MASTER THESIS

YETI 2 - TINYOS 2.X ECLIPSE PLUGIN

http://tos-ide.ethz.ch

Benjamin Sigg

DISTRIBUTED COMPUTING GROUP - ETH ZURICH

SUPERVISORS
Nicolas Burri
Roland Flury
Prof. Roger Wattenhofer

SEPTEMBER 10, 2008

Contents

1 Introduction 2
1.1 Notation 2
2 Requirements 2
3 Features 2
3.1 Core 3
3.1.1 Build 3

3.1.2 Editor 3

3.1.3 Outline 5

3.1.4 Graph 5

3.2 Parser 5
3.2.1 Preprocessoro 5

3.2.2 Model 6

3.3 Environmentso 6
3.4 Wiki 6
4 Implementation 6
4.1 Preprocessor e e 7
4.1.1 Input 7

4.1.2 Output e 7

4.2 NesCl2xParser. 10
4.2.1 AST 11

4.2.2 Handling syntax errors 12

4.2.3 AST-Model 13

424 Bindings. Lo o 13

4.2.5 Hyperlinks o 13

426 Quickfixes Lo 13

4.2.7 Code Completion 15

4.2.8 Error detection L. 15

4.3 Environments 16
4.4 Core 16
4.4.1 Project Organization 16

442 AST-Model 16

443 BuildChain 17

444 Caches. e 18

4.4.5 Editor e 19

4.4.6 Outline View 19

4.47 Graph View Lo 19

5 Future Work 20
6 Conclusion 21

1 Introduction

A lot of effort has been spent on writing development tools for nesC and TinyOS.
Given the widespread use and extensibility of Eclipse [14], it is only natural
that several TinyOS-plugins were written for it [1, 2, 3, 4]. Many plugins how-
ever support only nesC 1.1 [11], and with the introduction of new features in
nesC 1.2 [12] they became obsolete.

The goal of this work was to take one of the existing plugins (YETI, written
by Roland Schuler [1]) and extend it such that it supports nesC 1.2. This
new plugin should do more than just syntax highlighting, it should provide the
developer with accurate error messages and completion proposals.

1.1 Notation

This document is designed to help new developers working on YETI 2. It uses
some special formatting to mark important things:

Information which is interesting for other developers, but not for the casual
reader, is put into boxes like this one.

e “New concepts are introduced with italic text and in quotes”.
o Already known concepts will be italic.

e Classes, interfaces, methods and applications will be
written monospaced.

2 Requirements
After working with YETI, the requirements for YETI 2 were found to be:

Understanding of NesC 1.2 Means that the plugin is able to parse any code
that is handled by the ”official“ tools [13], understand and apply prepro-
cessor directives, handle any construct that is available in the ¢ program-
ming language [8, 7], and associated tools [9]. The plugin should be able
to perform, or at least to simulate, all steps of ncc (the nesC compiler).

Error detection The plugin should be able to detect (potential) errors in the
program and inform the developer. Errors can range from the inclusion
of a non-existing file or calling a function with the wrong arguments to an
overflow caused by implicit type casts of integer types.

3 Features

Most of the features of YETI are still available in YETI 2. This chapter will
focus on new features.

While just called “TinyOS plugin for Eclipse”, YETI 2 is actually a set of
plugins. The “core” plugin handles functionality which is independent of time
and place, like editing files or listing the “make-options”. The “parser” plugin

parses the source files and provides features which depend on the version of
nesC. The “environment” plugins handle the interaction between core, parser
and tools like ncc or bash. They handle those features which depend on the
operating system.

3.1 Core

The most important duties of core is to provide the graphical user interface and
to handle the “build system”. It is a buffer between parser and environment
hiding them from each other.

3.1.1 Build

The build system has been completely rewritten. The build system tells when
which file has to be checked for errors such that no error messages are out of
date. The build system takes every event that may invalidate error messages
into account and marks files with invalid error messages as “unbuilt”. Later it
searches for all unbuilt files, analyzes them, and once valid again marks them
as “built”. A restart of Eclipse will not delete these flags.

The build system can be canceled or restarted without loosing work that
is already done. That allows to react on events during a build and prevents
generating messages which will be invalidated anyway.

3.1.2 Editor

The main text-area where the user enters source code is called the “editor”. The
editor supports a variety of (new) features:

Context sensitive syntax highlighting If a variable has the same name as
a typedef, it will still not have the same color. This is shown in figure 1.

Some parts of this feature are implemented in parser.

