis on the parts of the
program that touch (i.e. read or write) tainted input data, which addresses
the when question. For example, parts of the program that do not read
tainted data are unlikely to play a major role in the decryption process.

All encrypted input is marked as tainted upon reception. Taint tracking
is used to taint every memory location that depends on already tainted data.
Assuming that the decrypted input depends on the encrypted input, taint

10

tracking will result in the decrypted input being marked as tainted as well.
This result is illustrated as a simple example in Figure 2.

Decryption Algorithm
Decrypted InputEncrypted Input

.E42.P.s...L.. Hello World! :)

00 14 54 9a 78 ff 10 32 ..T.x..2
c0 45 1f 34 32 8e 50 d5 .E.42.P.
73 be d5 1c 4c f5 07 00 s...L...
00 00 65 00 00 00 00 00 ..e.....
45 a1 7c 4a 40 e7 6d 6f E.|J@.mo
5a b7 72 54 a3 5d 5d 7f Z.rT.]].

Memory Before Decryption
00 14 54 9a 78 ff 10 32 ..T.x..2
c0 45 1f 34 32 8e 50 d5 .E.42.P.
73 be d5 1c 4c f5 07 00 s...L...
00 00 65 00 00 00 00 00 ..e.....
48 65 6c 6c 6f 20 57 6f Hello Wo
72 6c 64 21 20 3a 29 7f rld! :).

Memory After Decryption

Figure 2: Example of Memory Tainting.

Our taint tracking approach is similar to TaintCheck [18]. Here we de-
scribe the aspects of taint tracking that are important to our analysis.

3.3.1 Taint Source

In the context of this research the taint source corresponds to the encrypted
input that the program reads. Encrypted input is read from either the
network or the file system. It is possible to selectively taint data read from
these two sources to avoid tainting of non-encrypted input. In this research
tainting reduces the search space. Over-tainting would unnecessarily enlarge
the search space and negatively impact performance. At the time of this
writing filtering rules are defined manually. For example, network traffic
can be filtered by indicating an IP address and/or port number whitelist.
In future work we will focus on automatically selecting encrypted input for
tainting.

3.3.2 Taint Propagation

After encrypted data is tainted upon reception, we propagate tainting to
every memory location that depends on already tainted data. To do this we
track all instructions of the program that manipulate data and determine if
the result must be tainted. Special cases in which additional data must be
tainted or the result untainted were previously described and implemented
in this work [18].

11

3.3.3 Tainted Memory

We store the taint status of each memory byte and register in the so called
shadow memory. The shadow memory is a data structure that holds a four
byte value for each memory address. The four bytes are used to hold the
taint status and to indicate the origin, i.e taint source, of the tainted data.

3.3.4 Limitations of Memory Tainting

Memory tainting can be evaded. Cavallaro et al. present simple techniques
to effectively evade memory tainting [12]. In our research the use of these
techniques would lead to the decrypted input being untainted. Should taint-
ing be evaded all memory locations must be considered as potential locations
for the decrypted input which would negatively impact performance. At this
point our research does not attempt to detect taint evasion. To the best of
our knowledge, no malware uses taint evasion to date.

3.4 Feature Extraction

The challenge of feature extraction is to identify the features (e.g. control
flow patterns, data access patterns, etc.) necessary for the detection of
the decryption process. We need to find features that are invariant across
most decryption algorithms including unknown decryption algorithms used
by malware authors.

We used binary instrumentation as a tool to extract features from the
program’s execution. Binary instrumentation operates at the instruction
level and is inconvenient for finding features indicative of decryption. We
use binary instrumentation to extract higher level features from low level
instructions.

3.4.1 Function Detection

Each function in a program typically performs a very specific task. There-
fore, functions appear to be at a good level of abstraction to search for
tainted data access and control flow patterns. We dynamically detect func-
tion calls and keep track of the program’s call stack. Function calls are
detected by instrumenting jump, call and return instructions and monitor-
ing the stack and frame pointers. In the case of static or inline functions, the
compiler may not follow calling conventions. In these cases our detection
may not work, but we do not see this as problematic, since it simply results
in misclassification of the body of the inline or static function as part of the
calling function. We have found that our simple detection method works
well in most cases.

As a first step towards detecting where in the program decryption occurs
we keep track of the functions that read or write tainted memory locations.

12

We call functions that touch tainted memory locations (i.e. memory that
depends on the encrypted input) candidate functions. Functions that do
not touch tainted data are probably not part of the decryption process and
can therefore be ignored. Table 1 shows the fraction of candidate functions
for common Linux cryptographic libraries. These numbers were obtained
by running these tools in our analysis environment and allowing them to
decrypt previously generated encrypted input.

For symmetric encryption like AES and Blowfish we find less than ten
candidate functions. In contrast, OpenSSL and GnuPG contain an increased
number of candidate functions, which suggests that more operations are
performed on tainted data. This result is expected since both OpenSSL and
GnuPG use an additional step to decrypt encrypted data. The first step in
their decryption process employs asymmetric cryptography to generate keys
for the second step. In the second step symmetric cryptography is applied
to decrypt the encrypted input.

Looking only at candidate functions significantly reduces the number
of locations in the program that are potentially part of the decryption.
Nevertheless, this approach does not suffice to automatically identify exactly
when during the program’s execution decryption occurs.

Table 1: Fraction of candidate functions, i.e. functions that operate on
tainted memory.

Decryption Tool Number of Functions Fraction of
Total Candidate Candidate Functions

libgcrypt (AES) 791 3 0.38%
bcrypt (Blowfish) 197 5 2.54%
GnuPG 609 45 7.39%
cURL (OpenSSL) 1314 39 2.97%

3.4.2 Control Flow Graph

In order to pinpoint more accurately when decryption occurs during the
program’s execution we investigate the program’s control flow graph (CFG).
Each vertex in the CFG represents a basic block, i.e. consecutive code
instructions without any jumps or jump targets. Edges in the control flow
graph are directed and represent jumps in the control flow. Figure 3 shows
the correspondence between a simple C code and its CFG. In particular we
analyze the CFG of candidate functions. The idea is to find sub-graphs
within the control flow graph that are indicative of the decryption process
or even of a particular algorithm. Once these sub-graphs are found, we can
create a list of known sub-graph patterns to search for within the program’s

13

CFG. Figure 4 shows an example of two CFGs that share a common sub-
graph. We choose to compare patterns at the level of the CFG rather than
the instruction level because two implementations of the same algorithm are
much more likely to share common sub-graphs than to share common code.

int parity = 0;
while (n > 0) {
 parity ^= n & 0x1;
 n >>= 1;
}

int parity = 0;

n > 0

parity ^= n & 0x1;
n >>= 1;

Figure 3: Shows correspondence between code and its control flow graph.

Similar ideas were used by Kruegel and Bruschi to detect polymorphic
worms and self-mutating malware [10], [2]. In their work, Bruschi et al.,
construct a labelled control flow graph of a malware binary. They then
search for common sub-graphs between this CFG and the CFG of known
malware, thus reducing the problem of malware detection to the sub-graph
isomorphism problem. The sub-graph isomorphism problem is a well known
NP-complete problem but can, in the majority of cases encountered in this
context, be resolved efficiently [2].

We cannot rely on static analysis to generate the control flow graph
since the binary may be packed or obfuscated. Packing techniques may use
self-modifying code which prevents the CFG from being built using static
analysis. Instead, we dynamically reconstruct the CFG during the program’s
execution. Our dynamic CFG differs from a traditional CFG in that it only
contains basic blocks (BB) that are executed. Since we assume that the
decryption process is executed, it must be present in our dynamic control
flow graph.

We mention above that we choose to compare patterns at the level of the
CFG since the underlying instructions for two implementations of a partic-
ular algorithm often vary. Conversely, two code sections may have the same
sub-graphs but contain very different instructions. Therefore, comparing
patterns based solely on the dynamic CFG is too coarse grained of an ap-
proach. To resolve this issue, we label each vertex in the CFG according
to the properties of the instructions of the corresponding basic block. We
extend the labeling method presented by Kruegel et al. in [10]. Instruc-
tions are categorized into instruction classes based on their behavior. For
example, all instructions that perform comparison are grouped into the in-
struction class “Comparison”. Table 2 lists the instruction classes that we

14

A

D B

C

A

B D

C

Figure 4: Example of two control flow graphs sharing a common subgraph.

distinguish. We created a separate class for the xor instruction because it is
frequently used in cryptographic algorithms. The integer arithmetic and xor
classes are the most useful ones to identify cryptographic algorithms. We
label each basic block with the set of instruction classes that are executed
within it. Importantly, only instructions that touch tainted data are con-
sidered in the labeling process, since these are the instructions that modify
the encrypted data and determine the basic block’s interesting behavior. In
addition, we label each vertex with the number of tainted bytes read and
written by the corresponding basic block. Figure 5 shows an example of an
annotated control flow graph.

Table 2: List of instruction classes that categorize instructions.
Instruction Classes
Integer Arithmetic
Xor
Floating Arithmetic
Logic
Comparison
Conversion a

aOur instrumentation framework is type safe and therefore provides type conversion
operators.

