
Increasing the Usability of BitThief:
A Free Riding BitTorrent Client

A Dissertation
Submitted In Partial Fulfilment Of

The Requirements For The Degree Of

MASTER OF SCIENCE

In

NETWORK CENTERED COMPUTING,
High Performance Computing

in the

FACULTY OF SCIENCE
THE UNIVERSITY OF READING

by

Ben Hennig

28/09/2008

University Supervisor: Ismail Mahomed Bhana
FHTW Berlin Supervisor: Prof. Wolfgang Schebesta
ETH Zurich Supervisor: Thomas Locher and

Prof. Dr. Roger Wattenhofer

Acknowledgements

I would like to thank my supervisors, Thomas Locher who always offered me advice and
support, further Prof. Dr. Roger Wattenhofer and all other members of the DCG at
the ETH Zurich. Thanks also my supervisor, Prof Wolfgang Schebesta from the FHTW
Berlin for the help by this report. In addition my supervisor Ismail Mahomed Bhana
from the University of Reading.
Especially, I would like to thank my family who supported me during and further in
writing this thesis.

Abstract

This master thesis gets an overview about the BitTorrent protocol and it shows the
concept of the BitThief client, what is an ongoing project from the Distributed Com-
puting Group at the ETH Zurich. The BitThief client is a free riding BitTorrent client
which is uses for scientific work for analyzing P2P systems and to improve and/or ad-
vance the BitTorrent P2P protocol. The concept of the BitTorrent protocol and the
BitThief client is described in the first part of this thesis.
My work on this project is to increase the usability of the client and further the develop-
ing of new unique features to increase the user community. The increasing of usability
and the developing of unique features are important for the whole project, because it
should appeal more users and so the client is spread more. This point guarantee that
all statistical analysis are more precise. My own work on the project is described in the
second part of this thesis.

Contents

Contents

1. Introduction 1

2. The BitTorrent Protocol 3
2.1. Terminology . 3
2.2. Mode of Operating . 4

2.2.1. Design of a Torrent File . 5
2.2.2. Distributing of Content via Tracker 8

2.2.2.1. Tracker HTTP/HTTPS Protocol 8
2.2.2.1.1. Tracker Request 9
2.2.2.1.2. Tracker Response 12

2.2.3. Trackerless Distributing of Content 14
2.2.3.1. Distributed Hash Table 14
2.2.3.2. The Kademlia Algorithm 15

2.2.4. Peer Wire Protocol . 16
2.2.4.1. Handshake . 18
2.2.4.2. Message . 19
2.2.4.3. Message Flow . 21

3. The BitThief Client 24
3.1. Functionality of BitThief . 24
3.2. How BitThief Exploits the BitTorrent Protocol 25
3.3. BitThief will be a Fair Client . 25

3.3.1. Idea of Tit-For-Tat . 26
3.3.2. Seeder Strategy . 27

4. State of BitThief 30

5. Esthetic surgery 32
5.1. Motivation . 32
5.2. Concept . 32
5.3. Implementation . 33
5.4. Testing . 35

6. Update Function 38
6.1. Motivation . 38
6.2. Concept . 38

6.2.1. Distribution Technique . 38
6.2.2. Detect Update . 39
6.2.3. How it should Works . 39
6.2.4. Failure Case . 39

6.3. Class Model . 40

I

Contents

6.4. Implementation . 41
6.5. Testing . 44

7. Multi-Torrent Selection 45
7.1. Basic . 45
7.2. Concept . 45
7.3. Class Model . 47
7.4. Implementation . 48
7.5. Testing . 51

8. Search Torrents 53
8.1. Motivation . 53
8.2. Concept . 53

8.2.1. Concept of the GUI . 54
8.2.2. Concept of Ranking . 55

8.3. Class Model . 56
8.3.1. Class Model for Searching . 56
8.3.2. Class Model for the User Interface 58

8.4. Implementation . 60
8.4.1. Implementation of the Torrent Ranking 62
8.4.2. Implementation of the GUI . 62

8.5. Testing . 65
8.6. Implementation of more Provider . 66

9. Subscription Service 67
9.1. Motivation . 67
9.2. Concept . 67
9.3. Class and Sequence Model . 68
9.4. Implementation . 74
9.5. Testing . 78

10.Failure Analysis 79
10.1. Memory failure . 79

10.1.1. Result . 81
10.2. Chart failure . 82

11.Conclusion 83

A. Appendix 85

B. Appendix 87

II

List of Figures

List of Figures

1. Concept of BitTorrent . 5
2. Message flow in BitTorrent A . 22
3. Message flow by BitTorrent B . 23
4. BitThief 0.1.7: Start screen. 30
5. BitThief 0.1.7: Choose a torrent metafile and destination directory. . . . 30
6. BitThief 0.1.7: Download started. 31
7. BitThief 0.1.7: Details of the current download. 31
8. BitThief 0.2.0: The new main window design. 34
9. BitThief 0.2.0: The new option window. 35
10. BitThief 0.2.0: "About" window. 36
11. Class diagram for the update function. 40
12. Program plan of procedure for the update function. 42
13. Sequence diagram for the update function. 43
14. Multi torrent: properties between the block size and the file bounds. . . . 45
15. Program plan of procedure for the multi-torrent function. 46
16. Class model for the multi torrent selection. 47
17. BitThief 0.2.0: Multi torrent selection window. 50
18. Simplified program plan of procedures for a search function. 54
19. The conceptual class model for the search function. 56
20. The class model for the torrent search function. 57
21. Class model for the user interface. 59
22. Sequence diagram for the search function: request to reply. 61
23. BitThief 0.2.0: Start screen of the search function. 62
24. BitThief 0.2.0: Search window inclusive suggestions. 63
25. BitThief 0.2.0: Comment window including user comments. 64
26. Sequence diagram for the search function: show results. 64
27. Sequence diagram for the search function: Download. 65
28. Conceptual class model for the subscription service. 69
29. Class model for the subscription service. 70
30. Sequence diagram shows the recognition of a subscribeable TV show. . . 71
31. Sequence diagram for searching a subscription. 71
32. Sequence diagram for add a new subscription. 72
33. Sequence diagram to change a subscription. 73
34. Sequence diagram for canceling a subscription. 73
35. BitThief 0.2.0: Subscription search window. 75
36. BitThief 0.2.0: Subscription service window. 75
37. BitThief 0.2.0: Window to add a subscription manually. 76
38. BitThief 0.2.0: Window to edit a subscription. 76
39. BitThief 0.2.0: Cancel subscription window. 77
40. Heap space analysis first run. 80
41. Heap space analysis compare run. 80
42. Heap space analysis finish run. 81

III

Listings

List of Tables

1. Coding table: Example for an encoded 20 byte hash sum. 9

Listings

1. Content of a .torrent file with one tracker and one download file. 6
2. Content of a multi .torrent file with different tracker URLs. 7
3. Example file which saves the unwanted file names. 49
4. Example file which saves the needed file names for the download. 50
5. Example file which shows the needed pieces for the current download. . . 51
6. Structure of the Subscription.properties file including two subscribed tor-

rents. 74
7. Content searchOptions.setting file . 85

IV

Listings

List of Abbreviations

ADSL Asymmetric Digital Subscriber Line

ASCII American Standard Code for Information Interchange

CD Compact Disc

CGI Common Gateway Interface

DHT Distributed Hash Table

DNS Domain Name System

DoS Denial of Service

DVD Digital Versatile Disc

FTP File Transfer Protocol

GB Gigabyte

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

ID Identifier

IP Internet Protocol

ISO International Standard Organisation

Kademlia An algorithm for DHT

KB Kilobyte

LAN Local Area Network

LTS Long Term Support

MB Megabyte

MD5 Message-Digest Algorithm 5

NAT Network Address Translation

OS Operating System

V

Listings

OSI Open Systems Interconnection

P2P Peer-to-Peer

PC Personal Computer

RFC Request for Comments

RPC Remote Procedure Call

SHA Secure Hash Algorithm

TCP Transmission Control Protocol

TEN Text Email Newsletter

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Virtual Machine

WAN Wide Area Network

XML Extensible Markup Language

XOR Exclusive OR

VI

Introduction

1. Introduction

The influence of the Internet has increased enormously over the last years. Many
people in the world are working together in teams and sharing their content via the
Internet. The industry, like content providers and software developers or the open
source communities, would like to distribute its products and also many private users
of the Internet would like to exchange material over the world-wide web. Therefore the
distribution of content is important and so is the development of sophisticated tools are
devoted to this purpose. Nowadays, different approaches exist.
One approach for distributing content in a fair way is to use a P2P (peer-to-peer)
network. Bram Cohen1 developed a P2P file sharing communication protocol called
BitTorrent2 in 2001. This protocol was implemented in the BitTorrent client. Today
many other clients exist where the protocol is implemented. The BitTorrent protocol
should be shown that it is feasible to share a huge amount of data in a fair way.
The idea behind it was that every user who is downloading a file, uploads its already
downloaded part to other users. The meaning of fair in this context is that the costs
are split between all users, because in the Internet the network provider have to
pay for the upload and not for the download. Another advantage of this protocol is,
if many users are a part of this kind of distribution the speed of distribution is very high.

The Distributed Computing Group at the ETH Zurich3 had developed his own
BitTorrent client which is called BitThief 4. With this client it was shown that the
BitTorrent protocol is not as fair as described by Bram Cohen original protocol suite
[1]. The BitTorrent protocol in the BitThief client is modified and pretend the tracker
and other peers that BitThief is fair and especially powerful.[2] Thereby the download
rate is increased on the BitThief side enormously, although there is no real upload.
The client is written in Java 5 and should work independent of the chosen OS. Note
that programs written in Java cannot be guaranteed to work independent of the OS,
because some methods depend on the system and it is the task of the programmer
to guarantee the correct functionality. The BitThief program is used for scientific
analysis and currently in a rudimental condition. At the beginning of my thesis, with
the BitThief version 0.1.7, the most features which are implemented can be called only

1http://bitconjurer.org/
2www.bittorrent.org
3Swiss Federal Institute of Technology Zurich
4http://dcg.ethz.ch/projects/bitthief/

1

http://bitconjurer.org/
www.bittorrent.org
http://dcg.ethz.ch/projects/bitthief/

Introduction

from the command line. The GUI at this version is very elementary and supported
sparsely feature. Many parameters which can be set in the command line are not
supported in the GUI version.

The aim of my work is to make the GUI more attractive for users, not directly inter-
ested in the scientific aspect of the BitTorrent protocol, to collect data to show that our
findings are correct. That means to show that the BitTorrent protocol must be extended
in some direction to be real fair in the sense of a fair upload of the participants. The
client is a scientific project and collect data for statistical analysis of this client, there-
fore it is require that many users uses this client and to guarantee a big user community
BitThief needs an easy user interface and unique features.
This thesis is split into different chapters. At first I will describe, in Chapter 2, the
basics of BitTorrent with some concepts of this protocol. In Chapter 3, I will describe
the concept of the BitThief client how it works now, and I will introduce the new way
of the client. Chapter 4 shows the state of BitThief before I started my work. In the
following chapters, I will describe my assignments on the project.
My assignment is to increase the usability of the BitThief client. That includes different
aspects, at first it should increase the look and feel of the program, so that the client is
more attractive for users (see Chapter 5). Further, to guarantee that users works with
the latest version of the client an update mechanism must be implemented. This function
is describe in Chapter 6. A nice look and feel and an update function are only the basics
to use a program nowadays, to get a greater community a program needs some unique
features which convince users to use this client. For this purpose I developed different
features. In Chapter 7 is a multi-torrent function described where the user can selects
several files from a torrent to download only this subset. To disenthrall the user from a
web browser a torrent search function was implemented. This functionality tries to rank
all search results and gives the user an overview about good torrents for downloading,
so that it will be avoided to download corrupt or dead torrents. The search function
is described in Chapter 8. Many users uses BitTorrent to watch and/or download TV
shows, therefore it is very useful to subscribe to a TV show. This subscription service
searches automatically for new shows and offer these results. Further, this functionality
can be used for all other torrents what represent an automatic search function. The
subscription service is describe in Chapter 9. The last chapter (Chapter 10) of this
thesis describe different error analyzes which must be performed during my thesis. This
part was needed to create a stable version of the BitThief client.

2

The BitTorrent Protocol

2. The BitTorrent Protocol

The BitTorrent protocol was developed and implemented by Bram Cohen in 2001.
The aim of the protocol was to distribute huge amount of data and/or files in a clever
and efficient way. Before it, data were distributed via HTTP or FTP from special file
servers. This technique has a main disadvantage, if downloading a huge amount of user
data from a server at the same time then the bandwidth reduced enormously. The
result of it could be that the server crashed, nowadays this phenomenon is also called
DoS attack. With the BitTorrent protocol it cannot happen, because the protocol is
based on a P2P technology. If many users are downloading the same file concurrently
then the load is shared of many peers and/or clients. With BitTorrent, the load is
distributed among all peers which results in an increased throughput. The BitTorrent
protocol is a collaborative file sharing protocol which is implemented on layer 7 of the
OSI-reference model.

2.1. Terminology

The BitTorrent protocol introduces new terminology. I will itemize the core keywords
first and then I describe them briefly in detail.

• Torrent

• Tracker

• Peer

• Seeder

• Leecher

• Swarm

• Choke

• Unchoke

Torrent A torrent has two different meanings depending on the context. It can mean
either a .torrent metadata file or all files described by it. The torrent file contains
metadata about all the files that it offer, the file contains:

• names and paths of the files

3

The BitTorrent Protocol

• file lengths

• piece length

• piece hashes (checksums)

• tracker announce URL

If a user wants to share some files using BitTorrent, at first he needs to create a torrent
metafile.
Tracker A tracker is a server that keeps track of which seeds and peers are in the
swarm. The clients report their information to the tracker periodically and in exchange
they receive information about other clients to which they can connect. The tracker is
not directly involved in the data transfer and does not keep a copy of the transferred
file.
Peer A peer is an instance which is using the BitTorrent protocol. The program is
running on a computer on the Internet to which other peers are connected and transfer
data. Usually a peer does not have the complete file, but only parts of it. However, in
the colloquial languages, "peer" can be used to refer to any participant in the swarm,
in this case it is synonymous for a "client". A peer is also called a node.
Seeder A seeder is a peer that has a complete copy of the torrent (note not a .torrent
file) and still offers it for upload. The more seeders there are, the better the chances are
for completion of the download.
Leecher A leecher is a peer which is not a seeder. That means the leecher only has a
part (or nothing by startup) of the download and is still downloading.
Swarm A swarm consist of all peers (including seeders) which are sharing the same
torrent. For example, six ordinary peers and two seeders make a swarm of eight.
Choke The choke mode limits the bandwidth, what means that the BitTorrent client
shared the content with a fixed number of nodes.
Unchoke Unchoke is the opposite of choke and remove the limitation. The client can
share with all available peers.

2.2. Mode of Operating

In comparison with conventional methods to download a file via HTTP or FTP the
BitTorrent technique uses the normal upload capacities of the downloader, even if the
torrent and/or file is incompletely downloaded. The files are not only distributed by
one server but also from client to client (see Figure 1). This is the BitTorrent concept

4

The BitTorrent Protocol

of peer-to-peer. Overall the download load is not lower but it will be shared about a lot
of individual users. For popular files this technique prevents the collapse of the network
and server.

Figure 1: Concept of BitTorrent: All clients are registered on the tracker. The tracker tells
all clients who is currently in the swarm. The seeders send packages to the leechers.
Also the leechers could send packages to other leechers.

