
Systems Optimization Group
Prof. Dr. Eckart Zitzler

Spring term 2008

Author: Tutors:

Samuel Welten Johannes Bader
Dimo Brockhoff

Semester Thesis

Parallelization of Evolutionary
Algorithms

Preface

Fifteen weeks ago I began to engage in the principles of evolutionary computation.
The acquirement of the required knowledge to do the investigations and to write
this thesis was a demanding but valuable experience. The field of evolutionary algo-
rithms is fascinating and the possibilities they offer are nearly boundless. Towards
the end of the time reserved for this thesis, I had to detain myself not to do more
interesting experiments, in order to have enough time for writing.

I would like to thank my two tutors Johannes Bader and Dimo Brockhoff for
their competent help in the literature research, the assistance in writing this thesis
and the clarifying discussions.

Zurich, June 5 2007

Samuel Welten

Contents

Abstract ix

1 Motivation 1

2 Basic Definitions 3
2.1 Evolutionary Algorithms . 3
2.2 Multi-Objective Optimization Problems 4
2.3 The Hypervolume Indicator . 5

3 Parallel Evolutionary Algorithms 7
3.1 Master-Slave . 7
3.2 Island Models . 8

3.2.1 Migration Topology: . 9
3.2.2 Migration Strategy: . 9
3.2.3 Migration Interval: . 10
3.2.4 Migration Size: . 10

3.3 Fine Grained Parallel Evolutionary Algorithms 10
3.4 Hybrid Parallel Evolutionary Algorithms 11
3.5 Parallel Multi-Objective Evolutionary Algorithms 11

3.5.1 Migration in Parallel Multi-Objective Evolutionary Algorithms 11
3.5.2 Hypervolume Based Migration Strategy 12

4 Adapting the PISA Framework 15
4.1 Structural changes to the protocol 16
4.2 The Controller Module . 16

4.2.1 Create the Needed Directories and PISA Files 17
4.2.2 Start the Islands Using Condor or SSH 17
4.2.3 Migrating the Individuals During the Run 17
4.2.4 Collecting the Results . 19

5 Experiments 23
5.1 Settings . 23
5.2 Migration Topology . 25
5.3 Migration Strategy . 25

iv Contents

5.4 Number of Islands . 26
5.5 Migration Size . 27
5.6 Development Over Time . 28
5.7 Application to a Real World Problem 29
5.8 Superlinear Speedups . 31

6 Conclusion 37
6.1 Future Work . 38

A List of Abbreviations 43

B Parallelizing an Existing PISA Module 45
B.1 Necessary Changes to the Variator 45
B.2 Necessary Changes to the Selector 47

C Using the Controller 49
C.1 Compiling and Running the Controller 49
C.2 The Controller Configuration File . 49

List of Figures

2.1 A state graph displaying the sequence of an evolutionary algorithm. 4
2.2 The hypervolume (grey) of a two objective minimization problem

with the individuals (blue dots) and the reference point (red dot). . 5

3.1 Different common island topologies: a) ring, b) torus, c) random . . 9
3.2 a) clustering based assigning to island (cluster centers in red), b)

cone separation based assigning to islands 12
3.3 The hypervolume of three individuals and the particular contributions 13
3.4 An example of a hypervolume based migration 13

4.1 Part 1 of the state graph of the extended PISA protocol 20
4.2 Part 2 of the state graph of the extended PISA protocol 21

5.1 The effect of different topologies on the hypervolume of the population 25
5.2 The effect of different migration selection and replacement strategies

on the hypervolume of the population, including the performance of
a serial EA . 27

5.3 How the number of islands influences the migration, if the islands are
arranged in a torus topology. The numbers on the arrows indicate
how man individuals are migrated in each direction. 28

5.4 The effect of different number of islands on the hypervolume of the
population . 29

5.5 The effect of increasing the migration size without the proposed
adaption on the hypervolume of the population 30

5.6 The effect of increasing the maximal migration size on the hypervol-
ume of the population, using the hypervolume based adaption of the
migration size . 31

5.7 A comparison of the development of the hypervolume over 200 gen-
erations between the panmictic model and a 4 island model 32

5.8 The population of the island model nearly completely dominates the
panmictic population after the same number of generations 33

5.9 A comparison of the execution time and the hypervolume of a serial
EA and an island model, using the HypE selector. 34

vi List of Figures

5.10 A comparison of the execution time and the hypervolume of a serial
EA and an island model, using the IBEA selector. 34

5.11 A comparison of the execution time and the hypervolume of a serial
EA and an island model, using the HypE selector in sampling mode. 35

List of Tables

5.1 The different island models used for the experiments 28
5.2 The configurations for the two different runs of the wireless sensor

network evolutionary algorithm . 30
5.3 The configurations for the time measurement experiment 33

B.1 The structure of the population file 46

C.1 Parameter names and values of the controller configuration file . . . 50

Abstract

The following work investigates the effects and implications of parallelizing multi-
objective evolutionary algorithms. In the scope of this work an island model was
implemented and a new hypervolume based migration strategy for multi-objective
island models is proposed. Island models using this migration strategy led to sig-
nificantly better results than accordant serial evolutionary algorithms in the same
number of generations and with the same total population size. Additionally, the
migration size can be adapted automatically using this method. Under certain cir-
cumstances the island model running just on one single-core processor is faster than
the normal evolutionary algorithm.

Die folgende Arbeit untersucht die Auswirkungen und Folgen der Parallelisierung
Evolutionärer Algorithmen für die Mehrzieloptimierung. Im Rahmen dieser Arbeit
wurde ein Inselmodell implementiert und eine neue, Hypervolumen-basierte Mi-
grationsstrategie für die Mehrzieloptimierung mit Inselmodellen wird eingeführt.
Inselmodelle mit dieser Migrationsstrategie führten zu signifikant besseren Resul-
taten als die entsprechenden seriellen Evolutionären Algorithmen in der gleichen
Anzahl Generationen und derselben Gesamtpopulationsgrösse. Zusätzlich kann mit
dieser Methode auch die Migrationsgrösse automatisch angepasst werden. Unter
gewissen Umständen ist das Inselmodell sogar mit nur einem single-core Prozessor
schneller als der normale Evolutionäre Algorithmus.

Chapter 1

Motivation

In the sixties several scientists around the world began independently of each other
to do research on algorithms which are inspired by the biological evolution. These
algorithms attracted a lot interest because they offer a black box approach to solve a
broad variety of optimization problems without explicit knowledge of the problem.
The success of these evolutionary algorithms (EA) grew with the computer industry,
because more powerful computers allowed to run more complex EAs.

Nowadays, evolutionary algorithms are used for all types of different optimiza-
tion problems. Be it to create plans of how to charge a container ship [1] or for
the protein structure prediction in chemistry [2]. These highly complex and mostly
multi-objective problems need a lot of computation power. The availability of multi-
core processors and big computer clusters led to the development of parallel evo-
lutionary algorithms which can run concurrently on several processors or cores.
For single-objective optimization problems this was achieved fast but for the more
complex and therewith more computation intensive multi-objective problems, an
efficient parallelization is still an issue.

This thesis investigates the parallelization of multi-objective evolutionary algo-
rithms on the example of island models. A general framework for EAs is extended to
run island models in the scope of this work. Additionally a new migration strategy,
which should make parallel multi-objective evolutionary algorithms more efficient,
and a method to adapt the migration size automatically, are proposed.

The structure of the thesis is as follows: chapter 2 introduces the concepts of
evolutionary algorithms, multi-objective optimization problems and the hypervol-
ume indicator. It is followed by a chapter which describes the different possibilities
to parallelize evolutionary algorithms. Subsequent to this, the implementation of
an island model in an existing EA-framework is documented. This implementation
is used to study the effects of the parallelization and especially of the proposed
migration strategy. These experiments and their results are described in chapter 5.

