
Master’s Thesis

Honor Among Thieves — A Source Coding Based
Sharing Mechanism for the BitThief Client

Dorian Kind
dorian@student.ethz.ch

Prof. Dr. Roger Wattenhofer
Distributed Computing Group

Supervisor: Thomas Locher

Department of Information Technology and Electrical Engineering
Swiss Federal Institute of Technology (ETH) Zürich

Summer 2008

Abstract

In this thesis, the implementation of a peer-to-peer data distribution sys-
tem called T4T is discussed. T4T is based on a truly fair tit-for-tat
exchange of data blocks between peers. To circumvent the inherent prob-
lems of strict tit-for-tat, source coding of the original data is employed.
As only linear combinations of blocks are ever transmitted, the block di-
versity in the network is greatly increased. In contrast to other network
coding systems, we use modular addition in a finite field to encode the
original blocks instead of the more typical XOR operation.

Additionally, a mechanism to ensure data integrity of received blocks is
proposed and analyzed. We discuss the homomorphic properties of differ-
ent cryptography systems and outline the design of a hashing scheme that
utilizes a homomorphic one-way function based on the discrete logarithm
problem. Our scheme enable peers to compute expected hash values of
received blocks out of the hashes of the original data. The existing free-
riding BitTorrent client BitThief is extended to incorporate the discussed
new functionality.

Contents 2

Contents

1 Introduction 4

2 The BitThief Client 6

3 The T4T System 8

3.1 Related Work . 8

3.2 Motivation . 9

3.3 Source Coding and Block Diversity 10

3.4 Decoding . 11

3.5 Slices . 12

3.6 Helper Blocks . 13

3.7 Seeding and the Bootstrap Problem 13

4 Data Integrity 15

4.1 Introduction . 15

4.2 Homomorphic Encryption . 15

4.3 Different Homomorphic Encryption Schemes 16

4.3.1 Factorization-Based . 16

4.3.2 Discrete-Logarithm-Based 17

4.3.3 Elliptic Curve-Based . 18

4.4 Choice and Implementation of Two Algorithms 19

4.4.1 DL-Based . 20

4.4.2 ECC-Based . 21

4.5 Batching . 22

4.6 Evaluation . 23

4.7 Secure Random Checksums . 24

5 Future Work 26

5.1 Large Scale Testing . 26

5.2 Revisiting ECC . 26

5.3 Making BitThief Independent of BitTorrent 26

5.4 Identity Concealment . 26

5.5 Enhancing Performance . 27

5.6 Precomputing Exponentiation Tables 27

6 Conclusions 28

References 29

Contents 3

A Algorithms of Interest 32

A.1 Generating Provably Secure Hashing Parameters 32

A.2 Computing a Product Of Powers 33

B T4T Protocol Specification 34

B.1 Nomenclature . 34

B.2 Handover from Standard BitTorrent Protocol to T4T and Com-
munication Concepts . 35

B.3 Message Types . 36

B.4 Message Format . 38

1 Introduction 4

1 Introduction

The problem is to find a form of association which will defend and
protect with the whole common force the person and goods of each
associate, and in which each, while uniting himself with all, may still
obey himself alone, and remain as free as before.

— Jean-Jacques Rousseau, Du contrat social

Peer-to-peer file-sharing systems combine sophisticated searching techniques
with decentralized file storage to allow users to download files directly from one
another. The first mainstream peer-to-peer network, Napster, attracted public
attention to the peer-to-peer paradigm as well as tens of millions of users for
itself. Napster specialized in helping its users to trade music, as did most of its
immediate competitors and successors at the time; today peer-to-peer networks
are used to distribute all kinds of digital content and are slowly making progress
to supersede the classical server-client model in many areas.

As the power of a peer-to-peer network is based on the resource contribu-
tion of its constituent parts, the success of such systems hinges on its ability
to cope with selfish peers which aim at benefitting from the network without
contributing. One would thus expect that the design of peer-to-peer networks
pays special attention to providing incentives for peers to behave in a way that
is beneficial for the whole network population. In reality we find that many past
and present successful peer-to-peer networks either do not tackle this issue at
all or just assume obedient users that strictly adhere to the specified protocol
without considering their own utility. This is in stark contrast to the theory of
rational choice according to which agents in social and economic environments
interact with varying degrees of collaboration and in general try to maximize
their benefit while minimizing their costs. A rational user will gladly deviate
from a protocol specification in order to increase his utility if there are no con-
sequences to fear. Unfortunately, in doing so, the rational user degrades the
utility of the network for all other users.

The fact that many available clients for different peer-to-peer networks usu-
ally follow their respective protocol—also, the fact that most users of peer-
to-peer software lack the technical expertise to modify the behavior of their
client—should not belie the possibilities that are offered to a truly rational peer.
This is demonstrated by BitThief, a client for BitTorrent1 networks that is able
to download files from a BitTorrent swarm without uploading (contributing)
a single bit. What makes this feat more impressive is that BitTorrent is still
regarded as a peer-to-peer environment that is quite resistant against malicious
peers2, due to its tit-for-tat inspired data exchange.

The present work aims to show that true fairness in a peer-to-peer file shar-
ing network can be achieved without a central authority or communication over-
head. We present an extension to BitThief called T4T which is based on a quid
pro quo exchange of data blocks, resulting in (nearly) equal participation of ev-
ery single peer. BitThief clients, while still only downloading from traditional

1See http://www.bittorrent.com/.
2The “malicious” peers only act rationally, of course.

http://www.bittorrent.com/

1 Introduction 5

BitTorrent peers, can use this protocol extension to fairly trade data among
themselves—hence the title of this report.

The cornerstone of T4T comes from the field of network coding. In our
system, data is only exchanged in the form of linear combinations of original
blocks, which provides the increased block diversity within the network that is
crucial for maintaining true tit-for-tat trades.

As certain peers may have an interest in disrupting the system by injecting
bogus data into the network, we additionally propose a scheme for ensuring
the integrity of the blocks a peer receives that is based on hash functions with
homomorphic properties.

The rest of this thesis is organized as follows. We will give a short overview of
the BitThief client, which this work is based upon, in Section 2. In Section 3,
we present the T4T system after reviewing some related work. Section 4 is
concerned with the question of how to provide data integrity in the system. We
outline some possible directions for future work in Section 5 and conclude the
report in Section 6.

Appendices A.1 and A.2 describe select algorithms, while Appendix B con-
tains several design notes and the specification of the communication protocol.

Acknowledgments

First and foremost I would like to express my thanks to my advisor Thomas
Locher for the opportunity to work on BitThief, for his support, patience and
insightful comments. My thanks extend to Prof. Dr. Roger Wattenhofer and
all the members of the Distributed Computing Group, especially Olga Gous-
sevskaia, Michael Kuhn, Yvonne Anne Oswald, and Stefan Schmid, who were
excellent advisors while working on previous term papers. Patrick Moor deserves
praise for building the original BitThief client as well as laying the theoretical
foundation upon which this work stands.

2 The BitThief Client 6

2 The BitThief Client

BitThief is a BitTorrent client that was developed at the Distributed Computing
Group as part of Patrick Moor’s Master’s thesis [29] in 2006. Its purpose was to
show that it is possible to free-ride in a BitTorrent swarm, i.e., download data
without contributing by uploading.

To provide a bit of background, BitTorrent still is the most popular peer-to-
peer network. Its enormous user base is illustrated by multiple studies; a recent
one analyzing Internet traffic in different regions of the world concluded that—
with the notable exception of the middle east—peer-to-peer networks produce
more than half of all Internet traffic [34]. Of that traffic volume, between 70%
and 97% were stemming from either BitTorrent or eDonkey, with BitTorrent
usually taking up around 60% to 70% of all peer-to-peer traffic.

In addition to its immense popularity, BitTorrent is widely considered to be
reasonably fair and to offer enough incentives to uploaders to stave off free-riders.
In comparison to other peer-to-peer networks, it has the conceptual advantage
that a swarm (a separate BitTorrent network containing anything between a
few up to several thousands of nodes) always only engages in exchange of one
single file.3 This means that, in terms of fairness, peers do not need to take into
account what other peers may have been contributing while exchanging other
files, but can solely observe another node’s momentary behavior in the swarm.

In truly global peer-to-peer networks, peers are (ideally) forming one con-
tiguous mesh, sharing an abundance of different files. Measuring and rewarding
participation in such an uncontrolled environment is much more difficult. In
many networks, there have been efforts to introduce some sort of reputation
that a node can earn by contributing, in order to discourage free-riding. Repu-
tation in this sense can be regarded as a global history of a user’s past behavior
in the network, and a good reputation is usually rewarded with privileged access
to the network’s resources, such as faster downloads or shorter queues. The ac-
tual implementations of these reputation systems, however, often leave much to
be desired. Fasttrack/KaZaA, for example, used to store a user’s contribution
(which determines his download speeds from other nodes) locally, a scheme that
had been quickly cracked and thus proved to be next to useless, because soon
every node would claim to have maximum participation. Other mechanisms are
more elaborate, but usually require a certain computation and communication
overhead. BitTorrent’s design is simple yet effective and relies on the fact that
all nodes in the network are always competing for the same file.

Without going too much into detail (see [8] for a thorough explanation by the
original designer of BitTorrent, Bram Cohen), BitTorrent’s attempt at encour-
aging contribution is its choke/unchoke mechanism. A client will only upload
data to a maximum number k of other nodes, the k so-called “unchoked” nodes.
The choked nodes, on the other hand, retain their connection but do not send
requests for data lest they be disconnected. Every once in a while, the client
resets the list of choked and unchoked neighbors, sorts the connected peers by
their recent upload rate starting with the fastest uploaders, and unchokes the

3Technically speaking, BitTorrent has the ability to serve multiple files in a single swarm
or “torrent”; however, as an overwhelming majority of users will still get all of the data served
by the torrent, one can make this simplification.

2 The BitThief Client 7

first k peers of the list.

While uploading therefore increases a client’s chance of becoming unchoked,
it is by no means guaranteed that a free-riding client will always stay choked.
In addition to the possibility that a non-contributing peer is still in the first k
positions of the peer list, there is also a mechanism called “optimistic unchoking”
that can be benefitted from. Every node in a swarm has a special upload slot for
optimistically unchoking a random peer that used to be choked. This is done in
order to detect currently unused connections that might be better (faster) than
the used ones. A new, random peer is selected for optimistic unchoking every
third unchoking round and offers a malicious peer a chance to download—at
least temporarily—without participating.