2.2.1. Design of a Torrent File

To download a file the client need a torrent file with the extension .torrent or .tor, it can
be understood as a description file and is called the torrent metainfo file. This file has
a special encoding form which is called bee-encode or in short form bencode, so content
of a metainfo file is a bencoded dictionary. The metainfo file consists of IP-addresses
and/or host addresses of the tracker as well as the file name, file size and the checksum
of the download file. The size of the description file is typically a few kilobyte and is
usually placed on a webpage by the provider.
Also the .torrent file is a control file which controls the communication between the

5

The BitTorrent Protocol

seeders, leechers, and the tracker. The content of the file can be seen with a standard
text editor. The first rows of the example file ubuntu-8.04-desktop-i386.iso.torrent is
shown below (Listing 1).

d8:announce39:http:// torrent.ubuntu.com:6969/ announce7:comment

29:Ubuntu CD releases.ubuntu.com13:creation datei1209021836e

4:infod6:lengthi733079552e4:name28:ubuntu -8.04-desktop -i386.iso

12:piece lengthi524288e6:pieces27980:

Listing 1: Content of a .torrent file with one tracker and one download file.

These rows show the BitTorrent client that it has to connect to the tracker tor-
rent.ubuntu.com:6969/announce and request the file ubuntu-8.04-desktop-i386.iso. At
the beginning of the first row there is a command d, which means that the following
entry is a so-called dictionary. The number before the colon defines the length of the
following string. For example the 39: shows the client that the following string, in this
case the tracker URL, has a length of 39 characters. The size of the file to be downloaded
is described by the keyword length, whereas the following i indicates that the next string
is an integer value. All number strings end with an e. For example i730e corresponds to
730, i-730e corresponds to -730 or i0e corresponds to 0. Integer values have no size lim-
itation, but there exist invalid formats e.g. i-0e or i03e. In the torrent file example the
downloading file has the size of 733,079,552 Byte (699.12 MB). In general, all elements
like strings, lists or numbers end with an e, the e is the terminate sign. However, the
described file(s) will not download as one file, it is split into many parts. Every part is
called a piece and in these example every piece has the size of 524,288 Byte (512 KB).
The most common sizes are 128 KB, 256 KB, 512 KB, and 1 MB.
Note that the piece length specifies the current piece size of each piece and is usually a
power of 2. The typical chosen piece size based on the total amount of file data in the
torrent. But it is to keep in mind that if the piece size is too large it could cause an
inefficient download and otherwise if the piece size is too small, the torrent file is very
large because each hash sum of each piece is a part of this file. So the typically chosen
piece size depends on the total amount of file data in the torrent and the download size.
The best choice is to keep a piece size of 512 KB or less for torrents under 8 GB, even
if that results in a large torrent file but it is guaranteed to have a more efficient swarm
for sharing files.
The key word pieces indicates in how many pieces the download is split into. Every
piece is of equal length except for the final piece, which is irregular, that means the last
piece consist of the missing bytes which are mostly smaller as a piece. In the example

6

The BitTorrent Protocol

from listing 1 the Ubuntu image consist of 27,980 segments and/or pieces.
To get the correct file size we have to divide the pieces by 20.

27980÷ 20 = 1399

Dividing by 20 is a protocol specification, because pieces map to a string whose length
is a multiple of 20. It is to be subdivided into strings of length 20, each of them is the
SHA-1 hash of the piece at the corresponding index[3]. Now if we multiply this result
with the piece size in KByte then we have the correct file size.

1399 ∗ 512 = 716, 288 KB (699.5 MB)

In another example, which can be seen in Listing 2, should show that a torrent can
be administered by more than one tracker. The different trackers are described by an
announce list. The indicator for a list is a l followed by its elements. Also the torrent file
can consist of more information than one target file. This can be called a multi-torrent
file and is also described in a list with the individual file name and size. An example for
a multi-torrent file is given in Listing 2 as well.

d8:announce43:http:// tracker.torrentbox.com:2710/ announce

13:announce -listll43:http:// tracker.torrentbox.com:2710/ announcee

l44:http://vip.tracker.thepiratebay.org/announcee

l44:http://tpb.tracker.thepiratebay.org/announcee

l30:http:// tracker.prq.to/announceee

13:creation datei1213452878e4:infod5:filesld6:lengthi73233130e

4:pathl47:Madonna - Give It 2 Me [2008][SkidVid]_XviD.aviee

d6:lengthi63404e4:pathl26:Madonna - Give It 2 Me.jpgee

d6:lengthi205782e4:pathl15:ScreenShots.jpgeed6:lengthi2206e

4:pathl14:Video Info.txteee4:name

43:Madonna - Give It 2 Me [2008][SkidVid_XviD]

12:piece lengthi262144e6:pieces5620:

Listing 2: Content of a multi .torrent file with different tracker URLs.

All single files in a multi-torrent file are described as one long continuous stream. The
number of pieces and their boundaries are determined in the same manner as the case
of a single torrent file. The order of pieces in the multi-torrent file composed of the
concatenation of each file in the list, which means that a piece boundary may overlap
a file boundary or in other words one piece can consist of a file end point and starting

7

The BitTorrent Protocol

point or more files (if the files are smaller than the piece size).

2.2.2. Distributing of Content via Tracker

BitTorrent consists of two parts, the server program which is called tracker and the
client program, which is installed on a PC by the user and serves as a remote station.
The tracker administrates information for one or more files. The downloading client
learns from the tracker who else is downloading and distributing the file. If a client
has received a segment or chunk of the desired file and has verified the checksum, then
the client sends a response to the tracker. The tracker informs the other clients in the
swarm and the current client can distribute this chunk to the others.
If the provider removes the torrent out of the tracker then the contact to the tracker
is lost and the clients cannot contact other new clients. But the clients can carry on
exchanging pieces with the known clients.
In contrast to other well known file sharing systems BitTorrent does not exchange any
other data from the user. In fact, the swarm distributes only the files which the user
of the torrent file has specified for downloading. Also the provider of the tracker can
determine which downloads it manages. The individual trackers are not interconnected,
therefore a joint network does not exist. Every tracker creates a virtual and temporal
network of involved clients.

2.2.2.1. Tracker HTTP/HTTPS Protocol
The tracker is a HTTP/HTTPS service which responds to HTTP GET requests.
A request from a client includes information from that client to help the tracker
to create a statistic about the existing peers in the swarm. The response from the
tracker includes a list of all current peers in the swarm. This list helps the client
to participate in this swarm. Both, the request and the response is in a bencoded
dictionary form. The base URL for the tracker consists of the announce URL
which is defined in the torrent description file. All parameters are then added to
this announce URL using standard CGI methods (i.e. a ’?’ after the announce
URL, followed by ’param=value’ sequences is separated by ’&’). CGI is a standard for
data exchange between a web-server and third party software which handles the request.

All binary data in the URL must be properly escaped, especially the info_hash and
the peer_id, for this purpose it is uses the URL encoding style. This means that any

8

The BitTorrent Protocol

byte which is not in the set 0-9, a-z, A-Z, ’.’, ’-’, ’_’ and ’ ’, must be encoded. It uses
the hexadecimal value of the byte therefore. An example for the coding is shown below,
where a 20 byte hash sum will be encoded [4].

\x12\x34\x56\x78\x9a\xbc\xde\xf1\x23\x45

\x67\x89\xab\xcd\xef\x12\x34\x56\x78\x9a

Table 1: Coding table: Example for an encoded 20 byte hash sum.
Hex value Sign 8 bit ASCII URL code

12 DC2 (CTRL R) %12
34 4 4
56 V V
78 x x
9A ´ %9A
BC 1/4 %BC
DE Þ %DE
F1 ñ %F1
23 # %23
45 E E
67 g g
89 h %89
AB « %AB
CD í %CD
EF ï %EF
12 DC2 (CTRL R) %12
34 4 4
56 V V
78 x x
9A ´ %9A

The whole URL encoded sequence is:

%124V x%9A%BC%DE%F1%23Eg%89%AB%CD%EF%124V x%9A

2.2.2.1.1. Tracker Request
If the client sends a request to the tracker the following parameters are part of the GET
request. Some parameters are optional and all others are mandatory. At first I describe
the obligatory part and then the optional part.
peer_id: The peer ID is always a 20 byte string used as an unique ID for the client.
The client generates this ID at startup. Any value is allowed for the ID and may be

9

The BitTorrent Protocol

binary data. To generate this peer ID currently no guideline exist. But one popular
procedure is using the process ID and a time stamp at launching. Other strategies exist
and are called the Azureus-style and the Shadow’s-style.
The Azureus-style is encoded as follows: it starts with a ’-’, then two characters for the
client id (and/or program id) followed by four ASCII digits for the version, a separator
’-’, and then a random numbers to filled in this string. An example for an Azureus client
is:

−AZ2060− . . .

Further client IDs are for example for µTorrent "UT" or for the KTorrent "KT".
The Shadow’s-style uses another encoding for the peer_id. The client identification is a
one ASCII alphanumeric sign followed by up to five characters for the version number.
If the version number is shorter than 5 signs then pad it with ′−′. After this version,
three characters follows, mostly ′ − −−′ but not always and the rest of the string will
be filled up with a random sequence. Each character in the version string represents a
number from 0 to 63. For example:

0 = 0, . . . , 9 = 9

A = 10, B = 11, . . . , Z = 35

a = 36, b = 37, . . . , z = 61

. = 62,− = 63

An example for the Shadow 5.8.11 client is shown below.

S58B −−−−− + . . .

port: The port number describes the port the client listens to. The standard ports for
BitTorrent are typically between 6881 to 6889 but it is possible to choose a port out of
this range.

info_hash: The info hash is a URL encoded 20 byte SHA-1 hash of the value
of the info key which is described in the torrent file.

event: The client must specify its event, therefore three different states exist:

10

The BitTorrent Protocol

started, stopped, and completed. These values are key values of the event. The first
request of the client to the tracker must include the event started which signals the
initiation. If the client stops the current download the stopped state is sent. And if the
client downloads all pieces it sends the completed state. This state signals the tracker
to increment "completed download" statistic, it is only on this event based. This signal
(completed) is sent only once. Because if the client restarts and the download was
already 100% complete it would be fake the statistic and therefore it does not send again.
If no event is specified, this means that this request is once performed at regular intervals.

downloaded: This parameter shows the tracker the total number of bytes downloaded.
It is used if the client sends the started event. The coding of this part is based on the
TEN ASCII standard.

uploaded: This parameter is also sent with the started state and is based on
TEN ASCII standard. It informs the tracker about the total number of bytes are
already uploaded to other peers.

left: The left parameter is for the total number of bytes which this client still
has to downloaded. This is also encoded in TEN ASCII.

compact: If that value is set, it indicates that the client accepts a compact re-
sponse and so the peer list is replaced by a peers string with 6 byte per peer. The first
four bytes are the host address and the last two bytes are the port number. The bytes
are ordered in the network byte order. The compact mode is for saving bandwidth and
it is to note that some trackers only support this mode which means that if the mode
is not set the tracker refuses this request.

no_peer_id: If the compact mode is disabled, then the tracker ignores the
peer ID field in the peer dictionary by this option. If the compact mode is enabled,
then this option is not active.

The following parameters are all optional.
numwant: Is it desired to restrict the client by sharing only with a bounded number
of other client, then this value is to be set. With the result that the tracker responses
with an available peer list with the respected count only. By default this value is set to

11

The BitTorrent Protocol

50 peers and it is permitted to set this value to zero.

key: It is an additional identification and is not shared with any other clients.
It is intended to allow a client to prove their identity should their IP address change.

trackerid: If the torrent file describes more than one tracker, then it is mean-
ingful to give each tracker its own ID.

ip: This parameter is to be set if the IP address where the request comes from
is not the real IP address of the client. In that case, the client is placed behind a proxy
server. It is also necessary that the client communicates via a NAT router. Or both, the
client and the tracker are in the same local network on the local side of a NAT router.
The reason for this is the tracker would give out the local address of the client to other
peers and this class C address (in the RFC 1918 space) is not routable. Therefore the
client and/or the NAT router must set its external routable IP address in this field to
communicate with other peers. A problem of this parameter is that some trackers treat
this value differently. Some trackers accept only this parameter if the IP address lies
within the RFC 1918 space. Other tracker ignore this value completely. In general this
parameter is not necessary if the address of the client can be determined from the IP
address from which the HTTP request came.
The ip parameter is for both IP versions (IPv4 and IPv6). If the parameter is an IPv6
address (e.g. 2001:0db8:85a3::8a2e:7322) it indicates only that the client communicates
via IPv6.

2.2.2.1.2. Tracker Response
The tracker responds in plain text which is in a bencoded dictionary form and can
consist of the following keywords:
interval: The interval value indicates how long the client is to wait to send a regular
request to the tracker. This time value is to be interpreted in second.
It is allowed that the client sends a request to the tracker more often than the specified
interval. This happens if an event occurs especially by the stopped and by the completed
event or if the client needs to know about more peers. But in the last case it is a better
practice to specify the numwant parameter and so request a larger peers list, instead of
bombing the tracker with multiple request.

12

The BitTorrent Protocol

min interval: This is an optional key to specify the minimal announce interval.
This value shows the client that it must not reannounce more frequently that this value.

complete: The complete key informs the client how many seeders currently ex-
ist.

incomplete: This is the opposite of the complete key and means how many
leechers currently exist. Both values are integers.

peers: This keyword describes the list of all available peers. The default length
is 50, which means that maximum 50 different peers are described. If there are fewer
peers in the swarm, then the list will be smaller. Otherwise, the tracker chooses peers
randomly and adds these to the response list. If the peer is a seeder, then the tracker
has to avoid to report other seeders, because these peers are uninteresting for that peer,
therefore the tracker needs a more intelligent mechanism to send in that case only a list
of leecher peers. For the peers list two different models exist, the dictionary model and
the binary model.

• dictionary model: In this model the value is a list of dictionaries. The dictionary
consists of the following keys.

– peer id: This is the unique self selected client ID which was described above.
This value was created by any individual client and is used to communicate
with each peer in the swarm.

– ip: This value can consist of different entries. It could be the DNS name which
is represented as a string. Also it can consist of the IP address in the IPv4
format as dotted quad integer value or in the IPv6 format as hexadecimal
values which are separated by a colon.

– port: Is the listing port number for each peer.

• binary model: This model is instead of using the dictionary model. Each peer is
described in a string consisting of 6 bytes. The first 4 bytes are the IP address of
a special peer and the last 2 bytes are the listing port number. The notation is
in the network byte order (big endian). This model is equivalent to the compact
mode.

13

The BitTorrent Protocol

failure reason: If a failure occurred the failure reason key is set. If this key is set
then no other keys are set and an error message follows in human readable form which
presents the reason why the request failed.

warning message: This key is similar to the failure reason key, but the re-
sponse still gets processed normally. This message is shown if a harmful error occurred,
what destroyed not the functionality.

tracker id: This value is created by the tracker and if the client sent its next
request and/or announcement it should use this ID value. If this value is missing the
client has to use the old tracker id from the previous request. It means the client should
not remove the old value. This ID is always a string.

2.2.3. Trackerless Distributing of Content

In newer versions a trackerless service has been developed. The tracker function will be
carried out on the client side. That eases to provide the content, because the tracker is
the most complex part of BitTorrent. Therefore the client uses a distributed hash table
(DHT) algorithm. Modern BitTorrent-clients can be resigned on the tracker server
and thereby they can run locally ("trackerless"). But the problem is that different
BitTorrent clients have implement different types of DHT algorithms in their protocols,
thus these clients are incompatible. Today the most efficient DHT algorithm is the
Kademlia algorithm. More and more clients have implement this protocol and thereby
these can avoid incompatibilities.

