
Computer Engineering and
Networks Laboratory

Spring Semester 2008 Prof. Dr. E. Zitzler

Semester Project

Parameter Estimation in

Differential Equation Models

Christian Schürch

Advisor: Tim Hohm

Acknowledgements

I would like to thank my advisor Tim Hohm for many helpful discussions.

Zürich, 30. Mai 2008

Christian Schürch

II

Abstract

In this project a special type of differential equation systems, the so called
reaction diffusion systems with parameters are considered. We try to de-
termine for which parameters the solution of a reaction diffusion system is
a timely stable and spatially inhomogeneous pattern. This we do by esti-
mating the boundaries between different solution regions. A solution region
is a part of the parameter space of a reaction diffusion system, for which
the solutions behave qualitatively similar. The boundaries are estimated
with an Evolutionary Algorithm. This Evolutionary algorithm estimates for
a parameter set how much one has to change these parameters to be on
a boundary and tries to find the boundaries based on this estimate. The
estimate is obtained with the help of data from a reaction diffusion system
with known boundaries. At the end the Evolutionary Algorithm is applied
to two reaction diffusion systems with unknown boundaries. It turns out,
that the boundaries can reliably be found and hence the parameter values
with pattern formation.

Zusammenfassung

In dieser Arbeit wird ein spezieller Typ von Differentialgleichungssystemen,
die so genannten Reaktions-Diffusions-Systeme mit Parametern, betrachtet.
Wir versuchen diejenigen Parameterwerte zu bestimmen, für die die Lösung
des Reaktions-Diffusions-Systems ein zeitlich stabiles und räumlich inhomo-
genes Muster ist. Dazu schätzen wir die Grenzen zwischen verschiedenen
Lösungsregionen. Eine Lösungsregion ist ein Teil des Parameterraumes ei-
nes Reaktions-Diffusions-Systems, für den sich die Lösungen qualitativ gleich
verhalten. Es wird versucht, die Grenzen mit Hilfe eines Evolutionären Algo-
rithmus zu finden. Dieser Algorithmus schätzt für einen Parameter Satz, wie
stark man diese Parameter ändern muss um auf einer Grenze zu sein. Basie-
rend auf dieser Schätzung versucht der Algorithmus die Grenzen zu finden.
Die Schätzung erhält man mit Hilfe von Daten, welche bei einem Reaktions-
Diffusions-System mit bekannten Grenzen gesammelt werden. Am Ende
wird der Evolutionäre Algorithmus auf zwei Reaktions-Diffusions-Systeme
mit unbekannten Grenzen angewandt. Es stellt sich heraus, dass die Gren-
zen zuverlässig gefunden werden können und somit auch die Parameterwerte
mit Musterbildung.

Contents

List of Figures X

List of Tables XII

1 Introduction 1

1.1 Biological Pattern Formation 2
1.2 Stability Analysis . 4
1.3 Evolutionary Algorithms . 4

2 Fitness Function 7

2.1 Data Generation . 9
2.2 Ideas And Methods On How To Realize A Good Fitness Func-

tion . 13
2.2.1 Classification . 14
2.2.2 Least Squares . 17
2.2.3 Neural Networks . 21
2.2.4 CART . 25

2.3 500 Additional Points For Testing 30

3 Evolutionary Algorithm 32

3.1 CMA . 32
3.2 An Algorithm For The Classification Function 33

4 CMA Applied To The Simple System 37

4.1 Normal System . 37
4.2 An A Little Bit Different System 42

5 CMA Applied To A More Difficult System 51

5.1 CMA Applied To A System With 3 Parameters 51
5.2 CMA Applied To A System With 2 Parameters 56

6 Conclusions 62

Bibliography 64

IX

List of Figures

1.1 A leopard . 2

1.2 A stable inhomogeneous pattern 3

1.3 Stability analysis result . 5

1.4 A possible scheme of an EA taken from [1] 6

2.1 The distance from a point in the (µ, D) plane to the nearest
boundary. 8

2.2 The boundaries in the (µ, D) plane 12

2.3 Property 5 drawn for the 2500 simulated (µ, D) points. . . . 14

2.4 Property 24 drawn for the 2500 simulated (µ, D) points. . . . 15

2.5 Property 29 drawn for the 2500 simulated (µ, D) points. . . . 15

2.6 The classification function drawn for the simulated (µ, D)
points. 16

2.7 The linear function d̂istance = prop · h 18

2.8 The linear function with transformations 19

2.9 The linear function with 31 of the 160 transformed properties 21

2.10 The linear function with 4 of the 160 transformed properties . 22

2.11 An illustration of a NN . 23

2.12 The NN drawn for the simulated (µ, D) points. 24

2.13 A second NN . 24

2.14 A third NN . 25

2.15 An example of a tree . 26

2.16 The CART drawn for the simulated (µ, D) points 27

2.17 A simpler CART . 28

2.18 The tree of the simpler CART 28

2.19 The tree of the simpler CART with regions 29

3.1 Iso-probability contours . 33

3.2 The structure of the classification algorithm 34

3.3 An illustration of the fifth point of the classification algorithm 36

4.1 CMA for the fitness function LS2 38

4.2 CMA for the fitness function NN2 39

4.3 CMA for the fitness function NN3 40

X

4.4 CMA for the fitness function CART1 40
4.5 CMA for the fitness function CART2 41
4.6 The points found by the classification algorithm 42
4.7 CMA points with endtime = 100 43
4.8 CMA points with endtime = 10000 43
4.9 CMA points with N = 50 . 44
4.10 CMA points with N = 200 . 44
4.11 CMA points with zufall = 0.001 45
4.12 CMA points with zufall = 10 45
4.13 CMA points with δx = 0.25 46
4.14 CMA points with δx = 1 . 47
4.15 CMA points with σ = 0.2 . 47
4.16 CMA points with σ = 0.7 . 48
4.17 CMA points with σ = 0.2 and scaled properties 48
4.18 CMA points with σ = 0.7 and scaled properties 49
4.19 The points found by the classification algorithm, with σ = 0.2 49
4.20 The points found by the classification algorithm, with σ = 0.7 50

5.1 CMA points for the system with κ 53
5.2 The points drawn together with the extracted boundaries. . . 54
5.3 The boundaries for κ = 0.3 and 5 points 55
5.4 The solutions of the 5 points 55
5.5 The time course of two solutions for one space point 56
5.6 The solutions of 4 different points 57
5.7 The new NN drawn for the simulated (µ, D) points 58
5.8 CMA for the fitness function NN3s 59
5.9 The extracted boundaries drawn together with the 84 found

points. 59
5.10 The chosen 5 points and the extracted boundaries. 60
5.11 The solutions of the 5 points 60
5.12 The time course of 2 solutions for one space point 61

XI

List of Tables

2.1 A summary with different MSE values for the 9 fitness functions 30
2.2 A ranking list of the 9 fitness functions 31

4.1 The error calculated for 5 fitness functions 41

XII

Chapter 1

Introduction

The behaviour of a reaction diffusion system1 depends on the values of its
parameters. The goal of this semester project is to find an algorithm, which
is able to locate the boundaries between different solution regions. A solu-
tion region is a part of the parameter space of a reaction diffusion system,
for which the solutions behave similar. The solution region of our main in-
terest is the region, where the solution of the differential equation system
is a timely stable and spatially inhomogeneous pattern. Because you can
choose in general infinite many values for the parameters, it is impossible to
simulate the solution to a differential equation system for all possible values
of the parameters. But one can solve the problem of finding the boundaries
between the different solution regions analytically, by applying the stabil-
ity analysis, which is explained in section 1.2. Unfortunately the stability
analysis becomes very complicated for systems with many parameters, so
we wish to have an algorithm, which does the same. Because there are
many different reaction diffusion systems, which can produce stable inho-
mogeneous patterns, the task of finding an algorithm, which can find the
wished parameters is difficult.

The three sections in this chapter are about three important and of-
ten used themes of this project, namely the biological pattern formation,
the stability analysis and a kind of optimization algorithms, the so called
Evolutionary Algorithms (EA).

In chapter 2 the fitness functions2 used in this project are explained
and the methods to build them are discussed. In chapter 3 a special EA is
explained, the CMA and an algorithm, which is not an EA, is introduced.
In chapter 4 the EA are tested on the simple system characterized by the
equation system (1.1) - (1.2) and the results are displayed. In chapter 5 the
EA are applied to two reaction diffusion systems with unknown boundaries.

1Reaction diffusion systems are a subclass of differential equation systems and are
explained in the next subsection 1.1

2A fitness function is a part of every EA and is explained in section 1.3

1

Finally in chapter 6 the conclusions of this semester project are summarized.

1.1 Biological Pattern Formation

Many animals have a coat with a pattern on it, like for example a leopard,
as shown in figure 1.1.

Figure 1.1: A leopard. This picture was downloaded from the link:
http://www.big-cats.de/bild.php4?kat=leopard&id=b leopard gaehnen

But how can such a pattern be formed, although every cell of the skin
has the same genetic material? One kind of models to explain this are reac-
tion diffusion systems, which are a subclass of differential equation systems.
These models are based on interactions of two or more chemicals and on
their diffusion3. As an example look at the equation system (1.1) - (1.2).

∂a

∂t
= D · ∆a +

a2

h
− a + σ (1.1)

∂h

∂t
= ∆h + µ · (a2 − h) (1.2)

In these equations, a is the concentration of one chemical and h is the
concentration of the other chemical. ∆ is the Laplace-Operator, which is
one-, two- or three-dimensional depending on the application, t is the time
and σ, µ and D are real parameters greater than zero. The homogeneous
steady-state solution is the timely stable solution without diffusion. The

3In [2] and [3] reaction diffusion systems are treated more detailed.

2

concentrations of this solution are a0 = 1 + σ and h0 = a2
0, which can easily

be obtained by setting ∂a
∂t

, ∂h
∂t

, ∆a and ∆h to zero. It is a surprising fact,
that two chemicals with homogeneous spatial concentrations can form stable
inhomogeneous patterns if one slightly perturbs the homogeneous spatially
concentrations and therefore adds diffusion. Stable inhomogeneous patterns,
are patterns, which do not change in time anymore, but the concentrations
of the chemicals are not spatial constant. In our example (1.1) - (1.2), this
corresponds to ∂a

∂t
= 0, ∂h

∂t
= 0, ∆a 6= 0 and ∆h 6= 0 and additionally D ≪ 1

and µ > 1.

If one adjusts the parameters σ, µ and D correct and simulate the equa-
tion system (1.1) - (1.2) sufficiently long for the two-dimensional space and
for the initial conditions a = a0 and h = h0 with a small perturbation, you
get figure 1.2.