Another attack vector is the piece selection strategy that BitTorrent clients
use. Peers mostly utilize a rarest-first policy, striving to download first those
pieces that are least available in their network neighborhood. Additionally, as
soon as a sub-piece of a given piece is received, only sub-pieces from that piece
are requested until the piece is completed. Those mechanisms try to ensure
that pieces remain evenly distributed among all peers, but they can lead to
the situation where a peer cannot use his entire potential download capacity
because of another peer with available upload capacity not offering the right
pieces. A selfish node, however, can just download any piece from the fastest
uploader available.

BitThief aims to exploit these weaknesses. It combines multiple attacks,
some of the previously described, others inspired by exploits covered in [24].
For a condensed overview and evaluation results, see [25]. It suffices to note
here that the BitThief client, in mature swarms with several seeding peers,
often reached similar download speeds as other clients, all without upload-
ing a single bit of user data. BitThief was written from scratch in Java, us-
ing the implementations of the “mainline” BitTorrent client and the popular
open-source client Azureus as references. The latest version is available at
http://dcg.ethz.ch/projects/bitthief/.

http://dcg.ethz.ch/projects/bitthief/

3 The T4T System 8

3 The T4T System

In this section, we will give an overview of the mechanism utilized to introduce
true tit-for-tat (T4T) block exchange amongst BitThief clients. First, we will
have a quick look at related work in the area, namely techniques whose aim is
to ensure fairness in peer-to-peer file exchange networks. Next we briefly de-
scribe the motivation for the scheme and cover the actual T4T system in detail.
Some technical design characteristics and the specification of the communication
protocol can be found in Appendix B.

3.1 Related Work

The existence of free-riders in peer-to-peer networks has been observed in mul-
tiple studies. An early analysis [1] of the Gnutella peer-to-peer network showed
that nearly 70% of nodes never upload any data at all. [18] performed a follow-
up study of the same network and found that free-riding increased significantly,
with now more than 85% of the users not sharing a single file. Another paper by
Saroiu et. al. [33] found that in the (now defunct) Napster network, 40% to 60%
of the user base provide as little as 5% of all files. It has become clear that the
classical “Tragedy of the Commons” problem extends to a digital environment,
insomuch as the large percentage of free-riders degrades the network’s utility
for every user. While the presence of free-riders alone is apparently not driving
users away from peer-to-peer networks—a fact that is corroborated by studies
with human participants in real life [27]—the full potential of the systems is
clearly not tapped as long as free-riding is prevalent.

A lot of work has been done in the past years that promise to provide in-
centives for participation in peer-to-peer networks. [10] gives a concise general
overview of findings and open questions related to free-riding and participation
incentives in peer-to-peer systems. Feldman et. al. found in [11]—using a Gen-
eral Prisoner’s Dilemma model—that scalable incentive techniques have to rely
on shared history, meaning network participants sharing their historical obser-
vations of other nodes’ actions. There are a multitude of different approaches
to do this, of which we briefly list a few:

DHT-based reputation systems store the contribution of a node as observed
by other nodes in a network-wide DHT. This—together with a suitable
mechanism that privileges peers with good reputation—is a simple solu-
tion to discourage free-riding. Unfortunately, DHT lookups needed for
updating and retrieving reputation values tend to be expensive in terms
of exchanged messages [31]. The scheme is also prone to large-scale false
reports attacks.

Virtual currency can be utilized in peer-to-peer systems. The “coins” of the
virtual currency are used to pay for the download of data, so that nodes
that participate more are also going to be more wealthy than other nodes.
This usually involves a trusted party (the “central bank”, if you will)
that manages security and detects fraud attempts like double spending.
Disadvantages of the scheme include the fact that virtual coins grow in
size each time they are spent [6] and the problem of controlling inflation

3.2 Motivation 9

and deflation. Garcia et al. propose a completely decentralized virtual
currency called “Off-line Karma” in [13].

Trust-based networks depend on indirect, second-hand observations to esti-
mate the trustworthiness and reputation of a node. The inherent problem
of false reports is overcome by building some sort of trust network. Eigen-
Trust is an example of such a system that collects reputation values about
a given node from a subset of other nodes from the network, weighted by
their own respective reputation [19].

3.2 Motivation

As of now, BitTorrent swarms depend on altruistic users that continue to share
even when their sharing ratio exceeds one, in other words, peers that upload
more data into the swarm than they have received.4 These benevolent peers
allow other, more selfish nodes to get away with greatly reduced sharing ratios;
in some cases—as demonstrated by BitThief—not uploading at all. As every
peer-to-peer network crucially dependens on collaboration, it is desirable to
force these selfish peers to upload as well.

If we regard a BitTorrent swarm from a game-theoretic point of view, we can
view the exchange of blocks as rounds of a game of repeated interaction where
players can either cooperate (uploading a block to the other player) or defect
(not uploading any data). Since Axelrod and Hamilton’s famous work “The
Evolution of Cooperation” [3] first examined these kinds of games, tit-for-tat is
considered as the asymptotically best strategy, given that every participant tries
to maximize its own utility. Tit-for-tat’s basic “nice” (it will strictly cooperate
as long as not provoked) and “provokable” (once provoked, it will retaliate)
properties seem to make it impervious to attacks. Thus, it is natural to try and
introduce a fairness model that is based on tit-for-tat.

Note that this is not a contradiction to the previously mentioned findings
in [11], as we do not care about another node’s global participation. Instead, we
only regard the isolated view of the two nodes that engage in data exchange. As
all nodes in a BitTorrent swarm are interested in the same single file, fairness in
every single exchange implies a fair system overall. This means, however, that
nodes cannot accumulate the value gained from participation over time as it is
possible in other systems.

Pure tit-for-tat in the BitTorrent environment means that for every block
downloaded from a given peer b, a peer a also has to upload a block to b, or b
will no longer interact with a. This immediately poses two problems:

The bootstrap problem is immanent in a true tit-for-tat exchange scheme: a
newly joining node is not able to participate in any transaction as it has no
“seed capital”. This problem is not as severe as it can be circumvented by a
simple measure that is similar to BitTorrent’s Fast Extension mechanism,

4There exist closed BitTorrent communities where members have to always keep their
share ratio above 1 or risk being banned. However, even in these swarms it is imaginable that
malicious nodes just upload garbage sub-pieces, exploiting the fact that only whole pieces can
be verified.

3.3 Source Coding and Block Diversity 10

by which a new node is allowed to download a small, well-defined set of
blocks for free.

The problem of block diversity is graver: As the number of blocks in a
BitTorrent download is fixed (usually in the low thousands) and every
single block is required to complete the download, peers quickly run into
the situation where node a is interested in some blocks of node b, but not
vice versa (because b already possesses all the blocks that a can offer);
thus preventing interaction between a and b. As an example, assume that
a, b each possess n/2 blocks of a file consisting of n blocks. If we assume
that the downloaded subset of blocks is random, then a and b are each
interested in about half of the blocks the other node has. They will thus
play tit-for-tat until both possess 3n/4 blocks of the file, at which point
they have to find other sources to download from, potentially wasting the
available bandwidth between a and b. The solution to this problem is the
core of the T4T system and is described next.

3.3 Source Coding and Block Diversity

Source coding, respectively the more general network coding is a fairly new topic
in information theory. Ahlswede et. al. introduced the concept in their article
“Network Information Flow” [2] in 2000 by showing that routing and duplicating
messages alone is generally not able to achieve maximum throughput5 in a
network graph. Instead, one has to introduce (re-)encoding of symbols of a
message at the source and at intermediate nodes (the original paper uses a class
of block codes called α-codes). Sinks can then decode the original message as
soon as enough encoded symbols have arrived.

While network coding is able to utilize a network’s capacity more efficiently,
it also has a few drawbacks, namely the increased complexity of coding as op-
posed to traditional routing and the requirement that the topology of the net-
work be known at the time of constructing the coding algorithm. And while
network coding is thought to be of much use in large-scale distributed systems,
such as multicast or wireless networks (see [15] and [20] for examples), the as-
sumption of a static network graph questions the usability of network coding in
dynamic peer-to-peer networks [35], where nodes may join and exit the swarm
at any time. Also, the fact that an optimal network coding algorithm inevitably
requires the peers with greater uplink capacity to serve more traffic may dis-
courage selfish peers.

As our primary goal is not necessarily optimizing the information flow in-
side the network, but to enhance block diversity, we focus our attention to a
secondary effect of network coding: The fact that messages are re-encoded such
that a certain number of them can be decoded at the source with no commu-
nication overhead provides a readily available solution to our block diversity
problem. We can even do away with the re-encoding of messages at interme-
diate nodes, and just take the idea that with transmitting linear combinations
of blocks instead of pieces of the original file, we get our desired high block
diversity. This approach is a somewhat lesser variant of network coding, and

5Maximum throughput meaning the maximum flow in the flow network.

3.4 Decoding 11

has already been used to design peer-to-peer content distribution systems, for
example in [14] and [22].

Similar to the original BitTorrent file, we consider a file f to be composed
of n blocks. A block is the basic exchange unit between peers and consists of
m symbols. While in other network coding systems these symbols are often
elements of a Galois Field GF (2p) with the XOR operation defined as addition,
we chose as symbol domain the finite field GF (q) with q being a large prime,
namely the Mersenne prime 231 − 1, together with regular, modular addition.
Binary fields have the advantage that they fit nicely into bit strings of length
p and their arithmetics can be performed atomically in hardware. But as a
Mersenne prime is almost a power of two, groups operations can be implemented
quite efficiently. When the result of an addition exceeds q, one can just drop
the carry bit and increase the result by one. To illustrate the principle, a file f
to be downloaded is represented as a m× n matrix F

F =

 b1[1] . . . bm[1]
...

. . .
...

b1[n] . . . bm[n]

 ,

where b[i] is the ith block of f represented by a vector of m symbols
[
b1[i] . . . bm[i]

]
with bj [i] ∈ GF (q) for 0 < i ≤ n, 0 < j ≤ m.

All arithmetic operations performed on block vectors are done component-
wise where applicable, i.e. for an operation ? and two blocks a = [a1 . . . am],b =
[b1 . . . bm] we have that a ? b = c where c = [a1 ? b1 . . . am ? bm]. Scalar multi-
plication is performed as usual.