2.2.3.1. Distributed Hash Table
The challenge in P2P systems is the general problem to find the storage place for a
searched data object in an efficient way. The data object, a file, is evenly distributed
shared among many nodes, this data structure is a so called distributed hash table
(DHT). The entry point is independent from any location and it must be feasible to
find every responsible node. Each node is a container of an individual hash table. The
demand on a DHT is robustness, self-organization, and scalability, because in a P2P
system nodes need access, nodes enter and nodes leave the system at any time. The

14

The BitTorrent Protocol

basic of distribution hash tables are the hash functions.

From a linear codomain the hash function generates a key for each data object.
The codomain is evenly spread about the nodes of a node set. Each node is leastwise
responsible for a subset of the key space, but it is possible that more than one node
is responsible for the same key space, whereas the responsibility changes dynamically.
The keys have no semantic meaning and therefore the provided content is software
independent. This has the advantage that the implemented DHT-algorithm can
be replaced by another implementation. The generic interface consist of only the
public(key, content) function and the lookup(key) function.
To get access to existing system an entry protocol is needed, normally a new node will
be connected to another node, which is currently part of the system. This protocol
performs the connection to neighbor nodes and controls the construction of routing
tables. Routing tables are used by DHT-nodes to find out, in an efficient manner, which
content is provided by other nodes.
The definition of the distance to a neighbor is connected to the structure and topology
of the current system and can vary in different implementations. The distance has no
relation to the physical distance in the system, see below.
The content of the data object which is distributed can be placed directly by the node
or it will point to an address (link) of another node which holds the data[5].

2.2.3.2. The Kademlia Algorithm
The Kademlia protocol was developed by Petar Maymounkov and David Mazières at
the New York University in 2002. It is a P2P system based on DHT and uses the IP
protocol with the connectionless UDP protocol.
Kademlia is used for file sharing and to find information for downloading in the network.
A central instance does not exist, which performs the indexing of the available data
(like eDonkey), the protocol shares this task with all clients. A node, which has an
information, calculates a clear bit sequence with a defined length. This sequence,
which is called hash, characterizes the information. The length of all hashes and IDs
in the network have to be equal. The protocol looks up only for that nodes which ID
(calculated in bit) have the smallest distance to the hash and transfers the contact data.

The algorithm constructs a decentralized virtuell network structure on the LAN/WAN,

15

The BitTorrent Protocol

that is called DHT and it is the general approach as in other DHT. Kademlia defines the
nature and the construction of the network and also it regulates the communication and
the exchange of information between the nodes. Each node in the network has a unique
number, so-called Node-ID, in the 160 bit key space. This ID is a randomly calculated
number and not only used for identification. Every information content (value) which
is placed or searched in the network has assigned a 160 bit hash value (key) from the
DHT. Therefore every key represents an information content and builds a 〈key, value〉
pair. Each pair is stored on nodes whose IDs are close to the key according to some
notion of closeness. To publish or find these pairs in the network Kademlia uses the
distance between both bit sequences.

A node that wants to enter the network has to perform a bootstrapping process. In
that phase the algorithm gets, from a user or a stored list, the IP address of a node
which was currently known in the Kademlia network. Than to find this initial entry IP
number it is not specified by the Kademlia protocol. If is the node a new one then the
algorithm calculates a random node-ID, if that value used by another node then the
algorithm performs the calculation again. This procedure ends if the algorithm finds a
clear ID. The ID is used for the whole time until the node leaves the network.

The "distance" described above, has no relation to geographical distance, it marks
the distance within the ID field. It could be that a node from Europe and a node from
Australia are neighbors. Kademlia defines the distance between two IDs as their bitwise
exclusive or (XOR) interpreted as an integer, d(x, y) = x⊕ y.

The protocol consists of 4 RPCs: PING, STORE, FIND_NODE and FIND_VALUE.
The PING RPC probes a node to see if it is online. STORE instructs a node to store
a 〈key, value〉 pair for later retrieval. FIND_NODE takes a 160 bit ID as an argument.
The recipient of the RPC returns 〈IP address, UDP port, Node ID〉 triples for the k nodes
it knows about closest to the target ID. FIND_VALUE behaves like FIND_NODE with
one exception. If the RPC recipient has received a STORE RPC for the key, it just
returns the stored value[6].

2.2.4. Peer Wire Protocol

To share the pieces of a torrent between different peers a special protocol is required.
This protocol is called the peer wire protocol and uses TCP for transmission. The torrent

16

The BitTorrent Protocol

metafile consists of a description for each piece which facilitates the peer protocol. The
information of this chapter comes from [4], that is the wiki side of the BitTorrent project.
To get more information in detail please read this website.
Each connection with each remote peer must consist of a state information (choked or
interested).

• choked: If the remote peer chokes the client then the requests will not be answered
until the client is unchoked. In the choked mode the client should not try to send
requests for pieces, and otherwise the remote peers has to consider that all pending
or unanswered requests will be discarded. Every client has two variables for each
connection to keep track of the state.

– am_choking: This means my client chokes the remote peer.

– peer_choking: That is used for the remote peer if they chokes my client.

• interested: The interested state means the client is interested in a piece from
another peer (what the remote peers offers). The interested peer will start this
request if the remote peer unchokes it. Also as the choked mode the interested
mode has two variables for saving the current state.

– am_interested: My own client is interested in a piece of that remote peer.

– peer_interested: The remote peer is interested in a piece which my client has.

The client can download a piece if it is interested in that piece which the remote peer
has and further, if the client is not choked by the remote peer. For uploading a piece
the remote peer must be interested in that piece and my client is not choking that peer.
It is important for the client to save the peer states and to know if the peer is interested
or not. Also if the client is choked it must refresh this state information to know if the
client will begin downloading if the state changed to unchoked and vice-versa.
By starting a new connection it is set the choked and the not interested state, for this
purpose the variables are set with the following values.

• am_choking = true

• peer_choking = true

• am_interested = false

• peer_interested = false

17

The BitTorrent Protocol

2.2.4.1. Handshake
To start the communication between two different peers an initialization phase is re-
quired. This is the handshake message and must be first transmitted by the client. The
initiator of a connection sends its handshake immediately. This message has the abstract
body which is shown below.

< pstrlen >< pstr >< reserved >< info_hash >< peer_id >

The denotation of these fields are the following:

• pstrlen: It is the string length of the following string (pstr), as a single raw byte.

• pstr: This string is the identifier of the protocol and is currently always BitTorrent
protocol so that the string length is 19. This identifier identified the version 1.0 of
the BitTorrent protocol.

• reserved: A bit field of eight bytes is reserved for changing the behavior of the
protocol. Currently all implementations of the BitTorrent protocol do not modify
this field and therefore they set all bytes to zero.

• info_hash: That is a 20 byte field for the SHA-1 hash of the info key which is
described in the metafile. This is the same info_hash that is transmitted in tracker
requests (see above Section 2.2.2.1).

• peer_id: Also the peer_id field is 20 bytes long and represents the unique client
ID. Normally, it is the same ID which was sent to the tracker (see above Section
2.2.2.1), but some implementations use an anonymity modus which sets another
ID for each remote peer (e.g. Azureus).

Altogether the handshake message has a length of 49 bytes plus the length of the protocol
identifier, which is in this case 19 bytes and so the total handshake length is 68 bytes.
A remote peer has to listen to a handshake message and must respond to this message if
it recognizes the info_hash of the wanted torrent. The info_hash is the identifier for a
torrent because it is possible that a peer is able to handle more than one torrent at the
same time. If a client receives a handshake with an info_hash that it is not available,
then the remote client has to drop the connection.
If the requested peer receives a handshake response package in which the peer_id does
match with the expected ID, then the peer can drop this connection. Note the client

18

The BitTorrent Protocol

must not save its handshakes, because it holds a peer list which was received by the
tracker request before.

2.2.4.2. Message
All of the used messages in the protocol take the form of

< lengthprefix >< messageID >< payload >

The length field is a four byte value in the big endian format. The message ID is a
single decimal byte. The length of the payload depends on the message. Now I will
shortly described which message types are available in the BitTorrent protocol and how
the body is built.

Keep Alive Message
The keep-alive message is a message with zero bytes, it is specified by that the length
field is set to zero. This message has no ID and also no payload. If a peer receives no
message (keep-alive or any other message type) from a participating peer for a certain
period of time it can close the connection. This period is generally two minutes. The
keep-alive package must be sent if no other command is sent in the last two minutes.
This message has the following form:

< len = 0000 >

Choke Message
The choke message has a fixed length with the message ID ’0’ and has no payload. The
form of this message is shown below.

< len = 0001 >< id = 0 >

Unchoke Message
The unchoke message has the same form as the choke message but the message ID is
’1’.

< len = 0001 >< id = 1 >

Interested and Not Interested Message
The interested message and the not interested message is also a package which has no
payload and a fixed length. The interested message has the ID ’2’ and the not interested

19

The BitTorrent Protocol

has the ID ’3’. The interested message is used to tell the remote peer that my client is
interested in its content and/or pieces. The not interested message is the opposite.

< len = 0001 >< id = 2 > < len = 0001 >< id = 3 >

Have Message
The have message is the first package with a real payload. The payload is the piece
index, which was successfully downloaded before and verified by the hash sum. The
piece index is zero based, which means the first index of a torrent starts with ’0’. The
length of this message is fixed and the message ID is ’4’. This message offers other
leechers in the swarm "I have a new piece".

< len = 0005 >< id = 4 >< piece index >

Bitfield Message
The length of the bitfield message depends on the current torrent, which means in how
many pieces the torrent is split. The variable length is indicated by the ’X’ in the
example, whereby the ’X’ means the length of the bitfield. This message should be sent
immediately after the handshaking process is completed and verified and before any
other messages are sent. If the current client has no pieces of the wanted torrent, then
this message does not need to be sent. If the declared length of the message is unequal
to the length of the real bitfield, then it is considered as an error. In that case the
receiving client can drop the connection. The ID of this message is ’5’ and the payload
is the described bitfield. The bitfield is the environment where the pieces are set if they
exist otherwise the entry is zero.

< len = 0001 +X >< id = 5 >< bitfield >

Piece Request Message
If a peer requests a piece or a block, which is a subset of a piece, then it has to use
this request message. The length of this package is fixed and the payload consists of the
following information:

• index: It is the zero based index of the wanted piece and is an integer value.

• begin: If a block is requested, it specifies byte offset within a piece and is also an
integer value. If the client downloads whole pieces, this field is ’0’.

20

The BitTorrent Protocol

• length: This field is also used by block transfer and indicates the block length.

The package ID is ’6’ and the body is shown below.

< len = 0013 >< id = 6 >< index >< begin >< length >

Piece Response Message
The piece package transmits a piece or block which was requested before. The length of
this package depends on the length of the piece and/or block, which is indicated by the
’X’. The ID of this message is the ’7’. This package consist of the following information:

• index: Is an integer value that contains the zero based piece index.

• begin: It is the offset of the wanted block from a requested piece.

• block: It contains the real data of a block or piece which was specified by the index.

The package construction is shown below.

< len = 0009 +X >< id = 7 >< index >< begin >< block >

Cancel Message
The selection of wanted pieces is random and therefore it is possible that a peer requests
a piece by multiple peers. If the client has received a piece which was requested by
different peers, it has to signalize all other peers that this piece is no longer needed.
To signalize this state the cancel message is needed. This message has the ID ’8’ and
the payload has the identical construction of the request message which was described
above.

< len = 0013 >< id <= 8 >< index >< begin >< length >

Port Message
If the client uses a DHT algorithm for BitTorrent (see Section 2.2.3), it must publish
its listen port number in another way as was described in the Section 2.2.2.1. Therefore
the port message is used. This package has a fixed length, an ID of ’9’ and the number
of the listen port.

< len = 0003 >< id = 9 >< listen port >

2.2.4.3. Message Flow
In this chapter I show two examples to get an idea of the message flow by BitTorrent,

21

The BitTorrent Protocol

both figures are simplified.
In the first figure (Figure 2) it is shown how a new leechers registers itself at a tracker.
The tracker responds with a list contains all available peers, which is one seeder in

Figure 2: Message flow in BitTorrent: It shows the sequence of the registration at a tracker
and further the download procedure with a remote peer.

this example. The leechers calls with an handshake message this seeders. The seeder
responses with the handshake and the bitfield. The leecher answered on it with the
interested message and the seeder will unchoke the new peer. Then the normal download
will start, therefore the leecher requests a piece and the seeders sent this piece. This
procedure is in that case a loop. In the end the leecher stops, once it has all pieces or the
user has shut down the program and/or download, the leecher peer sends a new request
to the tracker with the current event (stopped or download).
The second figure shows (see Figure 3) the torrent distribution between two leechers
and one seeder. In this figure the communication with the tracker is not shown. The
transaction between the first leecher with the seeder is identical to the example above.
The second leecher starts its work after the other so that the first leecher has some pieces.
Further, the second leechers call the seeder and the first leecher with the handshake
message. Then both peers answer with the handshake response and the bitfield. So far

22

The BitTorrent Protocol

Figure 3: Message flow by BitTorrent: It shows a sequence of action between two leechers and
one seeder.

it was the same procedure as before. Now, the second leecher requests a piece which the
first does not have, because the request of a piece index is random. If the second one
downloads that piece completely it offer it to the first leecher with the have message.
And now the first leechers can download pieces from the second one.

23

The BitThief Client

3. The BitThief Client

The Distributed Computing Group5 of the ETH Zurich, Institute of Computer En-
gineering and Networks Laboratory (TIK)6, has developed its own BitTorrent client
which is called BitThief. The client is written in Java and is based on the official
implementation7 (written in Python, also referred to an official client or mainline
client), and the Azureus8 implementation.
The BitThief client was deployed for scientific analysis of the BitTorrent protocol.
With this client was shown that it is possible to manipulate the protocol. The result of
it is a higher download rate as all other peers in the swarm with an unfair behavior.
This client does not upload any pieces to other peers. Note it was not deployed for
downloading illegal material, it was deployed to show that the original protocol is not fair.

3.1. Functionality of BitThief

The BitThief implementation is as simple as possible and contains a lot of analyzing
tools to measure the performance of the client. Also different techniques were imple-
mented to improve the download rate.
BitThief does not perform any chokes or unchokes of remote peers, and it never an-
nounces any pieces. In other words, a remote peer always assumes that it interacts with
a newly arrived peer that has just started downloading. Compared to the official client,
BitThief is more aggressive during the startup period, as it re-announces itself to the
tracker in order to get many remote peer addresses as quickly as possible. The tracker
typically responds with 50 peer addresses per announcement. This parameter can be
increased to at most 200 in the announce request, but most trackers will trim the list to
a limit of 50. The tracker announcements are repeated at an interval received in the first
announce response, usually in the order of once every 1800 seconds [2]. The BitThief
client ignores this number and ask the tracker more frequently. The client does not
impose a limit on the number of active connections, in fact, it tries very aggressively to
open as many connections as possible. This is achieved by querying the tracker more of-
ten for peer addresses. This frequently polling improves the knowledge about the swarm
rapidly.

5http://www.dcg.ethz.ch/
6http://www.tik.ethz.ch/
7http://www.bittorrent.com/
8http://azureus.sourceforge.net/

24

http://www.dcg.ethz.ch/
http://www.tik.ethz.ch/
http://www.bittorrent.com/
http://azureus.sourceforge.net/

The BitThief Client

If you have a large number of open connections it improves the download rate in two
ways. On the one hand, connecting to more seeders allows the client to benefit more
often from their round-robin unchoking periods. And on the other hand, there will be
more leechers in the neighborhood that include BitThief in their periodical optimistic
unchoke slot. Opening more connections increases the download rate linearly. The
remote peers operate independently of the number of the open connections by BitThief.

