
Semester Thesis

Automating Worldwide Sensor Network Testing
David Frey; freyd@ee.ethz.ch

Spring 2008

Supervisor: Dr. Jan Beutel, j.beutel@ieee.org

Professor: Dr. Lothar Thiele, thiele@tik.ee.ethz.ch

Content
1 Introduction...1

1.1 Related Work...1
1.1.1 Wireless Sensor Network Testbeds..1
1.1.2 WSN Testbed Clients...7

1.2 Problem Setting..7
1.2.1 General Problem – What is missing...7
1.2.2 Specific Problem Statement – What is to be done...7

2 The Interface..8
2.1 Approach..8

2.1.1 Name..9
2.1.2 Notion of a Test Job...9

2.2 Operations..9
2.2.1 Get Testbed Description...9
2.2.2 Get Node List...11
2.2.3 Get Node Description...11
2.2.4 Submit Job..12
2.2.5 Get Job Status...13
2.2.6 Get Job Output...14

2.3 Error Handling...14
2.4 Authentication..14
2.5 Implementation..15

3 The Client..16
3.1 Requirements...16
3.2 Implementation..17

3.2.1 Configuration...17
3.2.2 Invocation...18
3.2.3 Output...19

3.3 Limitations...19
3.3.1 Special features..19
3.3.2 Multiple architectures..19

4 Integration in TinyOS Build System...20
4.1 Limitations...20

5 Summary..21
5.1 Future Work...21

6 References...22
7 Figures...23

1 Introduction

1 Introduction
Over the past few years, the area of sensor networks has seen great interest in research and
development. However, developing error free applications for sensor networks has proven to be
very hard [1]. One important piece in a successful development process is repeated and thorough
testing of the application and its building parts.

The problem of testing applications for sensor networks once again is not easy, because it includes
tasks on many different abstraction levels: programming of the application on several nodes,
executing the program in a realistic environment, gathering data during the test run and analysing it
afterwards. To levitate this tasks, sensor network testbeds were developed by different universities,
which automate most or all of these tasks.

These different implementations differ in many aspects: In their architecture, the hardware used, in
how much they automate and how they are configured. No known testbed actually automates the
complete testing process from programming over running to log acquisition from inside the
development environment. For the developer this signifies a substantial effort to set up each test run
on the same testbed, let alone the running the program on a different testbed implementation.

The aim of this work was to formulate a generic interface for sensor network testbeds which is
compatible with any known implementation and to implement it in a prototype. On the server side
the implementation was to be done for the JAWS Deployment Support Network developed here at
ETH Zürich and the client was to be a standalone program, able to connect to any testbed server
satisfying the presented interface.

1.1 Related Work

As mentioned before, the problem of testing applications for wireless sensor networks has been
addressed by several research groups, who developed hard- and software to support and automate
the process.

1.1.1 Wireless Sensor Network Testbeds

Wireless sensor network testbeds consist for one of a hardware architecture, connecting all nodes
and providing a means to at least program all of them. Then they usually include a set of software
tools to facilitate and automate recurrent tasks. As seen before, implementations differ widely in
their approach and the extent they automate tasks. We will present some common desired properties
of such a testbed and list a few examples.

1.1.1.1 Properties

A sensor network testbed automates the task of programming the target nodes. This is the most
important task, because in order to get useful results, test runs need to be conducted on a
sufficiently large number of nodes. Programming all these by hand is by no means efficient and
would cause developers to do as few test runs as possible.

A testbed provides an additional channel to the nodes (apart from the existing wireless channel).
This allows for introspection into the wireless network, without sending log messages over the
wireless link and thereby affecting the system. Ideally, this channel allows for logging messages
with synchronous timestamping, making it easy to analyse the chronological order of events.

1

1 Introduction

A testbed should keep track of the nodes connected to it. As the small sensor nodes are prone to
failure, the system needs to have an overview of the currently usable and not usable devices.

To allow for realistic testing scenarios, a testbed infrastructure should support dynamic
configuration changes. By switching off or powering on nodes during the test run, failure and
insertion of nodes can be simulated.

1.1.1.2 Features

As a starting point in this thesis, a small survey about currently existing wireless sensor network
testbeds was conducted. We are going to present the different features treated in the survey followed
by the results in tabular form. Three specific implementations will be described in somewhat more
detail. Documentations of these testbeds is usually spread over several publications or webpages
because most of these systems are in constant development. So if a feature is missing in the table,
this does not mean that it is not currently implemented, but only that we found no document
mentioning it.