Chapter 2

Basic Definitions

2.1 Evolutionary Algorithms

Biological evolution consists of three main principles: selection, recombination and
mutation. The natural selection, also known as survival of the fittest, makes sure
that individuals which are inefficient, weak or not well adapted to the environment
don’t survive. Recombination is the process of combining the genotypes of indi-
viduals and creating a new one. The third principle of evolution, the mutation, is
the randomness, which is the reason the offspring is not an exact recombination of
the parents but with a certain possibility parts of the genotype are changed ran-
domly. These principles allowed the development of a big variety of creatures which
adapt their appearance and survival strategies better to the environment in every
generation.

The simplicity of the principles of biological evolution have led to the desire
of imitating this method and using it for general optimization problems. In order
to apply it to general mathematically formulated problems, a few changes have to
be done (see Figure 2.1). A population consists not of creatures but of solutions
to the problem one wants to solve with the evolutionary algorithm. The genotype
of these individuals somehow represents the solutions of the problem as a vector
of properties of the individual (decision vector). The set of all possible solution
genotypes is commonly called the search-space. To perform the selection, a criterion
has to be defined, which states how strong and therewith survivable an individual
is. In the simplest case this is one objective function which assigns each individual
a real-valued fitness, based on its decision vector. The selection is split up in two
parts: the mating selection is accountable for the choice of the parents of the next
generation and the environmental selection determines the set of individuals which
survive, based on the fitness value.

4 2 Basic Definitions

Using an evolutionary algorithm, many optimization problems can be solved
without explicit knowledge of the problems structure. However, the more is known
about the problem, the more specific and efficient the individual representation and
the recombination operation can be done and therewith, the evolutionary algorithm
converges faster to the optimum.

Figure 2.1: A state graph displaying the sequence of an evolutionary algorithm.

2.2 Multi-Objective Optimization Problems

The above description of the selection method is bounded to the case where only
one objective function has to be optimized. Though in most real world problems,
several objectives have to be optimized at the same time. These problems are called
multi-objective optimization problems (MOOP). For example the design of a CPU
is aimed at producing a processor which is as fast as possible, as small as possi-
ble and as cheap as possible. One can easily see it is impossible to optimize all
objectives at the same time. The fastest processor design will not be the same as
the cheapest processor design. Trade-offs between the objectives are common for
multi-objective optimization problems. This leads to the problem that in a general
case an individual is better in one objective than another individual but is worse in
a different objective and the individuals cannot be compared in the same way as in
the single-objective optimization problems. That is why in multi-objective problems
not only one optimal solution is searched but a set of solutions, which are the best
trade-offs between the objectives. An individual which is superior in all objectives
than another individual dominates this individual. The set of individuals with the
best trade-offs is called the Pareto front. An individual belongs to the Pareto front
if it is not dominated by another individual.

The optimization of a multi-objective problem can also be considered as the
search for the optimal Pareto front.

2.3 The Hypervolume Indicator 5

2.3 The Hypervolume Indicator

In the general case, two populations of multi-objective evolutionary algorithms can-
not easily be compared, as some individuals of one population may dominate indi-
viduals of the other population and vice versa. But especially when the efficiency of
an evolutionary algorithm should be improved, a measurement method for multi-
objective populations becomes indispensable. A generic indicator to compare pop-

Figure 2.2: The hypervolume (grey) of a two objective minimization problem with
the individuals (blue dots) and the reference point (red dot).

ulations, called hypervolume indicator, was proposed by Eckart Zitzler and Lothar
Thiele and is used very often nowadays [3]. The hypervolume indicator measures the
volume between the Pareto front of a population and an arbitrary reference point.
An example of a hypervolume in a two-objective minimization problem is depicted
in Figure 2.2. One of the appreciated properties of the hypervolume indicator is,
that the search for the optimal Pareto front is equal to the maximization of the
hypervolume [4].

Chapter 3

Parallel Evolutionary
Algorithms

The increasing complexity of problems solved with evolutionary algorithms (EA)
and the availability of big computer clusters and multiprocessor systems lead to
a growing importance of parallel evolutionary algorithms (PEA). Two aspects of
PEAs are of special interest: on the one hand they are faster than serial EAs in
terms of execution time and on the other hand they can be more resistant against
getting stuck in local optima, which can cause a faster convergence to the global
optimum for multimodal problems [5].

Parallel evolutionary algorithms can be classified in four different types: single
population master-slave, multiple populations, fine grained and hierarchical com-
binations [6, 7]. These approaches to parallelization are very different in terms
of hardware requirements and efficiency. The most important difference to non-
parallel EAs is that, except for the master-slave approach, the population is split
up in smaller subpopulations, also called demes.

3.1 Master-Slave

As in most evolutionary algorithms the fitness evaluation of the individuals is the
most computation intensive part, it is self-evident to distribute this operation to
different processors. The master works on the same population as the serial EA
would, but delegates the fitness evaluation of an individual to another processor.
After this evaluation, the fitness value is written back to a shared memory, or is
communicated through message passing, which allows the master to read the values.
The environmental selection and the mating selection is done by the master process.

Master-slaves models can be implemented in two different ways: synchronous
and asynchronous. In the synchronous model the master delegates the fitness eval-
uations to the slave processors and does this until the fitness of every individual of
the population has been computed. Thereafter, it performs the selection and the
variation. By contrast, the master of an asynchronous master-slave model delegates

8 3 Parallel Evolutionary Algorithms

the fitness computations and doesn’t wait for the whole population to be evaluated.
The newly evaluated individuals are directly added to the population and undergo
selection and variation even if not the entire population is evaluated. The results of
a synchronous master-slave parallelization don’t differ from the results of a serial
EA, because the performed algorithm is the same [6]. Unlike to the synchronous
model, the asynchronous model produces different results, due to the algorithmic
changes. In the optimal case the expected runtime decays nearly linearly with the
number of deployed processors. In a real world application the speedup will be
smaller because the selection process is not parallelized and there is communication
overhead.

3.2 Island Models

One can observe in nature that the overall diversity is maintained through isolation,
meaning that mating and environmental selection happen separately for each sub-
population. In nature this isolation is due to geographical constraints like valleys
and islands, which delimit the mobility of the individuals. As this concept of several
small subpopulations (also called demes), helped the biota to develop, it has been
ported to evolutionary algorithms, where it is called island models (IM). Island
models split up the population and the isolation of the demes is achieved by run-
ning a separate EA on each subpopulation. Parallelization comes in, because this
different islands can easily be run on several computers at the same time. Though
as complete isolation of the islands would be disadvantageous, from time to time
individuals have to be exchanged between the subpopulations. This step is called
migration. A well balanced migration lets the information of good individuals pass
among the islands but helps also to preserve diversity by isolation of the different
islands. In comparison to normal EAs, this differentiation of the subpopulations
can be advantageous over the case with just one big population (panmictic EA),
because the problems search space is explored more evenly and the overall diver-
sity helps to fight population stagnation [8]. Additionally there have been reports
that island models could reduce the overall computational effort in comparison to
panmictic EAs [5]. The causes for these astonishing observations are not fully un-
derstand. However, as island models are not a simple parallelization of the normal
evolutionary algorithm computations, but change how the algorithm works, one can
expect qualitatively different results from an island model than from a panmictic
EA. One explanation for these speedups is an additional selection pressure, which
can be introduced by the migration, leading to a faster convergence (see chapter 5).

Migrating individuals in a island model is a highly non trivial action. Several
parameters like numbers of individuals to migrate, selection and replacement strat-
egy or island topology have a significant influence on the convergence speed and the
selection pressure [5, 9]. The different issues concerning the migration of individuals
between the islands are described in the next four subsections.

3.2 Island Models 9

Figure 3.1: Different common island topologies: a) ring, b) torus, c) random

3.2.1 Migration Topology:

The topology in which islands are arranged is an important parameter, as the speed
at which information travels through the network of islands depends on it [8]. The
most common topologies described in scientific papers are: ring, random, torus and
fully connected. A topology can be represented by a directed graph, where each node
stands for an island and an arrow is a migration of individuals in this direction.
Figure 3.1 depicts three graphs of common topologies. The diameter of a graph
and therewith of a topology is the maximum distance (minimal path length) of any
two nodes. Ring, random and torus all have different diameters, leading to variable
information diffusion speed. The diameters of the topologies described below are
depending on the number of islands n.