3.2. How BitThief Exploits the BitTorrent Protocol

A peer which receives a sub-piece cannot verify the integrity of it. The reason is the
torrent metafile contains only the hashes for whole pieces. The peer therefore has to
fetch the whole piece first and can then decide whether the piece is valid or not. Usually
the client cannot determine which peer has transmit bad pieces. This makes the protocol
insecure when there are peers uploading random garbage.
This serves as an idea for an attack, but it is to say that uploading garbage is not an
interesting option anymore, because most client implementations are good at handling
this exploit. Instead of pure free riding without uploading any data, BitThief considers
a more relaxed form of free riding without uploading any valid data. That is the main
idea by BitThief for free riding. By uploading random garbage the client can cheat the
remote peer into thinking that it is a good neighbor who uploads data quickly and are
thus unchoked more frequently which enables BitThief to download at a high speed in
return. Unfortunately, a lot of BitTorrent clients try to download all sub-pieces of a
piece from the same peer and hence discover quickly that BitThief is cheating. This
causes a block of the client IP address for a couple of hours or even days, depending on
the implementation.
In trying to improve this idea, BitThief has implemented a mechanism which prevents
uploading a whole piece to a remote peer. This way, the peer needs to fetch the remaining
sub-piece from another node and will in the end not be able to detect which peer sent
the garbage data. Unfortunately, this did not work out either, if the peer connection
stalled because BitThief did not answer certain sub-piece requests [7].

3.3. BitThief will be a Fair Client

The next generation of BitThief (version 1.0.0) will implement a new transmission
strategy which guarantee a real fair data exchange. Therefore a new protocol is

25

The BitThief Client

developed by the DCG9 which performs a tit-for-tat strategy. To avoid unfairness,
tit-for-tat is the most efficient strategy to enforce collaboration among selfish users.
In a real tit-for-tat environment, a peer is only exchange data with another peer if it
continues to give something in return. Regrettably, this is often impossible in a file
sharing environment, because a newly joining peer inherently has no content to share
and therefore it is not able to upload and so to collaborate with other peers. This is
the first problem of pure tit-for-tat for decentralized and dynamic environments, such
as P2P networks, so the peers can rapidly end up in a deadlock situation.
Another problem with pure tit-for-tat in file sharing applications is that a peer’s
neighbors sometimes have nothing to offer which the peer does not already have, this
situation block out any exchanges. Therefore, real tit-for-tat is not a suitable strategy
to guarantee fairness in dynamic, distributed systems.
To avoid this situations and to use the advantage of tit-for-tat the DCG developed
a way of implementation for tit-for-tat strategy which is described in [8]. Now I will
summarize the important points of their strategy.

3.3.1. Idea of Tit-For-Tat

The strategy from authors of [8] is based on source coding. Let us assume that different
peers are interested in the same file f provided by one or more peers. The file f is
divided into m data blocks b1, . . . , bm which are used as the atomic units of trade. The
peers still in the process of downloading are commonly referred as leechers and the
peers which provided the whole file are called seeders. In the beginning one seeder
must provide a block set for a leecher, while existing several seeders, it is useful that
one seeder send the first blocks for free. Note that the first blocks are not the first data
blocks of the file and these data blocks are not shared directly. The seeders encode
them first and provide these to the leechers.

Each data block is considered to be a sequence of elements from a certain alphabet.
These elements are elements from a Galois field GF (2q) where q denotes the length
in bits of each element in the sequence. A Galois field10 or a finite field is a field that
contains only finitely many elements. Finite fields are important in number theory,
algebraic geometry, Galois theory, cryptography, and coding theory. The Galois field is

9Distributed Computing Group of the ETH-Zurich http://dcg.ethz.ch/
10The field named in honor of Évariste Galois.

26

http://dcg.ethz.ch/

The BitThief Client

defined on the basic operations addition, substraction, multiplying, and division.
All computations are carried out in a finite field modulo a Mersenne prime number 11.
The Mersenne prime number is a sub-quantity of the prime numbers with the property
that currently only 45 numbers are known. An advantage of Mersenne prime numbers
is that these numbers are almost a power of two. This characteristic of the basic
algebra operations (+,−,×,÷) which is used in a Galois Field is fast and thereby
efficient. Suppose the data block size is 128KB and the Mersenne prime number
is 231 − 1, then each element of the finite field consists of a sequence of 33,825 ele-
ments, each element has a length of 31 bits. When performing mathematic operations
on data blocks, the operations are performed on all the elements in the blocks separately.

Seeders never distribute data block directly, they compute a linear combination of k
blocks and offered these blocks. k has a defined size and the blocks are chosen randomly.
The authors of [8] have analyzed different size of k and they have detect that a good
size of k is k = log(m) + 2. A leecher downloads such a block. Secondary, the leechers
need to download a vector which contains information about which blocks have been
added up to build this new block. This strategy, for small random k, beware the peers
for deadlock situations. To reconstruct the original file, a leecher has to download all m
encoded blocks which are all build from different linear combinations of the original file.
The file can be recovered by solving a linear system of equations.
The exchange between leechers are fair using tit-for-tat because every leecher must pro-
vide blocks to get blocks itself.

3.3.2. Seeder Strategy

Peers pin their hopes on the goodness of seeders to become blocks to start downloading.
Therefore the seeders need a suitable strategy which helps the leechers on the one hand,
but on the other hand they have to prevent freeloading behavior. The seeder strategy
is based on a strategy whose primary purpose is to boost the download progress by
providing newcomers with initial data they can share.
The Allowed Fast message of BitTorrent Fast Extension mechanism defines for any
peer a small but specific pseudo-random set of data blocks that this peer can download
immediately for free.

11A Mersenne prime number P is a prime number for which it holds that there is a number x ∈ N such
that P = 2x − 1.

27

The BitThief Client

Allowed Fast is an advisory message which means "if you ask for this piece, I will
give it to you even if you are choked." Allowed Fast thus shortens during which the peer
obtains occasional optimistic unchokes but cannot sufficiently reciprocate to remain
unchoked. The Fast Extension mechanism is a modification of the previous original
protocol and is also implemented in the mainline client. It modifies the semantics of the
Request, Choke, Unchoke, and Cancel messages, and further it adds a Reject Request
[9]. Furthermore, it adds more interesting features, for example it specifies an algorithm
to calculate a piece subset which is based on the Class C IP-Network address where the
remote peer is in. The pieces which are in the set can be downloaded for free by the
remote peer. This can improve the bootstrapping of new peers which enter the swarm.
The new nodes get a start set of pieces, which is chosen randomly, so they can start
downloading.

This mechanism has a big problem for fair trade, because the peer can collect all
blocks without uploading any blocks in return. The set of data blocks are build in
according to the peers IP address and therefore all set are equal for a specific requesting
peer by different seeders.
The system from the authors of [8] adopts the idea to provide an initial pseudo-random
set of encoded blocks to all peers. In contrast to the original Fast Extension mechanism,
only the seeders compute such sets of blocks and they are the only ones giving out
blocks from such sets. The reason why only seeders can do this and not the leechers
is due to the nature of a leecher, because the leechers do not possess all blocks and
therefore they cannot compute a random set of blocks. If a leecher connects to a
seeder, the seeder will announce these downloadable linear combinations. Another
modification of the original mechanism is that the seeders have the skill to modify the
size of the allowed subset of linear combination at run time. The size depends on the
number of peers in the network. The authors write that the number of peers can be set
to min {m,max {α, β × m

n
}}, where n is the number of the peers in the network and

α and β are small positiv constants greater than 1.

This strategy of tit-for-tat has some advantage in contrast to the original BitTorrent
implementation. At first, the most peers have different IP addresses which guarantees
many combinations of different encoded blocks. That ensures that the available number
of distinct linear combination in the swarm is large. Another point is, the leechers are
forced to collaborate, because the seeders merely provide a small and specific set of

28

The BitThief Client

blocks to each leecher and refuse to provide any other blocks. The point is, any leechers
should be interested to upload to other leechers as much as possible which uses the
bandwidth of the network more efficiently. On the other hand, the seeder can stay in
the network and save its own upload capacity and therefore the seeder save costs. A
further advantage is the size of variable the free block set: The system is resiliency
to freeloaders increases as the network grows. Furthermore, if there are only a few
interested peers, each of them gets a reasonable share of the file for free so that they
can all finish their downloads by exchanging their blocks amongst each other [8]. One
disadvantage of the new system is that the complexity and computing time increases.
A further disadvantage is for asymmetric Internet connections like ADSL, because with
this technique the upload capacity is smaller than the download capacity. This reason
decreases the upload and therefore it has much influence on the whole download time.
But also the original BitTorrent protocol has this problem as well as all other peer-to-
peer techniques.

29

State of BitThief

4. State of BitThief

In this section I show the state of BitThief version 0.1.7, it should be shown on which
point I start. The GUI is very simple and has implemented only a few features. The
program at this stage consists of three windows. If you execute the program the first
window opens. That is shown in Figure 4. This window is very plain and supports only
the load option for a new torrent metafile.

Figure 4: BitThief 0.1.7: Start screen.

If you select "New Download...", which is the natural way, the next window shows a
dialog where you can choose the torrent metafile and the destination directory where the
download should be stored. Also the window presents the listening port and a calculated
random sharing ratio. This window is shown in Figure 5.

Figure 5: BitThief 0.1.7: Choose a torrent metafile and destination directory.

If the metafile and the destination directory is set, the download can start. This is
shown in the next window, Figure 6. It comprises two options, the stop download
option, "clear", and the option to show the details for analyzing the current download
session.

30

State of BitThief

Figure 6: BitThief 0.1.7: Download started.

The last window of the current version is the details window. There you can see different
tabs for analyzing and reporting. This is used for different comparisons between the
original implementations of BitTorrent, like Azureus12 and others, and the BitThief
client. The details window is shown in Figure 7.

Figure 7: BitThief 0.1.7: Details of the current download.

12http://azureus.sourceforge.net/

31

http://azureus.sourceforge.net/

Esthetic surgery

5. Esthetic surgery

In this chapter is described the new user interface of the BitThief client. This chapter
and all others are concerned with the current version 0.2.0 of the BitThief client.

5.1. Motivation

The version 0.1.7 of BitThief has a very simple user interface where only the basic
functions are implemented (load and start a torrent, show download details). Also,
all system parameters can be set only by a call from the command line. That is
unattractive for many users and to approach more users to use this client, instead of any
other BitTorrent clients, BitThief need a nicer and/or a more friendly user interface.
Further, BitThief will be used by a greater community and this increase the accuracy
for the statistical analysis which is important for the scientific evaluation.

5.2. Concept

A friendly GUI has to be intuitive, so that the user is familiar with the program in short
time. Also, it needs well known components (functionalities) and features to control
the program.
What is important for a user-friendly graphical user interface? A GUI has to provide
standard and advanced hot-keys e.g., save, load, close and further functionalities. This
hot-keys allow to control the program in a quick modality from the keyboard. Also
for a good recognition of different features a program needs icons, which represent the
functionalities behind. Furthermore, all menu titles are named in a short form what
could be interpreted in another way by users, so it is useful to describe all titles more
in detail. Therefore, tool-tips are very helpfully, this guarantees that the title is not too
long, and it describes the functionality behind.
Nowadays, many users like to control a program only with the mouse and they hate
it to navigate in the file system to select a wanted file, so it is important that new
programs implement a drag and drop functionality to pull a wanted file in the program.

What is important for a professional program interface further? Exclusive of special
features a program needs a window where the user can set all important program options

32

Esthetic surgery

which the programmer provide for customer settings. Further, common practice is a
window to show the program name including the current program version, the developers
of the project and the homepage of the project if it exists. This window is mostly called
an "About" window.

5.3. Implementation

First, I have implemented two kinds of hot-keys where the user can call program
functions via the keyboard. A kind of hot-keys uses the CTRL key plus a character
key. Thereby, it was to heed using of standard keys for elementary functions like CTRL
Q for closing the program, CTRL O for open a file (load torrents or others files), and
CTRL S for save operations. The main window has no save operation and so the
CTRL S key is free to use for the search function, the CTRL U key is used to call
the update function manually. I choose this values because it is intuitive for these
functions. Only the important functions are call via CTRL. The CTRL hot-keys call
the functions directly. The second kind of hot-key uses the ALT key. All functions
in the menu support this short-key. The used characters are underlined, so the user
knows which combination is to use to call a wanted function. For example, to show the
About window following combination is used ALT A B. To open the About menu ALT
A is used and then B to open the window, because the name or title is BitThief. To
describe each function more in detail each menu title consists of a tool-tip description
which informs the user about this function.
All menus consist of an icon for graphically description of the function. All icons have
a license for free developing. This is important to guarantee that the client is abidance
by the law.
The hot-keys, tool-tips and icons are implemented in different windows in the same
manner as described. This elements should increase the main window as well other
windows to.

The new main window is shown in Figure 8. In the new version of the window, it
includes current downloads with a progress bar and if it is selected the details window
with all charts of the selected torrent. Also the menu-bar was improved, it implements
all functions which are available for the client (Search Torrents, Subscription Service for
Torrents, the Updater, the Option menu as well the "About BitThief" window and the
control keys for the select download, which shows details, start, pause, and remove).
Further, the window supports a drag and drop functionality to load a new torrent in a

33

Esthetic surgery

Figure 8: BitThief 0.2.0: The new main window design.

quick way.
The window size is variable, the maximum size is the screen dimension. For this
purpose the program ask the operating system about the current display resolution.
The minimal size depends on the currently selected torrents and the details container if
it is shown. It calculates the minimal screen size, given the count of current torrents plus
the detail window height, because the minimal size must guarantee that the detail con-
tainer do not overlap the torrents container and so the window cuts off some information.

In the next step, the options for the client were implemented in the GUI. This
window is shown in Figure 9. On the left hand side are the boolean options with a
checkbox including their description and on the right hand side are the editable values.
The most values can be changed about a slide-bar to help users to set the right values
and further, which avoid falsely input. Only the listing port uses an editable text-field.
Because 65535 different ports exist and so it is impractical to choice one of them per

34

Esthetic surgery

slide-bar or combo-box. This field needs a special failure detection to check if the input
is a number or not, and to check the range. Did the user a mistake, a message informs
him when the port is out of range or if the input is not real number. Also, all values per
slide-bar are checked of range failures. In case of users fake the input, e.g., the listening
port is set but not committed per enter, the program set the default value.

Figure 9: BitThief 0.2.0: The new option window.

The user has the option to save and load different setting files via the file menu and he
can also restore the default values. To set the default values the user has to push the
menus under Option. The "Option window" itself can be called from the main window.

Another important point of a "professional" program interface is to show a window
with program name, version, developers and a link to the project homepage this is an
"About" window and is shown in Figure 10.
The window will be created dynamically at run time. The developers were read in from
a special file as well as the URL from the homepage. The window lists all developers
one after other and at the end it calculates the window height. With the shown URL
(blue underline) starts the default browser from the system (except Unix/Linux) and
the project homepage is shown. Under Unix/Linux, the program looks for an existing
browser and starts it, because Java 1.5 has no support for the default browser.
All other windows are shown in the specific chapter.