Web Interface

A feature practically all testbeds implement is a web interface. It normally provides a status page
listing the currently connected nodes and information about software versions, last successful
communication and so on. This information is often visualized on a map, helping developers
planning their program tests. For some implementations, this interface also offers the ability to
interact with the testbed, i.e. programming nodes, switching them on and off or even scheduling a
test job.

The main advantage of this kind of interface is clearly the ease of use even for people not
acquainted with the application. The initial barrier to use a web interface is very low, given how
widely used the web is today. However, it is usually not possible to automate tasks carried out over
such an interface. This is especially painful for a task like testing, which should be done repeatedly
after every change to the software. Going through a lengthy point and click procedure for every
iteration will keep many developers away from testing their software regularely.

RPC Interface

While a web interface is aimed at humans as users, an RPC interface is meant to be used by
applications. Having an interface suitable for programming allows the implementation of testbed
clients which run locally on the developers machine and automate the task of testing an application.
Until now only very few testbeds actually implement such an interface, and for these that do it is
very technology specific, which hinders development of clients compatible with different testbed
implementations.

Logging

A crucial part of testing and debugging applications for sensor networks is the generation of log
files. A testbed can automate this task by providing the nodes with a channel on which they can
send logging messages and by storing them in a database. This is mostly done on a central server,
but depending on the testbed architecture, log collection can be done in a distributed fashion by
devices further down in the hierarchy, which in turn report to a central server. (See 1.1.1.3)

2

1 Introduction

Job Scheduling

While a testbed usually offers the automation of tasks such as reprogramming nodes, switching
them on and off and collecting their log output, a more higher level service they can offer is the
scheduling of complete test jobs. This includes two parts: On one hand side, the testbed server hast
automate the succession of programming nodes, switching them on, collecting log output and
terminating the test run. Thereby it eliminates the necessity of user interaction during such a test
cycle. On the other hand side, there needs to be a way to avert collisions in testbed use, for example
by allocating it for a certain user for a certain period, possibly in advance.

Scheduled Commands

In the notion of a test job, it can be possible to schedule commands to be sent to individual nodes
while a test is running. This could be used to inject data or turn nodes on or off, thereby making a
testing scenario more realistic.

Power Control

The ability to switch the power of certain nodes on or off during test execution adds the possibility
to simulate failure and emergence of single nodes. This is an important scenario, as in real life
conditions the small embedded sensor devices are prone to failure.

Power Logging

As wireless sensor networks are usually battery powered and low maintenance, they need to survive
a long time with minimal energy consumption. To make sure that applications comply with these
restrictions, some testbeds include the possibility to measure the power consumption of certain
nodes (normally not all). This gives the developer another source of feedback, aside from the
normal log messages.

Serial Port Forwarding

Many testbeds allow the developer to connect to the serial ports built into the sensor nodes over the
network using a serial forwarder. This is an almost real time channel which can be used to gather
information from the devices or send commands to them. For some testbeds however this is the
only way to acquire log messages, meaning the user himself has to connect to all nodes he is
interested in, a task which could be automated by the testbed. Connecting simultaneously to dozens
of nodes over serial network links is a tedious task that is left to the developer to automate.

Image Format

In the TinyOS world, two formats for the image files that are to be loaded on the sensor nodes are
prevalent: A binary ELF format (usually having an .exe extension) and a the Intel HEX format
(usually with the extension .ihex). They are equivalent descriptions of the programs, but depending
on the hard- and software used in a testbed, different implementations use one or the other.

3

1 Introduction

1.1.1.3 Examples

JAWS - Deployment-Support Network

The Deployment Support Network was developed at ETH Zürich and relies on the BTnode
plattform [2]. This device, also developed at ETH, is equipped with a Bluetooth radio which is used
by the testbed as the backbone channel. Each sensor (target) node that is part of the testbed network
is connected to a dedicated BTnode device. One 'GUI' BTnode is wired to a server PC, on which the
Java DSN server is runnig. Therefore the testbed is a distributed system, just as the applications
being tested on it. The BTnodes are also able to switch the target nodes' power supply, making it
possible to enable and disable nodes remotely [3].

The Bluetooth channel is used to distribute image files in the testbed network, to send commands to
single nodes and to gather log messages. Due to the nature of a wireless channel it is slower and less
reliable than the wired equivalent, but it proved perfectly usable for this kind of usage.

The server provides a low level XML-RPC interface, which has commands such as 'distribute an
image file in the network', 'flash a single node', 'turn the power of a node off' and so on and is hardly
documented. There exists a web interface which translates this programming level interface to a
graphical interface.