The tool described above extracts an annotated CFG of a binary’s execu-
tion. The goal is to identify template sub-graphs that represent decryption
and can be searched for within the binary under analysis. In order to de-
fine these templates, we used our tool to analyze multiple common Linux
binaries that use encryption. By manually scrutinizing the CFGs extracted
from these binaries, we noted, not surprisingly, that loops are a recurring

15

BB: 0x08069331 (604)
Loaded: 144 Bytes
Stored: 144 Bytes
Xor, Conversion,
Integer Arithmetic

BB: 0x080697DD (15)
Loaded: 0 Bytes
Stored: 0 Bytes

-

BB: 0x0806958D (592)
Loaded: 544 Bytes
Stored: 544 Bytes
Xor, Conversion,
Integer Arithmetic

BB: 0x080697EC (618)
Loaded: 192 Bytes
Stored: 192 Bytes
Xor, Conversion,

Integer Arithmetic, Logic

6

54
6

BB: Address (Length)
Loaded: # Bytes
Stored: # Bytes

List of Instruction
Classes

54

of jumps

6

6

Number of
touched

tainted bytes

Classes of
Instructions
Touching

Tainted Data

Basic Block
Location and

Size

Number of
times edge
was taken

Figure 5: Example of an annotated control flow graph, extracted from the
libgcrypt Rijndael (AES) implementation.

16

feature in decryption algorithms. We therefore proceeded to augment our
labeling of CFG vertices with information regarding loops.

3.4.3 Loop Detection

Most encryption and decryption algorithms use loops such as for or while
loops in their implementation. For example, block cipher implementations
often use multiple rounds of the same basic operations to decrypt a block.
Loops are also used for the decryption of variable length messages. Messages
longer than block size are split into equally sized blocks and iteratively
decrypted.

We use a well known algorithm to dynamically detect loops during the
program’s execution [27]. Loops are found by detecting backwards edges
within the control flow graph. A loop, identified by address T, is present
within a program when one or more backward branches point to address T.
If multiple branches point to the same address T, we consider all of these
branches to close the same loop. The body of the loop encompasses all
instructions between address T and the highest address with a backward
branch to T denoted as B. Figure 6 shows how T and B are defined.

To handle nested loops and keep track of loop statistics, we use a current
loop stack. This stack contains all loops being currently executed. The top
of the stack corresponds to the innermost loop. Calls to subroutines within a
loop are considered to be part of that loop, so that the body of the function
called becomes part of the body of the loop. This property also holds for
recursive functions, i.e. loops do not stop at function boundaries.

JMP or BR

JMP or BR

JMP, BR or RET

T:

B:

Figure 6: Static view of a loop, reproduced from the original paper [27].

Loops used in decryption algorithms have specific features that further

17

help to identify the decryption process. As an example, the loop that iter-
ates over block cipher rounds operates on a small number of tainted bytes,
roughly equal to the block size, and iterates for a constant number of rounds.
In addition, the loop that iteratively calls the block cipher on sequential
blocks usually uses a well known block cipher mode of operation to combine
adjacent block content. By identifying loops with these features character-
istic of decryption, we can further narrow the search space for finding the
decryption process.

To detect loops that iterate for a constant number of rounds we simply
keep track of the minimum and maximum number of iterations for each
loop’s execution. If the min and max number of iterations are the same,
then the number of iterations for that loop is constant. In order to detect
additional features, we define the following loop types.

Accumulator loops write tainted data during their first iteration and then
modify the same memory location during subsequent iterations. A
typical example of an accumulator loop is a loop that computes the
sum of an integer array.

Out Swipe loops write roughly the same amount of tainted data to unique
locations with each iteration, except for the first or the last iteration
that may taint more, e.g. temporary variables. An example of a Out
Swipe loop is the loop that iterates over the basic blocks and encrypts
each basic block individually.

In and Out Swipe loops are similar to Out Swipe loops but read and
write the same amount of tainted data during each iteration, as op-
posed to simply writing tainted data.

Memory Copy loops are loops that only copy tainted data around. It
turns out that memory copy loops are very frequent in code. We dis-
tinguish these loops from other loops to avoid misclassifying memory
copy loops as decryption loops.

Block ciphers frequently use a power of two as their block size. We
further categorize any In and Out Swipe or Out Swipe loops for which the
number of unique memory locations touched per iteration amounts to a
power of two as Swipe2.

Given these loop labels, the loop that iterates over block cipher rounds
may be labeled as a Accumulator loop that uses a constant number of itera-
tions. Similarly, the loop that iteratively calls the block cipher on sequential
blocks may be labeled as a Out Swipe loop and even a In Out Swipe or
Swipe2 type loop.

In order to detect these loop types, we count the number of unique
tainted memory locations read and written for each iteration. This informa-
tion is aggregated at the loop execution level, where we keep track of only

18

the minimum and maximum number of tainted bytes touched across all iter-
ations. This min and max information allows us to assign a loop type to each
loop following its execution. Refer to Appendix C for a detailed description
of the detection algorithms for the Swipe and Accumulator type loops based
on this min and max principle. We postpone discussion of the memory copy
algorithm until later in this report when we introduce analyzing loop input
and output.

We now add the results of our loop detection and loop feature extraction
to our annotated control flow graph. Figure 7 shows the previous control
flow example updated to include this additional information (Figure 5).

Loop Information
Executions: 6

Iterations: 9 / 9 / 54
Unique Loads: 10 / 14 / 14
Unique Stores: 10 / 14 / 14

Type: Accumulator,
Constant

BB: 0x08069331 (604)
Loaded: 144 Bytes
Stored: 144 Bytes
Xor, Conversion,
Integer Arithmetic

BB: 0x080697DD (15)
Loaded: 0 Bytes
Stored: 0 Bytes

-

BB: 0x0806958D (592)
Loaded: 544 Bytes
Stored: 544 Bytes
Xor, Conversion,
Integer Arithmetic

BB: 0x080697EC (618)
Loaded: 192 Bytes
Stored: 192 Bytes
Xor, Conversion,

Integer Arithmetic, Logic

6

54
654

6

6

Min / Max /
Total Number
of Iterations

Number of
Loop

Executions

Detected
Loop Types

Target

Base

10 Byes /
Iteration +

4 Bytes Tmp
Variable

Min / Max /
Total Number
of Touched

Tainted Bytes

Figure 7: Update control flow graph with loop annotations.

3.4.4 Cryptographic Constants

Cryptographic algorithms frequently use lookup tables to implement substi-
tution and permutation boxes (S-boxes and P-boxes). A typical AES im-

19

plementation, for example, uses four lookup tables containing 256 integers
each. In the case of AES these lookup tables contain very specific constants.
This fact can be used to identify whether or not the binary under analysis
is using AES. Knowing which cryptographic algorithm is being used brings
us one step closer to detecting when the input undergoes decryption.

To test the effectiveness of this method we considered constants used by:
AES, Blowfish, Twofish and DES. A hash table is used to map cryptographic
constants to their corresponding algorithm. Constants used by multiple
algorithms are removed (see Table 3). We instrument every memory LOAD
and lookup the loaded bytes in the hash table. For every match we increment
a counter for the particular algorithm that matched. At the end of an
analysis we have the number of matches for every algorithm.

With this simple approach we can effectively detect AES, Blowfish and
Twofish implementations. To check for false positives we analyzed various
Linux tools that do not use one of these algorithms. For example, we used
gzip to compress a file that contains randomly generated data. No false
positives were found for these three algorithms. This approach, however,
does not work for the DES algorithm. The constants used by DES seem to
occur frequently in programs unrelated to DES.

We decided to abandon this approach for two reasons. First, this ap-
proach assumes that we already know the algorithm and the cryptographic
constants used by the malware author. Second, and more importantly, al-
gorithms like Blowfish and Twofish can easily be modified to use other con-
stants without affecting their security. This flexibility applies to every S-box
and P-box implementation used in a Feistel network.

Table 3: Cryptographic Constants

Algorithm Number of Constants Unique Constants
AES 3072 3060
Blowfish 1042 1042
Twofish 1024 1020
DES 512 480

3.5 Heuristics and Detection Algorithm

So far we have described a tool that extracts specific features from a pro-
gram’s execution in order to narrow our search for where and when the
decryption process occurs. Finding these features, however, is not sufficient
to decisively locate the decryption process. In this section, we describe a
heuristic that we use in combination with these extracted features to reliably
identify the decryption process.

20

Our heuristic is based on three observations.

Loops As argued in the previous section, loops are an important component
of cryptographic algorithms.

Entropy The decryption process typically decreases the information en-
tropy of tainted memory. In the case of cryptographically secure algo-
rithms, encrypted data typically has higher information entropy. This
observation does not hold for simplistic algorithms, such as the Caesar
cipher, that do not affect information entropy. Therefore, our heuristic
will not work for algorithms like the Caesar cipher. Nevertheless, we
believe that the approach of dynamically extracting features from a
program’s execution could still be used in combination with another
heuristic to decrypt these simple cryptographic algorithms.

Integer Arithmetic Cryptographic algorithms heavily use integer arith-
metic, in particular xor operations.

Based on these observations, we search for loops that decrease the in-
formation entropy of tainted memory and use integer arithmetic and xor
operations. To track changes in tainted memory entropy we compare the
information entropy of the tainted memory before and after the loop’s exe-
cution.

3.5.1 Loop Input and Output

We define the input of a loop to be all first memory loads, i.e. the value of
all memory locations read by the loop body but not (yet) written to by the
loop. Similarly, we define the output of a loop to be all last memory stores,
i.e. the last copy of all memory locations written by the loop body. The
loop input and output are restricted to memory locations that are tainted.
Figure 8 illustrates the notion of loop input and output.