5.4. Testing

The implementation of GUI elements is not too difficult, but it needs a lot of testing time.
BitThief must run on most popular OSes (e.g. Windows XP/Vista, Linux Gnome/KDE
and MAC OS), that is the reason why BitThief is written in Java. Suppose Java is
system independent and in general it is true, but in practice, e.g., with GUI functions

35

Esthetic surgery

Figure 10: BitThief 0.2.0: "About" window shows project name, version, developers and
project homepage.

it is easy to show that the interpretation of the OSes are different. Now I will explain
some short examples.
The window-managers for Linux interpret the window width differently than Windows.
The result is the content in the window cuts through the border under Linux. The
solution is easy, if the window size will be set then ask about the OS before and if it
is Linux, add a size constant (e.g. 25 pixel, note the constant depends on the elements
which are used).
The drag and drop feature from Java is a beautiful tool but the behavior is different
for all window managers. If you load a new torrent file per drag and drop, then you
have different effects in different systems. For Example KDE 3.5 recognizes another
URL-string as Gnome. That means you have to implement different string filter for any
OS or window manager.
The last example is the mouse click behavior. Basically Window and Linux/KDE are a
double-click system and Linux/Gnome is a single-click system. The reason is that Gnome
has implemented the standard mouse click behavior from X11 (Linux/Unix window
manager). To solve this problem the programmer must release a mouse event for the
correct interpretation.
The GUI was tested under Windows XP/Vista, Linux KDE 3.5/KDE 4.1 and Gnome

36

Esthetic surgery

with the Ubuntu distribution Dapper Drake and Hardy Heron (both LTS versions), Open
Solares 2008.05 (Unix based on System V), and MAC OS 10.5 (Leopard, Unix based on
BSD). In conclusion, GUI programming for system independent programs need a lot of
testing time.

37

Update Function

6. Update Function

In this section I have analyzed and designed an update function for the BitThief client.

6.1. Motivation

The current published version of BitThief (version 0.1.7) is available on the project
home page13. Nowadays, all users of the BitThief community have to look on this site
if a new version published. To avoid this scenario in later versions an update function is
require. Also this functionality should guarantee in future that most users works with
the latest version of BitThief what is important for statistical analysis of the client. To
avoid that users look for newer versions, an automatic update function is useful which
detect the new version.

6.2. Concept

In this section I will describe some concepts for an update function. For an update
function you have to think about following points.

• Distribution technique

– distribution via P2P or standard ways

– incremental or full update

• How can it detect a new update

• How it should works

• What happens in a failure case

6.2.1. Distribution Technique

At first I have analyzed which distribution technique I can use for the client, because
it is a P2P client and it could be distributed itself via BitTorrent protocol. This would
be a very clever way, but BitThief has a big disadvantage for this idea it cannot send
data to other nodes (at the current version 0.2.0). So it is only the standard way via
FTP or HTTP from the homepage and/or server. Although the question about full

13http://dcg.ethz.ch/projects/bitthief/

38

http://dcg.ethz.ch/projects/bitthief/

Update Function

or incremental update is easy to solve. The client is one .jar file, that means it is a
compressed executable format from Java which include all program files. For this kind
of program file it is better to distribute the whole program instead of incremental parts.

6.2.2. Detect Update

How can BitThief detect an update? For this aim many solutions exist. One solution
is to parse the website and look for the current version which is published on the web.
This way is insecure because it is easy to fake the content on a website. A better way
is to store a "version.properties" file in a hidden directory. This file can be downloaded
and then the client can read out the existing version from the web. If a newer version
is available the program informs the user.

6.2.3. How it should Works

If a new version is available the client looks for a checksum and the link for the new
version. After this step the client create a copy of itself and stores it under a new name.
This step is fundamental in the failure case in order to go back to the old version. The
client has restored itself and can start with the update function. If the program has
all data, it computes a checksum and compares it with the published sum on the web
and overwrites itself on the hard disc. In the case that both sums are equal, the current
program is launching the new version and then it terminates itself. If the new version
has started it looks for an old version file and then removes it.

6.2.4. Failure Case

If the update function detects a failure, because the checksums are not equal, then
the client follows a backward strategy. That means that it informs the user about the
unsuccessful update and restores the current .jar file from the existing copy. After this
procedure the old version is running.

39

Update Function

6.3. Class Model

My concept consists of two classes, the main class BitThiefUpdater and the MDGen-
erator class. Figure 11 show the class diagram for the update function. The main

Figure 11: Class diagram for the update function.

class, BitThiefUpdater, includes all communication, download and compare functions.
It consists of three public function for the controlling from outside (checkForUpdates,
updateBitThief and removeOldVersion). The first function which is called, except
the constructor, is checkForUpdates which returns a boolean value. This function is
downloading the version.properties file. In order to extract the current version, which
is currently published, the private loadNewVersionProperties function is used. After
that the checkForUpdates routine compares the versions number and if the version from
the web is greater, the function returns true else false. Had the updater detected a
new version, the updateBitThief function would have been called. This function has no

40

Update Function

return value but it throws an exception in the failure case which can be caught by the
caller. At first the updateBitThief function creates a copy of itself, therefore it uses the
saveOldVersion function. Then, the updater calls the next function, connectHomepage,
this function uses the readDevelopersFile which extracts the download URL from the
developers.properties file. If it has the destination URL, the function parses the web site
for the checksum string which is only published there. The string is used to recognize a
failure by downloading the new client version. Now all is prepared for the real download.
This is performed by the downloadNewVersion function. For the download part I use a
special library from Apache14 (commons-httpclient-3.1.jar). This library is more robust
and clearly faster than the standard Java tools. The downloadNewVersion is a boolean
function which returns false in a failure case else it returns true. To recognize a failure
during the update the updater compares the checksums which comes from the web site
on the one hand and on the other hand it calculates a new value. The returned value
are guided through connectHomepage to the updateBitThief function. There it will be
evaluated and is it an error then the backward strategy will be performed. For this
purpose the function restores the old version, overrides the failed file and throws an
exception to inform the user.
For the error detection I used the second class, MDGenerator, which represents a check-
sum generator to calculate the hash sum. It can be used for different algorithm, e.g.,
MD5 or SHA-1. To start the generator the updater calls the public calcDigitalSignature
function. The updater commits the destination file name and the algorithm which
should be used. calcDigitalSignature calls the next function calcValue and this calls the
generator procedure messageDigest. calcValue is a help function because messageDigest
returns a byte array and this array must be converted to a string, this is the main task
of the calcValue function. The result string of the hash sum is returned to the caller
guide through calcDigitalSignature. There also exists a getter function for returning the
hash sum in later cases.

6.4. Implementation

The update function is a singular part of this program and could be implemented in other
Java programs with minimal changes. Figure 12 shows a program plan of procedure for
my concept of the update function.

14http://hc.apache.org/

41

http://hc.apache.org/

Update Function

Figure 12: Program plan of procedure for the update function.

The client downloads the "version.properties" file from the web and saves this file under
the name NewVersion.porperties in the "bitthief" folder in the home directory of the
user. Then it compares the new version with the existing version as described before.
When the updater is started it create the copy of itself with the name BitThiefOld.jar.
To avoid failure of this process the function calculates both checksums and compares
these values. Now the preparation is done and the client can update the source file.
If the download is complete, the client has verified the new program version and this

42

Update Function

version is running now, cleanup routine will be performed. This routine looks for the
NewVersion.porperties and the BitThiefOld.jar and removes these parts. In Figure 13 a
sequence diagram is shown which clarified the procedure. The diagram shows the case

Figure 13: Sequence diagram for the update function, download a new program version.

where a new update is available and no failure is detected.
In case the client detects a failure on the checksums, then the backwards strategy will be
started. The client restores its version from the BitThiefOld.jar. At the same time the
user gets an error message for the crashed update and the client performs the cleanup
routine.
The updater is implement in two kinds, automatic or manual. If the user select the
automatic option in the option menu (set by default) then the client looks for a new
version at launch. If the user has deselected this option then the user can use the update
function in the "option" menu-bar from the main window.

43

Update Function

6.5. Testing

The version where the updater is implemented is version 0.2.0, the latest published
version on the web is 0.1.7. The challenge is to test all parts of the update function.
Therefore, I performed different scenarios. In the first scenario I tested the recognition of
a newer version with downloading and restarting the client. For this purpose I changed
my own version.properties file to a lower version as on the web (e.g., version 0.1.0) and
then I created a new .jar file. Note this test was also performed with other combinations
like 1.0.0, 0.0.1 etc.. With all combinations the update worked well.
In the second scenario I tried to test the cleanup function, which should remove the old
client. I have performed the first scenario and then I have overridden the downloaded
file by hand with a newer version, because all downloaded versions are 0.1.7. This test
ran well as well.
In the last scenario I tested the error detection. This was a little bit harder because I
have to simulate network failure and the network in Universities mostly works very well.
For this test I have tried to cut the network connection by removing the LAN cable.
In conclusion I can say that the updater works well.

44

Multi-Torrent Selection

7. Multi-Torrent Selection

In this chapter I describe a concept and my implementation of a multi-torrent selection
dialog. At first I will explain the basic of multi-torrents and then I introduce the concept
and the implementation.

7.1. Basic

A multi-torrent file is a file which describes more than one download file like a mu-
sic album (included covers and many music titles) or program packages which are not
distributed as iso image or in compressed form (e.g., zip file). A torrent is split into
pieces with a constant size and these pieces are split into many blocks, also with a fixed
size. The piece size is defined in the torrent header and the block size is always fixed (16
KByte). This constant size defines a natural bound. But these limits are not the bounds
of a single file because a single file can be larger or smaller than the bounds in a piece
and/or block. This problem is illustrated in Figure 14. These properties mean that it

Figure 14: Multi torrent: properties between the block size and the file bounds.

must download more pieces and/or blocks than needed. In the worst case it would be
that it has to download all pieces if the single elements are small (smaller than the piece
size or a little bit larger as a piece).
The fragmentation of pieces in blocks has the advantage that smaller packages will be
sent, which can increase the throughput in the network and further it can receive the
content from more nodes.

7.2. Concept

First, it is to be determined if the current torrent is a multi or a single torrent. If it is
a single torrent, then the process starts normally. When it is recognized that a multi-
torrent was chosen then show all elements in a selection dialog. The user can deselect
all unwanted files and then the user start the download process. Note before the real
download is started the program has to calculate the needed and/or unneeded pieces also

45

Multi-Torrent Selection

it must save the unused file names. To mark the needed and/or unneeded pieces there
are two different strategies. Both strategies have the same program plan of procedures,
which is shown in Figure 15.
The first strategy is to save the unneeded pieces in a file and declare these pieces as

Figure 15: Program plan of procedure for the multi-torrent function.

valid so that the client thinks that these pieces are already downloaded. To save this
pieces the program has to calculate the single file size divided by piece size. The result
is the piece count. To get the current piece index it must only add the piece counts
from the files before adding the current piece count. The challenge when calculating
the piece count is that the result is mostly a floating value, but the piece index is an
integer. Therefore, it must at first round down the value and then it can mark these
pieces as valid. After this step, it has to round up the value for the next calculation.
This rounding procedure should guarantee that it does not override a piece which is used
by a file that is significantly smaller than the piece size. To mark the pieces as valid has
a big disadvantage, it does not work with fair BitTorrent clients because they want to

46

Multi-Torrent Selection

upload these pieces to other peers and have the problem that the pieces do not exist.
Hence, another strategy is needed.
The second approach is to turn around the first one. That means that it saves these
pieces which are needed for our download. This makes it possible working with a fair
distributing client.
Both strategies have the same calculation cost, but the order of rounding is vice versa.
The cost refers only to the mathematical algorithm, in reality it depends on the wanted
pieces or/and unwanted pieces.

7.3. Class Model

Figure 16 shows my class model for the multi-torrent selection. There exist three
different classes MultiTorrentSelection class, MetaInfo, and BitField class. The BitField
class is the environment which handles all pieces of the current torrent download. The

Figure 16: Class model for the multi torrent selection.

47

Multi-Torrent Selection

MetaInfo class is build after selecting a torrent file. In this class, all information of the
torrent such as title, file(s) with size, piece length, and the total length is extracted. In
case the torrent describes more than one download file then it is a multi-torrent file.
The MultiTorrentSelection class needs at beginning the MetaInfo class. On the basis
of the file names the selection dialog window is created. Once the dialog is shown, the
user can deselect the unwanted files. At the beginning all files are selected.

When the user commits, the lookForSelectFiles routine is called. In this routine, it
will initialize a BitField (array) where the pieces are marked. Therefore, it calculates the
piece index and marks these. At the same time, the function stores the used and unused
file names in a string array. If the function is done, all piece indices are saved in a XML
file for this torrent. Also, the used and unused file names are saved in extra XML files.
All file names consist of the hash value of the current torrent, which guarantees that
the names can be clearly identified if more torrents exist. To save the pieces and the
file names in files has the advantage that the download can restart if the client crashed
or the user stopped the download. If the user removed this torrent from the client, all
files will be deleted. Now the multi-torrent function has completed all task and starts
the download class. This class looks for the piece XML file and read in the piece indices
and if the download is done then it reads in the unneeded file names to remove these
files from the directory. Note that the download routine is not in the diagram, if I drew
all classes the diagram would be too complex.
The implemented class model in BitThief is nearly the model that is described in Figure
16. I have simplified the model to show the core concept of this function. It was not
useful to show all classes in the model because the class model of the whole BitThief
project which are connected for the download process is too complex. In the original
BitThief implementation there exist more "helper classes" and also all GUI elements
with their initialization and control functions.

7.4. Implementation

The first implementation of the multi-torrent selection dialog uses the strategy where
the pieces not needed for the download are marked. The reason is in version 0.2.0
of BitThief an environment does not exist to distinguish which pieces are needed
and which therefore are wanted and thus it was simpler to mark all pieces which are
unneeded as valid. That means the client is manipulated and thinks to have these
pieces. In the current version, this strategy is harmful because this version never

48

Multi-Torrent Selection

uploads anything to other clients.
To guarantee that the multi-torrent selection works with a fair protocol I have imple-
mented the second strategy which selects only the needed pieces. This implementation
was harder because it must implement further functions to distinguish between having
this piece and still needing this piece. The reason is, if the client looks for the next
needed piece it asks itself if this piece exists. If the piece does not exist then download it
and at this point the client must know if the piece is wanted. Therefore, I implemented
an index variable for each piece. To save a little bit of memory, the variable is an
integer value and has three different states. If the piece is unneeded for the download,
the value is smaller zero (-1), if the piece is wanted but not currently downloaded, the
value is equal to zero and if the value is greater than zero (1) the piece exists and was
downloaded before.
Now the client works with both strategies which can be selected by a switch. The
modification has no influence on the real performance and the user of BitThief will not
notice this change.

The aim of the selection window for multi-torrent is making the handling as simple
as possible for the user. This aim should guarantee an intuitive service. The window
is shown in Figure 17 including an example of a multi-torrent file, which presents a
Madonna video clip with covers and a description file. Note that the torrent was chosen,
because the characteristic of the including files are very good for testing (one large file
and the rest files are smaller than a piece).

The window consists of three buttons, a Select/Deselect all, an OK, and a Cancel
button. The OK button calls the lookForSelectFile function, which calculates the used
and/or unused pieces. If that is done the real download process can begin and the
window is closed. In the following listings, Listing 3, Listing 4 and Listing 5 an example
is shown where only the second and fourth file will be downloaded. Listing 3 represents
the file where the unused file names are saved. Listing 4 shows all files which are needed
for the download process, because the needed pieces overlap the boundaries. In case of
that a file is unneeded during the download process, the client knows that and so no
memory will be allocated for that file. And Listing 5 shows which pieces are needed for
the wanted files. This example is performed with the strategy for fair clients.