Automatic code completion When doing the ”small stuff* like entering an
open bracket, the editor will automatically insert a close bracket. That
works for multi line comments as well.

Completion proposals The plugin guesses what the developer wants to do
and shows him several proposals from which he can choose one. Proposals
can range from filling in the name of some field to creating a missing
included header file. Figure 2 shows how this can look like.

Hyperlinks When the ctrl-key is held down, Eclipse behaves like a browser.
Elements in the source code behave like hyperlinks and lead to the place
or file where they were defined. Hyperlinks are a great help for analyzing
a project. This feature can only work if parser can handle files accurately.
Otherwise they lead to wrong places, which is worse than no hyperlinks
at all.

o Test.h 52 = O

1 typedef struct point{
2 int x;
int y;
} point;

peint point = {1, 2};

return point.x;
} 5

(4] |
Editor Compunentgraph|”3

3
4
5
G-1int work(){
7
g8
=]

4

Figure 1: Italic fonts for types, but standard fonts for variables even if they
have the same identifier.

call Timero.

= ° getdt - getdt() - uint32_t

o° getNow - getNow() - Lint32_t
o gett0 - getto() - uint32_t
@" isOneShot - isOneShot() - boo

L T =T TE N TR 1o = TR TR N

Figure 2: A list of proposals which command to call of the interface TimerO.

3.1.3 Outline

The “outline view” shows the contents of a source file as a tree. The nodes of
that tree represent elements such as interfaces or commands. The new outline
view not only shows content of one file, but can expand into other files. While
the top nodes of the tree come from the current source file, other nodes come
from included files. This view updates its content asynchronously, allowing the
developer to continue working even while the view is trying to figure out how
to open some specific node.

3.1.4 Graph

The “graph view” shows a graph for a module, configuration or an interface. In
case of a configuration it shows the wiring of its modules and interfaces. The
graph view loads its content asynchronously and is linked to the outline view.
Figure 3 shows how a simple graph looks like.

= MainC.nc &2 = 0

® MainC B

@ Boot & [@ softwarelnit (Init)

oF bootedi) - void

oftwarelnit = Softwarelnit]

) RealMainP

IIIr o

h_ﬁ ~Scheduler -= Scheduler
{ Platforminit -= 1

[® TinySchedulerc &

® pPlatformcC = @
[| oD

Editor | Component graph | Preprocessor| *s

Figure 3: A graph of the configuration MainC. The highlighted edge is selected
in the outline view.

3.2 Parser

The parser for YETI 2 was completely rewritten. The new version is a plugin,
while the old one remains in core as backup used only if “parser” is not installed.

3.2.1 Preprocessor

There is also a new “preprocessor” plugin. Preprocessor executes directives
like the inclusion of a header file, macros and other directives defined in the c-
standard. It also tracks the location of each character, a requirement to position

any message or hyperlink at their correct location. Parser adds a view which
can be used to look at a file in its preprocessed state.

3.2.2 Model

Parser builds a model of the analyzed nesC-application. Each file has its own
view of this model. A view can fill some gaps that are only visible from one
file, e.g. the actual parameters of a parametrized interface. Parser can use the
model or the views to perform complex tasks like type checks, execute static
initializers or resolve indirect wiring of interfaces.

3.3 Environments

YETI 2 is prepared to work in different environments (Linux, Windows...). Cur-
rently there is an environment for TinyOS 2.x on Linux and on Windows, using
cygwin for the later. An environment is able to find all important header files
which are needed to preprocess and parse a file.

3.4 Wiki

Since YETI 2 is intended to be used by many people a small webpage with some
basic information how to install and use the plugin was created. This page is
located at http://tos-ide.ethz.ch/wiki/index.php.

4 Implementation

YETI 2 actually consists of several plugins which are connected with each other
through the extension point mechanism provided by Eclipse. This chapter will
go through each plugin and describe the most important concepts and features
of them.

Figure 4 lists the 6 plugins of YETI 2, the arrows mark dependencies between
the plugins.

| Core

Preprocessor

Abstract Environment

NesC 1.2.x Parser |

| Linux Environment 2 | |Wind0ws Environment

Figure 4: Plugins and their dependencies

4.1 Preprocessor

A preprocessor is an application that takes a source-file as input and outputs
another file with some text replaced by rules defined in the input-file itself.
The statements in the input can be divided in two groups: “directives” and
ordinary text. Directives tell the preprocessor what to do, and ordinary text
gets processed.