• In the ring topology each island receives individuals from the preceding island
and gives individuals to the succeeding island. Its diameter is O(n).

• A topology with a smaller diameter, O(
√

n), is the torus, meaning the islands
are placed on a grid and each island exchanges individuals with the island in
the north, south, west and east. This grid is folded into a torus, by connecting
the upper and lower edge and the left and right edge of the grid.

• The next common topology, with diameter O(log(n)), is the random topology.
Each time a migration takes place, for each island a migration partner is
chosen uniformly at random among the other islands.

• In a fully connected topology, as the name suggests, every island exchanges
individuals with all the other islands. It is of diameter O(1), which corresponds
to the fastest possible information diffusion speed between the islands.

3.2.2 Migration Strategy:

A migration strategy consists of two parts. The first part is the selection of individ-
uals, which shall be migrated to another island. The second part is to choose which
individuals are replaced by the newly obtained individuals.

10 3 Parallel Evolutionary Algorithms

The most common strategies to select individuals for exportation are to choose
the best individuals or to choose them randomly. Analog to the selection, there
are two replacement strategies: to replace the worst individuals or just random
individuals [5]. In the case of a one dimensional optimization problem the ranking
of individuals can easily be done, for example according to their fitness. Using a
defined ranking method, these four migration strategies are common:

• Select the best individuals, replace the worst individuals.

• Select random individuals, replace the worst individuals.

• Select the best individuals, replace random individuals.

• Select random individuals, replace random individuals.

3.2.3 Migration Interval:

In order to distribute information about good individuals among the islands, mi-
gration has to take place. This can either be done in a synchronous way every
nth generation or in a asynchronous way, meaning migration takes place at non-
periodical times. In synchronous models the influence of the migration interval has
been studied by several researchers [9, 5, 8]. It is commonly accepted that a more
frequent migration leads to a higher selection pressure and therefore a faster con-
vergence. But as always with a higher selection pressure comes the susceptibility to
get stuck in local optima [8].

Another property which is influenced more or less by the migration interval is
the overall execution time. Depending on the selection and replacement strategy, the
subpopulation size and the migration size, it takes a significant time to perform the
migration and therefore, a lower migration interval means a higher parallelization
overhead.

3.2.4 Migration Size:

A further important factor is the number of individuals which are exchanged. Its in-
fluence has been studied, however, only for the single objective case [9, 5]. According
to these studies the migration size has to be adapted to the size of a subpopula-
tion of an island. When one migrates only a very small percentage, the influence
of the exchange is negligible but if too much individuals are migrated, these new
individuals take over the existing population, leading to a decrease of the global
diversity.

3.3 Fine Grained Parallel Evolutionary Algorithms

The fine grained parallel Evolutionary Algorithm (FGPEA) is, like the island model,
based on splitting up the population in several subpopulations. But unlike to island

3.4 Hybrid Parallel Evolutionary Algorithms 11

models, where the population is split up into a few subpopulations, it is split up
into many, very small demes. In the ideal case, a subpopulation consists of only one
individual [10]. These small aggregations of individuals are commonly placed on a
two or three dimensional grid. The environmental selection as well as the mating
selection of a deme uses only the local neighboring subpopulations. In this way
the selection pressure is reduced in comparison to the panmictic case and it takes
a certain time, depending on the topology used, for the information to travel the
network of demes. The selection pressure and the speed of information flow can be
adjusted by changing the size of the neighborhood of a deme. This means, similar
to the island model, the FGPEA does not just differ in execution time to the serial
EA but is also different in an algorithmic sense.

3.4 Hybrid Parallel Evolutionary Algorithms

Hybrid parallel evolutionary algorithms are hierarchical combinations of the paral-
lelization techniques mentioned above. For example Lin, Goodman and Punch used
an island model, in which each island was a master-slave model, to compute the
design of laminated composite beams [11].

Another, similar hybrid model was used for protein structure prediction. Several
different islands evolve on a master machine, which distributes the fitness evalua-
tions to slave computers [2].

3.5 Parallel Multi-Objective Evolutionary Algorithms

The broad possibilities of evolutionary algorithms and their high computational
effort motivated a lot of research on parallelizing single objective EAs. However,
the parallelization of multi-objective EAs received less attention. Because of the
high availability of multi-processor systems, mostly master-slave models were used
to solve multi-objective optimization problems.

For example a study of a parallel MOEA has been done by Coello and Sierra
[12], who used a master-slave model with variable sized subpopulations on two test
functions.

3.5.1 Migration in Parallel Multi-Objective Evolutionary Algo-
rithms

A special problem concerning the parallelization of MOEAs with island models
is the selection and replacement strategy of the migration. Opposed to the single
objective case, where individuals can easily be ranked according to their fitness,
there is no straight forward definition of better and inferior individuals for multi-
objective problems.

The issue of how the individuals should be distributed among the island is
an open research problem. Recent approaches let the islands focus on a part of

12 3 Parallel Evolutionary Algorithms

Figure 3.2: a) clustering based assigning to island (cluster centers in red), b) cone
separation based assigning to islands

the objective space. This means individuals which are closer to each other in the
objective-space are more likely to be on the same island. Streicher, Ulmer and Zell
designed and implemented an island model and studied it on several test problems
[13]. To assign the individuals to the islands, they used the k-Means clustering
algorithm in the objective space and in the search space (see Figure 3.2 for a visu-
alization). Their experiments showed that a clustering based island model performs
not necessarily better than the standard island model. However, on one test prob-
lem they achieved significantly better results than the normal IM.
A geometric scheme to divide the objective-space was proposed by Jürgen Branke
et al.. The so called cone separation uses a reference point and demarcation lines
to decide which individuals are placed on which island, as depicted in Figure 3.2.

A drawback of these techniques is the open issue what to do if an island creates
an individual, which is outside its part of the search space: Delete it or migrate it
to another island?

In order to avoid this problem and to search in a different direction, a new
approach to assign the individuals to the islands and to migrate them, is presented
here.

3.5.2 Hypervolume Based Migration Strategy

A common goal for MOOPs is to search for an equally distributed population along
the Pareto front. A good measure of how well a population is distributed in the
objective-space is the hypervolume [3]. Therefore a hypervolume based migration
strategy is proposed, which should allow every island to search the whole objective-
space. The scheme of the hypervolume based migration is explained below.

The individuals of a population contribute more or less to the total hypervol-
ume of the population. Figure 3.3 shows the hypervolume of three individuals in

3.5 Parallel Multi-Objective Evolutionary Algorithms 13

Figure 3.3: The hypervolume of three individuals and the particular contributions

a two dimensional minimization problem with an arbitrary reference point on the
upper right. Areas which have the same color as the individual indicate the portion
of the hypervolume an individual accounts for. To find the worst individuals of an
island, which shall be replaced by the migrants, the entity contributing the least to
the hypervolume have to be found. In Figure 3.3 this would be the blue individual.
Analog to the worst individuals the best individuals can be defined. The best indi-
viduals, concerning the migration from one island to another, are the ones which
increase the hypervolume of the receiving island the most, if the new individuals
replace the worst. An example of a hypervolume based migration can be seen in

Figure 3.4: An example of a hypervolume based migration

Figure 3.4: First the worst individual of the receiving island (island 2) is computed,
which is in this case the blue one. As a next step the possible migration candidates
of island 1 are examined and one can see, that the green individual of island 1 would
lead to the largest increase of the hypervolume if the blue one of island 2 has to be
replaced.

Depending on the migration size, the hypervolume of an island is decreased by
the migration operation. This leads to the idea, that one should migrate individuals
only as long from one island to another, as the hypervolume of the receiving island

14 3 Parallel Evolutionary Algorithms

is increased by this operation. The effect of such a rule would be an automatic
migration size adaptation. As the migration size is a difficult parameter to set in
island models, this would be a useful simplification.
This method of automatic migration size adaptation was implemented and its effect
tested in the scope of this thesis.