All log messages sent by the nodes are timestamped and saved in a database. Also the server keeps
track of the currently connected nodes. Users can either directly query the database to search for log
messages or use the RPC interface to fetch them automatically.

MoteLab

Developed at Harward University, MoteLab is “a set of software tools for managing a testbed of
Ethernet-connected sensor network nodes.” [4] The sensor nodes are each connected to an Ethernet
interface board, which provides a TCP forwarder for the serial port. A server then controls them
over the network. It runs several separate pieces of software:

● A web interface lets users asses the status of the network and schedule jobs. Each user has a
certain time quota for pending test jobs. (For the concept of a test job see 2.1.2.) All
scheduled jobs are stored in a database.

● A job daemon is responsible for fetching jobs from the database when they are due, setting
up the testbed hardware according to the job description and starting logging. After the test
run has completed, cleans up and frees the resources for the next job.

4

Figure 1: Architecture of the DSN testbed.

1 Introduction

● A Java logging program parses the log messages sent by the nodes over the serial links and
stores them into the database.

A user acquires her log data by directly querying the database through a web interface. She also has
the possibility to directly connect to the serial port of any node during her test job.

TWIST

TWIST, a testbed developed at Technische Universität Berlin, features yet another architecture.
Between the testbed server and the sensor nodes, it introduces a layer of so called 'super nodes',
which are embedded 32-bit devices running a part of the testbed logic. These super nodes are
connected to the server over an Ethernet backbone and feature one or more USB ports. The nodes
are connected to these super nodes by means of USB hubs, which by the USB Hub Specification
2.0 support power switching [5].

Commands and application images are sent
by the server through the Ethernet backbone
to the super nodes, which then, in parallel,
forward them to the nodes. Thanks to the
power switching abilities of the USB hubs,
single nodes can be remotely turned on and
off.

5

Figure 2: Architecture of the MoteLab testbed.

Figure 3: Architecture of the TWIST testbed.

Name Institution Scheduled
commands

Serial port
forwarding

Power
control

Job
Scheduling

Logging RPC
interface

Web
interface

Power
logging

Backbone Image
format

DSN [6] ETH Zürich x x local/central x x x Bluetooth hex

MoteLab
[4]

Harvard x x central x x Ethernet binary

TWIST
[5]

TU Berlin x x central x USB /
Ethernet

?

Tutornet
[7]

USC x ? ? USB /
WLAN

?

Mirage [8]
[9]

Berkeley /
Intel

x (x) x ? ?

Motescope
[10]

Berkeley x x Ethernet ?

Kansey
[11]

Ohio State x Ethernet ?

Table 1: Results of the survey on wireless sensor network testbeds.

 6

 1 Introduction

1 Introduction

1.1.2 WSN Testbed Clients

1.1.2.1 DSNTargetLogger

The DSNTargetLogger is a Java program developed by Mustafa Yücel at ETH Zürich for the XML-
RPC interface of the DSN server. It automates the task of distributing one image file in the testbed
network and flashing it on a customizable number of nodes. It can then turn on the nodes for the
duration of a test run and collect log messages while the application is running. It even features
scheduled execution of DSN commands and switching nodes' power supply.

In short, this program can execute a test job according to a job description and collect the log output
completely unattended. Opposed to the MoteLab implementation of test jobs, here the control logic
is in the client, which gives the server low level commands of what to do and queries it about the
success of operations, while MoteLab features a job daemon as a part of the server for this task.

DSNTargetLogger is a good attempt to completely automate running application tests on wireless
sensor network testbeds. While it does the automation part well, it is very inflexible in that it only
works with the application specific interface of the DSN testbed.

1.2 Problem Setting

1.2.1 General Problem – What is missing

As our little survey has shown, sensor network testbeds automate the task of testing applications for
wireless sensor networks in various aspects and to various degrees. For a testing facility to be useful
and used by developers, it is important however that the complete testing process can be automated
from the command line. A client is needed that can with one invocation unattendedly execute a
complete test run and return the results generated by the testbed.

Also to allow interoperability between testbeds and clients of different implementations, they need
to support a common interface. Such an interface would need to be very generic, so that each
existing implementation can fulfil it but yet flexible enough to support realistic test scenarios.

1.2.2 Specific Problem Statement – What is to be done

The Problem statement for this semester thesis consists of two main parts:

As a first part, a generic interface for wireless sensor network testbeds is to be developed. It has to
be as generic that it can be implemented by any existing testbed, but extendible to support features
not present in all implementations.

The second part consists of implementing this interface for the DSN testbed server. This will
include adding a new interface and implementing the necessary control logic presently not existent
in the server. Also a client is to be implemented that connects to any testbed implementing the new
interface. While it should work on any testbed, it will be tested against the DSN server.