Seeders, that is, peers in possession of the whole file, build linear combi-
nations out of the original blocks by adding k random blocks together. The
resulting combination block c is associated with its vector of coefficients that
serves as a kind of block ID. For every combination block c and corresponding
ID vector v = [v1 . . . vn] ∈ {0, 1}n, we therefore have

c =
n∑

i=1

vib[i] ,

where again b[i] is the ith block of the original file.

Only combination blocks are ever exchanged between nodes, and only seed-
ers create new combinations. This means that a bitfield will always suffice to
identify a given linear combinations, as coefficients will always be either 0 or 1.

How exactly is this scheme helping the block diversity problem? If we again
take the example of two nodes that are each in possession of (random) n/2
blocks, both peers have now a much improved ratio of blocks that they are
interested in. They each can use about n

2 (1 − n/(2
(
n
k

)
)) of the other node’s

blocks, which means that even for small k, both will be able to almost finish
their downloads without interacting with any other peers.

3.4 Decoding

Ideally, a peer is able to decode its received blocks and retrieve the original file
as soon as it possesses n linear combination vectors. Decoding in our system is

3.5 Slices 12

equivalent to solving a system of linear equations. The n×n coefficient matrix V
is constructed with the ID vectors of the received combinations as row vectors,
resulting in a sparse matrix with exactly k ones and (n−k) zeroes in every row.
We also have a right-hand side vector r whose entries are the downloaded linear
combination blocks. Thus we solve Vx = r for x and will have the original file’s
n blocks as entries of x.

It is clear that the system can only be uniquely solved if V is invertible, i.e.
if V has full rank n. This basic fact is the motivation for our choice of modular
arithmetic instead of the XOR operation for the source coding. Simulation
reveals that when using XOR in a binary field, the coefficient matrix that results
from randomly producing linear combinations of blocks has nearly always rank
less than n. In network coding systems utilizing binary fields, random weights
for individual blocks are usually employed to ensure the non-singularity of V.
We do not use this weighting mechanism, simplifying the coding processes and
replacing the transmission of a vector of weighting coefficients with a simple
bitmask.

After inverting V, all n downloaded linear combinations are multiplied with
V−1 to reconstruct the original blocks. Inverting a square matrix of size n can
be done in O(n3) time, and the multiplication with the received blocks takes
another O(n2m). With m normally being much larger than n, the decoding
time is dominated by the time required to multiply the inverse with the blocks.
However, as the product nm is constant for a given file size, reducing m will
actually slow down the decoding. We found that even for moderately large n,
the time to invert V and decode the blocks must be measured in minutes, not
seconds. Relief comes from the fact that the second part of the decoding process
is easily parallelized, so that we can take advantage of the contemporary shift
towards multi-core home computers.

The choice of k is crucial for the algorithm. While even with k = 2 the
block diversity is already great enough to ensure smooth tit-for-tat exchange, k
has to be larger to guarantee the invertibility of the coefficient matrix V. On
the other hand, a large k makes the encoding slower as more blocks have to
be added together for each combination, and results in a denser matrix V that
is inverted less efficiently. A preliminary analysis shows that in order for V to
have full rank, it is necessary—yet not sufficient—that every column vector has
at least one non-zero entry. A column consists of only zeroes with probability
(1 − k

n)n, which is approximately e−k for large n. It follows that k must grow
at least logarithmically in n for the expected number of columns consisting
solely of zeroes to remain constant. We followed [26] and set k = log n + 2,
which, according to simulation, results in an invertible matrix with very high
probability. If a peer still ends up with a singular matrix, all it has to do is to
download one or more additional linear combinations.

3.5 Slices

We have seen previously that the decoding of the received linear combination
blocks is quite time-consuming, which is especially bothersome as the process
can only start as soon as the last of the n blocks has arrived, which is the
moment at which the typical user of a peer-to-peer client would expect to be

3.6 Helper Blocks 13

able to use the downloaded file.

A simple yet effective solution to this problem is proposed, among others,
in [7] and [14], which just divides the file to be downloaded in multiple segments
of fixed size. Linear combinations are then only ever built using blocks from the
same segment. We call these segments slices and let them consist of a specific
number ns of blocks. Every aspect of the source coding mechanism operates
on a single slice in lieu of the entire file, which means that as soon as all ns

blocks of a specific slice have been received, the decoding of that slice can begin
even if no other blocks from the file have been downloaded at all. This has
two profound advantages, the first being that the decoding of the whole file
takes time linear in the number of slices instead of polynomial in file size, the
other that the decoding process is more evenly spread during the duration of
the download as single slices can be decoded individually.

3.6 Helper Blocks

A helper block is created for every slice of the download. It serves two purposes:
First, it contains the orphaned bits at the end of each block. Suppose we have a
block size of 128 KByte, so that a block consists of 33’825 symbols of 31 bits each.
This leaves an incomplete symbol with the size of a single bit at the end of every
block that is not accounted for in the construction of the linear combinations and
thus never transmitted. We could, of course, only allow block sizes that align
with symbol boundaries (e.g. 124 KByte), but storing the incomplete symbols
in a separate block is a more flexible approach. Even when choosing a worst
case block size such as 120 kByte, resulting in 30 surplus bits per block, the
helper block for a 128 MB slice is approximately 4 kByte in size, which should
be acceptable.

Second, there is a slight probability that the 31 bits which make up a symbol
are all ones. As the order of our finite field is q = 231 − 1, we cannot represent
this bit pattern. For this reason, the helper block also indicates the location
of the occurrences of this specific pattern. With compressed file formats being
overwhelmingly used in the distribution of digital content, the frequencies of
such a particular bit pattern—note that the 31 ones also have to be located
exactly inside the boundaries of a symbol—should be small and not inflate the
size of the helper block unreasonably.

The helper blocks are exchanged directly and never used for source coding.
To distinguish them from normal blocks, they have an ID consisting solely of
zeroes. As helper blocks are comparably light-weight, they are not subject to the
tit-for-tat policy of normal block exchange, and a peer newly joining a swarm
will always try to download the helper blocks first, so they stay available in the
network.

3.7 Seeding and the Bootstrap Problem

We previously mentioned the bootstrap problem of newly joining nodes. In
order to make it possible for new peers to acquire a set of blocks with which
they can start engaging in tit-for-tat exchange, seeders will offer a small set of
blocks to any leecher for free. It makes sense to relax the tit-for-tat demand

3.7 Seeding and the Bootstrap Problem 14

for the specific combination of seeders and starting nodes, as the former have
nothing additional to gain from further exchanges and the latter no blocks to
offer. In contrast to the Fast Extension mechanism of BitTorrent, only seeders
will offer such free sets, as leechers never build any new combinations. When a
newly joined node contacts a seeder, the seeder will calculate a pseudo-random
set of block IDs and announces them to the other node. The seed for the PRNG
that generates the set is the new node’s IP address and the size of the set is
proportional to the number of nodes in the swarm, which can be estimated using
the number of neighbors the seeder sees.

Note that a peer’s seeding status is applied to individual slices and not to
the whole file. A peer can very well be already seeding a certain slice while it
has only received few blocks from another slice. Accordingly, the free starting
set is provided per slice, so that a new node has a starting capital for every slice
to begin trading.

The proposed scheme serves two purposes: First, every peer will be assigned
and provided with a set of unique linear combinations, which increases block
diversity and ensures that the newly joining node has blocks that other peers
will be interested in. Second, as all seeders will calculate the same free set for
a given peer and the size of the free set depends on the (estimated) size of the
swarm, free-riding by malicious peers is not possible and the burden on the
seeders remains low.

4 Data Integrity 15

4 Data Integrity

4.1 Introduction

While the previous sections were concerned with aspects of fairness and network
coding, an area that has so far been left open is the topic of security. A peer-
to-peer network should be able to provide protection from adversaries that try
to upload bogus data into the swarm. While it seems very hard to ensure that
the file a user downloads from the network is really the one he was looking for,
we can find ways to at least make sure that every peer receives the exact same
copy of the originally seeded file.

In BitTorrent, data integrity is provided by means of a list of hashes in
the Torrent’s metainfo file. For every piece in the data file, a 160-bit SHA-
1 hash is computed and stored. Upon receiving a piece from the network,
a node can instantaneously check whether the piece has been altered—either
already at the source or mid-transit—by computing the hash of the received
data and comparing it to the correct hash. This approach is straightforward
enough, although a user still has to trust the publisher of a BitTorrent file to
include valid hashes; then again, the publisher could just provide an inaccurate
description of the downloaded file’s content.

From the previous sections it becomes immediately clear that storing and
communicating hashes in this fashion cannot be a viable way to ensure data
validity in the T4T environment. As the potential number of tradeable blocks—
the number of linear combinations that can be constructed—is

(
n
k

)
· ns where n

is the number of blocks per slice and ns stands for the number of slices in the
file, one would have to store and transmit much more data for the hashes than
for the data itself, even using large blocks and small hash sizes.

Pre-computing all possible hashes is therefore out of the question. But there
is another way: observe that while encoding the data to be transmitted, we
just perform an addition of symbols in a symbol space GF (q)m. If there were a
function that had the one-way-ness required for hashing, yet still offer a possi-
bility to compute the hash of the addition of two symbols using only their hash
values, we could use it as a basis for our data integrity scheme. Basically, we
are looking for some sort of homomorphism between the symbol space and the
hash value space whose inverse is intractable. Fortunately, such functions have
already been discovered and described, and we will use them for our purposes.

Another way to ensure data integrity that has recently been proposed is the
use of so-called secure random checksums. We quickly discuss this approach in
Section 4.7, but do not use them in the context of BitThief.

4.2 Homomorphic Encryption

A homomorphic encryption scheme allows certain arithmetic operations to be
performed on ciphertexts. Different variants of this property are found, for
instance, an additively homomorphic cryptographic algorithm may allow the
decryption of the addition of two ciphertexts to be the same as the addition of
the original plaintexts. Known homomorphic cryptography schemes so far only
support group operations on plaintexts; one could imagine that there also exist

4.3 Different Homomorphic Encryption Schemes 16

systems that preserve a ring structure of the message space.