In the case of nested loops, the input of an inner loop is copied to the
input of the outer loop once the execution of the inner loop is finished. The
analog is done for the inner loop output. There is one exception, namely
if the memory input (or output) of the inner loop is not accessible to the
outer loop. This happens if the inner and outer loop are in two separate
functions and the inner loop input (or output) is stored on its local stack.
Since our loop detection algorithm crosses function calls, this may happen.
We simply do not copy input (or output) in that case.

3.5.2 Entropy Measures

Given the definition above for loop input and output we redefine entropy
decreasing loops as loops with input that have a higher entropy than their

21

int i, sum;
int a[] = { 5, 7, 17, 11, 2 };

// Taint content of array a.
TAINT(a, sizeof(int) * 5);

for (sum = 0, i = 0; i < 5; ++i) {
 sum += a[i]++;
}

a:{ 5, 7, 17, 11, 2 }

Output
Input

a:{ 6, 8, 18, 12, 3 }, sum:42

C Code Example

Loop Input and Output after Execution

Figure 8: Example illustrating the notion of loop input and loop output.

output. The input and output can be seen as two memory buffers. To
detect decreased entropy, we compute the entropy on both of these buffers
and compare the results.

In our context it is crucial that the entropy values for buffers of different
lengths be comparable. We strive for a length independent entropy measure.
For example, if the loop input is 10 bytes long and the output is 20 bytes
long, we require that their entropy values can be compared as if the input
and output were of the same length. We therefore scale our entropy measures
to a value between zero and one.

Information entropy is usually defined as follows:

H(X) = −
n∑

i=1

p(xi) · log2 p(xi), (1)

where X is a discrete random variable and p(xi) the probability of the
ith element of X. Information entropy is always defined over the alphabet
of the random variable. Instead of changing the alphabet to match that of
every buffer, we always use the 256 possible bytes as the alphabet and scale
the entropy by dividing the result by its upper bound. Keeping a constant
alphabet results in a better measure for comparing buffers with different
sizes. Given a buffer b of length n we define the scaled entropy of b as
follows:

H(b) =
−
∑256

i=1
|b|i
n · log2

|b|i
n

log2

(
min(n, 256)

) , (2)

where |b|i is the number of occurrences of the ith byte in the buffer
b. For buffers larger than 256 bytes H(X) will always lie between 0 and

22

8 = log2 256. For buffers of length n < 256 bytes, H(X) lies between 0 and
log2 n.

We introduce two additional entropy measures to distinguish encrypted
data from decrypted data for small buffers: the number of unique bytes
within buffer b, and the number of different bytes within b. For clarity,
consider the following list of integers: (1, 7, 1, 5, 7). The number of unique
integers is 1 (5) whereas the number of different integers is 3 (1, 5, 7). For
buffers larger than 64 bytes, we compute the average number of unique and
different bytes using a sliding window of 64 bytes. Therefore, we compute
and can compare our three entropy measures on buffers of all sizes.

These three entropy measures are compared and evaluated in Section 5.1.

3.5.3 Decryption Loop Detection Algorithm

Given a binary, we use our tool to dynamically analyze and extract an
annotated control flow graph. The offline detection algorithm considers
annotated loops within the CFG, entropy measures of loop input and output,
and basic block annotations indicating whether or not arithmetic or xors
are used on tainted data. The detection algorithm searches for loops that
decrease entropy for any of the three entropy measures by more than 15%
and contain xor and arithmetic operations in their loop body. This rather
simple algorithm is very effective in practice. The output of the detection
algorithm is the location(s) of the decryption loop(s).

3.5.4 Retrieving Decrypted Input

With the location of the decrypted loops in hand, dynamic analysis is re-
peated. Whenever one of the decryption loops is executed, we dump its
loop output, which is the low entropy version of the loop input. In some
cases the dumped data contains more than the decrypted data, such as the
values of temporary variables. We group dumped data from multiple loop
executions according to the memory location of the data. This technique
isolates decrypted data from temporary variables and helps the human read
the dumped data.

3.6 Big Picture

We have now completed a discussion of the design and architecture of our
approach illustrated in Figure 1. In summary, the binary under considera-
tion is dynamically analyzed a first time to generate an annotated control
flow graph. The offline detection algorithm described above is then executed
on the extracted control flow graph to locate the decryption loops and out-
put their locations. Dynamic analysis is then repeated with knowledge of
the location of the decryption loops, permitting retrieval of the decrypted
input.

23

4 Implementation

Here we describe the implementation of the design presented in the previous
section.

4.1 Approach

There are at least two different approaches to dynamic binary analysis: bi-
nary instrumentation and whole-system instrumentation. Binary instru-
mentation operates on a single process and possibly its child processes. The
whole-system approach works at the machine emulator level, instrumenting
the entire machine including the operating system.

In the context of our research we are interested in analyzing a single
binary. To accomplish this task, binary instrumentation is simpler to work
with than whole-system instrumentation. With the whole-system approach,
one has to identify which binary and process is running in order to focus the
instrumentation and analysis only on the binary of interest. This difficulty
is completely avoided with binary instrumentation. An advantage of the
whole-system approach is that it instruments the operating system kernel
as well as user level code. Decryption may occur within the kernel, in which
case we would not be able to detect it with binary instrumentation. However,
if malware uses known kernel cryptographic libraries there are easier ways
than the approach developed here to decrypt encrypted input received by
malware, e.g. by wrapping API calls.

We decided to use binary instrumentation for the implementation of our
tool, because it allows us to focus on the problem at hand without dealing
with the technicalities inherent to the whole-system approach.

4.2 Instrumentation Framework

For the implementation of our analysis tool we use Valgrind, an open source
instrumentation framework for building dynamic analysis tools [15] [17].
Valgrind has been used before for dynamic malware analysis and implemen-
tation of memory tainting [18]. In Valgrind, instrumentation is carried out
on an intermediate representation (IR) that uses a RISC-like instruction set.
This property makes the implementation of taint-tracking and monitoring of
memory access patterns easier to implement with Valgrind than with other
instrumentation frameworks (i.e., Pin [13]) because there is only one load
and one store operation. The disadvantage of Valgrind is that it does not
run on Windows which makes the evaluation of real malware samples more
challenging. Our current implementation resulted from exploratory work
and was not designed as a production tool. Future implementations of our
design will be ported to Windows.

24

4.3 Valgrind

Valgrind uses a dynamic binary re-compilation approach: it converts the
client program into an intermediate representation (IR) that gets instru-
mented with analysis code by a tool plug-in and then converts the instru-
mented code back into machine code. Valgrind translates code blocks on
demand following the execution. Code blocks are cached after translation
to speed up rerun if necessary. Each code block is instrumented indepen-
dently. At a high level, the translation of a single code block is a three step
process:

Phase 1. Disassembly: machine code → IR. The first step converts
the machine code of the code block into its intermediate representa-
tion. Each x86 instruction is converted into one or more IR statements.
At this point the translated IR passes through an optimization phase
that removes redundant operations.

Phase 2. Instrumentation: IR → IR’. The second phase consists of in-
strumenting the IR with the analysis code. The IR of the code block
can be arbitrarily modified, e.g. new statements can be added and/or
existing ones can be removed.

Phase 3. Assembly: IR’ → machine code. The last step is responsi-
ble for converting the instrumented code block back to x86 machine
code so that it can be executed. This phase includes converting the IR
to a list of instructions, performing register reallocation and converting
the list of instructions to actual machine code.

The first and third phase are performed by the Valgrind core. The second
phase is performed by the Valgrind tool plug-in that we have implemented.

4.4 Our Valgrind Plug-in

The implementation of our Valgrind plug-in is split into five modules: in-
strumentation, control flow graph, shadow memory, memory allocator and
system call wrappers. These modules are not all independent of each other,
but each performs a specific task. The next sections give a description of
each of these modules.

4.4.1 Shadow Memory

Data Structure The shadow memory stores the taint status of each ad-
dressable memory location. To ensure that the shadow memory consumes
very little memory in practice we use a page-table-like data structure simi-
lar to MemCheck [23]. Our current implementation is designed for a 32-bit
address space. The entire address space is split into 64K chunks, each one

25

64KB in size. The primary map (PM) is an array that holds a pointer for
each one of these 64K chunks. If an entire chunk is not tainted, then its
pointer in PM is NULL, otherwise it points to a secondary map (SM). The
SM holds the taint value for all 64K addresses within a chunk. Each taint
value is an unsigned integer that identifies the source of the tainted data,
i.e. which system call produced the tainting. Figure 9 illustrates this data
structure. Thanks to this data structure the shadow memory only uses a
few MB of memory in practice.

Primary Map

Secondary Maps

64K entries

SM1 SM2

Completely
Untainted

Chunk

Tainted
Memory

Addresses

64K entries

0
x
0
0
0
0
0
0
0
0

0
x
0
0
0
1
0
0
0
0

0
x
0
0
0
2
0
0
0
0

0
x
0
0
0
3
0
0
0
0

0
x
0
0
0
4
0
0
0
0

0
x
0
0
0
5
0
0
0
0

0
x
F
F
F
F
0
0
0
0

0
x
F
F
F
D
0
0
0
0

0
x
F
F
F
E
0
0
0
0

0
x
F
F
F
F
F
F
F
F

Figure 9: Structure of the shadow memory.

Operations At a high-level the operations provided by the shadow mem-
ory are taint(Addr, SizeT), untaint(Addr, SizeT) and istainted(
Addr). For performance reasons additional methods are provided that im-
plement special cases for these three operations, e.g. to taint two bytes at a
time.