The preprocessor’s name is Tiny0S Preprocessor. While it is an Eclipse
plugin, it does not depend on any other plugins. Clients might be interested
in the class Preprocessor which does all the setup and offers methods to
easily convert a file into a preprocessed stream.

4.1.1 Input

Preprocessors are most often used together with C-source files. Theoretically
they are able to process source files of any language, unless that language con-
tains a statement that looks like a directive.

In fact, parser uses preprocessor to generate two different input files for
CUP, the parser generator.

There are many different directives and vendors of C-compilers often de-
fine their own new directives. Fortunately the number of directives which are
actually used by developers is much smaller. The three important groups are:

Inclusion directives To include the content of an other file. Can be applied
recursively, preprocessor however limits the number of recursive inclu-
sions.

Conditional directives To include or exclude some parts of the input depend-
ing on variables set outside the file.

Macro directives To define macros which replace text.

Preprocessor recognizes and executes these kinds of directives. Some other
directives are understood but not executed, and anything that remains will
marked with a warning message "unknown directive*.

4.1.2 Owutput

There are restrictions which make a preprocessor a complex piece of software:

e while the input is just text, directives still have a specific syntax which
requires a parser to resolve.

e macros can change any text, even text in a directive.

e hence a preprocessor cannot just read the file, then parse it, apply the
directives and finally generate the output. The first three steps have to
be performed at the same time.

e if the preprocessor replaces text then the new text has to be preprocessed
as well.

Preprocessor solves these issues with a sequence of modules, each module
using the output of its predecessor as input. The modules at the end of this
stream can influence the modules at the beginning. The architecture of the
involved libraries JFlex [5] and CUP [6] allows that the number of characters in
the stream is reasonably small. As a result the last module can react fast enough
to change the stream before wrong characters wander into modules where they
do not belong.

The modules can be put into three groups:

Stream A “stream” reads characters from a source (e.g. a file or a macro) and
provides an interface between source and the other modules of preproces-
sor. To inject characters into a streamn (e.g. a macro replacing text) one
can temporarely disable a stream and use another stream. This is called
“pushing” a stream over another stream. There are about 10 different
streams implemented.

The class Stream is the root for these streams.

Lexer/Filter The “lexer” looks out for tokens (identifiers, keywords, ...) like
any other lexer. But there is also a “filtering system” which suppresses
forwarding of some tokens that the lexer finds. A good example is the
“conditional-filter” which throws away any token that was found within
an unused if/else-block. Another would be the “macro-filter” which
pushes a macro-stream over the current stream when a macro-identifier is
found. All these filters are implemented as little state machines with no
more than 10 states.

Parser The “preprocessor-parser” finally takes the tokens of the lezer and puts
them together. If the preprocessor-parser finds a directive it informs the
other modules of it. The other modules will then apply the directive.
Given the fact that CUP has a lookahead of one token, and the newline
token always terminates a directive, the preprocessor-parser recognizes di-
rectives before any stream starts reading the next line. If the preprocessor-
parser finds tokens which do not form a directive, then these tokens are
just stored in a list which later becomes the output.

In addition to the mechanisms just mentioned, there is a feature which stores
for each character of the output the “origin”. The origin not only includes the
original input file and the exact location in that file but also how the character
came into the output. Whether it was by applying a macro or including a file.
And if so, the location of the identifier or directive that was responsible for the
inclusion is stored as well. All this together allows preprocessor and parser to
give the precise location of each error or warning that was issued.

Figure 5 shows how data flows through preprocessor.

Input
- File
- Search directories

Stream ‘f’/—f

Input stream

Pushable streams

- Purge comments M - inject other sireams]

- Trace character position - e.g. include-streams

Lexer ‘,/

Macro-Lexer

Conditional-L
= - detect macros - encriend : Sxet
- suppress input

Preprocessor-Lexer
- recognize tokens

- replace macros

Parser /

Parser

- recognizes and handles directives
- e.g. #include

Y

- Location of each character before preprocessing
- List of defined macros

Output

Figure 5: Dataflow within preprocessor.

4.2 NesC 1.2.x Parser

The parser plugin is designed to handle any file written in nesC 1.2.9. Tests
have shown that parser can also handle the new nesC 1.3.0, but there is no way
to tell how long it will be supported.

The parser for (preprocessed) nesC files is a plugin as well.

The project Tiny0S Parser is the standard parser. It is connected to
the core plugin through the extension point Tiny0S.Parser. The project
also is responsible for syntax highlighting by fulfilling the extension point
Tiny0S.Reconciler.