49

Multi-Torrent Selection

Figure 17: BitThief 0.2.0: Multi torrent selection window inclusive an example torrent.

<?xml version="1.0" encoding="UTF -8"?>

<torrent_download >

<torrentName >Madonna - Give It 2 Me [2008][SkidVid_XviD]</

torrentName >

<filesCount >2</filesCount >

<fileName >Madonna - Give It 2 Me [2008][SkidVid]_XviD.avi</

fileName >

<fileName >ScreenShots.jpg</fileName >

</torrent_download >

Listing 3: Example file which saves the unwanted file names.

<?xml version="1.0" encoding="UTF -8"?>

<torrent_download >

<torrentName >Madonna - Give It 2 Me [2008][SkidVid_XviD]</

50

Multi-Torrent Selection

torrentName >

<filesCount >4</filesCount >

<fileName >Madonna - Give It 2 Me [2008][SkidVid]_XviD.avi</

fileName >

<fileName >Madonna - Give It 2 Me.jpg</fileName >

<fileName >ScreenShots.jpg</fileName >

<fileName >Video Info.txt</fileName >

</torrent_download >

Listing 4: Example file which saves the needed file names for the download.

<?xml version="1.0" encoding="UTF -8"?>

<torrent_download >

<name>Madonna - Give It 2 Me [2008][SkidVid_XviD]</name>

<need_pieces >

<piece>279</piece>

<piece>280</piece>

</need_pieces >

</torrent_download >

Listing 5: Example file which shows the needed pieces for the current download.

The Cancel button closes the window and sets the allocated storage free. For a simplified
handling there is the Select/Deselect all button, by default all files are selected and the
button shows theDeselect name. This default setting is chosen because it can be assumed
that the user will download all files in most cases. If the button is clicked, the name
changes to the opposite state. With that button the user can select or deselect all files
so that a user who wants for example one file or only few he must not click every file.
Every file has a check box for selection they are all ordered in a check box array. If
the box contains the check mark than the file is chosen and the client will download it.
Otherwise, if the box has no check mark, the file will not be downloaded.
The window is constructed in a dynamic manner, which means the window size can be
set by the user and if the file description is larger than the view port a scroll bar for
horizontal and vertical adjustments is shown.

7.5. Testing

I have tested different scenarios with several torrent files. At first I have tested the
recognition of multi-torrents and single-torrents, therefore I used an Ubuntu torrent

51

Multi-Torrent Selection

which is a single torrent consisting of an ISO image. And for multi-torrents I used music
albums from several artists as well as complete seasons of TV shows and videos. The
recognition works well and the window is only shown if it is a multi-torrent file.
In the next step I tested if the download works well with single elements (not the whole
content). For this purpose I selected every second file from a multi-torrent and then I
controlled the beginning and the end of the file. For this test it was feasible to use a
music album, because these files are not too large and the controlling is easy and fast.
In the last test scenario I simulated the worst case (described in section 7.1). This was
a little bit harder because the challenge was to find a torrent which consists of some
small files. Useful for that test was the torrent of a music clip which is shown in Figure
17. The whole torrent is split into 281 pieces, whereas the first file (video clip) is using
approximately 279 pieces and a little bit of the next piece. So the last three files are split
into two pieces. File 2 has 63.404 Bytes and file 4 has 2.206 Bytes, which is significantly
smaller than the piece size with 262.144 Bytes. File 3 has 205.782 Bytes which is also
less than the piece size but this file has the property to use the last pieces which means
that this file overlaps the piece bound. With this three files I have performed many
tests. At first I have selected every single file with the result that for file 2 and 4 only
one piece is downloaded. Both pieces of file 3 are downloaded. Then I selected file 2 and
4 together and also both pieces are downloaded. This test was useful to guarantee that
the multi-torrent selection works well.
I have tested both strategies with the same test scenarios and both strategies work well.
What I could not test is the behavior when working with a fair protocol, which means
that the BitThief client shares its pieces with other clients, because a fair protocol was
at this time not implemented.

52

Search Torrents

8. Search Torrents

In this chapter, I describe a search function for torrents. The aim of this function is to
give the BitThief client a new feature which does not current exist in other BitTorrent
clients and which make the client slightly independent from a browser. The search
function should increase the useability of BitThief.

8.1. Motivation

The motivation of the search function on the one hand is to increase the usability and
to give the client a special feature. On the other hand, many torrents exist which are
corrupted or dead. Death means in this case that no seeders are available for the torrent
and therefore it is not feasible to get the whole content. Because it can be assumed if
no seeders exist that the current leechers in the swarm hold only a part of the content
and so the download cannot be finished. Hence it is meaningful to implement a ranking
service for good torrents and also a strategy to avoid bad torrents.

8.2. Concept

The concept of the search function is a simple search mask and/or dialog for any
provider from which the user can choose. There the user can select a provider, select
the search option (e.g. all, films, music, books, games etc.) and an input field for the
search word. To guarantee an equal search mask a translation function for the search
options is necessary. If all parameter are set, the function connects to the chosen
website, commits the search request and waits for the reply. The responses from the
provider are always in the HTML format as well the search request must be converted
in to the HTML format. To convert the response, a HTML parser is required. The
parser transmits the converted results in a data table and provides it for the GUI. A
simplified program plan of procedures is shown in Figure 18 which will be concretized
later. Before the GUI fetches the data table, it will remove all dead torrents (having
zero seeders) from the content, also some corrupted torrents will be removed. Example
for this is that no size is available which means that values inside of the seeder or
leecher cells are characters instead of numbers, once the data table is adjusted, the GUI
can call it.

53

Search Torrents

Figure 18: Simplified program plan of procedures for a search function.

8.2.1. Concept of the GUI

The GUI presents the search results in a table with the following columns: Name,
Date, Type, Seeds, Leechers, Size, Comments, Download, CommentsURL, Comments-
Count, Thanks-Count, Torrent-URL and Index. Only the first eight columns are shown
("Name" to "Download") because the last five columns are hidden and will be needed for
background operation (e.g., torrent ranking, the torrent URL and, if they are available,
comments from other users). The "Comments" and "Download" column contain a

54

Search Torrents

separate button. With these buttons the user can download the torrent file, and the start
dialog for the real download is shown, where the user can choose the destination folder
for the download. When clicking the "Comment" button user comments mentioned for
that download file should be shown, if no comments are available a short dialog is shown
which informs the user that no comments are available.
The data table can be (too) large so that the user needs a sort function for every column.
This function has to handle different data formats like strings, date, integers and strings
with numbers, therefore a special function is useful.

8.2.2. Concept of Ranking

The first strategy to avoid corrupted or dead torrents was described before. But for
a better hit rate it is not enough. Therefore, it needs a better strategy which can
guarantees a good torrent. The basic requirement for ranking is that the torrent
provider supply information for the torrent which can be analyzed by the program.
Now I will explain two different approaches.

At first I will describe a simple idea, where the "Thanks" are analyzed. For that
the count of "Thanks" is the indicator. The torrents with the highest count is the
best hit, because it can be assumed that a fake or bad torrent has no "Thanks".
The advantage of this strategy is it needs not much sophisticated intelligence by the
program. Furthermore many torrent provider supply this information by a search re-
quest and/or search response. This avoid additional requests, saves costs and is very fast.

The second idea uses the comments. The count of comments is not an indicator for
good or bad torrent. Because users can write anything in a comment good and bad or
unimportant stuff. Thus a good parser is needed which is able to analyze the comments
and then to create a hit rate. The challenge for the parser is to recognize the right
information which is important, for example, it is a fake or not. To look for a keyword
like "fake" is not too hard, harder is to implement a mechanism for all kinds of the
negation ("is not" or "isn’t" etc.). Harder is the languages, because who says that the
language of the comment is English, it could be written in German, Spanish or in the
worst case Chinese or Arabic. Note worst case based on the letters (or signs) in Chinese
and Arabic.
Another problem is the handling of two comments, where the first says it is a fake and
the second says the opposite. Then both comments are in balance and no ranking is

55

Search Torrents

possible.
It is feasible to avoid the problems with the linguistic feature. Most users in the web
added to the written text Smiley icons to show their emotion. It is easier to use these
icons for the ranking than the language, because the variety is not too large. But this
approach has the problem with the balance of good and bad smiles also. In addition,
some users write comments about a mistake in the name of the torrent name or they
expected something else by the title. These facts destroy any statistic for a good ranking.
A further disadvantage are the network cost, because in the worst case, every single
torrent has a comment, the program floods the provider with requests in very short time
with a good connection. Otherwise, with a bad network connection the time which is
needed to create the ranking is long.

8.3. Class Model

In this section I describe the class model for the search function. Figure 19 shows the
conceptual class model of this function. For simplification I split the model into two

Figure 19: The conceptual class model for the search function.

diagrams. The first model describes the real search function and the second model
describes the user interface.

8.3.1. Class Model for Searching

The search function consists of three classes, a SearchTorrents, SearchOptions, and the
HTMLParser class. The main class is the SearchTorrents class, the other two are utility

56

Search Torrents

classes. This class model is shown in Figure 20.
The caller from SearchTorrents delivers the following information from the selected

Figure 20: The class model for the torrent search function.

website: The searched word, all supported websites, and the chosen search options.
With these values the class will be initialize. The array for supported websites is needed
for case differentiations because any provider has its own rules for searching. In the
next step, the SearchTorrents class calls the SearchOption class. This class extracts all
important information, for the chosen website from a XML file. This file contains infor-
mation of the URL, the real search options and the sort options. If the SearchOption
class has extracted the wanted data, then it constructs a string which can be recalled by
the caller class. The strings are on the one hand the URL from the provider and on the
other hand the real option string. These strings are interconnected by the caller class

57

Search Torrents

SearchTorrents and in addition it adds the search word.
The search word can consist of more than one word which are separated by a space
character. This character must be replaced by a special character which depends on the
provider. Furthermore, the search word must translate in HTML format which means
that it has to parse for other characters and replace the original HTML code like "["
to "%5B" or "]" to "%5D". For this purpose no special parser is needed, that will be
performed by the single function changePatternInString which also changes the space
character.
If all preparation are done, then the class sends the search request to the provider. For
that, the SearchTorrents class uses the function searchTorrentsOnWeb. Also, this class
is waiting for the response and saves it in a file. Now the HTMLParser class can be
called.
Also the parser class (HTMLParser) has to know the provider name for case differentia-
tion. Because the response text differs enormously by several providers. Therefore, extra
parse functions for every provider are required. The parse function extractXXXInforma-
tion copies the result in a string table (two dimensional array), because all information
in HTML are strings. It is useful to remove all corrupted or dead torrents in this class,
because it saves a little bit of storage for all callers and the handover is slightly faster.
Note that this will be noticeable by huge data volumes. The data table is now available
for the caller class and can be recalled by the getter function getDataTable.
Also the SearchTorrents and the HTMLParser class is needed for downloading the com-
mentaries. While in this case the comment URL exists the SearchOption class is not
necessary. The SearchTorrents class requests the website with a special URL for the
torrent, which was received by the search request, described before, and saved in a file.
This file is handed over to the getComment function of the HTMLParser. This function
removes the header information and parses the comment body. This body is saved in a
string as HTML format, the reason for that will be described later.

8.3.2. Class Model for the User Interface

The class model for the user interface is separated from the search function, because
the search hits are displayed in a table and a table needs some utility classes for the
handling. This class model is shown in Figure 21. The class SearchTorrentWindow is
the main class of the whole search process. At the beginning the user has to choose a
torrent provider, write its search term and, if wanted by the user, select special search
options. With these values the SearchFunction is called. Additionally all provided

58

Search Torrents

Figure 21: The class model for the user interface of the torrent search function.

websites are committed. The returned value is a string array in a table format, that
means the array is two dimensional. This array is put in a table which must pass
through different processes for a better look and feel as well as the ranking, for adding
buttons and a sort option.

For a nice look and feel the TableCellRenderer class is responsible. There a
background color is set for every second row. Also, it implements a tool-tip which
presents the comment and the thanks count if they are available. Furthermore, it
performs a visual hit ranking which is split into three levels. Level one, lowest level,
the class sets a special foreground color for the whole line (row). On level two it adds a
simple Smile icon in the tool-tip. In case of a super hit, level three, it sets a big Smile icon.

59

Search Torrents

To add buttons in the table cell the TableButtonEditor class is used. The buttons
are needed to show the comments, if this functionality is available, and to download
the torrent file and then to start the download of the torrent content. If the user
pushes a comment button, the TableButtonEditor class calls the SearchTorrents. If
no comment is available, the source cell of the URL is "null" and then a dialog
will be shown to inform the user. Otherwise, the SearchTorrents class answers with
the commentary text which is in HTML format. Then, a new window is created
in a separate thread which shows the comment text. The HTML format was re-
tained because the comments have many icons and to show this in HTML format is
useful. Also the look and feel is nicer, than in case it is converted to a sterile text format.

To sort the different columns in the table the SortTableModel is necessary. All values
in the table are strings, therefore, the class must convert some columns to the real data
type to ensure the right sorting. For the columns "Name" and "Type" no additional
functions are needed. Both cells contain real string types. The "Date" column must
convert all values to a real date object and furthermore in some cases it has to add
the current year or generate the whole date because very new torrents have entries like
"yesterday" or "day.month + time". To set a date for an entry "yesterday" is quite
hard, because there exist month boundaries, year boundaries and the leap year, so a
differentiation for many cases is required. A converter for string to an integer or float
is used by the columns "Seeds", "Leechers" and "Size". The complexity for the seeds
and leechers count is low but for the size a unit exists (GB, MB or KB), which must be
considered. Therefore, before the converter can start the function, it has to parse the
unit and store this value for the next step. If the number is convert to a double the value
must translate into the same unit. For that the "KB" base is useful, because it can be
assumed that torrents smaller than 1 KB do not exist. When the user wants to sort the
table for a special column, the user has to push the header column. After the sorting,
the table is transmitted to the main class, with an intermediate step to change the cell
colors and to reorder for the hit ranking and then the new table structure is shown.

8.4. Implementation

In the first version of the search function I have implemented for two different providers
which are the most popular torrent providers in the Internet (Mininova15 and The Pirate

15http://www.mininova.org/

60

http://www.mininova.org/

Search Torrents

Bay16). At first I have analyzed the different search option with their terminologies.
These values are saved in a searchOptions.properties file in the XML format. The file is
hidden from the user because it is a component of the BitThief.jar file. The file consists
of the search option including the separator to connect some options, the URL, and the
sort options to sort the reply by the provider. This file is shown in Listing 7 on page 85
in the Appendix A. I chose this kind for more flexibility because if the provider changed
its key words and further to easily add another provider.
For the implementation of the parse functions in the HTMLParser class I created for
every considered provider a separate function. For this purpose I have analyzed the
HTML code of the reply from the websites. Separate parse functions are important
because the order of data and the offered data are different. For example Mininova
provides comments and thanksgivings which The Pirate Bay website does not do. Also,
the kind of source code is different and on the other hand the key words and separators
for the entries and also the code arrangement. This means The Pirate Bay provides
every data row in a line which is separated with the line end character. In contrast,
Mininova presents the whole data as only one line. Therefore, the read in of the data is
different.
In Figure 22 the sequence diagram for the search action is shown. It illustrates the
steps from creating a search request to showing the reply.

Figure 22: Sequence diagram for the search function. This shows the sequence between request
and reply.

16http://thepiratebay.org/.