Figure 1.2: This stable inhomogeneous pattern can be formed with the
equation system (1.1) - (1.2). The concentration of a is shown in dependence
of a part of the two-dimensional space. It seems to look similar to the coat
pattern of a leopard. This figure is taken from [3]

In this figure you see a stable inhomogeneous pattern, which arises just
for some parameter values of σ, µ and D. The key question of this project is:
For which parameter values can a reaction diffusion system produce stable
inhomogeneous patterns?

3

1.2 Stability Analysis

In a stability analysis one linearizes the differential equation system, then
one can analytically solve the linearized system. The solution for the lin-
earized system suffices to decide, how the behaviour of the not linearized
system is. So stability analysis is a useful tool to decide whether a set of
parameters can produce stable patterns or not. If we look at the equa-
tion system (1.1) - (1.2) the free parameters are µ, D and σ. The stability
analysis now tells us how a and h in dependence of µ, D and σ behave
if we slightly perturb the concentrations a and h out of the homogeneous
steady-state solution. In our example of the equation system (1.1) - (1.2)
the stability analysis was already done [3], with the following results:

There are four solution regions, which are called Ga, Gb, I and H:

1. Region Ga: 0 < µ < (
√

2
a0

− 1)2 and 0 < D < ∞, perturbations grow

exponentially

2. Region Gb: (
√

2
a0

− 1)2 < µ < 2
a0

− 1 and 0 < D < ∞, perturbations

oscillate and grow exponentially

3. Region H: µ > 2
a0

− 1 and µ · D > (
√

2
a0

− 1)2, perturbations are

damped, so the homogeneous steady state is stable

4. Region I: µ ≥ 2
a0

− 1 and µ · D < (
√

2
a0

− 1)2, the homogeneous

steady-state solution is unstable and the system develops a stable in-
homogeneous pattern

In figure 1.3 you see a picture of the (µ, D) space divided up into the four
different solution regions Ga, Gb, I and H. The region G′

b will be ignored,
because the behaviour of the solutions in this region depends also on the
initial conditions of the concentrations and not only on µ and D. This is
a fineness which we do not want to consider and so we assume, that G′

b

belongs to Gb.
Fore more informations on biological pattern formation or stability anal-

ysis, especially on how to derive a stability analysis, see [3].

1.3 Evolutionary Algorithms

An EA is an optimization algorithm, which imitates the evolution. In an
EA you generate an initial population of individuals. Individuals can be
very abstract things, like points in a space or a table of things which one
has in his back-pack. These individuals will be evaluated according to a
fitness function. The fitness function takes as input an individual and pro-
duces a real valued output. The fitness function measures the quality of an

4

Figure 1.3: Image of the result of the stability analysis for the differential
equation system (1.1) - (1.2) taken from [3] with σ = 0.1

individual. Sometimes an individual is better if it has a big fitness value
and sometimes an individual is better if it has a small fitness value. This
depends on the application, but because we can always change between the
two by multiplying the fitness function by -1, they are equivalent. Without
limiting the generality, we assume in this project, that an individual is bet-
ter, if it has a smaller fitness value. Based on this fitness value some of the
individuals of the initial population will die, some will survive, some will
recombine and some will mutate.

Here recombination means, to take a set of individuals and to produce
a set of offspring by recombining the information of the taken parent indi-
viduals. Mutation means, to take one individual and produce based on the
taken individual one individual. The recombination and mutation operator
have the purpose to create the necessary diversity within the population.
Often the better individuals, based on the fitness function, will survive and
will have more likely a child, hence the bad individual should die out. The
goal of an EA is to find a set of individuals with a small or the minimal
fitness value. A possible scheme of an EA is shown in figure 1.4.

In this scheme, you first generate an initial population. Then these
individuals are evaluated according to a fitness function. Now a loop with
a termination condition appears. The termination condition could be for
example a running time limit of the algorithm or a rule like: If an individual
with fitness value smaller than 0.1 was found, terminate the program. In

5

Figure 1.4: A possible scheme of an EA taken from [1]

the loop, parents are selected first. An individual is more likely selected
as a parent, if it has a small fitness value. Then the chosen parents are
grouped in pairs and to every pair the recombination operator is applied,
which results in one child per pair. To these children, in figure 1.4 called
offspring, the mutation operator is applied. Now we have a population
made of the initial population, the children of the selected parents and the
mutated children of the selected parents, whereat the not mutated children
are often not considered anymore. After the mutation, a second selection
stage occurs. In this selection stage the population is split into two parts.
One part consists of the surviving individuals, which form the population
for the next loop run. The other part consists of the dead individuals. The
smaller the fitness value of an individual, the more likely it belongs to the
surviving individuals. We not always take the best individuals, because then
it is more likely to stuck in a local minimum. If we let survive also some
worse individuals, perhaps they lead to another local minimum or even the
global minimum. So an EA can be used to find a minimum or a small
value of a function. In general an EA does not have to find the minimum
value of the fitness function, it can be stuck in a local minimum or the
termination condition ends the algorithm before the minimum value of the
fitness function was found. In this project an algorithm should be found,
which is able to locate the boundaries between different solution regions of a
reaction diffusion system with parameters. A possible approach is to use an
EA. In this EA the individuals are points in the parameter space. A fitness
function, which is the focus of chapter 2, tells us how distant the nearest
boundary is. The goal is to have a parameter set for which the distance to
a boundary is small or minimal.

For a more comprehensive introduction to EA, see [1].

6

Chapter 2

Fitness Function

In this chapter the fitness functions used in this project are explained and
the methods to build them are discussed. In subsection 2.2.1 a classification
function is introduced, which is not a fitness function. Nevertheless it is
introduced in this chapter, because we want to have a different approach.

The EA of this project should locate the boundaries between different
solution regions for reaction diffusion systems. The individuals are points
in the parameter space. As mentioned in chapter 1 an individual with a
small fitness value is a good individual. So the fitness function has to have a
small value on the boundaries and the farther away from the boundaries, the
bigger value it should have. An easy function, which has these properties,
is the distance function:

For every individual in the parameter space, the fitness function is the
euclidean distance from the individual to the nearest boundary.

So the fitness function is zero for a point on the boundary and greater
than zero for a point not on the boundary. As example we take equations
(1.1) - (1.2) with σ = 0. Therefore a0 = 1 + σ is equal to 1 and h0 = a2

0 is
equal to 1. Hence the solution regions are given by:

1. Region Ga: 0 < µ < (
√

2 − 1)2 = 0.172 and 0 < D < ∞
2. Region Gb: 0.172 < µ < 2

a0
− 1 = 1 and 0 < D < ∞

3. Region H: µ > 1 and µ · D > 0.172

4. Region I: µ ≥ 1 and µ · D < 0.172

Because σ is set to zero, the only free parameters are µ and D. So
the individuals are points in the (µ, D) space. The fitness value f for an
individual (µ, D) is the value:

f(µ, D) = min
(µb,Db)∈B

√
(µ − µb)2 + (D − Db)2 (2.1)

with B = (µb, Db) ∈ Boundaries (2.2)

7

The function f(µ, D) is only determined, if we know the location of the
boundaries. In this example we know the boundaries, because of the already
done stability analysis. In general the task is to find the boundaries, because
we do not know their location. Then we can not build the distance function.
But we can estimate the distance to the nearest boundary, which is explained
in the next paragraph.

A part of this function is drawn with MATLAB in figure 2.1:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.1: The distance from a point in the (µ, D) plane to the nearest
boundary.

We would like to have a fitness function, which works for different sys-
tems, for example the system described by equations (1.1) - (1.2) as well
as for a varied system with five parameters, therefore the fitness function
used in the example is not enough general. Another problem is the location
of the boundaries. In the example the boundaries are known, because the
stability analysis is already done. But in general the boundaries are not
known and the task is to find the boundaries. To deal with these prob-
lems, we split the fitness function in two parts. The first part of the fitness
function, is a function from the parameter set to a real valued vector called
prop. This function calculates for the given parameter set the solution of the
differential equation system numerical using MATLAB and extracts some
properties from the solution, the prop vector. The second and more difficult
part of the fitness function is a function from the vector prop to the output
called distance, which tries to estimate the distance to the nearest boundary
based on the properties of the solution. Because we extract always the same
properties from every reaction diffusion system, the second part of the fit-

8

ness function gets independent from the differential equation system. Now
the question comes up, which properties should be taken from a solution?
Clearly, we need properties, which allow us to estimate the distance to a
boundary. The answer to this question used in this project is simple: Take
as much properties as possible, but only if you think, they are helpful in
estimating the distance to a boundary. This answer is very dusty, but in the
next section you will see how the answer is interpreted. Another important
question is: How can we make a function from the vector prop to distance,
which estimates the distance to the nearest boundary? The approach used
here is to simulate the simple differential equation system (1.1) - (1.2) for
many different parameter choices. With these simulations we can determine
for every simulated parameter point the prop vector. Because the stability
analysis for this system is already done, we know the distance between every
parameter point and the nearest boundary. So we know for every simulated
parameter point the pair prop and distance. The task now is to make a good
function from prop to distance with the help of the prop distance pairs.

2.1 Data Generation

To generate data, i. e. prop distance pairs, we simulate the simple differ-
ential equation system (2.3) - (2.4) for many different parameter choices,
with the slightly perturbed homogeneous steady-state solution as starting
condition.