These homomorphic encryption schemes are especially useful in scenarios
where someone who does not have decryption keys needs to perform arithmetic
operations on a set of ciphertexts, for example the tallying of votes in a se-
cure electronic voting system or for tamper-resistant data aggregation in sensor
networks. In other scenarios, the property of homomorphism is undesired, as
it automatically implies malleability of the cryptographic system. A malleable
cryptography scheme offers the possibility for an adversary to transform a given
ciphertext c into another ciphertext ĉ, whose corresponding plaintext m̂ is re-
lated to the original plaintext m via the relation m̂ = f(m) for some known
function f .

In fact, most asymmetric cryptography systems that are used today have
homomorphic properties and are thus malleable. As public-key cryptography
is in practice mostly used to derive a session key for the actual, symmetric
encryption and decryption of a message, this is not of much concern. In any
case, signatures may be used to thwart an adversary’s tampering attempts.

We give a more formal description next: let A be a cryptographic algorithm
with encryption function ε and corresponding decryption function δ operating
on a message space M and a ciphertext space C. If we have operations +,×
such that M is a group under + and C is a group under ×, then we say that A

is (+,×)-homomorphic if

c1 × c2 = ε(m1 + m2)

or, alternatively,
m1 + m2 = δ(c1 × c2).

4.3 Different Homomorphic Encryption Schemes

We will now have a look at different homomorphic encryption schemes and ana-
lyze whether they could be adapted as a basis for our data integrity mechanism.
As we are essentially looking for a one-way function, and asymmetric cryptog-
raphy is based on trapdoor functions (encrypting is easy, but decrypting is hard
without knowledge of a key), we can start by looking at existing public-key
cryptography systems. Many of those can be broadly divided into the following
three classes defined by their underlying intractable problem:

4.3.1 Factorization-Based

One of the first public-key cryptography systems that gained public recognition
was the RSA algorithm designed at MIT by Rivest, Shamir and Adleman and
described in [32]. While Diffie and Hellman had previously come up with a
scheme for securely exchanging keys over a public channel (which was based on
the discrete logarithm problem discussed next), RSA also covered the actual
encryption and decryption process.

RSA assumes that the problem of factoring large integers is hard to solve,
specifically factoring semiprimes (the product of two primes). A quick overview
of the procedure follows: Alice chooses large primes P,Q and takes the product

4.3 Different Homomorphic Encryption Schemes 17

N . She then computes the totient of N , which is φ(N) = (P − 1)(Q − 1)
(as P,Q are prime). She also has to choose a public exponent e, smaller than
and co-prime to φ(N).6 Her private key exponent d is then computed to satisfy
de ≡ 1 (mod φ(N)), which can be efficiently done using the extended Euclidean
algorithm.

Alice transmits (N, e) to Bob, who encrypts his plaintext m to a ciphertext
c = me mod N . Alice can decrypt m using her private key exponent d, as
m = cd mod N .

Let us take a look at the homomorphic properties of this scheme. For mes-
sages m1,m2 and corresponding ciphertexts c1, c2, we have:

ε(m1 ·m2) = (m1 ·m2)e = me
1 ·me

2 = c1 · c2

While this is an example of homomorphic encryption, this particular case is
ill-suited for our purposes as the construction of transmitted blocks is done by
adding symbols together, not multiplying them. Thus we have to look beyond
RSA’s one-way function.

4.3.2 Discrete-Logarithm-Based

These are cryptographic systems which were designed under the assumption
that the problem of computing a discrete logarithm is intractable, i.e., finding x
such that gx = h for given g, h where all operations take place in a finite cyclic
group.

Diffie and Hellman first described the use of the discrete logarithm problem in
public-key cryptography in their seminal article [9]. Their algorithm was strictly
for distributing keys (establishing a common secret over insecure channels) and
did not cover encryption. The El Gamal cryptography system described in [12]
is probably the best known DL-based scheme7 based on the work of Diffie and
Hellman. We thus focus on El Gamal next.

Again we quickly describe the encryption process: Alice first chooses a large
prime p and selects a generator g for a cyclic multiplicative group G of order
p. Her private key is a random integer x, 0 ≤ x < p, her public key is y = gx

mod p. She then transmits a description of G, the generator g and her public
key y to Bob.

Bob encrypts a message m ∈ G by choosing a random k ∈ Z, 0 ≤ k < p and
computing a tuple (c1, c2):

c1 = gk, c2 = myk

The ciphertext is c = (c1, c2). Alice can decrypt c with her private key:

m =
c2

cx
1

El Gamal is homomorphic, but again multiplicatively. For random k1, k2

and with a slight abuse of notation:

ε(m1 ·m2) = (gk1+k2 , (m1 ·m2)yk1+k2) = (gk1 ,m1y
k1) · (gk2 ,m2y

k2) = c1 · c2

6A popular choice for e is 216 + 1.
7It is used in the popular cryptography software PGP, for example.

4.3 Different Homomorphic Encryption Schemes 18

El Gamal does not appear to be directly usable for our purposes. What
we can do, however, is to take El Gamal’s basic one-way function gx as the
encrypting function ε and notice that it is homomorphic over addition:

ε(m1 + m2) = gm1+m2 = gm1 · gm2 = c1 · c2

It looks like we found a homomorphism that fulfills our requirements. We
will take this approach further in Section 4.4.

4.3.3 Elliptic Curve-Based

Cryptography systems based on the mathematical objects known as elliptic
curves have first been proposed by Neal Koblitz [21] and Victor S. Miller [28]
in 1985. An elliptic curve is a smooth algebraic curve which can generally be
characterized by the Weierstrass equation:

y2 = x3 + ax + b

The points on such a curve can be shown—together with an identity element
O, the point at infinity—to form an abelian group with respect to multiplica-
tion. If one chooses point coordinates from a finite field, the solutions (points) of
the equation for given coefficients a, b form a finite abelian group, in which the
discrete logarithm problem is believed to be more difficult than the correspond-
ing problem in the underlying finite field. It is thus assumed that cryptography
algorithms using elliptic curves (ECC) requires much smaller key sizes than
other systems while maintaining the same security.

In practice, one usually chooses as underlying finite field either a prime field
GF (p), containing a large prime number p of elements, or a binary field GF (2m),
where m is called the degree of the field. Binary fields have the advantage that
their elements can be represented as bit strings of length m and that the field
arithmetic can be efficiently implemented in terms of operations on those bit
strings.

The underlying one-way function of ECC systems is very similar to the case
previously discussed: Define an elliptic curve EK over a finite field K and a
point G on said curve of order r, r being a large prime. The number of points
on the curve is n = fr for some integer f8. We can define addition over EK

such that (EK ,+) represents an Abelian group with O acting as its identity.
For points P,Q, we especially have P + Q = O if P = −Q and P + Q = Q if
P = O. The negative −Q of a point Q = (x, y) is the point (x, p−y) for a finite
field of order p.

Multiplying a point P by an integer n is intuitively defined as adding P to
itself n times and is analogous to the exponentiation operation in multiplicative
groups. Then the problem

Given EK and a point Q on EK , find an integer x such that Q = xG, if
such x exists.

is believed to be intractable. The best algorithms that solve it take time
8f , called the cofactor, is usually a small integer ≥ 1.

4.4 Choice and Implementation of Two Algorithms 19

exponential in the size of the curve.9 Calculating xG, however, can be done in
O(log2 x) point doublings and additions. Thus the function

h(x, n) : EK × N→ EK , h(x, n) = nx

together with a suitable mapping of curve points to hash values could be used
as the basis for a hashing scheme. The homomorphism of the scheme is easily
confirmed:

h(x1 + x2, n) = x1n + x2n = h(x1, n) + h(x2, n)

As finding sensible choices for the parameters (prime modulus p, coefficients
a, b, number of points n, base point G and its order r) of a ECC system is
non-trivial, and suboptimal values can seriously compromise the security of
the system, the National Institute of Standards and Technology (NIST) has
published a document [30] concerning federal standards for digital signature
schemes that lists recommended curves. In particular, there are 5 prime fields
and 5 binary fields of different orders (which correspond to the resulting key
lengths) recommended.

Elliptic curve cryptography is a comparably young field and much work
remains to be done; also, there are already some issues about patents that seem
to cover certain areas. Still, its use is growing and it seems that ECC is becoming
a viable alternative to existing public key cryptography systems. We thus tried
to design a data integrity protocol based on elliptic curve cryptography; see the
next section for the results.

4.4 Choice and Implementation of Two Algorithms

Here we describe the two hashing algorithms we designed for the T4T system.
First some words about notation: As before, we split the file to be shared into
n blocks,10 each block consisting of m symbols in Zq, where q is the Mersenne
prime 231−1. We use bold symbols b, c,v for vectors. The file is then regarded
as a m×n matrix F, where the jth column vector corresponds to the jth message
block b of the file. For notational convenience, we refer to the ith symbol of
block b as bi. When we build linear combinations of the blocks during the
source coding process, we combine random k of the n blocks into a combination
block c. In order to identify which original blocks were used in the combination,
every block c has a corresponding block id vector v ∈ {0, 1}m representing the
coefficients of the linear combination.

As for the implementation itself, there was and still is considerable concern
about the performance of the hashing algorithms as they require multiple ex-
pensive operations in large finite fields. The standard Java BigInteger class
has proven to be inadequate for this purpose, so all the integer arithmetic was
re-implemented using the GNU MP Bignum Library11 (libgmp), which provided

9Compare this to case of finding a discrete logarithm in groups generated by a large prime
where there are algorithms that run in subexponential time.

10Actually, the file is first divided into individual slices. As blocks from different slices are
not mixed, we can simplify things by using the term file and keeping in mind that the following
holds true for every slice.

11See http://gmplib.org/.

http://gmplib.org/

4.4 Choice and Implementation of Two Algorithms 20

a significant speed boost. The library is called via a small wrapper interface
written in C++ which in turn is available to the Java T4T code via JNI.

An additional performance gain was achieved by using a simple yet clever
algorithm for computing a product of powers, taken from [4]. The algorithm is
listed in appendix A.2.

4.4.1 DL-Based

For our first attempt at designing a suitable hashing mechanism, we choose to
use a scheme based upon the discrete logarithm problem in finite fields. The
following algorithm was first proposed by Bellare et al. in [5] as an efficient way
for recalculating hashes of messages that are incrementally updated. In [22],
Krohn et al. further refined the concept and adapted it for a network coded file
distribution system, utilizing its homomorphic properties.