When using the contribution of an individual to the hypervolume as a ranking
method, one has to think about that niching is emphasized in the objective-space,
but not necessarily in the decision-variable-space [14]. If diversity in the decision-
space is favored for a specific problem, another ranking method, emphasizing niching
in the decision-space may be used.

Chapter 4

Adapting the PISA Framework

As multi-objective evolutionary algorithms often have parts which are problem
independent, reusable modules for EAs would be a great help. This was the moti-
vation for Stefan Bleuler et al. to specify an interface which separates the problem
dependent from the problem independent part. In order to allow the reuse of mod-
ules on different platforms in combination with different programming languages, it
was decided to be platform- an programming language independent. It is called ”A
Platform and Programming Language Independent Interface for Search Algorithms”
(PISA) [15].

PISA separates the operations of an evolutionary algorithm in two parts: one
is called the variator, which performs the variation and mutation operations, the
other one is called the selector and performs the environmental- and mating selec-
tion. This allows to combine the problem dependent part (variator) with different
well known selectors like SPEA2 or NSGA2 without having to reprogram them. To
keep the communication platform independent, it is done through plain text files.
An exact description of the protocol can be found in [15].

Out of the parallelization models presented in chapter 3, the island model seems
to be the most promising, because it is flexible concerning the underlying computer
infrastructure and the changes to the algorithm pledge not only time savings but
also a faster convergence. In addition, the communication overhead is smaller than
in the other models and, as communication is done over the file system in PISA,
this variant will be faster than the others (fine grained and master-slave). These
are the reasons why PISA was extended by the possibility to run island models and
the extended protocol was implemented in the scope of this thesis.

16 4 Adapting the PISA Framework

4.1 Structural changes to the protocol

The logical and consistent method to control the two processes of a PISA run
(variator and selector) is to insert a new program, which is responsible for the
execution of the two modules and the migration of individuals from one island to
another.

The introduction of this new programm, called controller, requires adaptions of
the PISA protocol. The changes to the protocol had to be made with these goals
in mind:

1. The property of platform and programming language independence should be
kept.

2. The changes to the existing modules should to be minimal and simple.

3. The protocol should allow a broad variety of island models.

In the existing PISA protocol the control flow is represented as a finite state graph,
using the states 0 to 11. The synchronization of the processes is accomplished
through these states. This method will also be used to implement the island model.
The states and the transitions between them are shown in Figure 4.1 and Figure
4.2. The elements introduced for parallelization are marked red, the original PISA
state graph is colored black.

Writing out the population to a file is only scheduled at the end of a run in the
original PISA protocol. But the migration of individuals between two islands calls
for an import/export functionality of the variator and the selector, which can be
triggered from the outside. Therefore, the variator has to check at each generation
in a file if the controller module requested a migration. In case of a migration,
the variator writes out the whole population to a file and sets the new state 12,
signaling the population was successfully exported to a file. From this moment on
the variator pauses its execution and waits for the state file to change. Meanwhile the
controller exchanges individuals between the islands, which are in state 12 according
to a specified topology and migration strategy. When the controller completed the
migration it sets the involved islands to state 13. This signals the variator to import
the population from a file and write a new initial population file containing the
indexes and objective values of the individuals. This file is read by the selector in
state 14. After this, the migration is completed and the evolutionary algorithm can
continue normally with state 2.

4.2 The Controller Module

In the following section the design of the controller module, which implements the
protocol changes from the previous section, is described. The task of the controller
is to offer the selector and variator an environment which is nearly the same as in

4.2 The Controller Module 17

the panmictic case in order to keep the amount of necessary changes to the program
codes of these modules at a low level. To achieve this, the procedure is subdivided
into the following steps:

1. Create the needed directories and PISA files.

2. Start the islands using Condor [16] or SSH.

3. Migrate the individuals during the run.

4. Collect the results when all islands have finished.

These steps are described in detail in the following subsections.

4.2.1 Create the Needed Directories and PISA Files

The easiest way to provide a clean environment for each island is to let them run
each in their own directory. Therefore, the controller creates a directory for each
island and copies the executables of the selector, the executable of the variator
and the PISA configuration file to it. The configuration files of the variator and
the selector are not only copied, but also if they contain a line specifying a ran-
dom seed, this value is changed randomly to allow the islands different starting
points. Additionally a file named migration condition is created in each directory.
It contains the condition for the variator under which it exports the population.
Normally this condition is a generation number, but could also be another criterion,
like stagnation, that can be checked by the variator.

4.2.2 Start the Islands Using Condor or SSH

The computer infrastructure at the ETH Zurich offers two possibilities to start
processes remotely on different machines. The first possibility is to use Condor [16],
a software to distribute large, computation intensive processes on idle machines.
The second possibility is to login via SSH on each machine, start the processes
and log out. Both variants have their advantages and drawbacks. Condor is an
uncomplicated program, which runs discretely only on computers which are idle.
This discreteness can be a problem when each island is a separate condor job and one
of them is interrupted, for example by a user login in the same machine. The problem
is this case is that certain island topologies require all islands to run synchronously,
meaning if one island is not ready it holds back all the others. Starting a process
via SSH is much faster than executing a condor job, however the machines have to
be specified by hand and adding to the cluster or removing compute server from
the cluster is more complicated than in the case of Condor.

4.2.3 Migrating the Individuals During the Run

The available settings and parameters of an island model, described in chapter
3, influence the behavior of the island model a lot. In order to experiment with

18 4 Adapting the PISA Framework

these parameters on multi-objective problems, the user must be able to specify
them. Therefore, the following parameters can be set in the parameter file of the
controller:

Migration topology: To test the influences of different diameters and therewith
the varying speed at which information travels through the network, the controller
is able to arrange the islands in three common topologies: torus, ring and random.
It can be expected that an IM which is using the random topology converges the
fastest, as it adds the highest selection pressure due to its small diameter [8].

Migration Strategy: Using the hypervolume based migration method the con-
troller offers four migration strategies:

• Best to worst

• Random to worst

• Best to random

• Random to worst

In addition to these well known strategies, a fifth migration policy is added to the
controller: When this mode, called Best of all to worst, is chosen the search for
the best individual is not only done on one island but on all islands. This equals
a topology of a fully connected graph with variable migration size. The Best of all
to worst migration policy seems to offer a faster convergence than the strategies
described above, but has the drawback of bad scalability. The computational effort
of the migration is in this case O(n2), whereas the other migration policies have
complexity O(n), with n being the number of islands.

Migration Interval: As the migration interval is an important factor, which
influences the diversity of the overall population and the selection pressure on the
islands, the migration interval can be specified in the controller configuration file
(see appendix C).

Migration Size: Several papers emphasize the importance of a well chosen mi-
gration size. In single objective evolutionary algorithms it should be adapted to the
subpopulation size, the island topology and the desired selection pressure. Espe-
cially if too big migration sizes are used a lost of diversity is reported. To avoid loss
of diversity the controller uses the concept of the adaptive migration size described
in chapter 3.

4.2 The Controller Module 19

4.2.4 Collecting the Results

The last step the controller does, is to collect the results of the different islands
when they have terminated. This is done by reading the PISA output files of the
islands, getting the objective values, and writing them to a global output file.

Once the controller is configured, the island model can be started with one
command, and the final population is written to one file, which means that one can
run a parallel version of the evolutionary algorithm with only a little more effort
than running the non-parallelized version, but with a significant saving of execution
time.

20 4 Adapting the PISA Framework

Figure 4.1: Part 1 of the state graph of the extended PISA protocol

4.2 The Controller Module 21

Figure 4.2: Part 2 of the state graph of the extended PISA protocol

Chapter 5

Experiments

The following experiments were made to investigate the influence of the parameters
of the island models on the behavior and performance of multi-objective evolution-
ary algorithms. Furthermore, the proposed hypervolume based migration policy is
analyzed. Concerning that, the concept of the adaptive migration size is tested and
compared with the results of a constant migration size.

This chapter is organized as follows: first, the settings of the experiments and the
test problem are described. The next section deals with the influence of the island
topology, succeeded by a section which compares the different migration policies
available in the controller module. Then the effects of the number of islands in
the island model, a constant migration size and an adaptive migration size are
experimentally investigated. At the end the development of the hypervolume over
time is analyzed and the speedup of the parallelized version is tested.