∂a

∂t
= D · ∆a +

a2

h
− a (2.3)

∂h

∂t
= ∆h + µ · (a2 − h) (2.4)

The reaction diffusion system (2.3) - (2.4) is the reaction diffusion system
given by (1.1) - (1.2) with σ = 0. The simulations are done with MATLAB.
MATLAB has some Ordinary Differential Equation Solvers implemented,
for example the function ode45. We use these solvers in this project. These
ODE solvers can solve differential equations of the form,

∂y

∂t
= f(t, y) (2.5)

with y a scalar or a vector. At first sight, this seems not to be an
appropriate solver for our equation system (2.3) - (2.4), due to the Laplace-
Operator ∆ and the spatial dependence of the concentrations. But because
we can choose the dimension of the vector y as we want, we will see, that
these ODE-Solvers are a suitable choice. First we have to decide whether
we want a one-, two- or three-dimensional model. For simplicity we take a
one-dimensional model, therefore the Laplace-Operator is one-dimensional

9

as well: ∆ = ∂2

∂x2 . We call this one-dimensional spatial coordinate x, there-
fore the concentrations a and h are functions of the coordinate x and the
time t. In simulations the time and the space need to be discretized. The
time coordinate t is discretized in the MATLAB ODE Solvers, but the x
coordinate not. We discretize the x coordinate on a one-dimensional grid
with mesh spacing δx. Any point is then defined by an index i: xi = i · δx,
with 0 ≤ i ≤ N . The time derivative is approximated in the ODE solvers
as well. The Laplace-Operators are approximated as follows:

∂2a(xi, t)

∂x2
≈ a(xi+1, t) + a(xi−1, t) − 2 · a(xi, t)

δx2
(2.6)

Now we define the k-th element of the vector y, 0 ≤ k ≤ 2 · N + 1:

yk(t) =

{
a(xk, t) if 0 ≤ k ≤ N

h(xk−(N+1), t) if N + 1 ≤ k ≤ 2 · N + 1
(2.7)

With equations (2.6) and (2.7), we can write a spatial discrete version
of equations (2.3) - (2.4):

∂a(xi, t)

∂t
= D · a(xi+1, t) + a(xi−1, t) − 2 · a(xi, t)

δx2
+

+
a(xi, t)

2

h(xi, t)
− a(xi, t) (2.8)

∂h(xi, t)

∂t
=

h(xi+1, t) + h(xi−1, t) − 2 · h(xi, t)

δx2
+

+ µ · (a(xi, t)
2 − h(xi, t)) (2.9)

There is just one little problem. In equations (2.8) - (2.9), i goes from 0 to
N , so we access the elements a(x−1, t), a(xN+1, t), h(x−1, t) and a(xN+1, t),
which are not existent. In order to specify these values, we need boundary
conditions. A often used boundary condition is the periodic boundary con-
dition, which is here used as well. With a periodic boundary condition, you
can think of a function a(xi, t) as periodically repeated in space. If we arrive
at one end of a or h, i. e. a(x−1, t), a(xN+1, t), h(x−1, t) and a(xN+1, t), we
begin at the other end:

a(x−1, t) = a(xN , t) (2.10)

a(xN+1, t) = a(x0, t) (2.11)

h(x−1, t) = h(xN , t) (2.12)

h(xN+1, t) = h(x0, t) (2.13)

Because equations get very complicated, we do not explicitly write equa-
tions (2.10) - (2.13) in the following equations (2.14) - (2.16), but we keep
it in mind.

10

Rewriting equations (2.8) - (2.9) in terms of y leads us to:

∂yi(t)

∂t
= D · yi+1(t) + yi−1(t) − 2 · yi(t)

δx2
+

+
yi(t)

2

yi+N+1(t)
− yi(t) (2.14)

∂yi+N+1(t)

∂t
=

yi+N+2(t) + yi+N (t) − 2 · yi+N+1(t)

δx2
+

+ µ · (yi(t)
2 − yi+N+1(t)) (2.15)

These two equations are equivalent to:

∂yi(t)

∂t
=

{
D · yi+1(t)+yi−1(t)−2·yi(t)

δx2 + yi(t)
2

yi+N+1(t) − yi(t) if 0 ≤ i ≤ N
yi+1(t)+yi−1(t)−2·yi(t)

δx2 + µ · (yi−(N+1)(t)
2 − yi(t)) if N + 1 ≤ i ≤ 2 · N + 1

(2.16)
Equation (2.16) has now the form of equation (2.5), so the ODE solvers

of MATLAB can be applied. If we would use a two- or three-dimensional
model, everything becomes heavier in notation, but the principle stays the
same.

In this project the equation system (2.3) - (2.4) was simulated for 2500
parameter choices of µ and D, namely the parameters ∈ P :

P := (µ, D) ∈ M × E (2.17)

M := {0.06, 0.12, . . . , 3} (2.18)

E := {0.008, 0.016, . . . , 0.4} (2.19)

Because one has limitations in memory and processing time, one can not
simulate a differential equation system for an infinite number of parameters,
thats why we limit the number of simulations. We saved the whole course
of the solution offered by MATLAB, in order to be able to extract more
properties if needed. We need more or less 2.5 GByte memory for the 2500
simulated points. So the limitation to 2500 points comes from the huge
memory needed. The range of the µ and D values, i. e. 0.06 to 3 and 0.008
to 0.4, are chosen such that every of the four solution regions appears as
good as possible equally often, which can be seen from figure 2.2.

MATLAB offers different ODE Solvers: ode45, ode113, ode15s, ode23,
ode23s, ode23t and ode23tb. Because reaction diffusion systems are known
to be stiff differential equation systems [4], ode45, ode113 and ode23 are not
appropriate. In our case the solver ode23s needs much more time than the
solvers ode15s, ode23t and ode23tb. So the simulations are done with the
ODE solvers ode15s, ode23t and ode23tb, but the differences are not very
big.

11

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

Gb

Ga

I

H

Figure 2.2: The boundaries in the (µ, D) plane

The other parameters in the MATLAB program, which one needs to
determine before the simulation, are:

endtime = 1000, how long the differential equation system is simulated.

N = 100, the same N as used above.

zufall = 0.1, the starting conditions are astart(xi) = a0 + zufall · ri

and hstart(xi) = h0, where every ri is a random variable

uniformly distributed over the interval [0, 1].

δx = 0.5, the same δx as used above.

These values were chosen, such that a compromise is reached between
the reliability and the precision of the solution and the memory space used
and the running time of the algorithm.

In the following table the properties extracted from a solution are listed
and explained:

1. Property 1: The number of time points chosen by the ODE solver of
MATLAB

2. Property 2: The time used for simulating the reaction diffusion system

3. Property 3: The maximum of the concentration a(xi, t) at time t =
endtime

12

4. Property 4: The minimum of the concentration a(xi, t) at time t =
endtime

5. Property 5: The mean of the concentration a(xi, t) at time t = endtime,
i.e. 1

N+1

∑N
i=0 a(xi, endtime)

6. Property 6: The mean of the absolute value of ∆a at time t = endtime,
i.e. 1

N+1

∑N
i=0 |∆a(xi, endtime)|

7. Property 7: The mean of the absolute value of ∂a
∂t

at time t = endtime,

i.e. 1
N+1

∑N
i=0 |

∂a(xi,endtime)
∂t

|

8. Property 8: The maximum of the concentration h(xi, t) at time t =
endtime

9. Property 9: The minimum of the concentration h(xi, t) at time t =
endtime

10. Property 10: The mean of the concentration h(xi, t) at time t =
endtime

11. Property 11: The mean of the absolute value of ∆h at time t = endtime

12. Property 12: The mean of the absolute value of ∂h
∂t

at time t = endtime

13. Property 13 to 22: Properties 3 to 12 at the time t = The time of the
k-th time point, with k the rounded value of r

10 and r the number of
time points chosen by the ODE solver of MATLAB

14. Property 23 to 32: Properties 3 to 12 at the time t = The time of the
k-th time point, with k the rounded value of r

2 and r the number of
time points chosen by the ODE solver of MATLAB

We hope these 32 properties are enough to estimate the distance to the
nearest boundary.

2.2 Ideas And Methods On How To Realize A

Good Fitness Function

We are going to discuss the different approaches to build a fitness function.
As explained above, the fitness function is split into two parts. In the first
part the differential equation system is simulated and some properties are
extracted. This part should be clear, so the focus of the following subsections
is on the second part of the fitness function, the function from the prop vector
to the output distance. If there are any simulation results shown, they are
done with the MATLAB ODE solver ode15s.

13

In the following sections we use the notation: propi is the property vector
of the i-th simulated (µ, D) point and distancei the corresponding distance.
prop[k] is the k-th element of the prop vector.

2.2.1 Classification

First we want to make a function, which is not a fitness function, but a
classification function. In figure 2.2 we see the four different regions: Ga, Gb,
H and I. The classification function has an input prop and a {1, 2, 3, 4, 5}-
valued output. The classification function should have the value 1, if the
input prop is typical for the solution region Ga, 2 for Gb, 3 for I, 4 for H
and 5 if it is not typical for any solution region. The function should be
very easy. In order to make such a function, we look at figures 2.3 - 2.5.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.5

1

1.5

2

Figure 2.3: Property 5 drawn for the 2500 simulated (µ, D) points.

In figure 2.5, region Ga is different from the rest. So we can use property
29 to determine if a prop vector belongs to region Ga with the following rule:

Rule 1: The classification function takes the value 1, if the 29-th element
of the prop vector is greater than 3.

Sure, the value 3 is a little bit arbitrary, we could also take 4. In figure
2.4, region H is different from the rest. By noting this, the following rule is
used:

Rule 2: The classification function takes the value 4, if the 24-th element
of the prop vector is greater than 0.9 and rule 1 is not fulfilled.

14

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.4: Property 24 drawn for the 2500 simulated (µ, D) points.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

10

20

30

40

50

60

Figure 2.5: Property 29 drawn for the 2500 simulated (µ, D) points.

In rule 2, the additional part ”. . . rule 1 is not fulfilled.” is due to the
wish, that just one rule is fulfilled. With figure 2.3, we can determine rules
for classifying the remaining regions:

Rule 3: The classification function takes the value 2, if the 5-th element

15

of the prop vector is smaller than 0.1 and rules 1 and 2 are not fulfilled.

Rule 4: The classification function takes the value 3, if the 5-th element
of the prop vector is smaller than 0.9 and bigger than 0.1 and rules 1, 2 and
3 are not fulfilled.

Probably there are prop vectors, which do not fulfill any of the 4 rules.
For these prop vectors, we say they are not typical for any solution region,
so we assign to them the value 5:

Rule 5: The classification function takes the value 5, if the rules 1, 2, 3
and 4 are not fulfilled.

With these rules, we can draw the classification function for the simu-
lated parameter points:

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.6: The classification function drawn for the simulated (µ, D) points.

This classification function is very easy, it depends just on 3 properties,
but it is not perfect. Of course there are many different ways to make a
classification function, but figure 2.6 indicates that the classification func-
tion used here is quite good. In chapter 3 an algorithm is introduced to
find the boundaries between different solution regions with the help of this
classification function.

16

2.2.2 Least Squares

Least Squares is a method to find a linear function from a row vector x to
a scalar output y with minimum mean square error. If you have observed
some input output relations (xi, yi)1 ≤ i ≤ M and you want to make a linear
function, i.e. ŷ = (1, x) · h with h a constant column vector with one more
element than x, then you can determine the vector h such that the mean
square error MSE = 1

M

∑M
i=1(yi − (1, xi) · h)2 is minimized. The vector h is

then given by equation (2.20), which is shown in [5]. The 1 in ŷ = (1, x) · h
is to make the data mean free. With this 1 we have a smaller or equal MSE
than without the 1.

AT · A · h = AT · g (2.20)

with g = (y1, y2, . . . , yM)T (2.21)

and A =





1 x1

1 x2

. . .
1 xm



 (2.22)

If the matrix AT ·A is regular, then the h, which minimizes the MSE is
uniquely determined by h = (AT · A)−1 · AT · g. If AT · A is singular, then
there is no unique solution for h, but every solution has the same MSE.