4.4.2 Instrumentation

The instrumentation module is by far the largest module of all. It imple-
ments the second phase in Valgrind’s translation process and is responsible
for instrumenting the translated code blocks. We instrument code blocks
to track tainting, to detect loops and function calls, to track memory reads
and writes during loop executions, to create basic blocks and the control
flow graph, and finally, to set the instruction classes for each basic block.

26

Taint Tracking To implement the taint tracking we instrument every
instruction that manipulates data and determine whether the result must be
tainted or not. In Valgrind the intermediate representation has two kinds of
instructions: statements and expressions. Statements represent operations
with side-effects, such as stores and assignments. Expressions are operations
without side-effects, e.g. arithmetic operations, loads and constants.

For each expression, we instrument the IR with code that computes
whether or not the result of the expression must be tainted. The taint
tracking policy is implemented as follows: the result of constant expressions
(i.e., literal values) is never tainted. The result of a load is tainted if at least
one of the loaded bytes is tainted or if the register that stores the address to
load is tainted. The latter case is added to taint the result of table lookups
where the table entry may not be tainted but its address is. Such table
lookup operations appear frequently in cryptographic algorithms. For any
other expression, the result is tainted if one of the operands is tainted, with
some exceptions for constant functions such as xor %eax %eax.

The statements involved in taint tracking are register stores, memory
stores and assignment to temporary variables. For each of these cases the
destination is tainted if the right-hand-side (i.e. the result of the expression)
is tainted.

Loop, Function and Basic Block Detection In order to dynamically
detect loops, functions and basic block boundaries, we instrument all IR
instructions that modify the program’s control flow, such as conditional
branches and jump instructions. Note: for conditional branches we also
need to know if the branch is not taken, as this may indicate that a loop
has finished an iteration.

Memory Reads and Writes Instrumentation of memory reads and writes
is rendered easy in Valgrind thanks to its LOAD and STORE instructions.
For every load and store executed within a loop body we keep track of the
loaded (or stored) memory content. This information is used to compute
the difference in entropy between loop input and output.

4.4.3 System Call Wrappers

Valgrind provides two callbacks that get executed before and after each
system call. This functionality greatly simplifies system call wrapping. To
implement the taint source described in Section 3.3.1, we provide a wrapping
function for every system call that reads data from a file descriptor: read(),
socketcall(), recv(), recvfrom() and recvmsg(). After the system call
executes, we check whether the received data is read from a tainted file
descriptor, and therefore has a tainted origin.

27

Note: we do this check at every read to properly handle non-blocking
sockets. Future implementations will implement the complete file descriptor
state machine to avoid checks at every read.

4.4.4 Memory Allocation and Deallocation

To reduce the false positive rate of the tainted memory, we untaint newly
allocated and deallocated memory regions. Stack and heap memory alloca-
tion and deallocation functions are wrapped to perform this task. Valgrind
provides functionality to replace standard C library functions related to al-
location and deallocation of memory. The brk system call is wrapped as
well.

4.4.5 Control Flow Graph

The control flow graph is dynamically constructed as the program executes.
The instrumentation module informs the CFG module of changes in the
control flow. We store tainting information, execution counters etc. for
each basic block within the control flow graph.

At the instrumentation phase Valgrind provides a super block (SB) which
is a single-entry, multiple-exit block of code. In comparison basic blocks
(BB) are single-entry, single-exit blocks of code. Because the same BB may
occur in multiple SBs it may happen that a BB gets split into two BBs.
Figure 10 shows an example of a BB split. Since we collect information
regarding each BB, spitting a BB is problematic. To cope with this problem
we reduce the maximum size of SBs to one instruction, resulting in each SB
having exactly one BB. This modification negatively impacts performance.
As it turns out, we need this modification for another reason, namely to
handle self-modifying code. Valgrind does not handle self-modifying SBs; if
a SB modifies itself Valgrind does not retranslate it. Reducing the size of
SBs to one instruction circumvents this issue. In order to analyze malware,
we need to properly handle self-modifying code.

At the end of the analysis phase we reduce the size of the control flow
graph by collapsing as many adjacent basic blocks as possible and aggregat-
ing the collected information for each collapsed BB. Our tool finally outputs
the annotated control flow graph as a Python script for further offline anal-
ysis.

4.5 Detection Algorithm

The first stage of the analysis produces an annotated control flow graph
that is output as a directed graph in Python. We decided to use Python
to facilitate modifications of the detection algorithms. Since the detection
algorithm is running offline, performance constraints are reduced. The de-
cryption loop detection algorithm is described in Section 3.5.3. The output

28

SB SB

Newly
discovered

edge

BB #1 gets
split in two

BBs

BB #2

BB #1

BB #2

BB #1
SB

BB #3

Figure 10: Example of a basic block split.

of the detection algorithm is a list of loop target addresses that correspond
to the decryption loop.

4.6 Optimizations

We focused our implementation efforts more on effectiveness than perfor-
mance since our analysis is typically done offline and is not usually per-
formance critical. Nevertheless, binary instrumentation is very expensive
and requires some optimization to execute reasonably fast. Particular care
was taken in the implementation of the shadow memory (as proposed by
Nethercote and Seward in[16]) and in the instrumentation responsible for
taint tracking because both involve almost every single instruction.

During our case study of real malware we encountered performance chal-
lenges. The malware we analyzed starts by unpacking itself which takes
minutes in our current infrastructure. Once unpacked, the malware is busy
collecting information about the infected host. It is only after a couple min-
utes that the malware starts communicating over its encrypted command
and control channel. To reduce the analysis time of this early behavior that
is not related to the decryption process, we do not instrument the binary
before any encrypted data is received. In other words, we start instrument-
ing the binary after the first memory bytes get tainted. Unfortunately, we
cannot simply start instrumenting the binary when it receives its first en-
crypted bytes because we may not instrument crucial parts of previously
executed code already stored in the translation cache. To deal with this
issue we extended the Valgrind core to support clearing of the translation
cache. As soon as the first tainted data is read, we clear the entire trans-
lation cache and start instrumenting code blocks with the analysis code to

29

extract the various features. With this technique the first stage of the mal-
ware’s execution does not get instrumented and therefore executes much
faster.

5 Experimental Evaluation and Results

In the following section we discuss the evaluation of our design and imple-
mentation. Our evaluation consists of three main parts. First we evaluate
the entropy metrics used to distinguish between encrypted and decrypted
data. The second part evaluates the effectiveness and the performance of our
system through analysis of various Linux cryptographic tools and libraries.
Finally, we present a case study of real malware that uses encrypted network
traffic. All experiments were run on a Linux machine with dual core Intel
CPU and 4GB of RAM.

5.1 Entropy Metrics

We introduced three different ways to compute the entropy of a buffer in
Section 3.5.2: the scaled information entropy, the number of unique bytes
and the number of different bytes. Here we compare the effectiveness of
these measures for different buffer lengths.

To compare these measure we encrypt a text file (RFC 3268) with
GnuPG and use our three metrics to compare its entropy with the entropy of
the decrypted text file. The figures below show the entropy measurements
for different buffer lengths. For a given buffer length, the entropy is the
average entropy over a sliding window of that length.

For large memory buffers the scaled information entropy of encrypted
data is clearly higher than for decrypted data. Figure 11 shows how scaled
information entropy changes with increasing buffer size. Notice the bump
in the graph when the buffer length equals 256 bytes. For buffers of length
n ≤ 256 bytes the entropy is scaled with log2(n) because the number of
different characters is bound by the length of the buffer rather than the
size of the alphabet. For buffers of length n ≥ 256 our measure is scaled
with log2(256) = 8.0, corresponding to the traditional information entropy
measure. If we instead always divide by 8.0 we reduce our ability to compare
the entropy of buffers of different lengths because small buffers will always
appear to have lower entropy than larger buffers (since log2(n) ≤ log2(256)).

For memory buffers with a size smaller than 32 bytes, our scaled en-
tropy measure is not very good at distinguishing between the encrypted and
decrypted data. For this reason we use two additional entropy measures
that make this distinction better for small buffers: the number of unique
bytes and the number of different bytes. Figure 12 shows how the difference
in entropy between encrypted and decrypted data is larger for these two
measures than for the scaled entropy.

30

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 32 64 128 256 512 1024 2048 4096

E
nt

ro
py

Buffer size in bytes

Scaled Information Entropy

rfc3268.txt.gpg
rfc3268.txt

Figure 11: Scaled information entropy for large buffer sizes.

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

E
nt

ro
py

Buffer size in bytes

Scaled Information Entropy

rfc3268.txt.gpg
rfc3268.txt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

E
nt

ro
py

Buffer size in bytes

Number of Different Bytes

rfc3268.txt.gpg
rfc3268.txt

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

E
nt

ro
py

Buffer size in bytes

Number of Unique Bytes

rfc3268.txt.gpg
rfc3268.txt

Figure 12: Compare three different entropy measure on small buffers.

32

5.2 Effectiveness and Performance

To measure the effectiveness of our design and implementation we analyzed
different Linux binaries that use common cryptographic algorithms. Each
of these binaries was analyzed separately with our analysis tool.