5.1 Settings

To test the island model, a multi-objective benchmark problem should be used. The
DTLZ test problem suit describes several MOPs with a well known Pareto front
[17]. In the following experiments the DTLZ2 problem, described below, was used.

f1(~x) = (1 + g(~xM))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)cos(xM−1π/2),
f2(~x) = (1 + g(~xM))cos(x1π/2)cos(x2π/2) · · · cos(xM−2π/2)sin(xM−1π/2),
f3(~x) = (1 + g(~xM))cos(x1π/2)cos(x2π/2) · · · sin(xM−2π/2),

...
fM−1(~x) = (1 + g(~xM))cos(x1π/2)sin(x2π/2),

fM (~x) = (1 + g(~xM))sin(x1π/2),
0 ≤ xi ≤ 1, for i = 1, 2, ..., n,

~xM = (xM , xM+1, ..., xn)

with g(~xM) =
∑

xi∈ ~xM

(xi − 0.5)2

24 5 Experiments

The functions fi have to be minimized and at the Pareto front they satisfy the
constraint:

M∑
i=1

(fi)2 = 1

DTLZ2 allows to set the number of decision variables in the vector ~x and the number
of dimensions freely. For the experiments, the number of dimensions M was set to
2 and the number of decision variables n to 300. These settings were determined
using the original PISA framework with the goal that 500 generations take around
300 seconds.

Three state of the art selectors were adapted to be able to run island models:
HypE [18], IBEA [19] and SPEA2 [20]. For the experiments, HypE was chosen
because it leads to better distribution in the objective-space than IBEA and works
better in higher dimensional problems than SPEA2. If not mentioned differently,
the following settings for the island model were used:

• 4 islands

• 90 individuals per island

• torus topology

• best to worst migration strategy (hypervolume based)

• adaptive migration size of maximally 12 (3 in each direction)

• migration interval of 50 generations

• 500 generations per run

To evaluate the results and to be able to compare them, a performance measure has
to be chosen. Instead of just visually comparing the Pareto fronts found by evolu-
tionary algorithms, a few performance measurement methods appropriate to com-
pare different populations of multi-objective problems were developed by Knowles,
Thiele and Zitzler [3, 21]. The populations of the experiments are compared using
the hypervolume indicator, as it indicates the dominance of one population over
another with a strictly larger indicator value and the maximization of the hyper-
volume implicates the search for a population which contains all Pareto-optimal
objective vectors. The hypervolume indicator is the only known multi-objective
measure with these properties. Furthermore, in some cases statistical tests on the
significance were done using the Kruskal-Wallis analysis and the Conover Inman
post hoc tests with a significance level of 5% [22].

All tests were executed on AMD 64 bit quad-core PCs from the computer cluster
of the Computer Engineering and Networks Laboratory at ETH Zurich. Each test
was run 30 times with identical parameter settings to allay effects of randomness.

5.2 Migration Topology 25

5.2 Migration Topology

Island models with islands arranged in the three implemented topologies should
result in qualitatively different results due to different information diffusion speed.
This effect can be seen in Figure 5.1. It seems, that the performance benefits from

Figure 5.1: The effect of different topologies on the hypervolume of the population

regular information diffusion, because the ring topology and the torus topology
lead to a better performance than the random topology. However, in the case of 4
islands the torus and ring topology are densely connected but for a higher number
of islands, the diameters of these graphs increase faster than the diameter of the
random graph. Therefore, the search for the best topology would have to be redone
for a large number of islands.

Interestingly, the topology does not influence the statistical dispersion of the
hypervolume values of several runs strongly but the medians differ significantly.

5.3 Migration Strategy

The study of the migration strategy is of special interest because the approach pre-
sented in this work differs conceptually from the hitherto selection and replacement
policies of parallel MOEAs. Most of them are focused on splitting up the search
range by assigning each island a different part of the objective space. This was
done for example by using clustering algorithms for the migration policy [13] or
by using cone separation [23]. The hypervolume based approach proposed in this
thesis works not by dividing the search space but by letting each island search on
the whole objective space.

26 5 Experiments

Erick Cantú Paz observed that the selection and replacement strategies influence
strongly the selection pressure [5]. The migration policies can be ranked by the
selection pressure they add. According to [5], the order of the migration policies,
sorted by decreasing selection pressure, looks like this:

1. Select the best individuals, in terms of hypervolume contribution, for migra-
tion and replace the worst individuals with the smallest hypervolume contri-
butions.

2. Select the best individuals, in terms of hypervolume contribution, for migra-
tion and replace random individuals.

3. Select random individuals for migration and replace the worst individuals
with the smallest hypervolume contributions.

4. Select random individual for migration and replace random individuals.

For a higher selection pressure one can expect a faster convergence to the Pareto-
front and therewith a higher hypervolume. Figure 5.2 shows the boxplots, for the
comparison of the migration strategies, of the hypervolume of the population after
500 generations. Additionally to these four well known strategies, the Best of all
to worst (see chapter 4) was tested too and the hypervolume of the panmictic evo-
lutionary algorithm is included as a reference. The effect of the increased selection
pressure can be seen very well. The first three strategies are statistically signifi-
cantly better than the serial EA. The two remaining migration policies perform
significantly worse. This means that the additional selection pressure is not high
enough to compensate the drawback of the smaller population.

5.4 Number of Islands

The impact of an increasing number of islands is important to study, as this could
show potential limits of the parallelization. Although it may be possible to run
island models with a large number of islands this seems not reasonable. Splitting up
the population in very small demes is common in fine grained parallel evolutionary
algorithms and should be tested in the context of such models.

To have the same number of fitness evaluations and therewith to permit a fair
comparison, the populations should have the same number of individuals. Therefore,
the population was chosen to be 360 individuals which can be split up in several
equally sized subpopulations. The migration sizes were chosen to be approximately
10% of the size of a subpopulation as suggested in [9]. Table 5.1 lists the island
numbers, subpopulation sizes and migration sizes. The rightmost column gives an
impression of how the information diffusion varies by specifying the total number
of migrated individuals. One can see in Figure 5.4 that the hypervolume of the final
population generally increases with the number of islands. However, in the case of
6 islands and in the case of 8 islands the performance is worse. This may be due

5.5 Migration Size 27

Figure 5.2: The effect of different migration selection and replacement strategies on
the hypervolume of the population, including the performance of a serial EA

to the torus topology, of which the underlying grid is sometimes a rectangle with
unequal length sides and sometimes a square, depending on the number of islands.
This can lead to different information diffusion among the islands. Another issue is
that the migration size can only be varied in steps of 4 and the minimal migration
size in a torus topology is 4 (one in each direction). The model with 5 islands has a
subpopulation size of 72 leading to a migration size of 8 individuals per island (2 in
each direction). 5 islands migrating 8 individuals per migration interval is a total
of 40 exchanged individuals. The island model with 6 islands has a subpopulation
size of 60 individuals and a migration size of 4 individuals per island. The total
number of migrated individuals of all islands is 24. This decrease is also observed
with 8 islands for the same reason. This issue of the torus topology is displayed in
Figure 5.3 for five, six and nine islands.

One can conclude that a higher information transfer leads to better results. An
increase of the number of islands influences the performance positively, if the total
number of migrated individuals is not reduced.

5.5 Migration Size

Figure 5.5 shows the interrelation of the resulting hypervolume and the exponen-
tially increasing migration size. It is noteworthy that the hypervolume values in-
crease for migration sizes of up to 16 individuals but then get worse.

28 5 Experiments

Number of islands Subpopulation
size

Migration size Total nr. of migrated
individuals

1 360 0 0
2 180 16 32
3 120 12 36
4 90 8 32
5 72 8 40
6 60 4 24
8 45 4 32
9 40 4 36
10 36 4 40
12 30 4 48

Table 5.1: The different island models used for the experiments

Figure 5.3: How the number of islands influences the migration, if the islands are
arranged in a torus topology. The numbers on the arrows indicate how man indi-
viduals are migrated in each direction.