The problem defined above is the same as for our fitness function. We
have 2500 input output relations of our fitness function. If we assume that
the fitness function is linear, then Least Squares can be applied, with xi =
propi and yi = distancei. The estimated distance is then d̂istance = prop ·h
with h determined through equation (2.20). By doing this we get a minimum
mean square error MSE = 0.0074. If we evaluate this function on the 2500
simulated (µ, D) points, we get figure 2.7.

This figure should look as similar as possible to figure 2.1. But some
properties have to correspond in figures 2.1 and 2.7 and some others can
differ without being critical. As an example it is very important, that there is
a minimum at the location of the boundaries or very close to the boundaries.
If this is not the case, then the task of finding a minimum of the fitness
function and the task of finding the boundaries are not the same. This is
not perfectly the case, but figure 2.7 has a tendency to be minimal at the
boundaries. Another important property, which has to correspond in both
figures, is, that there are no plateaus. If there were plateaus, it could be,
that an algorithm stucks in a plateau. But there is a plateau in the solution
region H. So this approach is not perfect.

If we want to decrease the MSE further, we can do a trick. Instead of
using the prop vector for the x vector, we could additionally use transfor-
mations of the prop vector, for example x = (cos (π · prop), sin (π · prop),

17

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 2.7: The linear function d̂istance = prop · h drawn for the simulated
(µ, D) points.

ln |prop|, prop2, prop). In this and the following expressions, the functions
cos, sin, ln || or ()2 with a vector as input argument have to be interpreted as
component wise functions, i.e. cos (π · prop) = (cos (π · prop[1]), cos (π · prop[2]),
. . . , cos (π · prop[32])). So we get a vector x with 160 elements. As a moti-
vation for this trick, we can look at the function y = cos (π · x), x a scalar.
If we want to use a linear function for estimating y, i.e. y = (1, x) · h, then
we never bring the MSE to zero. If we use y = (1, x, cos (π · x)) ·h, we bring
the MSE to zero with h = (0, 0, 1)T .

We can calculate h for x = (cos (π · prop), sinπ · prop, ln |prop|, prop2, prop)
by using (2.20). If we evaluate the function d̂istance = (cos (π · prop),
sin (π · prop), ln |prop|, prop2, prop) · h on the simulated (µ, D) points, we
get figure 2.8 and a minimum mean square error MSE = 0.0022.

In this figure we see an improvement. The plateau in the H region is
gone and the minimum on the boundaries is more prominent. So we would
expect, that this fitness function is better than the fitness function without
transformations. The problems according to such interpretations are the
points in the (µ, D) space for which we not simulated the reaction diffusion
system (2.3) - (2.3). Because with Least Squares, we just minimize the MSE
for the known input output pairs, we not consider the MSE for other points.
So in general our fitness function could have a MSE for the known input
output pairs of zero, even so it has a very big MSE for other points. In this
subsection we hope that this is not the case and in the next subsection 2.2.3
we give a possibility to deal with this problem.

18

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

−0.1

0

0.1

0.2

0.3

0.4

Figure 2.8: The linear function d̂istance =
(cos (π · prop), sin (π · prop), ln |prop|, prop2, prop)·h drawn for the simulated
(µ, D) points.

The linear function with transformations is quite complicated. The h
vector has 161 elements. If two columns of the matrix A are more or less
proportional, we could leave out one of the columns without increasing the
MSE. Therefore we can decrease the number of elements of h and hence
the complexity. A measure for the proportionality of two columns is the
correlation coefficient. The correlation coefficient c of two data columns f
and g is defined as:

c(f, g) =

∑M
k=1(f [k] − f) · (g[k] − g)√∑M

k=1(f [k] − f)2 ·
√∑M

k=1(g[k] − g)2
(2.23)

with f =
1

M
·

M∑

k=1

f [k] (2.24)

and g =
1

M
·

M∑

k=1

g[k] (2.25)

c is always between -1 and 1. If c is close to 1 or -1, f and g are quite
proportional. If c is close to zero, f and g are not proportional.

A possible approach to decrease the complexity is the following proce-
dure:

1. Determine the correlation coefficient c for all possible pairs of columns

19

of the matrix A (the first column of A is not considered).

2. While the maximum of the absolute value of all c is bigger than a
threshold t, do points 3 and 4

3. Determine the pair of columns of A with the biggest absolute value of
c and the new A is the old A without one of the two columns.

4. Determine the correlation coefficient c for all possible pairs of columns
of the matrix A

So we eliminate bit by bit the columns of A which have a big |c| with an-
other column until there are no pairs of A with a |c| > t. We use this
approach with a threshold t = 0.4. The number 0.4 was chosen such
that more or less the same number of columns remained as the number
of elements of the prop vector. With the procedure we decrease the num-
ber of columns of A from 161 to 32, which is a factor of about 5. The
remaining columns are: cos (π · prop[1]), sin (π · prop[1]), sin (π · prop[7]),
sin (π · prop[13]), sin (π · prop[14]), sin (π · prop[16]), sin (π · prop[17]), sin (π · prop[19]),
sin (π · prop[20]), sin (π · prop[21]), sin (π · prop[22]), sin (π · prop[23]), sin (π · prop[24]),
sin (π · prop[26]), sin (π · prop[27]), sin (π · prop[28]), sin (π · prop[30]), sin (π · prop[31]),
sin (π · prop[32]), ln |prop[14]|, ln |prop[22]|, prop[7], prop[10], prop[12], prop[17],
prop[21], prop[22], prop[24], prop[27], prop[30], prop[32]. Now we can com-
pute the h vector which minimizes the MSE for these 31 columns plus the
all one column. If we evaluate this function on the simulated (µ, D) points,
we get figure 2.9 and a minimum mean square error MSE = 0.0073.

This function is not much better than the first Least Squares function
of figure 2.7. The MSE is more or less equal to the MSE of the function of
figure 2.7. The plateau is still there, but the boundaries seems to be a little
bit better than before.

The last function presented here, should be a very easy one. It should
have the all one vector plus four or less out of the 160 transformed properties.
To find the four transformed properties which have the minimum MSE, we
could calculate for every 4-tuple out of the 160 transformed properties the
MSE and choose the 4-tuple with the minimal MSE. There exists 26294360
4-tuples, which are too much. So we have to use a different approach. The
idea for this approach was taken from [6]:

1. Start with none of the 160 transformed properties, so C = {}

2. Do the next steps, while the number of elements in C is ≤ 4

3. Include the transformed property to the current model for which the
actual linear function has the minimal MSE, so Cnew = Cold∪ (The
chosen transformed property)

20

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.1

0.2

0.3

0.4

0.5

Figure 2.9: The linear function with transformations, but just 32 of the 161
columns of A are used. You see this function drawn for the simulated (µ,
D) points.

So in every run, we increase the number of used transformed properties
by one. We do not need to calculate the MSE 26294360 times. If we
do this, the four remaining transformed properties are: cos (π · prop[19]),
sin (π · prop[24]), ln|prop[29]| and ln|prop[31]|

If we evaluate this function on the simulated (µ, D) points, we get figure
2.10 and a minimum mean square error MSE = 0.0077.

Although this function uses just 4 of the 160 transformed properties it
is quite similar to the function of figure 2.9. The boundary between the
regions H and Gb and the boundary between the regions Ga and Gb seems
to be less prominent than in figure 2.9.

2.2.3 Neural Networks

A Neural Network (NN) is also a possible method for finding a function
with some known input output relations. An NN consists of p inputs, J
outputs and one hidden layer. In general a NN can have more than one
hidden layer, but we focus here on NN with one hidden layer. The number
of outputs J is in this project always one, namely the distance to the nearest
boundary. The inputs are the elements of the prop vector, sometimes with
transformations and sometimes not all of them are used. A NN with one
hidden layer and one output can be written as:

21

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 2.10: The linear function with transformations, but just 5 of the 161
columns of A are used. You see this function drawn for the simulated (µ,
D) points.

g(x) = f0(α +

q∑

h=1

wh · φ(βh +

p∑

j=1

wjh · xj)) (2.26)

A often used function for φ is the sigmoid function:

φ(x) =
ex

1 + ex
(2.27)

The function f0(.) is typically the identity function, but for both you can
also use other functions. The α, βh, wh, wjh are constants. An illustration
of an NN is shown in figure 2.11.

Our goal is to have a NN, which is similar to the distance function from
figure 2.1. The task is to adjust the constants α1, α2, wh, wjh, such that the
MSE of the given input and output pairs is small. This can be done using
the nftool of MATLAB. There you have a supplementary feature. You can
use some of the known input output pairs as testing or validation data. So
you can for example use 1500 data points for training the NN, 500 for testing
the created NN and the remaining 500 data points for validation. With this
possibility to test the used NN, we are able to measure how close the NN
is to the wished function for points which are not used to train the NN. So
we can decide, whether the NN just memorizes the training data or it really
learns the wished function. A further parameter of a NN is the number of
hidden nodes in the hidden layer. The letter q in equation (2.26) denotes

22

Figure 2.11: An illustration of a NN with one hidden layer, one output and
p inputs.

the number of hidden nodes. Often the more hidden nodes one uses, the
more probably the NN just memorizes the training data. The less hidden
nodes one uses, the bigger is the MSE on the training data. So we have to
find a tradeoff. In this project, we started with a little q and increased q
until the MSE on the training data and the MSE on the testing data began
to diverge. Then the biggest q for which the two MSE did not diverge, was
taken.

If you would like to have more detailed informations about NN, see [5].
The nftool is explained in the MATLAB Help. One remark regarding the
nftool tool should be made here. The nftool uses in the training step some
random numbers, so the results presented in this subsection can not be
reproduced exactly.

Now we are ready to create the first NN by using the nftool. Input
data are the 32 properties of the 2500 simulated points. Target data are
the distances to the nearest boundaries, which you see in figure 2.1. 20%
of the data are used for testing and 20% for validation. The number of
hidden nodes is 20. The MSE of the whole 2500 data points is 0.0054. If
we evaluate the NN on the 2500 simulated points, we get figure 2.12.

The problem of this NN is the plateau in the H region. The rest seems
to be acceptable. An advantage of the NN presented here are the fact, that
they are tested during the training. So we expect, that the NN can predict
new points better than the Least Squares functions.

We can build a second NN. Input data are the 160 transformed properties
of the 2500 simulated points. Target data are the distances to the nearest
boundaries, which you see in figure 2.1. 20% of the data are used for testing

23

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 2.12: The NN drawn for the simulated (µ, D) points.

and 20% for validation. The number of hidden nodes is 10. The MSE of
the whole 2500 data points is 0.0021. If we evaluate the NN on the 2500
simulated points, we get figure 2.13.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2.13: The NN with all 160 transformed properties drawn for the
simulated (µ, D) points.

This NN has a smaller MSE and theres no plateau in the H region. On

24

the boundaries the NN is minimal.