61

http://thepiratebay.org/

Search Torrents

8.4.1. Implementation of the Torrent Ranking

The whole ranking service of torrents is split into five levels. At first, the search request is
sorted by the seeder count on the provider side. This guarantees that the client responds
with the most frequently distributed torrents. In the second step all corrupted and dead
torrent will be removed. In the last three steps the BitThief client performs its own
ranking. For that the client evaluates the thanks count, because this technique is robust,
easy, and fast. The visualization was described before in detail, the client colored the
foreground of the row and adds to kinds of icons (if it is a hit or super hit).
The other technique to evaluate the comment is rejected because the complexity with
the languages are too big and the counting of smile icons is insecure, because some
users adds more than one icon to underline theirs emotions. And further the additional
request has the disadvantage that it could make the function useless for the user, because
if the user has a slow Internet connection, the time to create the data table including
the ranking is too large and therefore useless.

8.4.2. Implementation of the GUI

The search function can be called from the main window. There exists a "Search" menu
in the menu bar where the function is callable. Also a short cut exists to start the
search dialog (CTRL S). In Figure 23 the start display is shown. There the user has

Figure 23: BitThief 0.2.0: Start screen of the search function.

to input the search word or sentence, select the wanted provider and to chose a special
sort option. Then the user can validate the entry with the "Enter" key or with the
"Search" button. Also an abort option is available either to perform with the "ESC"
key or with the cross on the top of the window. The default value for the sort option is
always "All" and the default provider is Mininova.

62

Search Torrents

If the user has committed its request, the next window is shown (Figure 24). Now the

Figure 24: BitThief 0.2.0: Search window inclusive suggestions.

user can search again for a new term or the user can set limits by choosing the options
or the user searches at another provider for the same term.
If it is possible to sort the table by other criteria by pushing the table header on
the wanted column. For the first six columns the meaning is clear. By pushing the
"Comments" header all rows are sorted by the counts of comments. If the "Download"
header is pushed then all rows are sorted by the "Thanks" count. The sorting is possible
for upside and downside. The direction is switched at the next click.
If the user moves the mouse over the rows, slowly and not too fast, then ranking is
displayed in a tool-tip. It is also shown in Figure 24 with a super hit.
The window size is resizable, but the minimum value is given by the table and the
maximum value is given by the screen dimension and/or the resolution of the display.
If the window is broadened, a new table size will be calculated (column width). Nearly
all columns have a small range where they vary, but the "Name" column get the rest of
the width because the name needs most of the space in the table and all other columns
have nearly a fixed size.

63

Search Torrents

To show the comments from a torrent, the user has to push the "Show" button in the
"Comments" column. If it is performed and a comment is available, then the following
window is shown (Figure 25). Otherwise, a failure message is shown. The comments are

Figure 25: BitThief 0.2.0: Comment window including user comments.

all presented in the original HTML format, to ensure a nice look and feel including the
icons. This window is started in a separate thread, so the user can show different com-
ments and it is useful to compare the content. The sequence diagram for the comments
is shown in Figure 26, it illustrates the action to get and visualize the user comments.

Figure 26: Sequence diagram for the search function. This illustrates the actions to show the
user comments.

To start a torrent download, the "Start" button in the Download column is needed. If

64

Search Torrents

the user pushes the button, the select torrent will be downloaded in a special directory.
The download folder, also called "Download", is in the "bitthief" folder in the home di-
rectory of the user. After that the start procedure for downloading the content is called
and the torrent file is handed over. Now the user has to select a destination folder and
can start the download process. The action which will be performed at the start of the
download process is shown in the sequence diagram Figure 27.

Figure 27: Sequence diagram for the search function. Download a selected torrent file and
start the download process.

8.5. Testing

For testing the whole search function, I split the test into different stages. In the first
stage, I tested only the search and parse functionality with different terms. The received
results were compared with the content of the website. The result of the test was
that I must improve the parse function, because some information has included HTML
characters which were not converted. Another problem was, especially for Mininova,
some information were corrupted and/or in a wrong column after parsing. The reason
is the Mininova website sends its information in different orders and the challenge is to
recognize the right one. This is not indicated by a column specified HTML tag, on the
contrary most parts have the same start and end tag. Therefore it must be recognize by
the content. To find these failures in the source code it was a little bit tricky because
with each failure the source code had to be analyzed again. The last failure that I
have recognized was that, if the user searched for a special torrent type, for example
"Movies" or "TV Shows", the received answer does not consist of this type, so it must

65

Search Torrents

added manually and/or a function has to recognize that this field is null and then it has
to add the type. This problem was only by Mininova.
In the second test phase I checked the sort functionality. For that I have sorted every
column in both direction. This test has showed that Java sorts the view port of the table
and not the real data container. A further problem was discovered. All references are
corrupted which use the other table classes, in particular the reference for the torrent
URL, the comments, and consequently the hit ranking. The reason for the failure is
Java converts the table structure in a vector automatically, and the problem is that no
back converter exists. Thus, a separate converter is necessary. This function returned
the new sorted table for all other classes.
Next I tested the download function for torrents and comments. This test generates
again a new problem with defective URLs which means that the client received nothing.
The failure was the URLs were received in clear text, which contains space characters
and brackets, since this have to be converted into HTML code for a request. After
converting this character before sending the request, the functions did work in all cases.
These types of failures, which were described before, are not failures in the concept
and/or this kind of problems was not to be foreseen.
In the last step of the testing I checked correctness of the hit ranking. This was not
difficult, because I have the right visualization after my rules. The rules are at first
if there is one "Thanks", set a foreground color, at second if there are more than two
"Thanks", add a small smile. And in the end, add for a super hit, with more than five
"Thanks", a big smile. This test was free of failure.
After this test phase I can say the search function is reliable and works well.

8.6. Implementation of more Provider

The development and the implementation showed that would be it easy to implement
new provider, if it were necessary. For that only minimal changes are needed. The
programmer has to expand the searchOptions.properties file and add the new provider
name in the source code. Further, the programmer has to develop a new parse function
for the HTMLParser class. These three steps are only required to improve the search
function.

66

Subscription Service

9. Subscription Service

In this chapter I describe a subscription service for TV shows, which are distributed
via torrents. This function should increase the usability and should implement a new
unique function for the BitThief client to set itself apart from other clients.

9.1. Motivation

Many users of BitTorrent clients use this technique to distribute TV shows and also
many users like that to organize their own TV program. A lot of popular TV shows are
available, at all torrent providers, shortly after the live stream is done the users like to
watch these promptly. Also the users which are far away from home do not want to do
without their home TV. So it is useful and interesting to develop a subscription service.
Further, many users are sluggardly to search for a title manuell again and again, if it
is current not provided, so an automatic search function is required also what can be
understand as a subscription. Another reason for the subscription service is to get more
benefit of the search function which was described in Chapter 8.

9.2. Concept

At first one has to think about what a subscription service needs and what is required
for a subscription. The basics for a subscription service is a search function to search for
subscribed torrents. This function is similar to that function which is already described
in detail in chapter 8.
Further a subscription service needs tools for management where the user can list all
subscriptions and where the user can add new, edit or cancel a subscription manually.
What is required to subscribe to a torrent? To subscribe to a torrent it needs some
important information for searching. This information are the torrent name, the provider
and the type (movie, book, game etc.) for better results. Further, to subscribe to a single
TV show the torrent needs an indicator for the current season and episode count. This
indicator has to be extracted from the name to increase it for the next episode. That
guarantee that the user get the next TV show and it realized a real subscription service.
Thereby the challenge is that different patterns exist to describe such torrents and further
a complete season consist of a part of this pattern (series count). The most common
pattern are "SxxExx", "Sxx EPxx" or "yyXyy" (x and/or y represent real numbers) also

67

Subscription Service

this pattern can be written in small letters and can begin with a zero. Also it is required
to remove all unimportant words from the torrent name, because it increases the hit
rate by searching for new torrents. Further, some titles consist of the series name plus
the episode name. That part, the episode name, is unimportant and/or it could destroy
the subscription functionality especially the search functionality.
If the function has detected new torrents, the results should be shown in the same GUI
concept as the search function. Because too many different interfaces could confuse users
and it is useful to use well known components, also it guarantee a intuitive handling.
For the management dialog another interface concept is needed, for that the concept
of the multi-torrent dialog could be useful. Only the dialogs for editing and creation
a new subscription need a new design, but both dialog interfaces should be equal. In
conclusion, the subscription service should be easy and intuitive to use, hence I will use
well known components for the user interface.

9.3. Class and Sequence Model

The class model for the subscription service is similar to the search function. But
it needs extra classes for its own process (management of subscriptions, search and
show subscribed torrents). To illustrate the whole concept of this service I have create
a conceptional class diagram which is shown in Figure 28. The search function as
well as the sorting of the results and the hit ranking will not be described in this
chapter. These functionalities are equal to the process of the search function and are
described in detail in the Section 8.3.1 (page 56 et seqq.) and 8.3.2 (page 58 et seqq.).
I will only explain their differences. In Figure 29 it is shown the class model of the
subscription service. Only the classes for the subscription service (SubscriptionService,
SearchSubscriptionsWindow), SubscriptionServiceWindow, NewSubscriptionWindow,
EditSubscriptionWindow and CancelSubscriptonWindow are shown, all other classes
are denoted as interfaces.

The core of the subscription service is on the one hand the search function and on the
other hand the SubscriptionService class. This class saves all subscribed torrents in the
file Subscription.properties, which is placed in the bitthief folder in the home directory.
The structure of this file is XML. In that file the name, the season indicator (if exist
else "null"), the torrent type and the provider name for each subscription is saved.
The class SubscriptionService has an interface to the search window. The search win-
dow calls the SubscriptionService and commits the torrent name. Then the function

68

Subscription Service

Figure 28: Conceptual class model for the subscription service.

isTorrentSubscriptionable checks this value if a pattern exists to subscribe this torrent
automatically, which is a feature for TV shows. If the torrent can be to subscribed to
the function returns with true else with false. If it is detect a subscribeable TV show
the user gets a message which asks him if he wants to subscribe to this torrent otherwise
no message will be shown. The sequence diagram in Figure 30 shows the activity to
recognize a torrent which can be subscribed to automatically.
If the user wants to subscribe to a torrent, the saveSubscription function is calls. This
function calls the private function saveSubscriptionInFile and saves the important in-
formation, if no failure appears, the functions returns true. To avoid multiple entries by
the same torrent description a test routine is needed. This is performed by the private
function existSubscription. if this function returns true, it means that the subscription
already exists, the save function knows that no write operation will be performed, oth-
erwise it writes the subscription in the file. If the subscription exists and the function
returns true, it is no indication of a failure. That is hidden from the user because it
should guarantee a clean subscription file and also to avoid too many unneeded search
request.
If the user looks up new subscribed torrents the SearchSubscriptionsWindow is called

69

Subscription Service

Figure 29: Class model for the subscription service, only the subscription classes are shown.

and a window will be shown, but before the window is shown, the class is called the get-
Subscription function from the SubscriptionService class. The whole process of searching
for subscribed torrents to downloading a wanted torrent is shown in Figure 31. The get-
Subscription function calls the private function getSubscriptionFromFile which returns
a string array (two dimensional) that includes all information of the subscriptions. With
that string array, if it is not null, the SearchTorrents class is called with each entry one
after the other, if more subscriptions exist. All found results are collected in a table
and will be presented to the user at the end. All results are presented according to
the same rules from the SearchTorrentWindow which was described in Chapter 8 (hit
ranking, sorting etc.). If the result table is null, a message will inform the user. When

70

Subscription Service

Figure 30: Sequence diagram shows the recognition of a subscribeable TV show.

Figure 31: Sequence diagram shows the activity for searching subscribed torrent and down-
loading one.

new torrents are detected and the user starts to download a TV show, which is subscribe
automatic, the subscription file must modified. In this step the subscription indicator
will be increased and replaces the entry in the subscription file. This will be performed
by the replaceSubscription function. During this step the function looked up if the new
entry exists, because it is possible that a user subscribes to older torrents, for example
the same season but different episodes which can lead to double entries. If a further
entry exists with the same description, the current entry will be removed from the file.

71

Subscription Service

To subscribe to torrents manually the NewSubscriptionWindow is needed. Its provides
a dialog to describe the search parameters like search name, torrent type (Movie, TV
show, Book etc.) and the wanted torrent provider. Has the user set all parameters the
entry will be saves in the Subscription.properties file via the SubscriptionService class
and than it returns to SubscriptionServiceWindow what present all exist subscriptions.
The sequence diagram for this activity is shown in Figure 32.

Figure 32: Sequence diagram to add a new subscription manually.

The edit window is needed to change properties of a torrent e.g. did the user a mistake
or to change the TV show counter manually. This class calls the SubscriptionService
class to gets all exist subscriptions and than the user has to select the wandet entry
for changing. Note the call of the SubscriptionService class to gets all subscriptions
instead of hand-over the subscriptions from the SubscriptionServiceWindow is needed
to guarantee that this window shows all available subscriptions, because all windows
runs in a separate thread and it is possible that users add or removed subscriptions in
another window (threat). Has the user submits the change entry the window returns
to the SubscriptionServiceWindow. The sequence diagram for this function is shown in
Figure 33.
The CancelSubscriptionWindow is used to remove and/or cancel subscribed torrents
(one or more). To get all subscriptions are obtained in the same manner as described
by the edit class. The activity to remove a subscription is shown in the sequence di-
agram in Figure 34. In that case, the user has to select the wanted torrent and then

72

Subscription Service

Figure 33: Sequence diagram to change properties of a subscription.

Figure 34: Sequence diagram for canceling a subscription.

to commit it. With the description of the torrent the removeTorrent function from the
SubscriptionService class is called. The remove function calls at first the test routine
existSubscription and then if it returns true the internal (private) function removeSub-
scriptionFromFile which performs the deletion.

73

Subscription Service

9.4. Implementation

The file where all subscriptions are saved is shown in Listing 6, the listing shows two
subscribed torrents. Additional to the name, series pattern, type, and the provider
name the file has a counter. This counter represents the number of current subscriptions
and is used inside the classes for initialization and search requests.

<?xml version="1.0" encoding="UTF -8"?>

<!--

This is the subscription file for BitThief (0.2.0)

created on Sun Aug 31 18 :32:38 CEST 2008

-->

<begin>

<subscriptions >2</subscriptions >

<name>Scrubs S07E11 </name>

<serie>S07E11 </serie>

<type>TV Shows</type>

<url>Mininova </url>

<name>The Green Mile</name>

<serie>null</serie>

<type>Movies </type>

<url>Mininova </url>

<end>

Listing 6: Structure of the Subscription.properties file including two subscribed torrents.

The subscription service is implemented in different places. The search functionality is
placed in the Search menu in the main window. An example for this window is shown
in Figure 35, in this figure it are see new subscribed torrents that are available. If the
user calls this window, it starts the searching for subscribed torrents. Also, the option
exists to search automatically for new torrents. This option must be set in the "Option
→ Options" menu, this functionality is disabled by default. If the automatic searching
is enabled, then the BitThief client looks up new torrents at startup. To guarantee a
clean launch (for initializing running torrents) the searching sleeps at first and starts
after the initializing phase.

The window for subscription management, where are all subscriptions list and the
user has the option to add, edit or cancel a subscription is placed in the "Option →

74

Subscription Service

Figure 35: BitThief 0.2.0: Subscription search window shows the results of the subscribed
torrents.

Manage subscriptions" menu from the main window. This window is shown in Figure
36. This window has a menu-bar File to calls the New, Edit or Cancel function. To
give a quick overview for each entry a tool-tip is implemented which present the type
and the provider for each subscription.

Figure 36: BitThief 0.2.0: Subscription service window shows all subscribed torrents.