We briefly explain the scheme here: First we choose a set of hash parameters
G consisting of large random primes (q, p) where |p| = λp, |q| = λq and q|(p−1),
and a vector of generators g that have a multiplicative order modulo p of q,
similar to the scheme that is used for DSA (see again [30]). Because the symbols
that make up the block to be hashed are elements from Zq, we set q = 231 − 1
and choose p appropriately.

As G = (q, p,g) is public, there has to be a way to provide clients with a
possibility to check the soundness of the parameters, or else a dishonest node
might publish hash parameters that enable it to find collisions and thus poison
the network with bogus data. See appendix A.1 for an algorithm that enables
such proof.

We then define the hash function HG for a block b as follows:

HG(b) =
m∏

i=1

gbi
i mod p

To verify an incoming block c with block id vector v, a node needs to check
that

HG(c) =
n∏

i=1

HG(bi)vi mod p

holds, which works because of the homomorphic property of HG such that for
two blocks b1 and b2:

HG(b1 + b2) = HG(b1) ·HG(b2)

The security analysis of this scheme was done in [22], which in turn refers to
[5]. It can be shown that if there is an algorithm A that can find collisions on HG

with probability pA and time t, then we can use an oracle machine to construct
algorithm B = UA that succeeds in breaking the DL problem logg(x) with
probability pA/2 and in polynomial time. However, it must be noted that the
original analysis was for a scheme that operated just on a cyclic multiplicative
group Gp of large prime order p, not on the subgroups characterized by (q, p)
as in this system. The discussion of the implications this has for the security of
the scheme was absent from [22] and is beyond our capabilities. It surely holds

4.4 Choice and Implementation of Two Algorithms 21

that finding collisions is at least as hard as computing the discrete logarithm in
a multiplicative group of order q, but a better analysis would be desirable.

4.4.2 ECC-Based

We also designed a scheme that is very similar to the previous one, but oper-
ates on elliptic curves. Again we have our data block b consisting of symbols
b1, . . . , bm, 0 ≤ xi ≤ q for 1 ≤ i ≤ m. We choose an elliptic curve EK over a
group K (the NIST curve P-192 in particular), and define a mapping φ that
injectively (with respect to the x-coordinate) maps points on EK to K, so that
φ(P) = φ(P ′) implies P = P ′ or P = −P ′. We can just use the affine x-
coordinate of a point P for that purpose. We then randomly choose generating
points Si, 1 ≤ i ≤ m of prime order greater than q, which are the public
parameters of the hashing function HEK

. HEK
is defined as:

HEK
(b) = φ

(m∑
i=1

biSi

)

The basic operations of elliptic curve arithmetic – mainly point addition,
doubling and multiplication – were taken from the excellent “Guide to Elliptic
Curve Cryptography” [17].

The security of this scheme can be shown by reducing it to the discrete
logarithm problem in EK , similar to the case for the DL-based algorithm in 4.4.1:
If there exists an algorithm A that is able to compute collisions for HEK

in time
t and with probability p, then there is an algorithm B = UA which calculates
the discrete logarithm logP (Q) for given points P,Q ∈ EK with probability
2p/m and in polynomial time.

B works as follows: we choose random values wi, 1 < wi < q for 1 ≤ i ≤ m
and a random index j, 1 ≤ i ≤ m. We then define

ĤEK
(x) = φ(x1Ŝ1 + . . . + xmŜm)

with

Ŝi =
{

wiP for i 6= j
wiQ for i = j

If the Ŝi are not pairwise distinct, we either already found the discrete
logarithm by chance (if a Ŝk, k 6= j is identical to Ŝj , then we know that
logP (Q) = wk

wj
), or we choose different wi.

Now we use the oracle A to find a collision of two blocks/messages x, ẋ so
that ĤEK

(x) = ĤEK
(ẋ). We know from the definition of φ that the points on

the curve EK that correspond to x, ẋ have the same x-coordinate. Thus, either

(x1 − ẋ1)Ŝ1 − . . .− (xm − ẋm)Ŝm = O

or
(x1 + ẋ1)Ŝ1 + . . . + (xm + ẋm)Ŝm = O

holds. Furthermore, as ord(Ŝi) > q, for at least 2 indices i, the coefficients term
(xi ± ẋi) does not vanish. We namely have 1 ≤ c, d ≤ m so that xc 6= ẋc and

4.5 Batching 22

xd 6= ẋd. Now if j ∈ {c, d} we can solve the equation that results from the
collision and get the discrete logarithm logP (Q):

Q =
(

1
wj(xj ± ẋj)

∑
1≤i≤m

wi(xi ± ẋi)
)

V

As all elements from EK \ {O} are generators of the cyclic group, the dis-
tributions of the tuples (Ŝ1, . . . , ŜM) are independent of the choice of j, as is
the behavior of A on input Ĥ. Thus we have the claimed success probability
of 2p/m. The algorithm requires m point multiplications and several compu-
tations in Zq for the final calculation of logP (Q) and is thus polynomial in its
input length.

4.5 Batching

In order to further speed up the process of verification, we can use a batching
technique. The homomorphic property that allows us to verify every possible
linear combination of original blocks in the first place makes it also possible to
build a linear combination of some received blocks and just verify that combi-
nation. Therefore, instead of independently checking received blocks c, c′ with
ID vectors v,v′, we can verify the combination c + c′ for ID v + v′.

A node can thus introduce a batching window of a certain size l, wait until
enough blocks have arrived to fill the window, and then verify the sum of the
blocks in the window. This way, the most expensive operation, the calculation
of the hash of a new block, needs to be performed only for every l blocks.

We have to be aware, however, that this procedure enables an attack where a
malicious peer can transmit construct two bogus blocks f , f ′ based on real blocks
b,b′ with f = b+ε, f ′ = b′−ε for some random ε, which will remain undetected
as long as they are checked in the same batching window [16]. There is a simple
mechanism that will thwart such attacks: using random weight coefficients for
the blocks in the batching window. When doing so, an attacker would have
to produce two blocks with errors that, when multiplied by random coefficients
wj , wi, will cancel each other, which is highly unlikely.

All put together, we verify the integrity of l blocks (c1 . . . cl) in a batching
window by producing a vector of random integer coefficients w = [w1 . . . wl] and
check that

H

(l∑
j=1

wjcj

)
=

l∏
j=1

H(cj)wj .

This way, instead of l ·m exponentiations to verify l blocks, we only need to do
l + m, which leads to a near linear speedup in l.

More advanced batching techniques are described in [4], unfortunately they
are not applicable to our system as they do not assume different generators g
for different symbols.

4.6 Evaluation 23

Window size Speed (KByte/s)
l G4 C2D
1 51 129
8 411 1040

16 787 2063
32 1626 4096
64 3061 8325

Block size 128 KByte (33825 Symbols), λp = 512

Window size Speed (KByte/s)
l G4 C2D
1 71 189
8 584 1515

16 1155 2961
32 2134 5957
64 4469 11924

Block size 128 KByte (33825 Symbols), λp = 384

4.6 Evaluation

In order to evaluate the algorithm described in 4.4.1, we wrote a simulation
framework that goes through all the steps encountered in the verification pro-
cess: It produces linear combinations of a file of random data, computes the
hashes of the original blocks and verifies the integrity of the encoded blocks us-
ing those hashes. We ran the simulation on a PowerPC G4 (G4) laptop clocked
at 1.67 GHz and on a desktop computer equipped with a Intel Core 2 Duo
(C2D) CPU at 2.67 GHz.

The results confirm the expectation that batching increases the verification
speed approximately linear in the batching window size l. The choice of the
security parameter λp also influences the performance, as the time taken for the
operations in Zp increases with the size of p.

We also built a proof-of-concept simulator for the ECC-based algorithm
from section 4.4.2 that performed the same steps. However, its performance
was found to be lackluster. This is mainly due to the fact that the elliptic curve
we used, P-192, is defined over a finite field with an order that is some multiple
magnitudes larger than the one we used in 4.4.1. The usage of an elliptic curve
over a smaller finite field would certainly be an interesting direction for future

Window size Speed (KByte/s)
l G4 C2D
1 127 293
8 993 2340

16 1973 4686
32 3771 9351
64 6989 18788

Block size 128 KByte (33825 Symbols), λp = 256

4.7 Secure Random Checksums 24

work; unfortunately choosing appropriate domain parameters for a custom curve
is far from trivial (especially counting the points on the curve), and brings the
risk of inadvertently constructing a weak curve (that is, one which is susceptible
to several known attacks).

Additionally, if we have a closer look at the necessary operations, we notice
that the algorithm we used for multiplying a point G with an integer b requires
approximately 2.5·|b| squarings, 3·|b|multiplications and 1.5·|b| inversions in the
underlying field [17]. Compare this to the about 1.5 · |b| multiplications that are
needed to compute gb for the discrete log case. It is clear that the often claimed
performance advantage of ECC stems form the fact that—maintaining the same
security level—key sizes can be about half as large as those in systems based on
prime-generated groups and not due to inherently less expensive arithmetics.

4.7 Secure Random Checksums

Secure random checksums have been proposed by Gkantsidis et al. in [14] as a
simple alternative to more complex and computationally expensive homomor-
phic hashing functions. SRCs work well in Galois Fields of the form GF (2q),
while homomorphic hashing takes place in modular fields of prime order, where
arithmetic operations are more expensive.

SRCs are created by a server in possession of the complete file. The server
chooses a vector r = [r1 . . . rm] of random coefficients from the same field that
is used for the source coding operations. The secure random checksum of an
original block b is then defined as the sum of pairwise products of r and b:

SRC(b) =
m∑

i=1

ribi

This process is repeated for all n blocks of the file, and the SRCs together with r
are transmitted to the client.12 Because of the linear nature of the computation,
it is obvious that the SRCs of the original blocks can be used to calculate SRCs
for any received encoded blocks. A peer that received a combined block c with
associated ID v needs just to check that (here, b[i] refers to the ith original
block of the file)

m∑
j=1

rjcj =
m∑

j=1

rj

(n∑
i=1

vib[i]
)

SRCs have some very compelling advantages over the homomorphic hashing
schemes discussed earlier:

Hash sizes are very small. A hash for a block is just a single symbol, meaning
that for a field where symbols can be encoded in q bits, we only need n · q
bits for all SRCs of a file, plus a small constant number of bits for the seed
to the PRNG.