As far as we know, aside from a few exceptions, malware authors do not
currently use well-known cryptographic algorithms. Instead, for the most
part, authors use custom encryption algorithms. We believe that as soon as
their economic model is threatened by security researchers who break their
simple cryptographic algorithms, malware authors will shift to using secure
cryptographic algorithms. Therefore, our choice of common cryptographic
algorithms for the evaluation of our tool is justified and necessary in order
to demonstrate that our approach is generic.

5.2.1 Walk Through Example: libgcrypt and AES

Here we walk through the analysis of libgcrypt decrypting a file that is
encrypted with AES. We wrote a short program that reads an encrypted
text file and decrypts it using libgcrypt. The encrypted file is only 46 bytes
in size to make the analysis easier to follow. This file is the taint source.
After the first analysis step our system produces an annotated control flow
graph of the entire execution containing 5290 vertices. Upon execution the
decryption loop detection algorithm finds three candidate loops:

Name: cipher.c:961 (0x080552B5)
Type: OutSwipe Swipe2
Exec: 2
Iter: 16 / 16 / 32
#In/Out: Loads: Own: 16 / 32 / 48, Child: -

Stores: Own: 36 / 36 / 72, Child: -
In/Out: Loads: U:0.78 / H:0.95 / D:0.89 / P:0.34

Stores: U:0.57 / H:0.88 / D:0.74 / P:0.58
Diff: U:0.21 / H:0.07 / D:0.15 / P:-0.24

Name: cipher.c:975 (0x0805537C)
Type: InOutSwipe Swipe2
Exec: 1
Iter: 14 / 14 / 14
#In/Out: Loads: Own: 28 / 28 / 28, Child: -

Stores: Own: 32 / 32 / 32, Child: -
In/Out: Loads: U:0.93 / H:0.99 / D:0.96 / P:0.43

Stores: U:0.59 / H:0.91 / D:0.78 / P:0.62
Diff: U:0.33 / H:0.08 / D:0.18 / P:-0.20

Name: cipher.c:957 (0x08055265)
Type: OutSwipe
Exec: 1
Iter: 2 / 2 / 2

33

#In/Out: Loads: Own: 32 / 32 / 32, Child: 32 / 32 / 32
Stores: Own: 116 / 116 / 116, Child: 116 / 116 / 116

In/Out: Loads: U:0.75 / H:0.95 / D:0.87 / P:0.31
Stores: U:0.61 / H:0.87 / D:0.75 / P:0.53
Diff: U:0.14 / H:0.08 / D:0.12 / P:-0.21

Continuing with this example, below we reproduce the source code of the
first loop (0x080552B5) which is part of the cipher feedback block (CFB)
chaining mode implemented in libgcrypt. The loop xors the encrypted ini-
tialization vector (c->iv) with the encrypted input (inbuf) which results
in the decrypted input (outbuf). Notice how the CFB mode encrypts the
initialization vector even during decryption. The complete code of the de-
cryption method that contains all three loops is reproduced in Appendix A.

956 /* encrypt the IV (and save the current one) */
957 memcpy(c->lastiv, c->iv, blocksize);
958 c->cipher->encrypt (&c->context.c, c->iv, c->iv);
959 /* XOR the input with the IV and store input into IV */
960 for(ivp=c->iv,i=0; i < blocksize; i++) {
961 temp = *inbuf++;
962 *outbuf++ = *ivp ^ temp;
963 *ivp++ = temp;
964 }

We now describe the format of output loops using the first loop as an
example.

Name The name of the source file and line number are extracted from the
debugging symbols and used only for verification purposes. Debugging
symbols are not used in any way by the detection algorithm. The
address of the loop target is what normally comprises the Name of the
loop.

Type indicates the detected loop type. In the case of the first loop, the type
field indicates that the loop swipes over a buffer and writes tainted
data block by block using a block size that is a power of two.

Exec shows the number of loop executions. The first loop is executed once
for every complete 16 byte block of the encrypted input (since we are
using 128-Bit AES). Remaining bytes are decrypted in the second loop
(0x0805537C). Since the input is 46 bytes long and the block size is
16 bytes the first loop is executed twice.

Iter indicates the minimum, maximum and total number of loop iterations
over all executions. We see that the first loop always iterates a constant
number of times, namely 16 times which corresponds to the block size.

34

#In/Out holds the minimum, maximum and total number of tainted bytes
that were loaded or stored by the loop. This information is aggregated
over multiple executions. During a loop execution only unique load
and store addresses are counted. For space and performance reasons
we do not keep track of whether a loaded (or stored) address is the
same over multiple executions.

Note that for the first loop the minimum number of loads is 16 bytes
and the maximum is 32 bytes. These numbers reflect that during the
first execution of the loop the initialization vector c->iv (IV) is not
yet tainted. During the second iteration, however, the IV is tainted
(because it is set to the first encrypted block) and therefore 32 tainted
bytes are loaded. The 36 stored tainted bytes correspond to the 16
bytes of the decrypted buffer plus the 16 bytes from the IV plus the 4
bytes that store the temporary variable temp.

In/Out shows the change in entropy between the loop input and output,
averaged over all loop executions. U, H, D, and P stand for number of
unique bytes, scaled entropy, number of different bytes and printability
respectively. Printability is an additional measure representing the
percentage of printable characters within the buffer.

Notice how in the case of the first loop, the number of unique bytes and
the number of different bytes distinguish better between the entropy
of the loop’s input and output than the scaled entropy (0.21 and 0.15
versus 0.07). This case is a good illustration of how for small buffers
scaled entropy is not as good at distinguishing between encrypted and
decrypted data as our other two entropy measures.

The output of the detection algorithm for the second and the third loops
in our example contains similar information. Looking at the source code in
Appendix A, one can see that the output of the first and the last loop are
identical because the first loop is an inner loop of the third. The second
loop handles the final, incomplete block if there is any.

After the detection of these three loops we run our analysis a second
time with information regarding the loops’ locations. The second analysis
process collects the tainted output of these three loops. Duplicated values
are removed, and memory that is located together is grouped. Finally, the
different buffers at the different locations are output. For each buffer we
compute the entropy again to help the analyst that runs the tool to identify
the decrypted input. In some cases temporary variables are also output but
can easily be spotted either by looking at their entropy or by the fact that
they are not located next to a buffer.

35

5.2.2 Additional Evaluations

Blowfish and Twofish In order to substantiate the evidence for our tool’s
effectiveness we investigated two additional cryptographic algorithms and
implementations: blowfish and twofish. For these measurements we encrypt
and decrypt a text file (RFC 3268) with open source Linux file encryption
utilities that use these algorithms (Bcrypt and Twofish). The encrypted
text file is the taint source.

In both of these cases we were able to successfully locate the decryption
loops and the decrypted file content in the program’s memory.

OpenSSL We extended the evaluation of our tool with the analysis of
OpenSSL. The command-line tool cURL is used to fetch a URL over an
encrypted HTTP connection using SSL. The socket that is connected to the
IP of the web server that hosts the URL is defined as the taint source in
this case.

In the first experiment we fetch a website from a local Apache server that
uses AES for its symmetric cipher: curl -k https://localhost. Note:
the local web server does not have a valid certificate which is why the -k
parameter is added to explicitly skip the certificate verification. The second
experiment calls curl https://mail.google.com. Google’s web servers
use RC4 as the symmetric cipher. For both of these cases our system was
able to identify the location of the decrypted webpage in memory.

The third experiment investigates the ability of our system to analyze a
Python script that fetches the same URL as before. The analyzed Python
script looks like this:

#!/usr/bin/python2.4
import urllib2

f = urllib2.urlopen("https://mail.google.com")
print f.read()
f.close()

Even for interpreted code our automatic analysis tool is able to detect
the decryption loop and the location of the decrypted webpage in memory.
Note that the analysis is much slower because the entire Python interpreter
gets instrumented.

GnuPG For the last experiments we investigated GnuPG, an open source
implementation of PGP. We analyze GnuPG as it decrypts an encrypted
text file (same RFC as used above). The file is declared as being the taint
source.

We considered two scenarios, one in which we used GnuPG’s compression
functionality to compress the text file prior to encryption and another in

36

which we did not use compression. GnuPG uses libz as its compression
library. If compression is used, the encrypted file is first decrypted and then
decompressed.

The analysis of GnuPG without compression successfully detects the de-
cryption loop. When compression is used, our tool detects the decompres-
sion loop (libz’s inflate loop) instead of the decryption loop, as the entropy
of compressed data decreases greatly upon decompression. Since the en-
tropy of encrypted data and compressed data are both very high, the actual
decryption loop is not detected by our heuristic.

In this example, the detection of the decompression loop is actually what
we want to achieve, since our analysis aims to extract the de-obfuscated
version of the input. In this case, compression can be interpreted as a kind
of obfuscation. At the same time, this result shows the limitation of our
heuristic that relies on the assumption that the decryption process decreases
memory entropy. For example, imagine the case in which a binary update
is received over an encrypted communication channel. If packed, the binary
itself will have high entropy. Our tool would fail to detect the decryption
process in this case since decryption would not significantly decrease entropy.
To cope with this limitation, future work will search for additional heuristics
to distinguish encrypted from decrypted data.

5.2.3 Performance

For every experiment mentioned above we measure the time required to do
the analysis and to extract the annotated control flow graph. Table 4 shows
the impact of our analysis on the execution time of the analyzed binaries.
For the experiments above our system slows the binaries’ execution by a
factor of 2400 on average.