It adds the “preprocessor view” (PreprocessorMultiPageEditorPart) to
the editor. It can add an “AST-view” (ASTMultiPageEditorPart) and
a “Binding-view” (BindingMultiPageEditorPart, for inspecting the high
level “bindings”) to the editor. All of this is done through the extension
point Tiny0S.Editor.

The libraries JFlex [5] and CUP [6] were used to generate parser. JFlex
is a lexer generator, CUP a parser generator. The two libraries work together
excellently. Both libraries contain a tool that reads an input file in a grammar
specified by the library and writes Java-code as output. These tools can easily
be called by a build script. Both libraries are several years old and tests indicate
that they contain a smaller number of bugs than younger libraries.

The problem of JFlex and CUP is, that they were not designed to handle
languages with a big grammar like NesC. While JFlex just needs a lot of memory
to generate the lexer, CUP actually produces illegal code, several methods and
String-initializers exceed the code size limitation of 64KB. To overcome this
limitation parser contains an additional tool which takes the output of CUP and
splits these big methods into several classes, also String-initializers are written
into external files.

That tool is represented by the class ParserCreation. This class is able to
perform all the necessary steps to read the input files for JFlex and CUP,
apply preprocessor to the input files, and generate two different versions of
lexer and parser (one version is the “main parser”, the other the “collec-
tor”). The input file for JFlex is tokens. jflex, the input file for CUP is
parser.cup.

Actually it is wrong to speak of just parser, because there are three different
parsers in the project.

e The “initializer” is a very fast parser only capable of finding interfaces
and components within a file. These elements can be seen in other files
without the need to explicitly include the files in which they were declared.

e The collector is a medium parser. It skips many parts of an input file,
but reports all declarations of elements that can be seen in another file

10

if the input file is implicitly included (which happens if an interface or
component is used in another file).

e The main parser is the heavyweight parser which understands everything.
This parser is responsible for anything that the initializer and the collector
can’t handle, e.g. creating the full abstract syntax tree (“AST”) or error
detection. When speaking of parser, most times this main parser is meant.

The initializer is implemented by the class NesC12Initializer. The col-
lector by the class IncludingParser. Finally the main parser is repre-
sented by the class Parser.

Figure 6 shows the data-flow between the different modules of parser.

Project-Mod el
-Header files
- Declarations
- AST-Models

| Hyperlinks | |Code Completion | | Error Detection |

Figure 6: Dataflow within parser. Blue boxes mark algorithms, yellow boxes
mark data structures. The orange box represents anything that is known about
the project, including data from other files.

4.2.1 AST

Like most parsers, the main parser generates an abstract syntax tree. There
are over 150 different kinds of “nodes” in the “AST”, each node is represented
by its own class, called an ASTNode. Each node has two tasks to perform:

11

e Put constraints on its children to maintain type safety. The null-node
(the non-existing node) and “error nodes” (nodes which are explicitly
marked as being wrong) can however be put anywhere.

e Create a more abstract view of the AST where elements like a type or a
function are represented by only one object rather than a whole tree. The
elements of this abstract view are called “binding” and can be used for
tasks like error detection.

The method resolve of ASTNode is called after the creation of the AST.
This method does several tasks in one sweep: create the “AST-Model”,
store “declarations” (IDeclaration) and error detection. The method can
use AnalyzeStack to get information of other files and to store its output.

4.2.2 Handling syntax errors

Whenever a parser like CUP reads a token, it can either perform a “shift” (push
the token on a stack and continue without further evaluations) or a “reduce”
(read symbols from the stack and combine them to a new symbol, and then re-
read the token that was just found). The input-grammar defines under which
condition a shift or a reduce happens. But not all possible inputs are part of
the grammar, so there are cases when the parser can do neither a shift nor a
reduce. In such a case a syntax error is discovered.

CUP has an internal mechanism which tries to recover from such an error.
The parser starts to throw away tokens and searches a rule which offers a special
“error-shift”. First tests have shown that this mechanism is too simple and much
valuable information gets lost while the error-shift is searched. Also the number
of cases where this mechanism succeeds is very limited. Putting more rules with
error-shift into the grammar is not a solution since it would not only enlarge the
grammar, but also introduce many shift-reduce conflicts during parser creation.