7

2 The Interface

2 The Interface

2.1 Approach

One of the main tasks of this semester thesis was to develop a generic interface for communication
with a sensor network testbed. This was gone about by analysing the traditional way of
programming such a testbed.

1. Almost independently of the implementation, a first step would consist of getting to know
the testbed. One would usually browse the website or a similar source of information about
the testbed to find out of which nodes it consists and where they are located, to get an idea
of what scenarios could be run.

2. After developing the testing scenario (set of
nodes, on which the application should be run,
time to run it, ect.), one would go about
executing it on the testbed in question. The
Motelab implementation actually allows to enter
these parameters directly, to be read and
executed automatically by a demon controlling
the testbed. On DSN, you would either use
DSNTargetLogger or the web interface, both of
which send the testbed server a sequence of low
level commands, causing it to upload the image
files, distributing them in the network and
flashing target nodes.

3. While the test scenario is running, the user
might appreciate some kind of feedback about
what is happening. The different
implementations offer a number of different
sources of information: from the live log output
of the server, over a simple list of nodes which
is currently in use, to forwarded data from the
serial port of each node. In general, it would be
reassuring to at least know if the test job is
actually running, or information about possible
errors.

4. After execution, the user expects to get back
data for her to analyse. Be it logging
information produced by the nodes or the result
of power consumption measurement. Most
testbeds store logging output in a database which the user can query, others rely on the user
to connect to the nodes serial port and collect data himself.

For each basic step in this communication, one or maybe two standardised operations were defined.
The resulting interface is very compact but still offers great flexibility to configure a testbed to ones
needs.

8

Figure 4: Simplified communication
between client and testbed

TestbedClient

Hello

Description

Submit Job

OK

Job Status?

Status

Job Output

Logs

List Nodes

List

2 The Interface

2.1.1 Name

Just as every component the interface needed a name, even if it was only to name the Java classes
and source files. Because a describing name would have gotten overly long and an acronym didn't
seem appealing, I decided to use a fictional name. While brainstorming the different possibilities
my eyes wandered over the desktop and found my trusty PET water bottle. Originally a container of
apple juice, it carries the label RAMSEIER (a Swiss apple juice brand). So the interface came to its
name Rams.

2.1.2 Notion of a Test Job

While searching for a generic view on the communication with a sensor network testbed, we
deemed it appropriate to define the concept of a test job. This notion aggregates all information that
is needed to program a testbed for one complete test run. Firstly, it contains the timing information,
that is when the job will start and for how long it will run. Secondly it also contains the program
images to be flashed onto the nodes. To allow arbitrary architectures in the testing scenarios, a test
job can contain a free number of such images, each of which has a list of nodes associated, on
which it is to be programmed.

Using this concept, one could for example easily construct a description of a test run for a harvester
program with one application programmed to normal sensor nodes which gather and forward data to
a special sink node running a different program, processesing the data.

2.2 Operations

We go about listing the different operations of the Rams Interface. For each of these, a textual
description is given, along with input and outputs, if applicable, and the possible error conditions
that could occur while executing. Special data structures that were defined in the scope of the
interface are also described under the method they are used in.

The data types of the different fields in these data structures are deliberately chosen to be very
generic, they are all either strings, integers, timestamps or lists thereof. This imposes the least
possible requirements to a technology the interface is to be implemented in. Also many data
structures carry meta information like name and description. While these are not mandatory, they
often make your life easier when managing a larger collection of such items, be it on the client side
in a developers repository of testing scenarios or on the server side, where data is stored in a
database.

2.2.1 Get Testbed Description

This operation is usually called first in any communication with a testbed. It provides general
information about the testbed, its location, features and status, which could help troubleshooting
possible problems that turn up later. It is also a good way to test if authentication works, where
applicable.

9

2 The Interface

Description Retrieves a description of a testbed, providing general information about location,
features and status.

Input None

Output Testbed Description Custom data structure, see below.

Error
conditions

None

Testbed Description Data Structure

Field Name Data type Description

Description String A very general description of the specific testbed. Should contain the
actual implementation (such as DSN, Motelab), and the location of the
deployment.

Contact
Information

String Contact information of the person responsible for this testbed. Should
contain at least an e-mail address or a telephone number.