This effect on the binary’s execution time seems very large. The goal
of our implementation was to demonstrate the effectiveness of our design,
not to maximize performance. It is important to keep in mind that our
analysis extracts the program’s entire control flow graph and therefore many
more features than are actually used in the final decryption loop detection
algorithm. Future work will focus on implementing our detection algorithm
in a single analysis process and on improving performance.

5.3 Case Study: Kraken

As a case study we analyzed the Kraken bot which has been getting a lot
of press attention lately. Kraken is a Windows bot binary that uses an
encrypted command and control (C&C) channel to communicate back to its
bot master. This malware is particularly interesting to us because it uses a
custom symmetric encryption algorithm to encrypt its communication and
control channel. Appendix B describes the bot’s function in more detail.

37

Table 4: Performance impact of our current implementation on binary’s exe-
cution time, compares analysis time of our system with the normal execution
time.

Experiment Execution + Analysis Normal Execution Factor
Bcrypt (blowfish) 1.47s 1ms 1470
Twofish 1.69s 1ms 1690
Libgcrypt 6s 3ms 2000
cURL (AES) 119s 25ms 4760
cURL (RC4) 46s 14ms 3286
Python (OpenSSL) 247s 87ms 2839
GnuPG (w/ libz) 120s 75ms 1600
GnuPG (w/o libz) 118s 73ms 1616

5.3.1 Evaluation Setting

Unfortunately Valgrind does not run on Windows. In order to use our
Valgrind tool to analyze Kraken, we use Wine. Wine is an open source
implementation of the Windows API and is intended as a compatibility layer
for running Windows programs in Linux. Therefore, instead of analyzing
Kraken directly we analyze Wine which is running Kraken.

When dynamically analyzing malware, one must take care to not nega-
tively impact Internet users. For example, we wouldn’t want the malware
under analysis to begin sending spam. On the other hand, we can’t block
all network traffic because we want to be able to intercept and decrypt
any encrypted input that the malware receives. To handle this difficulty,
we sandbox the malware’s execution using a virtual machine (VM) that
selectively allows network traffic. The virtual machine setting we use was
presented previously by Provos, Polychronakis et al. [22] [20]. The execu-
tion environment of Kraken involves the virtual machine running Linux that
executes Valgrind, which analyzes Kraken running in Wine. Essentially, the
execution environment looks like this: VM → Linux → Valgrind → Wine
→ Kraken.

5.3.2 Collecting Interesting Malware Binaries

Collecting malware binaries that receive encrypted network traffic and are
therefore interesting for us to analyze with our tool is a challenging task.

One way to solve this problem is to manually search for these binaries
and observe their use of encrypted traffic. This approach was used to find the
Kraken bot, which we received from another security researcher. The manual
approach to finding interesting malware is slow and does not scale. We

38

therefore investigated an automatic approach to detecting malware binaries
that receive encrypted traffic.

Google’s Safe Browsing team visits thousands of websites every day with
virtual machines looking for malicious websites that host drive-by down-
loads [22]. These virtual machines block almost all network traffic except
for HTTP traffic that is required for the virtual machine to get infected in
the first place. Our idea is to search for encrypted network traffic within the
HTTP communications generated by infected virtual machines. In particu-
lar, we are interested in the encrypted HTTP traffic that is received or sent
by processes other than the browser. Presumably these other processes are
malware binaries that use encrypted network traffic, since we do not expect
any process other than the browser to communicate with the Internet.

The fact that we only have access to HTTP traffic limits our coverage
of malware that uses encryption, since malware could use other non-HTTP
protocols. This limitation is voluntarily imposed on our system in order to
avoid negatively impacting Internet users.

To detect encrypted traffic we compute various measures on the HTTP
payloads received by processes other than the browser. Measures include
entropy, floating frequency, printability, detection of Windows PE binaries,
randomness test etc.. To avoid misclassification we detect the MIME type
of the received payloads. We found a fair number of instances where very
high entropy content whose MIME type could not be detected was down-
loaded by the infected machine. We consider these high entropy payloads
of unknown MIME type to be encrypted traffic. Our current infrastructure
does not allow us to identify which binary, or even process, generated the
encrypted payload. An infected machine typically downloads a dozen or so
malicious binaries upon infection, any one of which could have received the
encrypted traffic. We developed a semi-automatic infrastructure that ex-
tracts all downloaded binaries from the virtual machine and executes each
one independently, hoping to find the binary that received the encrypted
network traffic. If found, this binary would be a candidate binary for anal-
ysis with our encryption tool.

We evaluated about one hundred cases in which encrypted network traffic
was received. For each of these cases we ran all of the binaries in our
Wine infrastructure to find the binary that received the encrypted network
traffic. Unfortunately our analysis did not find any binary that runs in our
infrastructure and fetches the encrypted input. A lot of malware binaries
cannot be executed in Wine. In addition, the dependencies between all
downloaded malicious binaries are unknown. We simply run each binary
individually, which may not reproduce the necessary running environment.
We leave it for future work to fully automate this process and resolve these
infrastructure issues.

39

5.3.3 Infrastructure Challenges

The Kraken bot version 3.16 executes smoothly in Wine. When we analyzed
Kraken, it’s bot master had moved and was no longer reachable. All that is
necessary for our analysis is to be able to send an encrypted payload to the
Kraken bot and analyze it as it decrypts the received payload. We looked
online for Kraken network traces that we could replay.

The first step towards replaying the traffic was to create a fake DNS
service to answer the Kraken DNS queries. In its first stage, Kraken tries to
locate its bot master by requesting the IP addresses of some random domain
names registered at free top level domains like dyndns.org. Our fake DNS
answers all of these queries with a bogus IP address to lead the Kraken bot
to believe that its bot master is still alive.

Once the bot knows its bot master’s IP address, it tries to connect to
this IP on a random UDP port. We have no way of predicting this random
port. We modify the virtual machine’s network stack implementation to
add a UDP sink that makes it possible to route all UDP ports but a few to
a single IP and port. This technique allows us to route all UDP traffic from
Kraken to our simulated bot master running outside of the virtual machine.

Every Kraken bot uses a different encryption key that depends upon the
infected machine’s hardware. Furthermore, Kraken expects the bot master
to use an encryption key that depends upon its key. Unfortunately, these
constraints mean that the network traffic found online cannot be replayed
since the encryption keys use by the bot master will most certainly be dif-
ferent. Kraken simply discards any encrypted traffic encrypted with the
wrong key. To solve this problem, we use the previously published algo-
rithm that is able to decrypt Kraken traffic to decrypt the network traces
that we collected [11]. We then re-encrypt the bot master’s responses with
the appropriate key.

To accomplish this re-encryption, we reverse engineered the encryption
algorithm from the decryption algorithm and found the dependency between
the bot master and bot key by debugging the Kraken bot. All of this work
results in a bot master that sits outside of the virtual machine and is able to
replay previously collected Kraken traffic by re-encrypting it on the fly for
whatever Kraken bot is running inside the virtual machine. We are confident
that our replay technique works because Kraken replies to our replayed and
re-encrypted payloads.

The final and biggest challenge we faced occurred when analyzing Kraken
and Wine in Valgrind. Kraken employs rarely used x86 machine instructions
that are not implemented in Valgrind’s emulator. We added the support for
about half a dozen additional instructions to Valgrind. Finally, Kraken also
uses a wrongly encoded instruction that does not comply with the Intel
manuals, but which runs smoothly on real hardware. Since Valgrind is im-
plemented according to the Intel manuals, this instruction did not execute

40

in Valgrind. We therefore mimicked the hardware’s behavior by implement-
ing this bug into Valgrind’s emulator. We believe that Kraken uses these
instructions to detect and evade emulation.

5.3.4 Measurements and Results

After dealing with all of the infrastructure challenges mentioned in the pre-
vious section, we were able to analyze the Kraken bot as it decrypts the en-
crypted network traffic that it receives. We successfully detected the entropy
decreasing loop and extracted the decrypted payload from the memory.

When analyzing Kraken with the virtual machine, Valgrind, and Wine,
we experienced a huge performance overhead. The technique used to reduce
this overhead was discussed in section 4.6. Obviously, the current infras-
tructure with its multiple emulation layers is not a fair way to measure the
performance of our approach.

6 Limitations and Future Work

Our heuristic assumes that decryption is performed in a loop and that en-
crypted data has higher entropy than decrypted data. As mentioned earlier
in this report, some simple substitution ciphers do not affect information en-
tropy and would therefore not be detected using our heuristic. Our heuristic
would also fail to locate the decrypted input if it has high entropy. As long
as one can distinguish between encrypted and decrypted input, our tool can
find the decryption loops. Our heuristic merely states that entropy is a good
measure for making this distinction. For every case in which this assump-
tion does not hold true, one could substitute another superior measure to
distinguish encrypted data from decrypted data.

Our approach is based on dynamic binary analysis. The greatest limita-
tion of this type of analysis is that it can be detected and evaded, rendering
the analysis useless. This issue may be solved for a single malicious binary,
as demonstrated in the evaluation section, but it becomes especially chal-
lenging when trying to automatically analyze a large number of binaries,
which is our ultimate goal. In our research we use Valgrind, which is prone
to detection because it sits in the same process as the malware. In addition,
the performance of our tool at this point is sub-optimal because we use sev-
eral emulation layers. One clear consequence of this reduced performance is
that it makes our analysis even easier to detect. In the next phase of this
project, our goal is to move to an infrastructure that is more performant.
Ferrie shows that even when using virtual machines like VMWare or QEMU,
there are ways for malware to detect that it is being analyzed [6]. Future
work will need to consider these challenges of detection and evasion.