To solve this problem CUPs error recovery had to be modified. The modified
mechanism tries first to find an error-shift. But in each unsuccessful try it
tests also for a reduce. While the old version would immediately start to delete
tokens, the new version can perform the reduce and hence changes the situation
for another round. In the end, the new version just checks more rules for an
error-shift, and thus it is more likely to find one. Additionally every reduce
produces information that can be used for the AST. With the new approach
chances to get a complete, or at least a non-empty, AST are more likely than
before. Chances that the parser just stops and has no output at all are decreased.

There are still situations where the parser can’t finish its work. A missing
parenthesis (like '}’) is an excellent candidate to kill the parser. If that happens,
the parser may already have executed some productions, but the elements that
were created are not yet put together. They are still waiting on the stack for a
reduce which will never happen. The modified parser takes these elements and
tries to guess how they can be put together. Not every guess is correct, but
the algorithms of the parser plugin are built in a way that they can deal with
an incorrect AST. Surprisingly this solution produces good results. The reason
seems to be that the number of correct reduces is in almost any case much higher

12

than the number of guesses. So the part of the AST that is incorrect is small
compared to the whole AST.

4.2.3 AST-Model

The “AST-Model” is a concept of core. It is an abstract view of the AST and
contains only those elements which can be shown in the outline view. The
architecture of the model will be discussed in chapter 4.4.2.

The main parser sees the AST-Model as a summary of the AST. In theory
the model could be used to get easier access to information (e.g. what commands
an interface contains). In reality the AST-Model is too generic to be directly
used.

4.2.4 Bindings

“Bindings” are the most advanced abstractions of the AST. Each binding rep-
resents a high level element like a module or a function. Bindings are type
safe and use their own cache to ensure that nothing is calculated twice.

Figure 7 gives a small insight into bindings.

There are about 30 different bindings. They all implement the interface
Binding. Bindings can be obtained through the AST or the AST-Model.

Each binding can be associated with other bindings, forming a graph of a
whole application.

4.2.5 Hyperlinks

When holding down ctrl and clicking with the mouse, one can navigate within
a file. Source and target of each “hyperlink” are determined by parser.

Hyperlinks are created by a set of “rules”. Each rule finds a certain kind
of hyperlink, e.g. all hyperlinks regarding local fields. Most of these rules first
analyze a part of the AST to find the name of the element they should lead
to. Then they either use the “global index” of the project to find a target, or
bindings associated with the AST.

Each rule implements the interface IHyperlinkRule. Parser offers the
extension point nesc12.parser.hyperlinks to add additional rules.

4.2.6 Quickfixes

Each error message can be associated with some meta information. This meta
information can later be read to create “quickfixes”. Parser offers a limited set
of quickfizes. Either they just add some missing source code, or they can create
new files when necessary. Quickfizes are created by rules just like hyperlinks.

13

w0 BlinkC.nc 33 =g

= Components = Module: BlinkC

= uses = Interface Reference: Timer0
= Raw = Interface: Timer
Parameters = Type: =precision_tag=
= Fields = Field: startPeriodicluint32_t) - void
name = Mame: startPeriodic
= type = Type: (unsigned long int) - void
result = Type: void
= argument = Type: uint32 _t
raw = Type: unsigned long int
value = =null=
arguments = Name: dt @

ks Fie el FCimlal, ~d et T m bk i3 +% Ay |

(] |
Edit0r|C0mp0nent graph |Preprocessor | Bindings | AST

Figure 7: The binding view, only visible when in “debug mode”. Currently
the binding view shows how the module BlinkC sees the application. BlinkC
uses an interface Timer but renames the interface to Timer0O. Timer defines
some events and commands, one of them is startPeriodic. The argument
of startPeriodic is of type uint32_t which is a typedef and in reality an
unsigned long int. The arguments name is dt.

14

When finding an error, a String-message, location and an optional Insight
can be reported in parser (using the AnalyzeStack). These objects are
wrapped into an IMessage and then forwarded to core. Core will create an
IMarker which contains some of the information of the IMessage. Later
core will ask for quickfizes for the IMarker. Parser will re-create the origi-
nal Insight of the message, and call all the quickfiz-rules in order to collect
new quickfizes. Rules can use the Insight to create the fizes.

Parser offers the extension point nesc12.parser.quickfixes to add new
rules. Rules can either be “single” (capable of handling one message only) or
“multi” (capable of handling several messages at once).

Core offers the extension point Tiny0S.Quickfixer to add new rules which
are independent of the parser. Rules added here will not have access to vital
information like the AST, and thus the use for this extension point is limited
for anyone but parser plugins.