Speed of computation is several orders of magnitudes faster. The authors
of [14] achieved a performance of 2 GBytes/s on a 3.0 GHz Pentium 4

12It suffices of course to just send a seed for a PRNG instead of the whole vector r.

4.7 Secure Random Checksums 25

CPU for the calculation of SRCs, which is close to the cost of reading the
file and much faster than the rate at which encoded blocks are produced.

However, these advantages come at a price. As the knowledge of r enables a
malicious node to effortlessly produce bogus blocks, a separate random vector
r has to be uniquely assigned to each peer in the swarm by a trusted authority.
This also has the consequence that the trusted party has to recalculate and
securely transmit SRCs to every newly joining node (as a malicious node could
get r from the SRCs).

There is thus a tradeoff between performance and confidentiality require-
ments in the usage of SRCs. While they certainly represent an interesting ap-
proach to ensuring data integrity in a source-coded peer-to-peer environment,
we chose not to pursue this method further.

5 Future Work 26

5 Future Work

In this section we introduce some concepts that are of interest for future work
on BitThief and T4T.

5.1 Large Scale Testing

While we believe the concepts of the presented system to be sound and per-
formed unit and small-scale tests with a few nodes, the size and dynamic nature
of a real BitTorrent swarm will pose additional challenges. Deployment at a
multitude of different nodes with varying connectivity and computing resources
will be required to truly evaluate the fitness of T4T.

5.2 Revisiting ECC

As we noted in Section 4.6, our attempt at implementing a data integrity mech-
anism based on elliptic curve arithmetic was under-performing. This can be
attributed to the fact that we used a curve whose security parameters are de-
signed to provide unbreakable encryption for quite some time into the future.
As a BitTorrent/BitThief swarm is usually not long-lived, we could content
ourselves with much weaker security. A curve over a finite field of size, say,
64 bits would probably be secure enough for our purposes, yet offer a massive
performance gain over the 192-bit field we used. As [30] lists only curves at least
as strong as the one we used, one would to have to find suitable domain pa-
rameters. [23] presents a procedure to construct elliptic curves with given group
order over large finite fields, which could be used for this purpose.

5.3 Making BitThief Independent of BitTorrent

At the moment, a BitThief client, even if using the T4T protocol to communi-
cate with other BitThief clients, is still reliant on a BitTorrent tracker to find
peers who offer a specific file. A future version could get rid of that dependency
by implementing its own tracker mechanism or even come up with a completely
decentralized solution such as a DHT overlay that handles file and peer lookups.

5.4 Identity Concealment

BitThief uses a specific peer ID format in the initial BitTorrent connection
handshake and a bit in the reserved field to identify itself to other BitThief
clients so that a T4T connection can be initiated. It is imaginable that other
BitTorrent clients will start refusing connection to a recognized BitThief client
because of its perceived selfishness. In order to circumvent such a scenario,
BitThief would need to be able to fake the identity of a regular BitTorrent
client while still recognizing fellow BitThief clients. This could, for instance, be
done by sending characteristic yet unsuspicious looking bitfield messages after
the handshake.

5.5 Enhancing Performance 27

5.5 Enhancing Performance

Decoding a received slice and verifying the hashes of incoming blocks are both
expensive processes. This is a cause for concern as it may prolong the time
until the file is completely downloaded and ready for use, which is annoying to
users and thus detrimental to the adoption of the T4T protocol among BitThief
clients. Any work that goes toward increasing the decoding and verifying process
would therefore be welcome. As an example, the multiplication step of the
decoding process is well-suited to be implemented using the SIMD instructions
of modern processors.

5.6 Precomputing Exponentiation Tables

Similar to 5.5, the computation of all the hashes of the blocks of a large file
poses a considerable burden on a seeding peer. This is mostly because of the
multiple finite field exponentiations that need to be performed. If we use k-ary
exponentiation instead of the usual iterative-squaring technique, we can trade
an additional memory requirement of (2x − 1)/x times the original method for
a factor of x/2 in speed increase (minus the time for the precomputation) for a
chosen x [22].

6 Conclusions 28

6 Conclusions

We presented the T4T system, a peer-to-peer communication protocol that
utilizes source coding to create a fair sharing network where data is exchanged in
a strict tit-for-tat fashion. The computational complexity of the scheme is lower
than in other network coding systems, but still considerable when compared to
existing peer-to-peer file sharing networks that do not take fairness issues into
account. Our system solves the block diversity and bootstrap problems inherent
to true tit-for-tat sharing while preventing the exploitation of seeding peers that
is possible in protocols such as BitTorrent.

To ensure the integrity of the transmitted data, we introduced a hashing
mechanism that is based on a homomorphic hashing function. Peers can verify
an incoming block by computing its expected hash value out of the original
blocks’ hashes. The scheme’s security properties are equivalent to other systems
relying on the hardness of the discrete logarithm problem. Our solution’s weak
spot is its performance, which is much worse than those of traditional hashing
algorithms due to the expensive arithmetic operations in large finite fields.

We have to point out that an important prerequisite of the presented work
is the fact that all peers in a BitTorrent swarm are competing for the same file,
enabling us to only take momentary exchanges between two peers into account
with regard to fairness. Thus the tit-for-tat technique we used is not readily
applied to other types of peer-to-peer file sharing environments where all peers
form one contiguous network, trading a multitude of different files. How well
source coding mechanisms are able to provide fairness and robustness in these
systems is the subject of ongoing research.

Another interesting point is how true fairness affects the performance of the
network as a whole. Many users of peer-to-peer networks connect to the Inter-
net with asymmetrical connections that have larger downstream than upstream
capacities. In the T4T system, these peers will only be able to download data
from the swarm at the same rate at which they upload, while in other peer-
to-peer networks, altruistic peers and seeders help overcome the asymmetry.
The total download rate in a swarm utilizing T4T is therefore expected to be
lower than in the same swarm using classic BitTorrent sharing, if many peers
are bound by asymmetrical connections.

It will be intresting to see whether the future development of BitTorrent
is affected by the concepts we showed. If free-riding clients such as BitThief
become prevalent, users of traditional clients might resort to forming closed
wsharing communities with strict membership control. Anonymous swarms
would then have to use T4T or another form of enforced collaboration in order
to survive, thereby perhaps setting an example for other and future peer-to-peer
networks. If the possible success of BitThief will lead to increased consideration
of fairness and collaboration issues in peer-to-peer systems’ design, it would have
surpassed its original purpose and introduced the perspective of the rational
peer—and what can be learned from it—into file sharing. Because sometimes,
thieves are more honorable than honest men.

References 29

References

[1] E. Adar and B. Huberman. Free riding on Gnutella. First Monday, 5(10),
2000.

[2] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung. Network information flow.
IEEE Transactions on Information Theory, 46(4):1204–1216, 2000.

[3] R. Axelrod and W. D. Hamilton. The evolution of cooperation. Science,
211(4489):1390–1396, 1981.

[4] M. Bellare, J. A. Garay, and T. Rabin. Fast batch verification for modular
exponentiation and digital signatures. In Advances in Cryptology (EURO-
CRYPT ’98), volume 1403 of Lecture Notes in Computer Science, pages
236–250, 1998.

[5] M. Bellare, O. Goldreich, and S. Goldwasser. Incremental cryptography:
The case of hashing and signing. In Advances in Cryptology (CRYPTO
’94), volume 839 of Lecture Notes in Computer Science, pages 216–233,
1994.

[6] D. Chaum and T. P. Pedersen. Transferred cash grows in size. In Ad-
vances in Cryptology (EUROCRYPT ’92), volume 658 of Lecture Notes in
Computer Science, pages 390–407, 1992.

[7] P. A. Chou, Y. Wu, and K. Jain. Practical network coding. In Proc. 51st
Allerton Conference on Communication, Control, and Computing, 2003.

[8] B. Cohen. Incentives build robustness in BitTorrent. In Proc. First Work-
shop on Economics of Peer-to-Peer Systems (P2PEcon, 2003.

[9] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[10] M. Feldman and J. Chuang. Overcoming free-riding behavior in peer-to-
peer systems. SIGecom Exch., 5(4):41–50, 2005.

[11] M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques
for peer-to-peer networks. In Proc. ACM Conference on Electronic Com-
merce (EC), pages 102–111, 2004.

[12] T. E. Gamal. A public key cryptosystem and a signature scheme based
on discrete logarithms. In Advances in Cryptology (CRYPTO ’84), volume
196 of Lecture Notes in Computer Science, pages 10–18, 1985.

[13] F. D. Garcia and J.-H. Hoepman. Off-line Karma: A decentralized currency
for peer-to-peer and grid applications. In Proc. Third International Con-
ference on Applied Cryptography and Network Security (ACNS), volume
3531 of Lecture Notes in Computer Science, pages 364–377, 2005.

[14] C. Gkantsidis, J. Miller, and P. Rodriguez. Comprehensive view of a live
network coding P2P system. In Proc. 6th ACM SIGCOMM Conference on
Internet Measurement (IMC), pages 177–188, 2006.

References 30

[15] C. Gkantsidis and P. Rodriguez. Network coding for large scale content
distribution. In Proc. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), pages 2235–2245, 2005.

[16] C. Gkantsidis and P. Rodriguez. Cooperative security for network cod-
ing file distribution. In Proc. 25th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), pages 1–13, 2006.

[17] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryp-
tography. Springer-Verlag, New York, NY, USA, 2004.

[18] D. Hughes, G. Coulson, and J. Walkerdine. Free riding on Gnutella revis-
ited: The bell tolls? IEEE Distributed Systems Online, 6(6), 2005.

[19] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust
algorithm for reputation management in P2P networks. In Proc. 12th In-
ternational Conference on World Wide Web (WWW), pages 640–651, 2003.

[20] S. Katti, H. Rahul, W. Hu, D. Katabi, and J. Crowcroft. Network coding
made practical. Technical report, Computer Science and Artificial Intelli-
gence Laboratory, Massachusetts Institute of Technology, 2006.

[21] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, 1987.

[22] M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-fly verification
of rateless erasure codes for efficient content distribution. In Proc. IEEE
Symposium on Security and Privacy (S&P), pages 226–240, 2004.

[23] G.-J. Lay and H. G. Zimmer. Constructing elliptic curves with given group
order over large finite fields. In Proc. First International Symposium on
Algorithmic Number Theory (ANTS), pages 250–263, 1994.