Our design uses dynamic tainting techniques to track the memory that
depends upon the encrypted input of the program. This technique effectively

41

reduces the number of candidate memory locations that may contain the
program’s decrypted input. Cavallaro et al. present practical examples
of code that evades traditional taint tracking implementations [12]. At this
point we do not provide a solution to this issue. To the best of our knowledge
no malware currently uses these evasion techniques. Should use of these
techniques become prevalent, future work will either address these detection
challenges or replace taint tracking with alternative means to reduce the
search space of memory.

In addition to addressing the limitations listed above, future work will
tackle the infrastructure challenges brought to light in the evaluation section.
Our tool’s compatibility shortcomings prevent us from achieving reasonable
coverage of malware that uses encryption, since only a small fraction of
malware runs successfully in Wine. Therefore, our implementation must be
ported to Windows in order to extend our tool to analyze a larger number
of binaries. To achieve satisfactory coverage and scale our analysis to thou-
sands of binaries, we need to complete our work to automate the collection
of malware binaries that use encryption.

Future work will also strive to identify the decryption algorithm used by
the binary under analysis, if it is among known cryptographic algorithms.
For custom algorithms, we would like to detect the use of additional struc-
tures common to cryptographic algorithms, such as a Feistel network. Fi-
nally, we are interested in pursuing the extraction of any kind of crypto-
graphic key material that is used.

7 Conclusions

More and more aspects of our daily lives depend upon the proper functioning
of computers and the Internet. As a result, the consequences of an infected
machine are increasingly detrimental to people’s privacy and economic wel-
fare. The use of encrypted communication has seriously impacted the ability
to automatically analyze malware behavior, and therefore sets the security
research community a step behind in the arms race against malware authors.

Existing approaches to decrypting encrypted network communication
rely on manual analysis, which is both time and resource consuming and
therefore does not scale. In this report, we propose a generic tool for the au-
tomatic decryption of encrypted input received by malicious binaries. Our
approach uses dynamic analysis of malware to extract various features. We
design a detection algorithm to search through these features and find the
location of the decryption routine and the decrypted network traffic in the
system’s memory. Our approach builds on the fact that most decryption
algorithm implementations include loops that decrease the information en-
tropy of memory.

We demonstrate the ability of our tool to automatically locate the de-

42

crypted input from programs using well known cryptographically secure al-
gorithms. In addition, we provide a case study in which we show the ef-
fectiveness of our tool in decrypting the Kraken bot’s encrypted network
traffic. The fact that our solution is generic and not tailored to a particular
cryptographic algorithm is a clear advantage over existing solutions for the
analysis of continuously changing malware. Several of the limitations of this
work, and in particular performance, result from the exploratory nature of
the research in its current status. As we adapt our tool for production, we
will focus on resolving these shortcomings. We argue that our approach can
be used for revealing the intent of attackers that hide their activities using
encrypted network communication.

8 Acknowledgements

I thank Professor Bernhard Plattner for agreeing to mentor me and support
my rather unusual thesis arrangement. I am grateful to Niels Provos for
hosting me within his team during my thesis project and for his killer ad-
vice during rough passages. I am thankful to Google and the Anti-Malware
team for giving me exposure to exciting work in the domain of security.
In particular I would also like to thank Bernhard Tellenbach for his con-
sistent dedication to my progress and for his true interest in my project.
Finally, I would like to express my appreciation to Panayiotis Mavromma-
tis, Thomas Dübendorfer, Moheeb Rajab, Xin Zhao, Michalis Polychronakis,
Steven Hanna, the entire Google Anti-Malware team and Amanda for idea
bouncing, support and great feedback on my presentation and write up.

43

9 Appendices

A Libgcrypt Decryption Method

This code is copied from libgcrypt version 1.2.2. The source file is cipher.c
located in the cipher folder. The code indentation was reduced to fit this
page.

924 static void
925 do_cfb_decrypt(gcry_cipher_hd_t c, byte *outbuf,
926 const byte *inbuf, unsigned int nbytes)
927 {
928 byte *ivp;
929 ulong temp;
930 size_t blocksize = c->cipher->blocksize;
931
932 if(nbytes <= c->unused) {
933 /* Short enough to be encoded by the remaining XOR mask. */
934 /* XOR the input with the IV and store input into IV. */
935 for(ivp=c->iv+blocksize - c->unused; nbytes; nbytes--,c->unused--) {
936 temp = *inbuf++;
937 *outbuf++ = *ivp ^ temp;
938 *ivp++ = temp;
939 }
940 return;
941 }
942
943 if(c->unused) {
944 /* XOR the input with the IV and store input into IV. */
945 nbytes -= c->unused;
946 for(ivp=c->iv+blocksize - c->unused; c->unused; c->unused--) {
947 temp = *inbuf++;
948 *outbuf++ = *ivp ^ temp;
949 *ivp++ = temp;
950 }
951 }
952
953 /* now we can process complete blocks */
954 while(nbytes >= blocksize) {
955 int i;
956 /* encrypt the IV (and save the current one) */
957 memcpy(c->lastiv, c->iv, blocksize);
958 c->cipher->encrypt (&c->context.c, c->iv, c->iv);
959 /* XOR the input with the IV and store input into IV */
960 for(ivp=c->iv,i=0; i < blocksize; i++) {
961 temp = *inbuf++;
962 *outbuf++ = *ivp ^ temp;
963 *ivp++ = temp;
964 }
965 nbytes -= blocksize;

44

966 }
967 if(nbytes) { /* process the remaining bytes */
968 /* encrypt the IV (and save the current one) */
969 memcpy(c->lastiv, c->iv, blocksize);
970 c->cipher->encrypt (&c->context.c, c->iv, c->iv);
971 c->unused = blocksize;
972 /* and apply the xor */
973 c->unused -= nbytes;
974 for(ivp=c->iv; nbytes; nbytes--) {
975 temp = *inbuf++;
976 *outbuf++ = *ivp ^ temp;
977 *ivp++ = temp;
978 }
979 }
980 }

B The Kraken Bot

The Kraken bot has recently been getting a lot of media attention. We be-
came interested in analyzing this particular malware binary not only because
it is currently relevant, but also because it uses an encrypted command and
control (C&C) channel to communicate with its bot master. Kraken uses a
custom block cipher encryption algorithm which makes it a perfect use case
for our research.

The next sections describe various details about the Kraken bot.

B.1 Communication Protocol

In this section we describe the communication protocol used by Kraken
version 3.16. As its transport layer protocol, Kraken uses UDP to send
small packets, e.g. smaller than 500 bytes, and TCP for larger payloads.
All packets sent and received over the C&C channel are of the same format.
See Figure 13 for an illustration of the Kraken packet format.

Kraken uses a custom, deterministic block cipher encryption algorithm
to encrypt the packet header and payload. The decryption keys are sent
with every packet! This property renders the decryption of network traffic
trivial if one knows the protocol and the decryption algorithm. We suspect
that the malware author does not know any key exchange protocols and is
sending the keys to make it possible for every bot to have a different key.
To prevent signature-based network intrusion detection it is desirable that
every bot have a different key if deterministic encryption is used. For more
information about the decryption algorithm see Section B.2

45

B.2 Encryption Algorithm

Kraken’s encryption algorithm was reverse engineered and first described by
Ligh [11]. From the published code we analyzed the encryption algorithm
further.

Kraken uses a 64-bit deterministic, block cipher with a 96-bit key. For
messages that exceed 64 bits, Kraken simply partitions the message into
64-bit blocks and encrypts each separately. This mode is called electronic
codebook or for short, ECB. The ECB mode of operation is the simplest
but also the weakest mode of operation [1]. If the last block is shorter than
64 bits the remaining bytes are encrypted by xoring them with parts of the
key.

The encryption algorithm works as follows: Let’s assume a 96-bit key
K, an n-bit plaintext message m that is split into t complete 64-bit blocks
m1, ...,mt, and possibly one incomplete block mrem. The ECB mode en-
crypts each mi block as follows: ci = EK(mi). The block cipher function
EK(·) is described below. The incomplete block mrem is encrypted byte-
per-byte as follows:

for i = 0 to length of mrem do
ci
rem = mi

rem ⊕ (Ki + K11−(i mod 4)),
end for
where Ki is the ith byte from key K.
The block cipher used by Kraken looks very much like a Feistel cipher. A

0 1516 31

Key

Seed

Key Material

Message Type Version

Data Length

Checksum (CRC32)

 Encrypted Header

Data content depends on message type
hhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhh

Encrypted Data

Figure 13: Kraken network packet format.

46

Feistel cipher is an iterative cipher that starts by splitting an n-bit plaintext
block into two halves of length n/2: (L0, R0). At every iteration Li and Ri

get modified as follows:

Li = Ri−1

Ri = Li−1 ⊕ f(Ri−1, Ki),

where each subkey Ki is derived from the cipher key K. The interesting
property of the Feistel network is that the f function need not be invertible
to allow inversion, i.e. decryption, of the Feistel cipher. In fact because the
xor is used to combine Li−1 and Ri−1 the following is always true:(

Li−1 ⊕ f(Ri−1, Ki)
)
⊕ f(Ri−1, Ki) = Li−1.

The only difference between the Kraken cipher and a Feistel cipher is that
the Kraken cipher uses subtraction and addition instead of xor to combine
the left half with the output of the round function. For unsigned 32-bit
integers this is also always true:(

Li−1 − f(Ri−1, Ki)
)

+ f(Ri−1, Ki) = Li−1,

which makes subtraction and addition a working replacement for the xor
operator.