4.2.7 Code Completion

Code completion uses, like hyperlinks and quickfizes, rules to generate “propos-
als”. Other than hyperlinks and quickfizes, code completion cannot rely on a
complete, consistent or even up to date AST. While the latest problem can be
solved by just updating the list of proposals once a new AST becomes available,
the others are more resilient. Some rules solve these problems by not looking at
the location where the code will be inserted, but a few characters before. There
the chances that the AST is not yet corrupted are much higher. Other rules
just don’t use the AST at all. Most rules will use the information of the AST
only as a hint, but actually analyze the source code. They read a few words or
characters and try to guess what the AST would be if it were correct. Rules will
use the global indez, bindings or “ranged collections” to come up with proposals
(Ranged collections are maps with visibility ranges as keys and names of fields,
functions, etc. as values).

4.2.8 Error detection

Error detection is implemented as a recursive algorithm. FEvery node of the
AST becomes the opportunity to check its content. Some problems can only
be detected if many nodes work together, e.g. using the same name for two
different functions can only be seen if the two function-nodes compare the names.
Communication between nodes is handled either through a stack or by direct
access. There is often a ”super“-node which sets up a testing environment on
the stack and ”sub“-nodes then use this environment.

15

For example the ASTNode Module pushes a factory for ModuleFieldPusher
onto AnalyzeStack. Every node which represents a field accesses or creates
a FieldPusher associated with the name of the field. The node adds a
binding Field to this FieldPusher. When all the children are finished,
Module and the set of ModuleFieldPushers can check if the fields are valid
in the context of a module.

4.3 Environments

The purpose of environments can be described by two words: ”search files“. An
environment is responsible for everything that might result in searching files.
That ranges from finding the example applications, finding the platforms and
the associated directories, to finding a header file that is needed for parsing.
They are also responsible for invoking external tools like ncc.

The environment plugins are small and do not contain sophisticated algo-
rithms. Their only source of complexity are the sharp distinctions between
different versions of TinyOS and operating systems.

The linux and windows enwvironments are built upon an abstract enwi-
ronment, that allows maximal reuse of code. The linux environment is
called TinyOsUnixEnvironmentWrapper2, the name of the windows enwi-
ronment is TinyOsWinXPEnvironmentWrapper and the abstract enwiron-
ment is called TinyOsAbstractEnvironmentWrapper.

4.4 Core

Core combines all the other plugins. While parser and environments were
rewritten from scratch, core was taken from YETI and upgraded. Upgrading
often included two steps. First a layer was introduced separating reusable from
outdated code, then the outdated code got replaced. At some places the out-
dated code remains in core as backup, e.g. the old parser can be used if parser
is not installed.

4.4.1 Project Organization

Each Tiny0S-project is internally represented through a “project model”. The
project model is a central hub for everything that has to do with parsing code.
It can create new parsers, it can start the “build chain”, it manages all caches
of the project. It also contains the global index of the project.

The project model is represented by the class ProjectModel.

4.4.2 AST-Model

Core needs access to the abstract syntax tree of a file in order to display views
like the outline view. However it is impossible to specify how an AST has to look

16

like, when future language modifications or new parsers-plugins are possible.
The AST model is a layer above the AST, creating a more general interface.

Each model contains “nodes” and “connections”. Nodes represent the same
things as nodes in an AST, for example a function. Connections represent the
relations between nodes. A connection can either be a child-parent relation, or
a reference (e.g. when a component provides an interface, then there might be
a reference from the component to that interface).

The AST model is represented by the interface ITASTModel, nodes by
IASTModelNode, connections by IASTModelNodeConnection.

Nodes never know each other directly. They only know connections to other
nodes. The connection then only knows the identifier of the node it points to.
That allows to replace parts of the model, or load parts of the model lazily,
without having to worry about dangling references.

Each node and connection can be marked with “tags”. Tags are a simple
way to describe how a node or connection should be treated, what it is good for
or what icon to use when shown in a view. While tags seem to be only a nice
detail, they are used massively by core and parser. The separation of core and
parser would not be possible without them.

Tags can roughly be put together in these groups:

Type What kind of element a node represents. A component, a typedef, the
specification block of a module, ...

Modifiers A more precise specification of the type. A command function in-
stead of just a function, a generic module instead of just a module.

Usage For reference-connections only, how the reference is used. For example
whether a referenced interface is "used“ or ”prodived “ by a configuration.