The third and the last NN used here, is an NN, for which we use the
same 31 transformed properties as in the Least Squares function of figure
2.9. 20% of the data are used for testing and 20% for validation. The
number of hidden nodes is 15. The MSE of the whole 2500 data points is
0.0027. If we evaluate the NN on the 2500 simulated points, we get figure
2.13.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 2.14: The NN with 31 of the 160 transformed properties drawn for
the simulated (µ, D) points.

This NN has no plateau in the H region as well. The minimum on the
boundaries is not so prominent as for the NN of figure 2.13. Between the H
and the I region the minimum is quite large and not so deep, which could
be a problem.

2.2.4 CART

CART is an abbreviation for Classification and Regression Tree. The model
function for CART is

gtree(x) =
R∑

r=1

βr1[x∈Ar] (2.28)

where P = {A1, A2, . . . , AR} is a partition of R
p. The function 1[x∈Ar]

is one if x ∈ Ar and zero if x /∈ Ar. So the function gtree(x) is piecewise
constant. The sets Ar are restricted to be axes parallel rectangles. If this is

25

the case, we can draw a tree, like for example in figure 2.15. The trees used
in this project are regression trees and not classification trees.

Figure 2.15: An example of a tree. One begins on the starting node and
goes through the tree until one arrives at a rectangle. The value in this
rectangle is then the value of the function gtree(x).

One can interpret a CART much better than a NN or a Least Squares
function.

With MATLAB one can build a CART by using the function classregtree.
You have to give some input output pairs of the wished function. Optional
you can handle a parameter called splitmin. This parameter is very use-
ful, if you want to limit the complexity of the tree. Because the function
classregtree divides a node further only if there exists in this node more
observation points than the number splitmin. So in every decision node are
at least splitmin observations.

For more details about CART, please look at [6]. If you are interested
in the function classregtree, please look at the Help of MATLAB.

Now we can build the first CART with the MATLAB function class-
regtree. The input output pairs are of course the pairs prop and distance
for the 2500 simulated points. The optional argument splitmin is not used1.
The result is shown in figure 2.16.

1The default value used by MATLAB is 10

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 2.16: The CART, built with the function classregtree of MATLAB,
drawn for the simulated (µ, D) points.

The MSE of the CART is 1.7741 · 10−4, which is very small compared
to other MSE. This is not very surprising, because essentially with a CART
you can force the MSE to zero by dividing the regions Ar further2. This
function is quite perfect. A probably big disadvantage of this function, is
the behaviour on new samples. It could be, that this CART just memorizes
the 2500 input output pairs. This CART has 421 decision nodes, which is
too much to do interpretations. It would be nice to have a tree with less
decision nodes. To find such a tree, we can need the optional parameter
splitmin. If we set splitmin to 250, we get 18 decision nodes. This can be
interpreted. This CART has an MSE of 0.0032 and it is shown in figure
2.17.

There is no plateau in the H region and the function is quite small on
the boundaries. A picture of the tree is shown in figure 2.18.

We can interpret the tree of figure 2.18. First we show the same tree,
but instead of writing numbers to the points, we write the region where the
numbers appear and instead of writing the numbers of the properties, we
write abbreviations:

1. Abbreviation of property 1: # time points

2. Abbreviation of property 2: sim. time

2If there are two input output pairs with the same input vector but a different output
it is impossible to have an MSE of zero.

27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

0.05

0.1

0.15

0.2

0.25

0.3

Figure 2.17: The CART, with the optional parameter splitmin set to 250,
drawn for the simulated (µ, D) points.

Figure 2.18: The tree of the CART, with the optional parameter splitmin
set to 250. The triangles are the decision nodes and the points have the
same meaning as the rectangles in figure 2.15. One goes to the left if the
condition is true and right if the condition is false.

28

3. Abbreviation of properties 3 to 32: Every abbreviation consists of
three terms: what, of what and when. what can be one of the following:
{max, min, mean}. of what can be one of the following: {a, h, |∆a|,
|∆h|, |da/dt|, |dh/dt|} and when can be one of the following: {end,
start, middle}, where end refers to the time of properties 3 to 12, start
to the time of properties 13 to 22 and middle to the time of properties
23 to 32. For example mean, |dh/dt|, start corresponds to property
22.

You see this in figure 2.19. Sometimes this is difficult, because some
numbers occur in more than one region or are near a boundary.

Figure 2.19: The tree of the CART, with the optional parameter splitmin
set to 250. Instead of writing numbers, we write regions and we use abbre-
viations for the properties.

The following interpretation uses only tendencies, so it is not exact. To
belong to the I region, it needs a diffusion, ∆a > 0 and ∆h > 0. To belong
to the region Gb, a rather small value of the maximum or minimum of the
concentration a has to appear. The H region appears in many different parts
of the tree. We can extract two rules. A point belongs to the H region, if it
has a small diffusion, ∆a ≈ 0 and ∆h ≈ 0 or if the number of time points
(or simulation time) is small. This is reasonable, because in the H region
there should be no diffusion. We see also, that one can decide whether a
point in the H region is far away from the boundaries or not. The less time

29

points needed and the less diffusion one has, the farer apart one is from the
boundary. This is quite important, because the H region is often big and
you need a criterion where a different solution region is located.

2.3 500 Additional Points For Testing

In the last tree subsections, we built 9 functions. Now we want to test these
functions. We simulated another 500 points with µ and D uniformly drawn
from the intervals [0, 6] and [0, 0.8]. Because we know the distance to the
nearest boundary for every point in the (µ, D) space, we can compute the
MSE for these 500 points for every function. The results are shown in table
2.1 together with the MSE on the 2500 training points and the mentioned
disadvantages.

Function: Abbreviation MSE500 MSEw105 MSE2500 Disadvantages

Figure 2.7 LS1 9.4182 · 103 0.0707 0.0047 P, B and T
Figure 2.8 LS2 4.9287 · 1013 0.0612 0.0022 T
Figure 2.9 LS3 1.0060 · 103 0.0641 0.0073 P and T
Figure 2.10 LS4 0.0681 0.0682 0.0077 P and T
Figure 2.12 NN1 0.0657 0.0656 0.0054 P
Figure 2.13 NN2 0.0326 0.0327 0.0021 No
Figure 2.14 NN3 0.0291 0.0291 0.0027 No
Figure 2.16 CART1 0.0306 0.0306 1.7741 · 10−4 T
Figure 2.17 CART2 0.0413 0.0414 0.0032 T

Table 2.1: A summary with different MSE values for the 9 fitness functions.
The abbreviations in column Disadvantages mean: P = Plateau somewhere,
B = The minimum on the boundaries not reached, T = No testing during
training

The column MSEw105 is the MSE without the 105-th simulated point.
This is showed due to the fact, that some functions have trouble with this
105-th point and has a very big squared error. The µ and D coordinates of
this point are: µ = 3.383 · 10−4 and D = 0.355. So the point lies in the Ga

region. A possible explanation for the big error induced by this point, are
the small number of points simulated in the Ga region. Now we can make
a ranking list according to the MSE500, MSEw105 or MSE2500 of table 2.1,
which is shown in table 2.2.

The functions CART1, NN3 and NN2 are at least two times under the
top three and never under the worst three. The functions NN1, LS1, LS3
and LS4 are at least two times under the worst three and never under the
top three. The disadvantages in table 2.1 strengthen the impression. In the
following chapters we will no longer consider the functions NN1, LS1, LS3
and LS4.

30

Rank: MSE500 MSEw105 MSE2500

1. NN3 NN3 CART1
2. CART1 CART1 NN2
3. NN2 NN2 LS2
4. CART2 CART2 NN3
5. NN1 LS2 CART2
6. LS4 LS3 LS1
7. LS3 NN1 NN1
8. LS1 LS4 LS3
9. LS2 LS1 LS4

Table 2.2: A ranking list of the 9 fitness functions for MSE500, MSEw105 and
MSE2500

31

Chapter 3

Evolutionary Algorithm

We will briefly discuss the idea behind a popular EA, the so called Evolu-
tion Strategy with Covariance Matrix Adaption (CMA). This EA will be
used in the following chapters. The second section of this chapter treats an
algorithm, which is used combined with the classification function from sub-
section 2.2.1. This algorithm is not an EA, we use it to have an alternative
approach.

3.1 CMA

The CMA can be used to minimize (or maximize) a function f from R
n to

R. In the case of a fitness function from chapter 2, f is a function from
(µ, D) ∈ R

2 to distance ∈ R. The idea behind CMA is to create new points
by sampling a multivariate normal distribution. A normal distribution is
uniquely determined through its mean and covariance matrix. The covari-
ance matrix is divided into two parts, the normalized covariance matrix and
the step size. The basic equation for sampling new points, for generation
number g, is:

x
(g+1)
k ∼ N (m(g), σ(g)2C(g)) (3.1)

x
(g+1)
k denote the new points created by sampling a normal distribution

with mean m(g) and covariance matrix σ(g)2C(g). σ(g)2 denotes the step size
parameter and C(g) the normalized covariance matrix. The CMA chooses

the mean m(g) as a weighted sum of the old points x
(g)
i , whereat the better

points get bigger weights. The step size and normalized covariance matrix
are adjusted new for every generation number g, such that it is more likely
to create new points with a small fitness value. For example, we have two
points in the (µ, D) space (2, 0.4) and (3, 0.8) with corresponding fitness
values 1 and 5. Then the CMA would create new points by sampling a
normal distribution with iso-probability contours shown in figure 3.1.

32

Figure 3.1: Iso-probability contours of a normal distribution possibly chosen
for the example with two points (2, 0.4), (3, 0.8) and their fitness values 1
and 5. The red point is the mean of the normal distribution. The two
arrows are given by the covariance matrix and determine the shape of the
iso-probability contours.

The mean of the normal distribution is closer to the point (2, 0.4), be-
cause this point has a smaller fitness value and therefore a bigger weight.
The shape of the iso-probability contours and hence the prefered search di-
rection are determined by the normalized covariance matrix. We see in figure
3.1, that the prefered search direction is the connecting line between the two
points. The step size has no influence on the shape of the iso-probability
contours, but it determines how close they are or in other words how big
the search space is.

For further explanations and details, see [7] or [8].

3.2 An Algorithm For The Classification Function

We call the algorithm explained here classification algorithm. The structure
of this algorithm is shown in figure 3.2.

For simplicity, we discuss the classification algorithm only for the (µ,
D) problem, but one can use the algorithm also for other problems. Before
we explain the algorithm, we would like to introduce the needed parame-
ters of the classification algorithm: rµ, rD ∈ {r ∈ R : r > 0}, initpopsize ∈

33

Figure 3.2: The structure of the classification algorithm

{n ∈ N : n > 1}, tolerance ∈ {r ∈ R : r > 0}. The following list discusses
the steps in figure 3.2:

1. We create initpopsize points in the (µ, D) space randomly. These
points (µi, Di) are drawn uniformly from the subspace {[0, rµ] × [0, rD]}.