[24] N. Liogkas, R. Nelson, E. Kohler, and L. Zhang. Exploiting BitTorrent for
fun (but not profit). In Proc. 5th International Workshop on Peer-to-Peer
Systems (IPTPS), 2006.

[25] T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in BitTor-
rent is cheap. In Proc. 5th Workshop on Hot Topics in Networks (HotNets),
2006.

[26] T. Locher, S. Schmid, and R. Wattenhofer. Rescuing tit-for-tat with source
coding. In Proc. 7th IEEE International Conference on Peer-to-Peer Com-
puting (P2P), 2007.

[27] G. Marwell and R. E. Ames. Experiments on the provision of public goods.
II. Provision Points, stakes, experience, and the free-rider problem. The
American Journal of Sociology, 85(4):926–937, 1980.

[28] V. S. Miller. Use of elliptic curves in cryptography. In Advances in Cryp-
tology (CRYPTO ’85), volume 218 of Lecture Notes in Computer Science,
pages 417–426, 1985.

[29] P. Moor. Free riding in BitTorrent and countermeasures. Master’s thesis,
ETH Zürich, Zürich, Switzerland, 2006.

References 31

[30] National Institute of Standards and Technology. Digital signature standard
(DSS). Federal Information Processing Standards Publication 186-2, 2000.

[31] T. G. Papaioannou and G. D. Stamoulis. Effective use of reputation in
peer-to-peer environments. In Proc. IEEE International Symposium on
Cluster Computing and the Grid (CCGRID), pages 259–268, 2004.

[32] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[33] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study
of peer-to-peer file sharing systems. In Proc. Multimedia Computing and
Networking (MMCN), 2002.

[34] H. Schulze and K. Mochalski. Internet study 2007. Technical report, ipoque
GmbH, 2007.

[35] M. Wang and B. Li. How practical is network coding? In Proc. 14th IEEE
International Workshop on Quality of Service (IWQoS), pages 274–278,
2006.

A Algorithms of Interest 32

A Algorithms of Interest

A.1 Generating Provably Secure Hashing Parameters

The algorithm described in 4.4.1 requires parameters G = (q, p,g) that are
public yet sensitive to the security of the system. A malicious node could, for
example, choose g so that it knows i, j, xi, xj with gxi

i = g
xj

j , making it possible
to compute hash collisions with ease.

Nodes thus have to be able to ensure that G was honestly chosen. The
following algorithm, taken from [22], is able to deterministically and securely
generate G from a seed s. We use the MD5-hash of the file as listed in the
metainfo file as s and feed it to the pseudo-random number generator G. We
write G(x) to indicate that we retrieve the next pseudo-random value from G,
scaled to the interval of integers {0, . . . , x − 1}. The differences to the original
version from the cited article stem from the fact that our q is fixed.

Function pickGroup(λp,m, s)

Input: λp,m, s
Output: q, p,g = [g1 . . . gm]
Seed PRNG G with s.
q ← 231 − 1
repeat

p← pGen(λp)
until (p 6= 0) ;
for i = 1 to m do

repeat
x← G(p− 1) + 1
gi ← x(p−1)/q mod p

until (gi = 1) ;
end
return (p, q,g)

Function pGen(q, λp)

Input: q, λp

Output: p
for i = 1 to 4λp do

X ← G(2λp)
c← X mod 2q
p← X − c + 1 // p ≡ 1 (mod 2q)
if p is prime then

return p
end

end
return 0

A.2 Computing a Product Of Powers 33

A.2 Computing a Product Of Powers

The fastMult algorithm13 from [4] can be used to efficiently calculate a product
a of a series of powers abi

i , 0 < i ≤ n. It takes (1 + n/2) · log2b multiplications.
In contrast, a naive algorithm uses n · (1 + Ea(b)) − 1 multiplications, where
Ea(b) is the number of multiplications required to calculate ab (approximately
equal to 1.5 · log2 b).

Function fastMult(a1, b1, . . . , an, bn)

Input: Tuples (a1, b1), . . . , (an, bn)
Output: a =

∏n
i=1 a

bi
i

a← 1
for j = t downto 1 do

a← a2

for i = i to n do
if bi[j] = 1 then

a ← a · ai

end
end

end
return a

13Note that the original version of the algorithm contained an off-by-one error that we have
corrected here.

B T4T Protocol Specification 34

B T4T Protocol Specification

B.1 Nomenclature

File A stream of data that is served by a given torrent. May—contrary to
its name—also consist of multiple concatenated files (in that case, the
directory structure is preserved in the torrent metafile).

Piece A contiguous part of a file, used as an exchange unit in the original
BitTorrent specification. It has a given nominal piece size (usually a power
of 2). The piece size is typically chosen based on the total amount of file
data in the torrent, constrained by the fact that piece sizes too large
cause inefficiency, and too small a piece size will result in a large .torrent
metadata file. The last piece of a file may have a smaller length. Data
integrity of transmitted pieces is ensured by hash codes stored in the
metainfo file.

Block The analogous unit of exchange in the T4T protocol. Unlike a piece,
a block is not direct file data, but a linear combination of k parts of the
original file from the same slice (see below). Another difference is that the
transfer of a block is an atomic operation in T4T, while in the BitTorrent
protocol, pieces are further divided into sub-pieces (usually of size 16 kB)
that are exchanged. For simple interaction with clients that do not support
T4T, the block size sb should be chosen in relation to the original piece size
sp so that gcd(sb, sp) = min(sb, sp). Sometimes the expression “original
block” will be used to refer to the special linear combination of just one
single part of a slice, i.e., a part of the original file that has length sb.
If the length of the last block of the last slice of a file is smaller than sb

(which is likely), then that block is padded with zeroes so that it can still
be used to compute linear combinations.

Slice A slice is a contiguous part of a file with a specific length of c original
blocks. c must by divisible by 8 to facilitate message handling. Only
original blocks from the same slice are used when computing linear com-
binations, thus restricting the size of the linear equation system required
to get the original data out of the received blocks to c× c. The length of
the last slice of the file may be smaller than the other slices.

Peer ID / Session ID The peer ID consists of 20 bytes that uniquely identify
a client in the original BitTorrent protocol. There are different conventions
on how to construct a peer ID. BitThief so far uses an ASCII string that
consists of the prefix “M4-4-0–” followed by random data. The peer ID
is only used in the initial BitTorrent connection handshake. In the native
T4T protocol, a 2-byte session identifier defined in the initial handshake
is used to distinguish between connections. Note that session IDs are only
required to uniquely identify connections between the same two clients
that engage in the exchange of different files simultaneously, so 2 bytes
should be enough for the foreseeable future.

File ID 20 bytes that uniquely identify a served file. In the BitTorrent spec-
ification, this is constructed by computing a SHA-1 hash over the “info”

B.2 Handover from Standard BitTorrent Protocol to T4T and
Communication Concepts 35

key’s data from the metainfo file’s dictionary (in the “info” entry, the
checksums of all pieces of a given file are stored). For a start, it will be
sufficient to use this bit string as file ID in the T4T protocol as well.

Block ID A unique identifier for a block inside a certain slice. It is constructed
by taking a bit string of length c and filling in ones for every original block
that was used in the linear combination and 0 else, resulting in a bit mask
indicating which original blocks a block consists of. There are two special
Block IDs: The ID where all bits are set to zero refers to the helper block
of a given slice, while the ID consisting of c ones identifies the hash block
of the slice (as normal block IDs have exactly 0 < k < c bits set, there is
no ambiguity).

B.2 Handover from Standard BitTorrent Protocol to T4T
and Communication Concepts

The T4T Protocol is employed only after a standard BitTorrent connection has
been established; a T4T -enabled client sends the initial HandShake message
with reserved bit 49 set. If the responding peer indicates that it also supports
T4T, the initiating peer immediately sends a T4T hello message. When the
receiving peer acknowledges by returning a corresponding hello message, the
handover is complete and only T4T protocol messages are exchanged until the
connection is closed. It would also be imaginable to drop the existing connection
and initiate a new connection on a different port so that a T4T session could
be initiated separately of a BitTorrent connection; this would however require
the user to keep track of an additional port that he may have to forward. In
any case, the initiator of the T4T will send his handshake message with the
File ID of the torrent he is interested in, and a random 16-bit session identifier
that will be used in all later messages. The receiving node acknowledges with
a hello message containing the same File ID and Session ID, upon which the
connection is established.

Peers will send a slice list request shortly after establishing a connection to
get an overview of the availability of blocks at the remote node. If the remote
node offers blocks within slices that the local peer has yet to complete; or if the
remote peer is a seeder, the local peer will send a block list request message for
a slice it is interested in. The remote peer will answer with a block list message
containing all linear combinations it possesses for the specified slice, or with a
block list that contains the well-defined14 set of blocks the local node is allowed
to download for free if the remote peer is a seeder. If the local node can find
an “innovative” block in the block list, that is, a linear combination it is not
yet in possession of, it reacts by sending a block request message for that block.
Alternatively, if the local peer has only none to few blocks of a slice, it may
skip the block list request and send a block suggestion request to which it gets
a response with a block ID the remote peer is able to provide, and for which
the local peer may then send a request.

Either way, the remote peer will eventually respond to the block request with
14The local peer’s class C subnet address is used as seed for a PNRG which computes a set

of linear combinations (blocks). The size of the set is dependent on the number of peers in
the swarm, which can be estimated using the size of a node’s neighborhood.

B.3 Message Types 36

a block message that contains the requested block, or a block denial message
if it is not able or willing to fulfill the request. A block denial message can
be caused by the local peer having to send a block first because it has already
downloaded a block from the remote peer.

If the local peer is no longer in use of a block it previously requested but did
not receive yet (because it could already complete the linear equation system for
the given slice with other blocks), it may send a block request cancel message,
which causes the remote peer to respond with a block denial message.

Optionally, when a peer has downloaded a certain number of blocks from
other nodes, it may send a new block message to all the non-seeding nodes in
its neighborhood containing the block IDs of the newly acquired blocks. That
way, peers have a more or less up-to-date overview of which blocks are available
at their neighbors without having to repeatedly request block lists, which are
quite expensive. The new block message is optional as it is not orthogonal to
the block list and block suggestion mechanism.