For a 64-bit message m and a 96-bit key K split in three 32-bit keys K1,
K2, K3, the Kraken function f is defined as follows:

f(m, K1, K2, K3) = (m� 4 + K1)⊕ (m + K3)⊕ (m� 5 + K2).

It is interesting to note that malware authors do not bother to implement
a more secure cipher block chaining mode that would be only slightly more
complicated to implement.

B.3 Binary Packing

The Kraken binary is packed using a custom packer. We were not able to
unpack the binary using common automatic unpackers. In fact none of the
common packer detectors, such as PEiD, recognized the packing algorithm.
We also used more sophisticated unpacking tools provided through online
services: EUREKA! [29] and Renovo [8]. The result of these analysis tools
is valuable for further manual analysis: the Kraken binary was at least
partially unpacked. Unfortunately this is not satisfactory in our case, since
we need to run the unpacked binary to analyze it.

None of the unpacked binaries exhibits the behavior we are interested
in, namely the encrypted communication.

47

C Loop Type Detection Algorithms

In this section we describe the algorithms used to detect the loop types
introduced in Section 3.4.3. See Algorithms 1, 2, 3 and 4. These algorithms
all take a LoopExecution structure as a parameter that in this context stores
the following attributes:

ustores contains minimum, maximum and total number of unique stored
tainted memory locations during the loop’s execution.

uloads contains the same as ustores but for unique loaded tainted memory
locations.

numiter contains the number of loop iterations for the loop’s execution.

Algorithm 1 IsAccumulatorLoop(LoopExecution l)
if l.ustoresmin == 0 and l.ustoresmax == l.ustoretotal then

return True
end if
return False

Algorithm 2 IsOutSwipeLoop(LoopExecution l)
d = l.ustoresmax − l.ustoresmin

if l.numiter > 1 and l.ustorestotal > l.ustoresmax and
l.ustoresmin · l.numiter + d == l.ustorestotal then

return True
end if
return False

Algorithm 3 IsInOutSwipeLoop(LoopExecution l)
d = l.uloadsmax − l.uloadsmin

if IsOutSwipeLoop(l) and uloadstotal > uloadsmax and
uloadsmin · l.numiter + d == l.uloadstotal then

return True
end if
return False

48

Algorithm 4 IsSwipe2Loop(LoopExecution l)
if IsOutSwipeLoop(l) and (l.ustoresmin & (l.ustoresmin−1)) == 0 then

return True
end if
return False

49

References

[1] Scott A. Vanstone Alfred J. Menezes, Paul C. Van Oorschot. Handbook
ofApplied Cryptography. CRC Press, 1997.

[2] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting
self-mutating malware using control-flow graph matching. Detection
of Intrusions and Malware & Vulnerability Assessment, pages 129–143,
2006.

[3] Ken Chiang and Levi Lloyd. A case study of the rustock rootkit and
spam bot. In HotBots, First Workshop on Hot Topics in Understanding
Botnets, April 2007.

[4] M. Christodorescu, S. Jha, S.A. Seshia, D. Song, and R.E. Bryant.
Semantics-aware malware detection. Security and Privacy, 2005 IEEE
Symposium on, pages 32–46, May 2005.

[5] Mihai Christodorescu and Somesh Jha. Static analysis of executables
to detect malicious patterns. In 12th USENIX Security Symposium,
2003.

[6] Peter Ferrie. Attacks on virtual machine emulators. Symantec Security
Response, December 2006.

[7] Dirk Janssens, Ronny Bjones, and Joris Claessens. Keygrab t00 - the
search for keys continues... Technical report, Utimaco Safeware AG and
COSIC, 2000.

[8] Min Gyung Kang, Pongsin Poosankam, and Heng Yin. Renovo: a hid-
den code extractor for packed executables. In WORM ’07: Proceedings
of the 2007 ACM workshop on Recurring malcode, pages 46–53, New
York, NY, USA, 2007. ACM.

[9] Engin Kirda, Christopher Kruegel, Greg Banks, Giovanni Vigna, and
Richard A. Kemmerer. Behavior-based spyware detection. In USENIX-
SS’06: Proceedings of the 15th conference on USENIX Security Sympo-
sium, pages 273–288, Berkeley, CA, USA, 2006. USENIX Association.

[10] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Poly-
morphic worm detection using structural information of executables,
2005.

[11] Michael Hale Ligh. Kraken encryption algorithm. Tech-
nical report, http://mnin.blogspot.com/2008/04/kraken-encryption-
algorithm.html, 04 2008.

50

[12] R. Sekar Lorenzo Cavallaro, Prateek Saxena. Anti-taint-analysis: Prac-
tical evasion techniques against information flow based malware de-
fense. Technical report, Stony Brook University, 2007.

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with dy-
namic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and implemen-
tation, pages 190–200, New York, NY, USA, 2005. ACM.

[14] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for mal-
ware detection. Computer Security Applications Conference, 2007. AC-
SAC 2007. Twenty-Third Annual, pages 421–430, Dec. 2007.

[15] Nicholas Nethercote and Julian Seward. Valgrind: A program super-
vision framework. Electronic Notes in Theoretical Computer Science,
89(2):44–66, 2003.

[16] Nicholas Nethercote and Julian Seward. How to shadow every byte of
memory used by a program. ACM Virtual Execution Environments,
2007.

[17] Nicholas Nethercote and Julian Seward. Valgrind: a framework
for heavyweight dynamic binary instrumentation. SIGPLAN Not.,
42(6):89–100, 2007.

[18] James Newsome and Dawn Song. Dynamic taint analysis for automatic
detection, analysis, and signature generation of exploits on commodity
software. In 12th Annual Network and Distributed System Security
Symposium (NDSS 05), 2005.

[19] Cody Pierce. Owning kraken zombies, a detailed dissection. Techni-
cal report, http://dvlabs.tippingpoint.com/blog/2008/04/28/owning-
kraken-zombies, 2008.

[20] Michalis Polychronakis, Panayiotis Mavrommatis, and Niels Provos.
Ghost turns zombie: Exploring the life cycle of web-based malware. In
1st USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2008.

[21] Georgios Portokalidis, Asia Slowinska, and Herbert Bos. Argos: an em-
ulator for fingerprinting zero-day attacks for advertised honeypots with
automatic signature generation. SIGOPS Oper. Syst. Rev., 40(4):15–27,
April 2006.

51

[22] Niels Provos, Panayiotis Mavrommatis, Moheeb Abu Rajab, and
Fabian Monrose. All your iframes point to us. Technical report, Google
Technical Report, 2008.

[23] Julian Seward and Nicholas Nethercote. Using valgrind to detect un-
defined value errors with bit-precision. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages
2–2, Berkeley, CA, USA, 2005. USENIX Association.

[24] Adi Shamir and Nicko van Someren. Playing hide and seek with stored
keys. Financial Cryptography, pages 118–124, 1999.

[25] Sergei Shevchenko. Memory stealthiness of kraken. Technical re-
port, http://blog.threatexpert.com/2008/05/memory-stealthiness-of-
kraken.html, 2008.

[26] Peter Szor. The Art of Computer Virus Research and Defense. Syman-
tec Press, 2005.

[27] J. Tubella and A. González. Control speculation in multithreaded pro-
cessors through dynamic loop detection. In HPCA ’98: Proceedings
of the 4th International Symposium on High-Performance Computer
Architecture, page 14, Washington, DC, USA, 1998. IEEE Computer
Society.

[28] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security and Pri-
vacy, 5(2):32–39, 2007.

[29] Vinod Yegneswaran, Hassen Saidi, Phillip Porras, and Monirul Sharif.
Eureka: A framework for enabling static analysis on malware. Technical
Report SRI-CSL-08-01, Computer Science Laboratory and College of
Computing, Georgia Institute of Technology, April 2008.

52

	Introduction
	Motivation
	Problem Statement
	Solution Approach
	Evaluation and Results
	Scope and Limitation
	Structure of this Report

	Related Work
	Design and Architecture
	Approach and Assumptions
	Design Overview
	Memory Tainting
	Taint Source
	Taint Propagation
	Tainted Memory
	Limitations of Memory Tainting

	Feature Extraction
	Function Detection
	Control Flow Graph
	Loop Detection
	Cryptographic Constants

	Heuristics and Detection Algorithm
	Loop Input and Output
	Entropy Measures
	Decryption Loop Detection Algorithm
	Retrieving Decrypted Input

	Big Picture

	Implementation
	Approach
	Instrumentation Framework
	Valgrind
	Our Valgrind Plug-in
	Shadow Memory
	Instrumentation
	System Call Wrappers
	Memory Allocation and Deallocation
	Control Flow Graph

	Detection Algorithm
	Optimizations

	Experimental Evaluation and Results
	Entropy Metrics
	Effectiveness and Performance
	Walk Through Example: libgcrypt and AES
	Additional Evaluations
	Performance

	Case Study: Kraken
	Evaluation Setting
	Collecting Interesting Malware Binaries
	Infrastructure Challenges
	Measurements and Results

	Limitations and Future Work
	Conclusions
	Acknowledgements
	Appendices
	Libgcrypt Decryption Method
	The Kraken Bot
	Communication Protocol
	Encryption Algorithm
	Binary Packing

	Loop Type Detection Algorithms