2. We simulate for every point (µi, Di) the reaction diffusion system (2.3)
- (2.4), extract the prop vector and plug it into the classification func-
tion. Now we try to find pairs of the initpopsize points with different
classification values. This we do iteratively by choosing randomly two
points out of the initial points and compare their classification value.
If they have a different classification value, then we save the pair and
remove them from the initial population. If they have the same classifi-
cation value, nothing happens. This we repeat until not more than one
point remains or all the remaining points have the same classification
value. We call the set of the found pairs as P .

3. For every pair (µk, Dk), (µj , Dj) ∈ P , we calculate the euclidean
distance d(µk, Dk, µj , Dj) =

√
(µk − µj)2 + (Dk − Dj)2. If the eu-

clidean distance of a pair is smaller than tolerance, the mean of this

pair mean =
(

µk+µj

2 ,
Dk+Dj

2

)
is saved, interpreted as a point on the

boundary and Pnew = Poldwithout this pair. If the euclidean distance
of a pair is not smaller than tolerance, nothing happens (Pnew = Pold).

4. The termination condition is: The number of pairs ∈ P is zero.

34

5. We substitute every pair (µk, Dk), (µj , Dj) ∈ P by a new pair
(µl, Dl), (µm, Dm). First we compute the difference vector diff =
(µk − µj , Dk − Dj). Then we create two random numbers rand1 and
rand2 uniformly drawn from the interval [0, 0.5]. We compute two new
points in the (µ, D) space: point1 = (µk, Dk)−rand1·diff and point2 =
(µj , Dj) + rand2 · diff. For point1 and point2 we simulate the reaction
diffusion system, extract the prop vector and plug it into the classifica-
tion function. If the classification value of the points point1 and point2
have different values, then (µl, Dl) = point1 and (µm, Dm) = point2.
Else if the classification value of the points (µk, Dk) and point2 have
different values, then (µl, Dl) = (µk, Dk) and (µm, Dm) = point2. Else
if the classification value of the points point1 and (µj , Dj) have dif-
ferent values, then (µl, Dl) = point2 and (µm, Dm) = (µj , Dj). Else
(µl, Dl) = (µk, Dk) and (µm, Dm) = (µj , Dj). So we try to make new
pairs, which are closer to each other than before, but only if they still
have a different classification value. For an illustration, look at figure
3.3.

6. Here we do the same as in step 3.

Although the classification algorithm is not an EA, there are some par-
allels.

35

Figure 3.3: An illustration of the fifth point of the classification algorithm
is shown. The difference vector diff goes from the point (µj , Dj) to the
point (µk, Dk). The point (µk, Dk) lies in region 1 and the point (µj , Dj)
lies in region 2. point1 lies in region 1 and point2 in region 2, so they lie in
different regions. Therefore (µl, Dl) = point1 and (µm, Dm) = point2.

36

Chapter 4

CMA Applied To The

Simple System

We apply the CMA to the reaction diffusion system of equations (2.3) -
(2.4). We discuss the behaviour of the different fitness functions of chapter
2. Because we know the location of the boundaries, we can evaluate the per-
formance of the different fitness functions. Then we look at the robustness
of the fitness functions with respect to little changes on the system and the
simulation parameters.

4.1 Normal System

In this subsection we run the program cmaes.m1 for every of the 9 fitness
functions 10 times. The program cmaes.m takes 4 parameters: the fitness
function, an initial starting point, initial coordinate wise search standard
deviation and options. Because D < 0 or µ < 0 makes no sense, we only
allow points with D > 0 and µ > 0. This we do by setting the fitness
value of all points with D < 0 or µ < 0 to 10. The initial starting point
is always a vector ∈ R

2 uniformly distributed over the range [0, 6] for the
first component µ and uniformly distributed over the range [0, 0.8] for the
second component D. In the description of the cmaes.m is written, that
setting the initial coordinate wise search standard deviation to one third of
the initial search region is appropriate. So we set it to 2 for µ and to 0.3
for D. Because the expected minimum of the fitness functions is zero, we
set the option StopFitness to a very little value greater zero. We choose
StopFitness = 10−8 for the functions LS2, NN2 and NN3, which gives quite
good results. So the program cmaes.m stops if it found a point with fitness
value smaller than 10−8. For the CART functions 10−8 is never reached, so
it makes no sense to set the option StopFitness to 10−8. For the function

1This program can be downloaded from the link: http://www.bionik.tu-
berlin.de/user/niko/cmaes inmatlab.html

37

CART1, we set the option StopFitness to 7 ·10−2 and for CART2 to 2 ·10−2.
It could be, that it takes very long time to find a point with fitness value less
than 10−8, 7·10−2 respectively 2 ·10−2, so we set the option MaxFunEvals to
1000. This means, that after 1000 fitness function evaluations the algorithm
stops. As mentioned above, we want to evaluate the performances. This we
do graphically, by drawing the resulting points together with the boundaries
and additionally we calculate the error, which is the mean of the distances
to the nearest boundary:

error =
1

M

M∑

i=1

min
(µb,Db)∈B

√
(µi − µb)2 + (Di − Db)2 (4.1)

with B = (µb, Db) ∈ Boundaries, and (µi, Di) are the points found

by the cmaes.m (4.2)

and M = The number of points found by the program

cmaes.m (mostly 10) (4.3)

The points found by the program cmaes.m are drawn together with the
boundaries in figures 4.1- 4.5. The error is summarized in table 4.1.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

1

2

3

4

5

6

7

8

9

10

D

m
u

Figure 4.1: The points found by the program cmaes.m for the fitness function
LS2 and the boundaries.

We begin with the fitness function LS2. The found points are shown in
figure 4.1. The points are close to the boundary between the H and the
I region and the error is pretty small. Unfortunately the other boundaries
were not found. We can explain this by looking at figure 2.8, there the blue
region is larger between the H and the I region than between other regions.

38

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0

2

4

6

8

10

12

14

D

m
u

Figure 4.2: The points found by the program cmaes.m for the fitness function
NN2 and the boundaries.

Now we use the fitness function NN2. The resulting points are drawn in
figure 4.2. The error is even smaller than before. The same boundaries were
found as with the LS2. By looking at figure 2.13, we see that the fitness
value is smaller on the found boundary than on the others. This could be a
possible explanation.

By using the NN3, the points found are also close to the boundaries and
all boundaries were found, this we can see in figure 4.3. This could be a
coincidence or an advantage of the function NN3. In figure 2.14 we see, that
the fitness values close to all boundaries are more or less the same. This
could be a reason for the discovery of different boundaries. The error is
larger than before, but this is due to the point the most right. If we ignore
this point, the error is between the one of LS2 and NN2.

Using the function CART1, the error is so far the biggest one. Never-
theless figure 4.4 shows a good result except for three points. But if we get
such a result in the next chapter, we would be very happy. The bottom
boundary is never found, but the boundary between regions H and Gb is
found four times.

The last function used, CART2, has then compared to the others a big
error. For the green points in figure 4.5, the fitness limit 2 · 10−2 was not
reached. The program cmaes.m stopped with a message warnequalfunvals.
This means, that the CMA searched in an area, where the fitness values
are the same. If the fitness values are the same, the algorithm can not find
a search direction and stops with the message warnequalfunvals. CART
functions are piecewise constant functions, which is an explanation for the

39

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

D

m
u

Figure 4.3: The points found by the program cmaes.m for the fitness function
NN3 and the boundaries.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

D

m
u

Figure 4.4: The points found by the program cmaes.m for the fitness function
CART1 and the boundaries.

appearance of the message warnequalfunvals. We see in figure 4.5 two points
far away from the boundaries. If we leave the two bad points out, the error
is 0.0257, which is comparable to the other errors.

In general the 5 tested functions do their job. They can locate the

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

7

D

m
u

Figure 4.5: The points found by the program cmaes.m for the fitness function
CART2 and the boundaries.

Function: error

LS2 0.0140
NN2 0.0089
NN3 0.0217
CART1 0.0376
CART2 0.1472

Table 4.1: The error calculated for 5 fitness functions

boundary between the regions H and I better than the others. The bound-
ary between the regions Ga and Gb is just once found by the function NN3.
This could be a coincidence or the function NN3 can better locate this
boundary. In the next subsection we will only use the function NN3, be-
cause it was throughout good. Surely this is a little bit arbitrary, but we
have to decide us for one, because we do not want to force complexity and
keep comparability.

We also want to evaluate the performance of the classification algorithm
introduced in section 3.2. We start with an initial population size of 100
and a tolerance of 10−3. The 100 initial starting points are always vectors
∈ R

2 uniformly distributed over the range [0, 6] for the first component µ
and uniformly distributed over the range [0, 0.8] for the second component
D. The number of resulting points is 22 and these points are drawn together
with the boundaries in figure 4.6. The resulting error is 0.0189.

This algorithm can find the boundaries well, except for the bottom

41

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

1

2

3

4

5

6

D

m
u

Figure 4.6: The points found by the classification algorithm

boundary. The error is comparable to the error of the fitness functions
used with the CMA.

4.2 An A Little Bit Different System

Now we run the CMA for different simulation parameters, i.e. the parame-
ters endtime, N , zufall and δx, and σ-values, to test the robustness of our
approach. The used reaction diffusion system is the same as in section 4.1,
except for the different σ-value. We have to consider, that the boundaries
change with σ. We test the robustness only on a few examples and not
rigorously and we will only use the fitness function NN3. First we let all
parameters as written in chapter 2, except the parameter endtime is once
set to 100 and once to 10000. The CMA finds the points drawn in fig-
ures 4.7 and 4.8 with an error of 0.0162 for endtime = 100 and 0.0451 for
endtime = 10000.

We see the figures are quite similar to figure 4.3, except for the 3 points
beyond the boundaries in figure 4.8. The errors are as well close to the error
of NN3 in the last section. So we can say, that the approach is not very
sensitive to changing the parameter endtime. Clearly if we choose endtime
too small, there will be problems.

Now we let all parameters as written in chapter 2, except the parameter
N is once set to 50 and once to 200. The CMA finds the points drawn
in figures 4.9 and 4.10 with an error of 0.0132 for N = 50 and 0.0110 for
N = 200.

42

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

D

m
u

Figure 4.7: The points found by the program cmaes.m for the fitness function
NN3 and the boundaries, with endtime = 100

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

2

4

6

8

10

12

D

m
u

Figure 4.8: The points found by the program cmaes.m for the fitness function
NN3 and the boundaries, with endtime = 10000

The errors and figures for changing N are as well quite similar to the
ones in the last section. Hence changing N is not critical.