View How connections and nodes should be treated in views. For example
should the icon depend on the “tag-set” of the connection or the node?
Should a node initially be expanded or collapsed in the outline view?

Tags are represented by the class Tag, sets of tags by TagSet. Parsers are
free to specify new tags.

4.4.3 Build Chain

In order to have accurate error messages, a file needs to be “built”. Editing the
file will “unbuild” it. Also editing an (explicitly or implicit) included file can
unbuild. The discovery of a new, missing resource will unbuild a file as well.
The build chain ensures that all unbuilt files will be built again.

17

Tiny0SProjectBuilder2 is called when resources changed. It forwards the
changes to Tiny0SBuilder. Each project has one such builder. After-
wards Tiny0SBuilder calls the buildInit and buildUpdate methods of
ProjectModel to “rebuild” the project.

Building a set of files always starts with indexing (called the “initialize
phase”). All unbuilt files are given to the initializer, which will extract in-
terfaces and components. These elements are visible through the whole project
and without them many false error messages ”missing xyz“ would appear.

The initializer is represented through an INesCInitializer.

In a second sweep the main parser is used to analyze single files. If a file
has implicit includes then the “recursive collector” can be used to find them.
It may happen that a file cannot be analyzed without another file built first. If
such a case is found, and the other file is not yet built, then a “simplified build”
is made without active error detection. This simplified build will not trigger
further builds, so there is no danger of infinite build-loops.

The recursive collector is stored in ProjectModel. It is represented by
the interface IProjectDefinitionCollector. Currently there is only one
implementation: LocalProjectDefinitionCollector. 1t is the only component
which uses the “wire cache”, it accesses the cache through WireCache. It
further uses an INesCDefinitionCollector to collect the declarations of
a single file.

As a side effect the “dependencies” of the built file become known. The de-
pendencies tell for each file, from which other files it depends. This information
is later used to unbuild a file if one of its dependencies changes.

4.4.4 Caches

In order to speed up the build process, several caches are used. These caches
store all their entries on hard drive and only maintain a copy of a subset of
them in memory. Thus a restart of Eclipse will not delete any information that
is created by the build chain. The list of caches has 6 entries:

Init Cache Stores the global declarations found by the initializer.

Inclusion Cache Stores the declarations visible only when a file gets included,
which is also the output of the collector (the recursive collector just com-
bines the output of several runs of the collector, its output has not to be
stored).

Dependency Cache Stores for each project file on which other project file it
depends. This includes any dependencies, even if they are indirect. This

18

information is needed to unbuild a file when one of its dependencies has
changed.

Wire Cache Stores for each file on which other files it depends. This only
includes the top level dependencies, the files which are included directly.
This information can be used by the collector to prevent parsing a file
when only the declarations of its included files are searched.

Missing Cache Stores for each project file which resources were not found
while building the file. If such a resource is found later, then the file gets
unbuilt.

AST Model Cache Stores the AST model of files.

All caches can be accessed through IFileModel. The ProjectModel offers
access to one of these “file models”.

4.4.5 Editor

The editor is just a standard Eclipse-text-editor, configured to call the methods
of core when a task, like syntax highlighting, is at hand.

The editor is implemented by the class NesCEditor. The nesc specific
configurations are set up by a NesCSourceViewerConfiguration.

4.4.6 Outline View

The outline view relies on the AST model. It connects itself with the editor,
instructs parser to create an AST model when reconciling the editor, and then
shows this model. It searches for any node which has a tag outline but not a
tag included, and uses these nodes as root of the tree. As long as possible the
outline view takes modes from the model provided by the editor. If some node
cannot be found in that model, then the outline view uses the global AST model
provided by the project.

The NesCOutlinePage implements an INesCEditorParserClient and reg-
isters the client at the NesCEditor in order to be informed when parsing
starts or stops. It further uses a NodeContentProvider to show the tree.

4.4.7 Graph View

Similar to the outline view, the graph view uses the AST Model to build up its
content. Any node of the AST model can have a factory for “figures”; a figure
can be shown in the graph view. While nodes are absolutely free in deciding
how their representation might look, a small set of default figures is provided.

19

The factory for figures is called IASTFigureContent. This interface has
one method which will create an IASTFigure. This one method receives
an IASTFigureFactory which can help to transform AST model-nodes or
connections into figures.

Figures work like a tree: each figure is a node which can either be “expanded”
or “collapsed”. If collapsed only an icon and a title are visible, when expanded
child-figures are shown. Some figures load their children lazily, the graph view
supports this by expanding each figure in its own job. Thus the view remains
responsive even while a complex figure is creating its children.