This is due to the individuals, which are migrated independent of whether they
increase the hypervolume of the subpopulation of the target island or not. Migrating
too many individuals leads to a regression of the evolution and decreases the overall
diversity.

The experiments using the proposed automatic migration size control can be
seen in Figure 5.6. The hypervolume values for big migration sizes indicate that
this works better. Higher migration sizes offer the possibility to migrate many in-
dividuals, if one island is much worse than the others, but the adaptation makes
sure that the high migration size is not disadvantageous in terms of decreasing the
target islands hypervolume.

5.6 Development Over Time

Another interesting observation is how the superior performance of the island model
over the serial EA can be explained. To test this, the hypervolumes of the population

5.7 Application to a Real World Problem 29

Figure 5.4: The effect of different number of islands on the hypervolume of the
population

and the subpopulations were computed at each generation. Figure 5.7 displays the
development of the Pareto fronts. The graph displays the mean of the hypervolume
indicator over 10 runs. In this experiment migration took place every 10 generation,
which is clearly visible in the plot as a hypervolume boost. Noteworthy is also that
the island model seems to constantly start with a worse population than the serial
EA. The reason for this is that the hypervolume is calculated the first time after one
generation. As the hypervolume improvement of the panmictic model is much bigger
in the first generation than the increase of the island model, it looks like the starting
points would be different. But measurements confirmed the initial populations have
the same mean hypervolume.

5.7 Application to a Real World Problem

As we have seen, the results of the hypervolume based migration strategy and of
the migration size adaptation work well on a synthetic test problem. But are these
principles also applicable to a real world multi-objective optimization problem?

At the Computer Engineering and Network Lab at the ETH Zurich Matthias
Woehrle et al. recently developed an evolutionary algorithm which tries to find a
set of optimally placed wireless sensor nodes [24]. Optimally placed in this case
means the minimization of the number of nodes to cover a specified area and at
the same time the minimization of the mean transmission error rate. An individual
in the wireless sensor network EA consists of the number and the positions of the
wireless sensor nodes. From these positions and the given scenario (walls etc.) the

30 5 Experiments

Figure 5.5: The effect of increasing the migration size without the proposed adaption
on the hypervolume of the population

transmission error rate is calculated. These computations are very time consuming
and a fitness evaluation of an individual can easily take 20 seconds or more. An
execution of the EA therefore lasts from several hours to some days, depending
on the population size and the number of generations. The fact that the fitness
evaluation is very costly and one expect a considerable time saving, makes it ideal
to investigate the advantages of the implemented island model on a real world
problem.

The wireless sensor network EA was executed with the configurations depicted
in Table 5.2. One can also see from Table 5.2 the time the execution of the EA
took. The island model is 3.35 times faster than the standard EA. Normally one

Parameter Panmictic EA Island model
Nr. of islands 1 4
Individuals per island 40 10
Generations 30 30
Migration interval - 2 generations
Migration size (adaptive) - 9 individuals
Island topology - torus
Total time 10245 seconds 3053 seconds
Total hypervolume 6.866 7.121

Table 5.2: The configurations for the two different runs of the wireless sensor net-
work evolutionary algorithm

5.8 Superlinear Speedups 31

Figure 5.6: The effect of increasing the maximal migration size on the hypervolume
of the population, using the hypervolume based adaption of the migration size

would assume that an island model with 4 islands is nearly 4 times faster than the
non-parallelized version. The observed slowdown has two reasons: On the one hand
this is the migration which demands some computations from the controller and on
the other hand the islands are migrated synchronously which caused waiting times
of over 100 seconds for some islands. The migration in this setting averages around
56 seconds of which only 6 seconds are really needed to execute the migration – the
rest is waiting time. For EAs such as the wireless sensor network EA, in which the
computation time of the fitness is depending on the individuals and therefore can
be different, an asynchronous island model would be faster.

Qualitatively the island model lead to better results, like one can see in Figure
5.8. The Pareto front of the IM nearly completely dominates the population of the
serial EA. Concerning this, the speedup is even more than 3.35 as the panmictic
model would need more time to reach a similar Pareto front.

5.8 Superlinear Speedups

By looking more precisely at the execution times from the wireless sensor network
experiment one can find an interesting fact: the execution of the island model took
3053 seconds, of which 28% seconds were either waiting for the other islands to be
ready for a migration or to actually perform the migration, but the time used for
the actual migration is maximally 10 seconds per migration interval.

32 5 Experiments

Figure 5.7: A comparison of the development of the hypervolume over 200 genera-
tions between the panmictic model and a 4 island model

If one could eliminate this waiting time, by either using an asynchronous model
or choose a problem in which the time, the fitness evaluation takes, is independent
of the individual, the island model could be more than n times faster on n islands.

Several observations of speedups of this kind have been reported [5, 25, 26]. The
speedup sn of a parallel algorithm is defined by:

sn =
T1

Tn

where T1 is the execution time of the non-parallelized algorithm, Tn the execution
time of the parallelized version. If sn > n, one commonly refers to this as a super-
linear speedup. In the case of parallel evolutionary algorithms this definition is not
very clear as Tn could be the time used to reach the same number of generations
or to achieve the same result as the non-parallelized version. Van Veldhuizen et al.
propose that for a fair comparison both algorithms should produce identical results,
which means in the case of evolutionary algorithms an identical expected solution
quality [7].

To efficiently compare the runnning times, the parallelized model ran on just
one single-core machine, using threads, to exclude the influence of different archi-
tectures. A linear speedup would in this case be if both executions take the same
time (because the islands run all on the same processor). A superlinear speedup
would mean a shorter execution time for the island model. The details of the two
compared algorithms can be seen in Table 5.3. It is visible from Figure 5.9 that
the parallelized algorithm is not only faster but also produces better results. Both

5.8 Superlinear Speedups 33

Figure 5.8: The population of the island model nearly completely dominates the
panmictic population after the same number of generations

phenomena have different causes: the shorter overall execution time is caused by the
bad scalability of HypE for large population sizes, which means the computational
effort of HypE increases nearly quadratically with the population size in a two
objective problem. As a consequence dividing the population in 9 subpopulations
diminishes the time needed by the selector more than 9 times. The better quality
of the results is caused by the previously discussed, added selection pressure from
the migration strategy.

Two further tests have been performed to analyze how these improved results
and the time savings depend on the selector. For these two tests the configuration of
the island models was identical to the previous one, only the selectors were different.
The results of the runs with IBEA as selector can be seen in Figure 5.10 and the

Parameter Panmictic EA Island model
Problem DTLZ2 DTLZ2
Nr. of islands 1 9
Individuals per island 360 40
Generations 500 500
Migration interval - 50 generations
Migration size (adaptive) - 30 individuals
Island topology - torus

Table 5.3: The configurations for the time measurement experiment

34 5 Experiments

Figure 5.9: A comparison of the execution time and the hypervolume of a serial EA
and an island model, using the HypE selector.

runs with HypE in sampling mode (see [18]) are shown in Figure 5.11.

Figure 5.10: A comparison of the execution time and the hypervolume of a serial
EA and an island model, using the IBEA selector.

IBEAs execution time increases quadratically with the population size, which
causes the island model to be faster in this case, too. The difference of the final
hypervolume value is smaller than when using HypE but it is still significantly
higher.

For the last test, HypE was set to compute the selection in sampling mode. As
a consequence of this, the computational effort of it increases only nearly linearly
with the population size. This leads to a faster execution of the serial EA compared
to the island model. The slowdown of the IM is mainly caused by the migration
overhead. Although it seems there is no superlinear speedup in this case, an in-
teresting calculation can be done: the mean hypervolume of the final island model
population is 1563.52. Further tests showed that the panmictic EA would have to
run for 896 generations to achieve a mean hypervolume of 1563.52. 896 generations

5.8 Superlinear Speedups 35

Figure 5.11: A comparison of the execution time and the hypervolume of a serial
EA and an island model, using the HypE selector in sampling mode.

take with the serial EA approximately 2223 seconds, which would make the serial
EA again to be slower than the IM (mean 2134 seconds) to achieve the same results.