Further we let all parameters as written in chapter 2, except the param-
eter zufall is once set to 0.001 and once to 10. The CMA finds the points

43

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

D

m
u

Figure 4.9: The points found by the program cmaes.m for the fitness function
NN3 and the boundaries, with N = 50

0 0.02 0.04 0.06 0.08 0.1 0.12
0

1

2

3

4

5

6

7

8

Figure 4.10: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with N = 200

drawn in figures 4.11 and 4.12 with an error of 1.1583 for zufall = 0.001 and
0.6186 for zufall = 10.

Changing the parameter zufall can result in a very bad result. The
boundaries were not reliable found and the error is big. So we conclude, that

44

0 1 2 3 4 5 6
0

100

200

300

400

500

600

700

800

900

D

m
u

Figure 4.11: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with zufall = 0.001

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

D

m
u

Figure 4.12: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with zufall = 10

changing zufall too much is critical. If zufall is too small, it could happen,
that also in other regions than H the homogeneous steady-state solution is
reached, because of the too little perturbation. Therefore the solution near
the boundaries is typical for the H region and hence the boundaries were

45

not found. If zufall is big, it could be, that in region H the concentrations
do not go back into the homogeneous steady-state solution. So minima were
found in the H region.

Now we let all parameters as written in chapter 2, except the parameter
δx is once set to 0.25 and once to 1. The CMA finds the points drawn in
figures 4.13 and 4.14 with an error of 0.0198 for δx = 0.25 and 0.0239 for
δx = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

14

16

D

m
u

Figure 4.13: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with δx = 0.25

The results of the CMA with a different δx than in the last section, are
comparable to the result in the last section. So again changing δx is not
critical.

Last we change the value of σ once to 0.2 and once to 0.7. The simulation
parameters are equal to the values assigned in chapter 2. The CMA finds
the points drawn in figures 4.15 and 4.16 with an error of 0.0214 for σ = 0.2
and 0.3730 for σ = 0.7. Note the changed boundaries in figures 4.15 and
4.16.

The change in σ is probably the most interesting test in this chapter. The
results are getting worse the bigger σ. If σ changes, the boundaries change
and the homogeneous steady-state concentrations a0 = 1 + σ, h0 = a2

0

change. The change of a0 and h0 probably irritates the NN. A possible
approach to deal with this problem, is to scale some elements of the prop
vector. We divide the elements 3 to 7, 13 to 17 and 23 to 27 through a0

and the elements 8 to 12, 18 to 22 and 28 to 32 through h0 before passing
on to the fitness function. The points found are shown in figure 4.17 for

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

D

m
u

Figure 4.14: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with δx = 1

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

6

D

m
u

Figure 4.15: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with σ = 0.2

σ = 0.2 and in figure 4.18 for σ = 0.7. The errors are 0.0517 for σ = 0.2 and
0.0230 for σ = 0.7. For σ = 0.7 the results are better with the scaling and
for σ = 0.2 they are a bit worse. Mostly one can calculate the homogeneous
steady-state concentrations and the scaling can be done.

47

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8

10

12

14

16

D

m
u

Figure 4.16: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with σ = 0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

D

m
u

Figure 4.17: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with σ = 0.2 and scaled properties

Additionally we want to see how the classification algorithm behaves for
different σ-values. We use the same two values 0.2 and 0.7 as above. The
points found by the algorithm are shown in figures 4.19 and 4.20. The error
is 0.0367 for σ = 0.2 and 0.0133 for σ = 0.7.

48

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D

m
u

Figure 4.18: The points found by the program cmaes.m for the fitness func-
tion NN3 and the boundaries, with σ = 0.7 and scaled properties

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

D

m
u

Figure 4.19: The points found by the classification algorithm, with σ = 0.2

The results are good, but the classification algorithm has a disadvantage.
Often the H region is big and the other regions are small. If we choose
initial points randomly, which is reasonable because we do not know where
to search, it becomes less likely to find points in another region than H. The
classification algorithm needs points in another region than H, else he can

49

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D

m
u

Figure 4.20: The points found by the classification algorithm, with σ = 0.7

not find any boundary. The CMA can also work with exclusively points in
the H region, because not every point in the H region has the same fitness
value and the CMA can follow the gradient. Due to this big disadvantage
and the good results of the CMA, we will not consider the classification
algorithm anymore.

50

Chapter 5

CMA Applied To A More

Difficult System

In this chapter we apply the CMA to reaction diffusion systems different
to the one given by equations (2.3) - (2.4). In the first section the CMA
is applied to a reaction diffusion system with 3 parameters related to the
one of equations (2.3) - (2.4). The reaction diffusion system discussed in
the second section has 2 parameters and reminds of the system given by
equations (2.3) - (2.4), but relies on a different dynamic. We do not know
the boundaries of these two reaction diffusion systems.

5.1 CMA Applied To A System With 3 Parame-

ters

The equations of the reaction diffusion system investigated in this section
is:

∂a

∂t
= D · ∆a +

a2

(1 + κ · a2) · h − a (5.1)

∂h

∂t
= ∆h + µ · (a2 − h) (5.2)

So we have an additional parameter κ. This system is described in [3],
but with more parameters, for example Da, Dh, κa and so on. By finding
the right dimensions for t, x, a and h and setting σh to zero, we can get a
system with only 3 parameters D, µ and κ. The procedure is explained in

[3] for κa = 0. For κa 6= 0 we get the additional parameter κ :=
κa·µ

2
h
·ρ2

a

µ2
a·ρ

2
h

.

The parameters have to be positive.
We do not know the boundaries for this system, so we can not evaluate

the performance. We need very many points to reliably locate the bound-
aries, due to the fact that a boundary in a three dimensional space is a plane

51

and we need more points to outline it compared to a line. This is clearly a
disadvantage and for a big number of parameters it could be, that we can
not simulate enough points to reliably locate the boundaries. First we will
calculate the homogeneous steady-state solution of the reaction diffusion
system of equations (5.1) - (5.2). It is given by the two equations:

0 =
a2

0

(1 + κ · a2
0) · h0

− a0 (5.3)

0 = µ · (a2
0 − h0) (5.4)

Equation (5.4) for µ 6= 0 is equivalent to:

h0 = a2
0 (5.5)

If we plug equation (5.5) into equation (5.3), we get a polynomial in a0:

κ · a3
0 + a0 − 1 = 0 (5.6)

The polynomial y(a0) = κ · a3
0 + a0 − 1 is -1 for a0 = 0 and κ for a0 = 1.

So the polynomial y(a0) is smaller than zero for a0 = 0 and bigger than zero
for a0 = 1, if κ > 0. Therefore because y(a0) is a continuous function, y(a0)
has a zero between 0 and 1. This zero can be calculated with the MATLAB
function roots. The derivative of y(a0) is y′(a0) = 3 ·κ ·a2

0 +1 and is greater
than zero for a0 ∈ R and κ > 0. So the function y(a0) is strictly monotone
growing. Therefore the zero between 0 and 1 is the only real valued zero.
Now we are ready to run the CMA. We let κ constant and run the CMA to
find the boundaries with this constant κ. Then we repeat this procedure for
different κ and therefore get boundaries for different discrete κ values. We
can do this only for a finite number of κ values, which is not sufficient to
determine all boundaries. But it facilitates the problem a lot and to decide
whether our approach can find the boundaries, this procedure suffices. The
chosen discrete κ values are: 0.1, 0.3, 0.5 and 1. The fitness function is again
the NN3 function. To avoid points with µ < 0 or D < 0 or κ < 0, we set
the fitness value to 10 for such points, as we did in the last chapter. The
initial starting point is always a vector ∈ R

2 uniformly distributed over the
range [0, 6] for the first component µ, uniformly distributed over the range
[0, 0.8] for the second component D. The initial coordinate wise search
standard deviation is 2 for µ, 0.3 for D. StopFitness was chosen to be 10−8

and the option MaxFunEvals was chosen to be 1000. Because the steady-
state solution is not the same as for the system (2.3) - (2.4), we scale the
properties. We simulated for every κ value 60 points. The points, which
did not reach the fitness value 10−8, were sorted out. Also a little number
of points, which are very far apart of all other points were sorted out. The
remaining points are drawn together in figure 5.1.

52

0 0.2 0.4 0.6 0.8 1 1.2
0

1

2

3

4

5

6

7

D

m
u

kappa = 0.1
kappa = 0.3
kappa = 0.5
kappa = 1

Figure 5.1: The remaining points found by the CMA for the reaction diffu-
sion system (5.1) - (5.2) are shown.

According to this plot, we can extract the boundaries. We do this by
eye. There are not very much points in the region, where µ < 1. So it
is difficult to extract the boundaries there. Nevertheless we try it. The
extracted boundaries are shown together with the points in figure 5.2.

The shape of the extracted boundaries is similar to the shape of the
boundaries of figure 2.2. Of course if we never saw the figure 2.2, probably
we would not draw the boundaries as in figure 5.2. In figure 5.2 we would
expect one additionally red and one additionally black straight line, such
that there are for every κ two straight lines. Probably the two missing lines
would appear, if we would simulate more points. In the previous chapter we
observed, that the boundary between the regions I and H are found better.
So we expect the extracted boundaries for µ > 1 are the boundaries between
the I and the H region. Now we have to check, whether the estimated
boundaries are really boundaries. This is the case, if the behaviour of the
reaction diffusion system is different on the one side of a boundary than on
the other. We do this in two steps. First we check the estimated boundaries
for κ = 0.3. Then we choose one point in the (µ, D) plane, which is for one
κ on the one side of the boundary and for another κ on the other side of the
boundary. Then we simulate the solution of this point in the (µ, D) plane
for every discrete κ value and we hope, that the behaviour of the solution
changes with κ. We begin with checking the boundaries for κ = 0.3. We
simulate the solution of the reaction diffusion system for the points shown

53

0 0.5 1
0

2

4

6

D

m
u

kappa = 0.1

0 0.5 1
0

2

4

6

D

m
u

kappa = 0.3

0 0.5 1
0

2

4

6

D

m
u

kappa = 0.5

0 0.5 1
0

2

4

6

D

m
u

kappa = 0.5

Figure 5.2: The points drawn together with the extracted boundaries.

in figure 5.3 and determine the behaviour of the solutions by eye.
The solution of the 5 points are shown in figure 5.4.
We call the top plot in figure 5.3 solution 1 and the lowest solution 5.

Ideally would be, that solution 1 behaves different than all other solutions.
Solution 2 and 3 behave equally but different than all others. Solution 4
behaves different than all other solutions and solution 5 behaves different
than all other solutions. Solution 1 is clearly a timely stable and spatially
inhomogeneous pattern. Solutions 2 and 3 are homogeneous steady-state
solutions. Solutions 4 and 5 are neither stable inhomogeneous patterns nor
homogeneous steady-state solutions. To show, that solution 4 and 5 behave
different, we recall the regions Ga and Gb from chapter 1. In region Ga

perturbations grow exponentially and in region Gb perturbations oscillate
and grow exponentially. If we draw the time course of the solutions 4 and 5
for one space point 5.12, we can see oscillations only in the course of solution
4.