The method expandAST of IASTFigure receives an IExpandCallback. If
it has to do a lot of work, it can start a new thread and later inform the
caller whether the method succeeded or was canceled.

The graph view is connected to the outline view, whenever a node is selected

in the outline view the corresponding figure is marked as well.

Only figures which implement IRepresentation can be marked through
the outline. An IRepresentation can have some IASTModelPaths telling
the view which nodes are represented by the figure. A figure can only be
marked when its paths and the paths of its parent build the same chain
of nodes as the selection-path in the outline view has. If a node has more
than one figure in the graph, then the figures which are not selected are

highlighted in another color.

5 Future Work

There are many ideas of what could and what needs to be done in the future.

Instead of having one parser for the whole plugin, each project could have
its own. That would allow to support many different versions of nesC at
the same time.

Environments could be written in a way that more than just one Tiny0S
installation is supported.

More platforms and sensorboards: currently only the platforms and sen-
sorboards within the tos-tree are recognized. It should also be possible to
recognize platforms and sensors which are included though an -T directive.

Support Tiny0S 1.x. It is still in use and not everyone has the possibility
to upgrade.

Rewrite option-system: The make-option management is less than opti-
mal. It is inflexible for changes, and hard to access (for users and de-
velopers). At this point a partial or complete rewrite seems like a good

20

solution. The rewrite might include several new ideas. Instead of working
with String-keys real references could be used. Or at least clients should
not be bothered with the String keys. The option view could be removed,
and instead an xml file for each make option could be used. This would
work the same way as ANT’s build.xml. The make option dialog could
be replaced by a form, like it is done for plugin.xml of an Eclipse plugin.

e Writing a new parser which also works correctly when a typedef is miss-
ing.

e There are a number of header files which are just included everywhere.
The plugin does not find all of them, especially those belonging to the
hardware are missing.

e Refactoring (e.g. renaming of variables) could be implemented as well.

6 Conclusion

To our knowledge YETI 2 is currently the most advanced Eclipse plugin for
Tiny0S 2.x. The standard approach to writing Tiny0S applications without an
IDE is to write some code, call the compiler and be happy if the compiler does
not report errors. The compiler ncc just starts at one main-component and
checks files only if they are included, applying macros and typedefs already
found in other files. Yeti 2 on the other hand analyzes each file as if it were
the main-component. This is much more restricting since every file has now to
behave as if it were a correct application. We think however this is a better way
to look at a project. It encourages developers to write correct code right from
the beginning, making reuse and reorganization of code in later project phases
easier.

There are still flaws in YETI 2. Not all errors are found, speed is an issue,
code completion could do much more, refactoring is not supported at all. It is
our hope that more developers will enhance YETI 2 in the future.

References

[1] Roland Schuler, Nicolas Burri, Roger Wattenhofer. YETT: A TinyOS plugin
for Eclipse. http://dcg.ethz.ch/publications/realwsn2006.pdf

[2] Rasmus Ulslev Pedersen, NESCDT. http://docs.tinyos.net/index.
php/NESCDT-_An_editor_for_nesC_in_Eclipse

[3] Richard Tynan, TinyOS Eclipse Plugin. http://tide.ucd.ie/

[4] Janos Sallai, Peter Volgyesi. Vanderbilt University. TinyDT. http://www.
escherinstitute.org/Plone/frameworks/nes/tools/tinydt

[5] Gerwin Klein, Steve Rowe, and Régis Décamps. JFlex - The Fast Scanner
Generator for Java. http://jflex.de/

[6] Scott E. Hudson. CUP Parser Generator for Java. http://www2.cs.tum.
edu/projects/cup/

21

[7]

8]
[9]
[10]
[11]

[12]

Brian W. Kernighan, Dennis M.Ritchie. The C Programming Language.
ISBN 0-13-110362-8

ISO/IEC 9899:1999 C programming language
Gnu C Compiler. http://gce.gnu.org/onlinedocs/
Philip Levis. TinyOS Programming. Rev 1.3 Oct 27 2006

David Gay, Philip Levis, David Culler, Eric Brewer. nesC 1.1 Language
Reference Manual. May 2003

David Gay, Philip Levis, David Culler, Eric Brewer. nesC 1.2 Language
Reference Manual, August 2005

nesC 1.2.9 Compiler. http://sourceforge.net/projects/nescc/

Eclipse. http://www.eclipse.org/

&

22