As a conclusion one can say, that it may take less time for an island model to
reach the same results than for a serial EA, even if all processes are executed on one
single core PC, mainly due to the selection pressure of the migration strategy and
the scalability of the selectors. Therewith, superlinear speedups with island models
are possible.

Chapter 6

Conclusion

Parallelizing evolutionary algorithms helps to make use of the parallel architectures
and computer clusters, which become more and more widespread. This increase
of available computation power is strongly needed, as the evolutionary algorithms
employed nowadays can have very long execution times.

Out of the several common parallelization strategies, this thesis concentrated on
the investigation of island models applied to multi-objective EAs. The platform- and
programming language independent framework for evolutionary algorithms PISA,
was extended by the possibility to run island models.

Instead of using existing migration strategies for the island model, a new ap-
proach was proposed. It is based on maximizing the hypervolume of each island and
is therewith complementary to the commonly applied niching techniques, because
all islands cover the whole objective-space. With this migration strategy, a new way
to automatically regulate the migrations size was introduced.

Experiments with the island models showed how evolutionary algorithms can
profit from parallelization and which parameters influence the performance. The
proposed migration strategy led to superior results of the island models compared
to serial EAs in the same number of generations and with an equal total population
size. The adaptive migration size takes care that the information flow between the
islands is appropriate and and the difficult decision about the migration size does
not have to be made manually.

To demonstrate that the island model does not only work on test problems but
can also be applied to real world problems, the performance of a parallelized version
of the wireless sensor network EA was compared to the serial version.

The superior results of the island models motivated the last tests, which an-
alyzed the behavior of island models in non-parallel architectures with different
selectors. Due to the scalability of the selectors, higher hypervolume values can be
achieved in less time if island models are used instead of the serial EA.

38 6 Conclusion

6.1 Future Work

The experiments with the wireless sensor networks EA disclosed the need for a
asynchronous island model, in order to maximize the time savings for evolution-
ary algorithms with variable expensive fitness evaluations. An asynchronous model
would be significantly faster on such problems and the property of not having to
wait for all islands to be ready, would make it more resistant against errors caused
by the failure of a single island.

As the hypervolume based migration strategy works well, it could be generalized
to be used with an arbitrary performance indicator. This means a receiving island
could replace the individuals which contribute the least to this performance mea-
surement and they would be replaced by the individuals from other islands which
increase the performance measurement the most.

Considering the results of this thesis, there is a big potential in the parallelization
of multi-objective evolutionary algorithms. However, as long as the implications of
the parallelization are not understood theoretically, there is still a lot of interesting
research to do in this field.

Bibliography

[1] J. Bose, T. Reiners, D. Steenken, and S. Vos. Vehicle dispatching at seaport
container terminals using evolutionary algorithms. In HICSS, 2000.

[2] A. A. Tantar, N. Melab, E. G. Talbi, B. Parent, and D. Horvath. A parallel
hybrid genetic algorithm for protein structure prediction on the computational
grid. Future Gener. Comput. Syst., 23(3):398–409, 2007.

[3] E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algo-
rithms - a comparative case study. In PPSN V: Proceedings of the 5th Inter-
national Conference on Parallel Problem Solving from Nature, pages 292–304,
London, UK, 1998. Springer-Verlag.

[4] M. Fleischer. The measure of Pareto optima. Applications to multi-objective
metaheuristics. In C. M. Fonseca et al., editors, Conference on Evolutionary
Multi-Criterion Optimization (EMO 2003), volume 2632 of LNCS, pages 519–
533, Faro, Portugal, 2003. Springer.

[5] E. Cantú-Paz. Migration policies, selection pressure, and parallel evolutionary
algorithms. Journal of Heuristics, 7(4):311–334, 2001.

[6] G. Winter, D. Greiner, and B. Galvan. Parallel evolutionary computation.
CEANI (Evolutionary Computation and Applications) Division of the Institute
of Intelligent Systems and Numerical Applications in Engineering (IUSIANI),
University of Las Palmas de Gran Canaria, Spain, 2005.

[7] D. A. Van Veldhuizen, J. B. Zydallis, and G. B. Lamont. Considerations in En-
gineering Parallel Multiobjective Evolutionary Algorithms. IEEE Transactions
on Evolutionary Computation, 7(2):144–173, 2003.

[8] M. Tomassini. Spatially Structured Evolutionary Algorithms: Artificial Evo-
lution in Space and Time (Natural Computing Series). Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[9] Z. Skolicki and K. De Jong. The influence of migration sizes and intervals on
island models. In GECCO ’05: Proceedings of the 2005 conference on Genetic
and evolutionary computation, pages 1295–1302, New York, NY, USA, 2005.
ACM.

40 Bibliography

[10] S. Park, J. Kim, and C. Lee. Topology and migration policy of fine-grained
parallel evolutionary algorithms for numerical optimization. Taejon-shi, 305-
701, Republic of Korea, 2000. Dept. of Electrical Engineering,Korea Advanced
Institute of Science and Technology (KAIST).

[11] W. F. Punch, R. C. Averill, E. D. Goodman, S. Lin, and Y. Ding. Using genetic
algorithms to design laminated composite structures. IEEE Expert: Intelligent
Systems and Their Applications, 10(1):42–49, 1995.

[12] C. A. Coello Coello and M. R. Sierra. A study of the parallelization of a
coevolutionary multi-objective evolutionary algorithm. In MICAI, pages 688–
697, 2004.

[13] F.Streichert, H. Ulmer, and A. Zell. Parallelization of multi-objective evolu-
tionary algorithms using clustering algorithms. In EMO, pages 92–107, 2005.

[14] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley-
Interscience Series in Systems and Optimization. John Wiley & Sons, Chich-
ester, 2001.

[15] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A Platform and
Programming Language Independent Interface for Search Algorithms. In C. M.
Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003), volume 2632 of
LNCS, pages 494–508, Berlin, 2003. Springer.

[16] University of Wisconsin-Madison. http://www.cs.wisc.edu/condor, May
2008. Condor Project Homepage.

[17] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Test Problems for
Evolutionary Multi-Objective Optimization. In A. Abraham, R. Jain, and
R. Goldberg, editors, Evolutionary Multiobjective Optimization: Theoretical
Advances and Applications, chapter 6, pages 105–145. Springer, 2005.

[18] J. Bader and E. Zitzler. Hype: Fast hypervolume-based multiobjective search
using monte caro sampling. 2008. to appear.

[19] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective search.
In Xin Yao et al., editors, Parallel Problem Solving from Nature (PPSN VIII),
pages 832–842, Berlin, Germany, 2004. Springer-Verlag.

[20] E. Zitzler, M. Laumanns, and L. Thiele. Spea2: Improving the strength
pareto evolutionary algorithm. Technical Report 103, Gloriastrasse 35, CH-
8092 Zurich, Switzerland, 2001.

[21] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Switzerland, February 2006. revised
version.

http://www.cs.wisc.edu/condor

Bibliography 41

[22] W. J. Conover. Practical Nonparametric Statistics. J. Wiley, 3 edition, 1999.

[23] J. Branke, H. Schmeck, K. Deb, and M. Reddy. Parallelizing multi-objective
evolutionary algorithms: cone separation. In Congress on Evolutionary Com-
putation, volume 2, pages 1952–1957. IEEE, JUN 2004.

[24] M. Woehrle, D. Brockhoff, T. Hohm, and S. Bleuler. Investigating Cover-
age and Connectivity Trade-offs in Wireless Sensor Networks: The Benefits of
MOEAs. In Conference on Multiple Criteria Decision Making (MCDM 2008).
Springer, 2008. to appear.

[25] J. He and X. Yao. Analysis of scalable parallel evolutionary algorithms. IEEE,
JUN 2006.

[26] E. Alba. Parallel evolutionary algorithms can achieve super-linear performance.
Inf. Process. Lett., 82(1):7–13, 2002.

[27] ETH Zurich Systems Optimization. http://www.tik.ee.ethz.ch/sop/
pisa/, May 2008. PISA - A Platform and Programming Language Independent
Interface for Search Algorithms - Webpage.