Peers can request the addresses of additional T4T -enabled clients in the
swarm by sending a peer list request, which is answered by a peer list message.
To prevent an idle connection from being dropped, peers may send keep-alive
message every once in a while.

B.3 Message Types

Hello

The Hello message starts communication between T4T -enabled peers (seeders
and non-seeders alike). It is acknowledged by returning a Hello message with
the same file ID if the local peer serves that file. Otherwise, the connection is
dropped.

Peer List Request

The Peer List Request message asks the remote peer to return a list of BitThief
(or other T4T -aware) peers. This message type is optional as BitThief clients
anyway register with a standard BitTorrent tracker as of now and can get a list
of peers from there (albeit with no discrimination between peers that support
T4T and others).

Peer List

The Peer List message is sent upon receiving a Peer List Request. It contains a
list of peers (seeders and non-seeders) that are known to the local peer.

Slice List Request

The Slice List Request prompts the remote peer for a list indicating the avail-
ability of blocks within the different slices.

B.3 Message Types 37

Slice List

The Slice List message answers a Slice List Request and consists of a vector that
states for every slice of the served file how many unique blocks the sending peer
has to offer. Using a flag, the sender can in turn request the remote peer’s slice
list. A special form of the slice list message indicates that the sender is a seeder
and will provide a well-defined set of blocks from every slice to any requesting
peer.

Block List Request

The Block List Request is sent to acquire information about the actual blocks
that the remote peer is offering for a given slice.

Block List

The Block List message is the response to a Block List Request and contains
a vector listing every available block within the specified slice. As uniquely
identifying a block in a slice requires c bits and there may be up to c available
blocks per slice, efforts have to be taken to minimize the amount of Block List
messages.

Block Suggestion Request

The Block Suggestion Request message is used by a client that possesses only
none to few blocks for a specific slice. It prompts the remote peer for a suggestion
of a block it may send.

Block Suggestion

The Block Suggestion message contains the ID of a block that the sending peer
possesses. The receiving peer may then respond with a block request for that
block if it is innovative for him (which is highly likely given the great block
diversity stemming from the source coding).

Block Request

The Block Request message intends to initiate a block transfer by asking the
remote peer for a specific block from a given slice. It is responded to by ulti-
mately sending either a Block Delivery or a Block Denial message. The helper
block and the hash block of a slice are also requested with a Block Request.

Cancel Block Request

The Cancel Block Request message informs the remote peer that a pending block
request should no longer be considered valid. The response is a Block Denial
message for the given block.

B.4 Message Format 38

Block Delivery

The Block Delivery message handles the actual transfer of a block. As a block
is atomically transmitted in its entirety, this message can have a considerable
length. Helper blocks and hash blocks are also transmitted inside a Block De-
livery message.

Block Denial

The Block Denial message is either the negation of a pending block request
from a remote peer or the acknowledgment of a received Cancel Block Request.
Reasons for the first case may be a violation of the tit-for-tat principle (the
remote peer needs to provide a block before being able to receive another) or
that the sending peer is not in possession of the requested block, for example.

Keep Alive

As peers may drop a connection to a remote peer after a certain idle time, the
Keep Alive message may be regularly sent over an otherwise idle connection to
reset the idle timer.

New Block

The New Block message is sent to all non-seeding peers in a peer’s neighborhood
to inform them of newly acquired blocks. This is done to avoid sending more
than a single block list message to a remote peer. To further reduce overhead,
multiple blocks may be announced in the same New Block message.

B.4 Message Format

Note: All data types are encoded in big endian mode.

Hello

(Type −1)
Type Length Reserved File ID Session ID

1 byte 4 bytes 4 bytes 20 bytes 2 bytes

Type Message type ID — -0x01

Length The number of bytes in the whole message — 31

Reserved 32 reserved bits for future extension of the protocol — 0x00000000

File ID Unique identifier for downloaded file, might use BitTorrent’s InfoHash
at first for compatibility — 20-byte SHA-1 hash of the info key in the BT
metainfo file

B.4 Message Format 39

Session ID Random 16-bit string established in the handshake and used in all
further messages. The initiator of the connection chooses a session ID, the
receiver acknowledges it by responding with the same ID — e.g. 0x2C06

Peer List Request

(Type −2)
Type Length Session ID # of Peers

1 byte 4 bytes 2 bytes 1 byte

Type Message type ID — -0x02

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

of Peers The maximum number of peers the responding peer should send
(up to 50) — 0x01 – 0x32

Peer List

(Type −3)
Type Length Session ID # of Peers Peers

1 byte 4 bytes 2 bytes 1 byte n * (4 bytes + 2 bytes)

Type Message type ID — -0x03

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

of Peers The number of peers in the list — 0x01 – 0x32

Peers A list of T4T peers with their IP and port

Slice List Request

(Type −4)
Type Length Session ID

1 byte 4 bytes 2 bytes

Type Message type ID — -0x04

Length The number of bytes in the whole message — 7

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

B.4 Message Format 40

Slice List

(Type −5)
Type Length Session ID Request Bits per Slice (BPS) Block Availability

1 byte 4 bytes 2 bytes 1 Bit 7 Bits BPS×# of slices
8

bytes

Type Message type ID — -0x05

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Request Flag indicating that the receiving peer should send its slice list as
well — 0x0 or 0x1

Bits per Slice How many bits per slice are used to encode the availability
of blocks. The maximum number of available blocks per slice is c as c
independent linear combinations suffice to reconstruct the original slice;
thus dlog2 ce bits are required for each block at most. If this field is zero,
then the sending peer is a seeder/source and can provide blocks from any
slice — 0x01 – 0x7F or 0x00

Block Availability A list of n integer values, each BPS bits long, that states
how many blocks are available for each corresponding slice si, i ∈ [0, n−1];
or empty if sender is a seeder

Block List Request

(Type −6)
Type Length Session ID Slice Number

1 byte 4 bytes 2 bytes 4 bytes

Type Message type ID — -0x06

Length The number of bytes in the whole message — 11

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice for which a block list is requested —
0x00000000 – 0xFFFFFFFF

B.4 Message Format 41

Block List

(Type −7)
Type Length Session ID Slice Number # of Blocks Blocks

1 byte 4 bytes 2 bytes 4 bytes 2 bytes # of blocks×c
8

bytes

Type Message type ID — -0x07

Length The number of bytes in the whole message –variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice for which the block list follows —
0x00000000 – 0xFFFFFFFF

of Blocks The number x of blocks in the block list. x ∈ [1, c]

Blocks A bit string that contains the concatenated block IDs that the sending
peer possesses

Block Suggestion Request

(Type −8)
Type Length Session ID Slice Number

1 byte 4 bytes 2 bytes 4 bytes

Type Message type ID — -0x08

Length The number of bytes in the whole message — 11

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice for which a block suggestion is re-
quested — 0x00000000 – 0xFFFFFFFF

Block Suggestion

(Type −9)
Type Length Session ID Slice Number Suggested Block

1 byte 4 bytes 2 bytes 4 bytes c
8

bytes

Type Message type ID — -0x09

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

B.4 Message Format 42

Slice Number The number of the slice which contains the suggested block —
0x00000000 – 0xFFFFFFFF

Suggested Block Block ID of a block from the specified slice that the sending
peer is able to provide

Block Request

(Type −10)
Type Length Session ID Slice Number Block

1 byte 4 bytes 2 bytes 4 bytes c
8

bytes

Type Message type ID — -0x0A

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice from which a block is requested —
0x00000000 – 0xFFFFFFFF

Block Block ID of the requested block. Two special cases exist: Block ID 0,
i.e. all zeroes, indicates the helper block, while the block ID consisting of
only ones refers to the hash block.

Cancel Block Request

(Type −11)
Type Length Session ID Slice Number Block

1 byte 4 bytes 2 bytes 4 bytes c
8

bytes

Type Message type ID — -0x0B

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice of the specified block — 0x00000000 –
0xFFFFFFFF

Block Block ID of a block which has been previously requested

B.4 Message Format 43

Block Delivery

(Type −12)
Type Length Session ID Slice Number Block ID Block Data

1 byte 4 bytes 2 bytes 4 bytes c
8

bytes block size (sb) bytes

Type Message type ID — -0x0C

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice of the following block — 0x00000000
– 0xFFFFFFFF

Block ID Block ID of the following block

Block Data Raw data of the specified block

Block Denial

(Type −13)
Type Length Session ID Slice Number Block ID

1 byte 4 bytes 2 bytes 4 bytes c
8

bytes

Type Message type ID — -0x0D

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

Slice Number The number of the slice for which the block request is denied
— 0x00000000 – 0xFFFFFFFF

Block ID The ID of the block that is denied

Keep Alive

(Type −14)
Type Length Session ID

1 byte 4 bytes 2 bytes

Type Message type ID — -0x0E

Length The number of bytes in the whole message — 7

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

B.4 Message Format 44

New Blocks

(Type −15)
Type Length Session ID # of Blocks Slice/Block List

1 byte 4 bytes 2 bytes 2 bytes # of blocks × (4 bytes + c
8

bytes)

Type Message type ID — -0x0F

Length The number of bytes in the whole message — variable

Session ID Random 16-bit string established in the handshake to discriminate
multiple connections between the same two peers — e.g. 0x2C06

of Blocks The number of blocks in the block list

Slice/Block List A list consisting of (slice number, block ID) tuples

	Introduction
	The BitThief Client
	The T4T System
	Related Work
	Motivation
	Source Coding and Block Diversity
	Decoding
	Slices
	Helper Blocks
	Seeding and the Bootstrap Problem

	Data Integrity
	Introduction
	Homomorphic Encryption
	Different Homomorphic Encryption Schemes
	Factorization-Based
	Discrete-Logarithm-Based
	Elliptic Curve-Based

	Choice and Implementation of Two Algorithms
	DL-Based
	ECC-Based

	Batching
	Evaluation
	Secure Random Checksums

	Future Work
	Large Scale Testing
	Revisiting ECC
	Making BitThief Independent of BitTorrent
	Identity Concealment
	Enhancing Performance
	Precomputing Exponentiation Tables

	Conclusions
	References
	Algorithms of Interest
	Generating Provably Secure Hashing Parameters
	Computing a Product Of Powers

	T4T Protocol Specification
	Nomenclature
	Handover from Standard BitTorrent Protocol to T4T and Communication Concepts
	Message Types
	Message Format