To add a new subscription manually the window is shown from Figure 37. In that

75

Subscription Service

dialog the user has to enters the name, select the provider and to chose the torrent type.
Further the user can adds new TV shows manually, then he has to defines the season
and the episode. If no episode (begin at) selects but the season counter is selects, then
the user want to subscribe to the whole series. In that case, that the user subscribes to
no TV shows the TV show indicator in the Subscription.properties file is null, which
marks this field as invalid.

(a) Normal display for all torrent types. (b) Display for TV shows.

Figure 37: BitThief 0.2.0: Window to add a subscription manually.

The window to change the properties of a subscription is split into two views. At
first the user sees a selection dialog where he has to selects the wanted torrent and than
in the next step the edit dialog is shown. This window is equal to the new subscription
window. Both views are shown in Figure 38. The edit window is a little bit more

(a) Window to select a subscription. (b) Edit dialog for a subscription.

Figure 38: BitThief 0.2.0: Window to edit a subscription.

complex as the New window, because it has to sets all current values and further in a
special case where the subscription is a TV show it has to recognizes the series-episode

76

Subscription Service

pattern. If the old subscription was a TV show and the new one is it not, then it
has to remove the season-episode indicator from the name. In the other case, it was
for example a movie and now the user want the TV show of it, then it must adds the
season-episode indicator to the name. The edit window needs a special replace function.
This function does not really replace the subscription, but it removes at first the old
entry and then it saves the new one. It is required to guarantee that the subscription
file will not corrupt, because by replacing a string in a file which length is unequal to
the length before it could happen that by overwriting the old entry it is overwriting the
following entry.

If the user called the Cancel function the window in Figure 39 is shown with all
subscribed torrents. There the user can selects simultaneously one or more subscriptions
for canceling.

Figure 39: BitThief 0.2.0: Subscription window to cancel subscribed torrents.

The option to subscribe to a TV show automatically is only implement in the search
window (Chapter 8). If the user downloads a TV show torrent it will be tested if it
is subscribeable. Then the user has the choice to subscribe to this torrent or not. If
not, the subscription function will be skipped else a new entry will be added in the
subscription file. After this step, the download process starts normally.

The automatic subscription for a specific TV show is only for one season. The reason
is it is very tricky or even very hard to predict the last episode of the current season. (Of
course it is possible to ask the user: How many episodes will be produced? But many

77

Subscription Service

users do not know this and sometimes it changes during the production and publishing.

9.5. Testing

The testing of the subscription functions was split into different aspects. At first I have
checked the recognition of subscribeable torrents. For that I have searched for differ-
ent TV shows to test all known season pattern. In doing so I have detected that the
separator, which separates the pattern from the name, can be diverse. The most used
pattern is the space character but also the dot or minus. This behavior decreases the
number of search results so that it is useful to remove and/or replace this pattern by a
standard character. The most efficient character is the space character, thus I replaced
all separators by a space. The reason is the space character will be connected to the
rest of the word in a search request in contrast to other separators where the provider
interprets this as one word and searched for this. In this test phase I checked also, if all
not subscribeable torrents will be not recognizes by the automatic subscription function.
In the next step I checked the service function with special attention of the cancel func-
tion. Because by canceling a subscription the entry will be removed in the subscription
file, and that means the function manipulates the file pointer in both directions and this
is a big error source. In this test no failure was detected.
In the next scenario I tested the replace function, for it I have downloaded an offered
torrent which was subscribed to and then I have controlled the subscription file if the
following episode is added and the old one removed. This function manipulates also the
file pointer and thus it is an error source.
In the last case I checked the function which detects if a subscription exists. For this test
I have examined two different scenarios. The first scenario was to detect a subscription
which was subscribed before. And in the second scenario I checked the case when a user
subscribed to more episodes of one season. In that case the function should detect one
of it when both subscriptions have reached the same episode counter and then it should
remove one entry. Also this test was failure-free and the functions works well.

78

Failure Analysis

10. Failure Analysis

The version of BitThief, during my thesis, throws some exceptions with are not caused
by programmers directly. The first failure group, failure in the heap space, has the result
that the program crashes. To find and fix the failures was important for publishing the
next version, because we have to deliver a stable version. The biggest problem was the
heap space. The client allocates too much memory and therefore the program crashes.
To find the cause for it is useful to use a profiler software, which is monitoring the
runtime environment during runtime. I used the jConsole from Java. The analysis of
this failure is described in the next Section (10.1). The second failure group were caused
by the charts. These failures are thrown sporadically from the JFreeChart17 library and
no analysis tools exist. The procedure of analyzing manually and fixing the problem is
described in the Section 10.2.

10.1. Memory failure

When monitoring the client, I have used a popular torrent from the web. A popular
torrent can guarantee that there are enough seeders for this torrent. I chose the current
version of Ubuntu (Hardy Heron 8.04) as an ISO image CD version with 733 MB and
the DVD version with 3.7 GB. After time of monitoring the CD torrent had around 1300
seeders and the DVD torrent had circa 250 seeders.
In Figure 40 the first record of the heap space allocation is shown. At this time the
client had up to 255 open connections. The graph shows that the program used more
than 220 MB of heap space. The problem is that Java start the virtuell machine with a
default heap space size, usually this value is 69 MB on Windows (65 MB for the program
and 4 MB for the Java VM) and it depends on the OS.
In the second step I have used the DVD version of Ubuntu. This file is much larger and
is supposed to show the relation between torrent size and open connections. At the time
of measurement 250 seeders were available and the program opened 125 connections to
other BitTorrent clients. This graph is shown in Figure 41 and it can be seen that the
allocated heap space is half for size.
Both graphs show that there are no dependencies on the torrent size. But the availability
from the torrent is different. The problem is the client opened too many connections.
For every open connection the Java VM reserved extra heap space.

17JFreeChart is a free (LGPL) chart library for the Java(tm) platform, http://www.jfree.org/ .

79

http://www.jfree.org/

Failure Analysis

Figure 40: Allocated heap space with 225 open connections and a 733 MB torrent download.

Figure 41: Allocated heap space with 125 open connections and a 3.7 GB torrent download.

80

Failure Analysis

10.1.1. Result

To show that too many connections need too much memory, I tested it and set a limit
for open connections. The result is shown in Figure 42, the connections was limited to
at most 65 open connections.

Figure 42: Allocated heap space with maximal 65 open connections and a 733 MB torrent
download.

In the graph it shows that the space is half in comparison to the first run. To guarantee
a run without space failure the client was restricted to maximum of 45 open connections
per default. To retain the advantage that BitThief could open much more connections
as other BitTorrent clients the number of the maximum connections can be changed by
the user. The aim of the restricted connection by default is that the client can run with
the default heap space size from the Java VM when downloading one torrent. If the user
wants more connections he has to guarantee enough heap space size. Further, the cause
is detected and the developers of BitThief have to modify the client in a way such that
the network part uses less memory. That can be realized in different ways. First the
client must unload all currently unused classes. Second use a network library which used
not so much heap space as the Java tool. And the client must swap out the received
data in special files.

81

Failure Analysis

10.2. Chart failure

The BitThief client used 10 different charts for analyzing the download performance.
For painting the charts the client used the JFreeChart library. The client version which
is current in the developing state throws some errors, which are appear by painting the
charts, sporadically. To find the cause I have performed some scenarios by hand because
there are not existing tools for analyzing. A debugger was not helpful because the effort
of implementation the source code in our project suit was too much. The failures which
were thrown by the library is an "index out of bounds exception" by Java arrays and
are originated during developing without changing the relevante parts (i.e. changes in
the chart functions).
In the first phase I had try to catch the failure in our client. But this was not succeeds
because the exception came not through to the client. Thats denote that this failure are
not caused by a programmer from the BitThief project. In the next step I had isolate the
functions in the library source code, where got thrown the exception and tried several
ways to avoid these failures. I had localized two classes from the lib, the TimeSeries and
TimeSeriesCollection. In this classes three different functions exist where the failures
come from (getDataItem from the TimeSeries class and getXValue and getY from the
TimeSeriesCollection class). In all three functions the failure is thrown when recalling
a data item from a list. How can it happen that a recall calls a value out of bounds?
One reason could be that a thread, who set the value, lost its time slice. To prove this
theory I set a sleep time for 10 ms in the failure case and then the function tried again
for the recall. After that change the failures were removed.
The explanation is on the one hand the theory which I explained before. On the other
hand, why the failure did not appear before is that the source code of BitThief increased
in size and thereby the run time increased as well.

82

Conclusion

11. Conclusion

At the end of my thesis the useability is increased enormously so that BitThief can
match with other popular BitTorrent clients. The client has an update function what is
fundamental for the scientific work, because it guaranteed that most users works with
the newest version and so the scientific analysis are in a representative context.
Now the client consist of new unique features. e.g the subscription service, the torrent
search function including torrent ranking and the choice to select single files of a multi
torrent. This features are important to appealing more users and therefore to increase
the BitThief community. Furthermore with a growing user community would appear a
higher correctness of the statistical analysis and hence to get a more correct conclusion.

83

References

References

[1] Bram Cohen. Incentives Build Robustness in BitTorrent. http: // www2. sims.

berkeley. edu/ research/ conferences/ p2pecon/ papers/ s4-cohen. pdf , 2003.

[2] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free Riding
in BitTorrent is Cheap. http: // www. sigcomm. org/ HotNets-V/ locher06free.

pdf , 2006.

[3] Bram Cohen. The BitTorrent Protocol Specification. http: // www. bittorrent.

org/ beps/ bep_ 0003. html , February 2008.

[4] Bittorrent specification. http: // wiki. theory. org/ BitTorrentSpecification .

[5] Ali Ghodsi. Distributed k-ary system: Algorithms for distributed hash tables. http:
// www. sics. se/ ~ali/ thesis/ dks. pdf , 2006.

[6] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information
system. http: // www. cs. rice. edu/ Conferences/ IPTPS02/ 109. pdf , 2002.

[7] Patrick Moor. Free riding in bittorrent and countermeasures. Master’s thesis, Swiss
Federal Institute of Technology Zurich, Summer 2006.

[8] Thomas Locher, Stefan Schmid, and Roger Wattenhofer. Rescuing tit-for-tat with
source coding. http: // dcg. ethz. ch/ publications/ p2p07. pdf , 2007.

[9] David Harrison and Bram Cohen. Fast extension. http: // www. bittorrent. org/
beps/ bep_ 0006. html , 2008.

84

http://www2.sims.berkeley.edu/research/conferences/p2pecon/papers/s4-cohen.pdf
http://www2.sims.berkeley.edu/research/conferences/p2pecon/papers/s4-cohen.pdf
http://www.sigcomm.org/HotNets-V/locher06free.pdf
http://www.sigcomm.org/HotNets-V/locher06free.pdf
http://www.bittorrent.org/beps/bep_0003.html
http://www.bittorrent.org/beps/bep_0003.html
http://wiki.theory.org/BitTorrentSpecification
http://www.sics.se/~ali/thesis/dks.pdf
http://www.sics.se/~ali/thesis/dks.pdf
http://www.cs.rice.edu/Conferences/IPTPS02/109.pdf
http://dcg.ethz.ch/publications/p2p07.pdf
http://www.bittorrent.org/beps/bep_0006.html
http://www.bittorrent.org/beps/bep_0006.html

Appendix

A. Appendix

<?xml version="1.0" encoding="UTF -8"?>

<!--This file represent the individual search

options for different websites -->

<begin>

<name>Mininova </name>

<url>http://www.mininova.org/search/</url>

<separator > </separator >

<option >All</option >

<value>0</value>

<option >Featured </option >

<value>10</value>

<option >Anime</option >

<value>1</value>

<option >Books</option >

<value>2</value>

<option >Games</option >

<value>3</value>

<option >Movies </option >

<value>4</value>

<option >Music</option >

<value>5</value>

<option >Pictures </option >

<value>6</value>

<option >Software </option >

<value>7</value>

<option >TV Shows</option >

<value>8</value>

<option >Other</option >

<value>9</value>

<sort>Date</sort>

<value>added</value>

<sort>Name</sort>

<value>name</value>

<sort>Size</sort>

<value>size</value>

85

Appendix

<sort>Seeds</sort>

<value>seeds</value>

<sort>Leechers </sort>

<value>leech</value>

<sort>Type</sort>

<value>cat</value>

<name>The Pirate Bay</name>

<url>http:// thepiratebay.org/search/</url>

<separator >,</separator >

<option >All</option >

<value>0</value>

<option >Music</option >

<value>100</value>

<option >Movies </option >

<value>200</value>

<option >TV Shows</option >

<value>205</value>

<option >Software </option >

<value>300</value>

<option >Games</option >

<value>400</value>

<option >Other</option >

<value>600</value>

<option >Books</option >

<value>601</value>

<sort>Name</sort>

<value>1</value>

<sort>Date</sort>

<value>3</value>

<sort>Seeds</sort>

<value>7</value>

<sort>Leechers </sort>

<value>9</value>

<sort>Type</sort>

<value>14</value>

<end>

Listing 7: Content searchOptions.setting file

86

Appendix

B. Appendix

Appendix B contains the project CD. All project related stuff is available on CD.

87

Appendix

Declaration of Authorship

I certify that the work presented here is, to the best of my knowledge and belief, original
and the result of my own investigations, except as acknowledged, and has not been
submitted, either in part or whole, for a degree at this or any other University.

Reading, 28/09/2008

Ben Hennig

88

	1 Introduction
	2 The BitTorrent Protocol
	2.1 Terminology
	2.2 Mode of Operating
	2.2.1 Design of a Torrent File
	2.2.2 Distributing of Content via Tracker
	2.2.2.1 Tracker HTTP/HTTPS Protocol
	2.2.2.1.1 Tracker Request
	2.2.2.1.2 Tracker Response

	2.2.3 Trackerless Distributing of Content
	2.2.3.1 Distributed Hash Table
	2.2.3.2 The Kademlia Algorithm

	2.2.4 Peer Wire Protocol
	2.2.4.1 Handshake
	2.2.4.2 Message
	2.2.4.3 Message Flow

	3 The BitThief Client
	3.1 Functionality of BitThief
	3.2 How BitThief Exploits the BitTorrent Protocol
	3.3 BitThief will be a Fair Client
	3.3.1 Idea of Tit-For-Tat
	3.3.2 Seeder Strategy

	4 State of BitThief
	5 Esthetic surgery
	5.1 Motivation
	5.2 Concept
	5.3 Implementation
	5.4 Testing

	6 Update Function
	6.1 Motivation
	6.2 Concept
	6.2.1 Distribution Technique
	6.2.2 Detect Update
	6.2.3 How it should Works
	6.2.4 Failure Case

	6.3 Class Model
	6.4 Implementation
	6.5 Testing

	7 Multi-Torrent Selection
	7.1 Basic
	7.2 Concept
	7.3 Class Model
	7.4 Implementation
	7.5 Testing

	8 Search Torrents
	8.1 Motivation
	8.2 Concept
	8.2.1 Concept of the GUI
	8.2.2 Concept of Ranking

	8.3 Class Model
	8.3.1 Class Model for Searching
	8.3.2 Class Model for the User Interface

	8.4 Implementation
	8.4.1 Implementation of the Torrent Ranking
	8.4.2 Implementation of the GUI

	8.5 Testing
	8.6 Implementation of more Provider

	9 Subscription Service
	9.1 Motivation
	9.2 Concept
	9.3 Class and Sequence Model
	9.4 Implementation
	9.5 Testing

	10 Failure Analysis
	10.1 Memory failure
	10.1.1 Result

	10.2 Chart failure

	11 Conclusion
	A Appendix
	B Appendix