[28] R. Gagnon. http://codeguru.earthweb.com/java/articles/366.shtml,
May 2008. Java code for the little endian - big endian conversion.

http://www.tik.ee.ethz.ch/sop/pisa/
http://www.tik.ee.ethz.ch/sop/pisa/
http://codeguru.earthweb.com/java/articles/366.shtml

Appendix A

List of Abbreviations

EA Evolutionary Algorithm
FGPEA Fine Grained Parallel Evolutionary Algorithm
IM Island Model
MOEA Multi-Objective Evolutionary Algorithm
MOOP Multi-Objective Optimization Problem
PEA Parallel Evolutionary Algorithm
SSH Secure Shell

Appendix B

Parallelizing an Existing PISA
Module

In order to use an existing PISA module with the controller software a few changes
have to be done. Modules which already contain these changes can be downloaded
from the PISA project Website [27] and can be used as a reference.

B.1 Necessary Changes to the Variator

The following things have to be added to the variator:

• Allow states 12 - 14

• Check migration file

• Add an export function

• Add an import function

• Add a state 13 function

Allow states 12 - 14 Most PISA modules check if the state read from the state
file is valid. Therefore they throw an exception if the state is bigger than 11. In
most implementations the upper bound of the state number has to be adjusted to
14 in the function read state() and in the function write state().

Check migration file Before entering state2 the file migration condition, which
is in the same directory as the executable, has to be opened for reading and inter-
preted as follows:

• If the first line of the file is of the form generation <integer> and the actual
generation count equals <integer> then

– write 0\n to the migration condition file

46 B Parallelizing an Existing PISA Module

Length Content
4 Bytes Length of Ind. 1 = N1

N1 Bytes Individual 1
4 Bytes Length of Ind. 2 = N2

N1 Bytes Individual 2
... ...

... ...
4 Bytes Length of Ind. α = Nα

Nα Bytes Individual α

Table B.1: The structure of the population file

– remove the individuals which are not in the arc file (In most modules
there’s a function with this functionality)

– call the export (see below) function

– set the state to 12 and write it to the state file

• If the first line equals the word migrate then

– write 0\n to the migration condition file

– remove the individuals which are not in the arc file (In most modules
there’s a function with this functionality)

– call the export (see below) function

– set the state to 12 and write it to the state file

Add an export function The export function writes the whole population to
two files. Both files lie in the same directory as the executable of the variator. One
file is a binary file and is named population. It contains the internal representation
of all individuals of the population. The other file, a text file, is named objectives
and contains the objective values of all the individuals in the population file in the
same sequence as in the objectives file.
The structure of the population file can be seen in table B.1. It contains the length
of the representation of an individual in bytes and after this the actual individual.
The length is a 4 byte integer in little endian notation (on x86 machines). This
is of special importance if java programs are involved, as the java virtual machine
normally stores integers in the big endian notation. A simple java algorithm for the
conversion between the two formats can be found at [28].
The objectives file consists of one line per individual. The objective values on one
line are in exponential format and are separated by whitespaces. A line is terminated
by a \n.

B.2 Necessary Changes to the Selector 47

Add an export function First the import function deletes the existing pop-
ulation. Then it reads the new population from the population file and the cor-
responding objectives from the objectives file. These individuals are added to the
new population. After importing all individuals from the files the PISA ini file,
according to the original PISA protocol, is written containing this new population.

Add a state 13 function This function does three things:

1. It reads the arc file according to the PISA specification.

2. It reads the sel file but the read individual indexes are not used.

3. It calls the import function.

The last thing to add is a branching to the state 13 function, at the loop where
state file is read and derived to the appropriate state function, has to be added. If
the state 13 function returns successfully state 14 has to be written to the state
file.

B.2 Necessary Changes to the Selector

The following things have to be added to the selector:

• Allow states 12 - 14

• Add a state 14 function

Allow states 12 - 14 Most PISA modules check if the state read from the state
file is valid. Therefore they throw an exception if the state is bigger than 11. In
most implementations the upper bound of the state number has to be adjusted to
14 in the function read state() and in the function write state().

Add a state 14 function The action of the function state 14 is very similar to
state 1. The only difference is that the population struct doesn’t have to be created.
The PISA ini file is read and the environmental and mating selection written to
arc and to the sel file respectively.
Additionally a branching to the state 14 function, at the loop where state file is
read and derived to the appropriate state function, has to be added.

Appendix C

Using the Controller

C.1 Compiling and Running the Controller

The controller source file has only standard C dependencies. It can be compiled
under Linux or Unix with the command:

make

After a successful compilation it can be run under Linux or Unix with the command:

./controller < param file name >

C.2 The Controller Configuration File

All parameter of an island model described in this thesis can be set in the controller
configuration file. Each line of it contains a parameter and the value of the param-
eter, separated by a whitespace. A line not beginning with a parameter name, is
ignored. Parameters, which are not essential for the execution, are set to standard
values by the controller, if they are not set in the configuration file. The names
and possible values (separated by commas) for the parameters are in Table C.1.
Compulsive parameters are bold.

<string>, <integer> or <float> mean the value can be an arbitrary string,
a positive integer or a positive floating point number. The controller allows only
to specify one executable file and one configuration file for the selector and for
the variator. If additional files or folders are necessary to execute the selector or
the variator and have to be copied in the directories of the islands, a shell script
should be written, which copies the according files or folders and after this exe-
cutes the selector/variator. The parameter which specifies the executable of the
selector/variator should be set to the name of this shell script.

50 C Using the Controller

Parameter Possible values Comment
pisa filenambase <string> The file name base of the

PISA configuration file
variator config file <string> Name of the configuration file

of the variator
selector config file <string> Name of the configuration file

of the selector
variator executable <string> Name of the executable file of

the variator
selector executable <string> Name of the executable file of

the selector
number of islands <integer> Number of islands of the is-

land model
output file <string> Name of the file where the fi-

nal population is written by
the variator

dirnamebase <string> Name base of the island direc-
tories

variator polling interval <float> The interval in seconds at
which the variator polls the
state file

selector polling interval <float> The interval in seconds at
which the selector polls the
state file

migration size <integer> Number of individuals mi-
grated in each direction

migration topology random, torus, ring Topology of the island model
migration type best to worst,

best to random,
random to worst,
random to random,
bestofall to worst

Set the migration strategy
(hypervolume based)

distribution type ssh 2 threads, con-
dor 2 threads, local

Defines if the threads are
started by SSH, Condor, or on
the local machine

ssh machines file <string> Name of the file containing all
names of the machines (sepa-
rated by newlines), which can
be used for the SSH execution
(without password prompt)

migration interval <integer> -
grid length <integer> Grid length of the torus in

case of torus topology
requirements <string> Additional requirements for

the Condor execution (see
condor documentation)

Table C.1: Parameter names and values of the controller configuration file

	Abstract
	Motivation
	Basic Definitions
	Evolutionary Algorithms
	Multi-Objective Optimization Problems
	The Hypervolume Indicator

	Parallel Evolutionary Algorithms
	Master-Slave
	Island Models
	Migration Topology:
	Migration Strategy:
	Migration Interval:
	Migration Size:

	Fine Grained Parallel Evolutionary Algorithms
	Hybrid Parallel Evolutionary Algorithms
	Parallel Multi-Objective Evolutionary Algorithms
	Migration in Parallel Multi-Objective Evolutionary Algorithms
	Hypervolume Based Migration Strategy

	Adapting the PISA Framework
	Structural changes to the protocol
	The Controller Module
	Create the Needed Directories and PISA Files
	Start the Islands Using Condor or SSH
	Migrating the Individuals During the Run
	Collecting the Results

	Experiments
	Settings
	Migration Topology
	Migration Strategy
	Number of Islands
	Migration Size
	Development Over Time
	Application to a Real World Problem
	Superlinear Speedups

	Conclusion
	Future Work

	List of Abbreviations
	Parallelizing an Existing PISA Module
	Necessary Changes to the Variator
	Necessary Changes to the Selector

	Using the Controller
	Compiling and Running the Controller
	The Controller Configuration File