Hence we verified the boundaries for κ = 0.3. We also have to check,
whether the boundaries are correct for κ = 0.1, 0.5, 1. We do not do this

54

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8

D

m
u

Figure 5.3: The estimated boundaries for κ = 0.3 drawn together with 5
points near the estimated boundaries.

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.02, kappa = 0.3

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.06, kappa = 0.3

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 0.7, D = 0.6, kappa = 0.3

0 10 20 30 40 50 60 70 80 90 100
−1.8

−1.7

−1.6
x 10

−17 mu = 0.5, D = 0.6, kappa = 0.3

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0
x 10

−18 mu = 0.1, D = 0.6, kappa = 0.3

Figure 5.4: The concentration of a is shown in dependence of the 1-
dimensional spatial coordinate for the 5 points in figure 5.3.

rigorously. We fix one point in the (µ, D) plane, the point (1.5, 0.0325).
This point is for κ = 0.1, 0.3, according to the boundaries in figure 5.2, in
the region with pattern formation and for κ = 0.5, 1 in the region, where

55

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

t

a
mu = 0.5, D = 0.6, kappa = 0.3

0 5 10 15 20 25 30 35 40 45 50
−0.5

0

0.5

1

1.5

t

a

mu = 0.1, D = 0.6, kappa = 0.3

Figure 5.5: The concentration of a for one space point (a(4 · δx, t)) is shown
in dependence of time. There are oscillations in the upper plot and no
oscillations in the bottom plot.

the solution is the homogeneous steady-state solution. If the boundaries are
correct, we should observe such a behaviour. The solutions of the reaction
diffusion system (5.1) - (5.2) for the 4 points is shown in figure 5.6.

The first two solutions in figure 5.6 are timely stable and spatially inho-
mogeneous pattern and the last two are homogeneous steady-state solutions.
Therefore the found boundaries are correct.

5.2 CMA Applied To A System With 2 Parame-

ters

The last reaction diffusion system considered in this project, is the following:

∂a

∂t
= D · ∆a + s · a2 − a (5.7)

∂s

∂t
= ∆s + µ · (1 − s · a2) (5.8)

The system discussed in the last section is for κ = 0 the same system
as the one given by equations (2.3) - (2.4), so they are quite similar. The
reaction diffusion system of this section is not similar to the system given
by equations (2.3) - (2.4), because it relies on a different dynamic. So the
results in this section are the most interesting ones of the whole project.

56

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.0325, kappa = 0.1

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.0325, kappa = 0.3

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.0325, kappa = 0.5

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1.5, D = 0.0325, kappa = 1

Figure 5.6: The concentration of a is shown in dependence of
the 1-dimensional spatial coordinate for the 4 points (µ, D, κ) ∈
{(1.5, 0.0325, 0.1), (1.5, 0.0325, 0.3), (1.5, 0.0325, 0.5), (1.5, 0.0325, 1)}.

We calculate the homogeneous steady-state solution, which is given by
the following two equations:

0 = s0 · a2
0 − a0 (5.9)

0 = 1 − s0 · a2
0 (5.10)

From equation (5.10) follows:

s0 =
1

a2
0

(5.11)

If we plug s0 into equation (5.9), we get a0 = 1 and therefore s0 = 1.
The second concentration s behaves different than h. So very likely the

fitness functions done so far are not suitable for such a problem, because
they use properties extracted from the concentration h. Because we do not
know the boundaries of this reaction diffusion system, we can not repeat the
same procedure done earlier. But we have some of the 32 properties, which
can be used here as well. All those, which are derived from a and properties
1 and 2. We can make a new fitness function, which takes into account only
the mentioned properties. The only things we need, are the 2500 simulated
points of chapter 2. We do the same procedure as for the function NN3,
but instead of using all 32 properties with transformations, we only use the

57

mentioned 17 properties with transformations. The threshold t is set to be
0.4. By doing so, 22 transformed properties remain. The resulting function
drawn for the 2500 simulated points is shown in figure 5.7. We call this
function NN3s.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

D

m
u

Figure 5.7: The NN with 22 of the 85 transformed properties drawn for the
simulated (µ, D) points

Now we use the CMA with the fitness function of figure 5.7. We simulate
84 points and set the fitness value of all points with D < 0 or µ < 0 to 10.
The initial starting point is always a vector ∈ R

2 uniformly distributed over
the range [0, 6] for the first component µ and uniformly distributed over the
range [0, 0.8] for the second component D. The initial coordinate wise search
standard deviation is set to 2 for µ and 0.3 for D. The options StopFitness
is set to 10−8 and MaxFunEvals to 1000. Because the homogeneous steady-
state solution a0 is the same as for the system (2.3) - (2.4), the problem of
different homogeneous steady-state solutions do not occur. So we do not
need to scale any properties. The points found are shown in figure 5.8.

By looking at figure 5.8, we can essentially extract 3 lines. Because we
are satisfied with an approximated course of the boundaries, we determine
them by eye. The extracted boundaries are shown in figure 5.9 together
with the 84 points.

We have to check whether the extracted boundaries are really boundaries
of the reaction diffusion system of equations (5.1) - (5.2). This is the case, if
the behaviour of the system is different on the one side of a boundary than
on the other. We do not verify this rigorously. We choose the 5 points of
figure 5.10 and determine the behaviour of the 5 solutions by eye.

58

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

D

m
u

Figure 5.8: The points found by the program cmaes.m for the fitness function
NN3s.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

D

m
u

Figure 5.9: The extracted boundaries drawn together with the 84 found
points.

The solutions are shown in figure 5.11. Solution 1 is clearly a timely
stable and spatially inhomogeneous pattern. Solutions 2 and 3 are homoge-
neous steady-state solutions. Solutions 4 and 5 are neither stable inhomo-
geneous patterns nor homogeneous steady-state solutions. If we draw the

59

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

8

D

m
u

Figure 5.10: The chosen 5 points and the extracted boundaries.

time course of solution 4 and 5 for one space point 5.12, we see that they
correspond to region Gb and Ga. So we can conclude, that the boundaries
were found well.

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 2, D = 0.05

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 2, D = 0.15

0 10 20 30 40 50 60 70 80 90 100
0

1

2
mu = 1, D = 1

0 10 20 30 40 50 60 70 80 90 100
−5

0

5
x 10

−23 mu = 0.5, D = 1

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

2
x 10

−21 mu = 0.01, D = 1

Figure 5.11: The concentration of a is shown in dependence of the 1-
dimensional spatial coordinate for the 5 points.

60

0 5 10 15 20 25
0

1

2

3

4

t

a

mu = 0.5, D = 1

0 5 10 15 20 25
0

20

40

60

80

100

t

a

mu = 0.01, D = 1

Figure 5.12: The concentration of a for one space point (a(4 · δx, t)) is
shown in dependence of time. There are oscillations in the upper plot and
no oscillations in the bottom plot.

61

Chapter 6

Conclusions

We were searching for the parameters, for which a reaction diffusion sys-
tem produces timely stable and spatially inhomogeneous patterns. This we
have done by solving an equivalent problem, namely to find the boundaries
between different solution regions of a reaction diffusion system. To find
the boundaries, we used a special Evolutionary Algorithm, the CMA. A big
difficulty of an EA is to find an appropriate fitness function, which is the
main part of this project. The fitness function was created with the help of
data from a reaction diffusion system with known boundaries. To this data
statistical procedures were applied. The procedures used are Least Squares,
Neural Networks and Classification and Regression Trees. It turned out,
that Neural Networks are best suited. The CMA was then applied to two
reaction diffusion systems with unknown boundaries. The boundaries were
reliably found, but in general only if one scales the properties. If a reac-
tion diffusion system has too much parameters, we would need too many
points to locate the boundaries. For three parameters we can let the i-th
(i ∈ {1, 2, 3}) parameter constant and search the boundaries in the plane
spanned by the other two parameters. This simplifies the task, but we can
only find the boundaries for a finite number of values of the i-th parameter.
For l parameters we can let l−2 parameters constant and search the bound-
aries in the plane spanned by the other two parameters. Let us assume, that
we choose for every of the l−2 constant parameters j values and we wish to
find the boundaries for all combinations. So we wish to find the boundaries
for jl−2 realizations of the constant parameters. Because we choose for every
of the l−2 constant parameters the same number of values, the resolution is
always the same. The quantity jl−2 grows exponentially with the number of
parameters l, which is not desirable and limits the number l. In other words,
the complexity of the problem of finding the boundaries grows exponentially
with the number of parameters l. Another limiting factor of l is the fact,
that we can only draw points in R

i for i ∈ {1, 2, 3}. Of course we can draw
the plane spanned by the other two parameters for every realization of the

62

constant parameters, but to keep the overview is very difficult and the num-
ber of such drawings grows exponentially with l. To find the boundaries for
5 parameters is already a difficult task and we think this is more or less the
limit. Now we would like to give an outline of what one can do in future:

1. One can try to find the boundaries of a system without both chemicals
a and h. So we can only use the properties 1 and 2. Do the properties
1 and 2 suffice to estimate the distance to the boundaries?

2. For some parameter values in the Gb region the simulation of the re-
action diffusion system takes very long. Can we estimate for these
parameter values the distance to the boundary based on shorter sim-
ulations?

63

Bibliography

[1] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.
Natural Computing Series. Springer, Berlin, Germany, 1. edition, 2003.

[2] A. Turing. The chemical basis for morphogenesis. Philos Trans R Soc
Lond, B, 237:37–72, 1952.

[3] A. J. Koch and H. Meinhardt. Biological pattern formation: from basic
mechanisms to complex structures. Rev mod Phys, 66(4):1481–1510,
1994.

[4] S. J. Ruuth. Implicit-explicit methods for reaction-diffusion problems in
pattern formation. J Math Biol, 34(2):148–176, 1995.

[5] H.-A. Loeliger. Signal and information processing: Modeling, filtering,
learning. Lecture notes, Signal and Information Processing Laboratory,
ETH Zürich. FS 2007.

[6] P. Bühlmann. Computational Statistics. Lecture notes, Seminar für
Statistik, ETH Zürich. Summer 2006.

[7] Nikolaus Hansen and Andreas Ostermeier. Completely derandom-
ized self-adaptation in evolution strategies. Evolutionary Computation,
9(2):159–195, 2001.

[8] N. Hansen and S. Kern. Evaluating the CMA Evolution Strategy on
Multimodal Test Functions. In X. Yao et al., editor, Conference on Par-
allel Problem Solving from Nature (PPSN VIII), volume 3242 of LNCS,
pages 282–291, Berlin, Germany, 2004. Springer.

64