Features List of
Strings

Each entry in this list describes a feature supported by this testbed. This
is a simple way to communicate possible extensions to the described
interface. An implementation could add more features to this list, which
would signal a client that maybe additional commands are supported.
Known entries:
IMAGE_FORMAT_HEX testbed supports node images in hex

format
IMAGE_FORMAT_BINARY testbed supports node images in

binary format
SCHEDULED_EXECUTION testbed supports scheduling of test

jobs
IMMEDIATE_EXECUTION testbed supports immediate

execution of test jobs
Possible extensions:
POWER_PROFILING testbed supports measurement of

nodes' power consumption

Server Time Timestamp The current time of the server. Possible start times of scheduled jobs
(see below) will always refer to this time. This should be no issue, as
normally UTC is used for all implementations, but it helps to prevent
obscure problems while scheduling jobs.

Status String The current status of the testbed. Must be one of the following:
AVAILABLE the testbed is ready to be used
IN_USE the testbed is currently in use and

does not allow more users
ERROR the testbed is in an error state and

cannot be used

10

2 The Interface

2.2.2 Get Node List

When constructing a test scenario for a specific application, one needs at least an overview of how
many nodes are available and what their identifiers are. This operation therefore lists all nodes that
should be available. This means that if there are some failing nodes in the testbed, they will be
returned as well. This makes the interface more flexible, in that it is also possible to retrieve a list of
failing nodes, however generating a list of working nodes is a bit more involved, as you will have to
use the next operation to make sure each node is actually usable.

Description Retrieves the list of nodes the testbed disposes of. The returned node
identifiers are of data type string and are not restricted to a certain format.
Also they don't need to be globally unique, but only in the scope of the
testbed in question. Possible choices for identifiers would be IP-addresses,
MAC-addresses or other custom IDs.
Note, that not all nodes returned by this method are usable in for a test job,
some might be disabled or in an error state. See the next operation to gather
more information.

Input None

Output Node List List of strings, each uniquely identifying a node
in the testbed

Error conditions None

2.2.3 Get Node Description

To gather more information about single nodes, this operation returns a detailed description
containing most importantly the state of the device (if it is programmable at all) but also a host of
other properties, such as hard- and software or special features, if the testbed knows this
information.

Description Retrieves detailed information about a specific node, data that could be useful
to develop a testing scenario or monitor the testbed status.

Input Node ID Unique identifier of a node.

Output Node Description Custom data structure, see below.

Error conditions Node non-existent

Node Description Data Structure

Field
Name

Data type Description

ID String Unique identifier of the node. Used to identify the node in the testbed.

Hardware Strings Name of the hardware platform of the sensor node. Possible values would
be 'TinyNode', 'Tmote', etc.

Software String Software name and version running on the node, if applicable. On DSN
this is used to report DSN software version of the BTnodes.

Status String The current status of the node. Must be one of the following:
AVAILABLE the node is ready to be used

11

2 The Interface

IN_USE the node is functional but currently in use
DISABLED the node is disabled by the testbed administrator and

cannot be used
REMOVED the node was removed by the testbed administrator and

cannot be used
DEFECTIVE the node is not functional for any reason

Features List of
Strings

Each entry in this list describes a feature supported by this node.
Currently no special node features are defined, but one could for example
think of an implementation which supports power profiling only for
certain nodes. This could be indicated by adding the following entry to the
feature list of these nodes:
POWER_PROFILING node supports power consumption

measurement

Location String Description of the nodes location. Again, no specific format is required,
this could be a room number or coordinates or even a free textual
description.

Last Seen Timestamp Point in time where the testbed server communicated with the node for
the last time. Useful to identify nodes that are in some kind of error state.

Text String Free text to add additional information to the node description.

2.2.4 Submit Job

The most important part of every test run is to program the testbed with the information needed to
run a test job. This notion was discussed before, and in this operation a data structure containing all
necessary information is sent to the testbed, which then is in charge to execute the test run
autonomously.

Description Programs the testbed with a certain test job. Depending on the start time of the
latter, it is to be executed right away or scheduled for later execution.

Input Job Description Custom data structure, see below.

Output Job Identifier Unique identifier of the submitted Job. Has data type String,
but will usually just be an integer value.

Error conditions Testbed not available at the specified time
Testbed does not support scheduled execution
Wrong image format (binary/hex)

Job Description Data Structure

All information needed to run a complete test cycle is contained in this one data structure.

Field Name Data type Description

Name String Short name of the test job.

Description String Textual description of the test job. Not required, but often useful
when managing a larger number of test scenarios.

12

2 The Interface

Start Time String Point in time to start the execution of the test job. May be the string
literal 'now' to denote immediate start of the execution or a point in
time in ISO 8601 format[12].

Duration Integer Amount of time to run the experiment, in seconds.

Images List of Image
Records

Custom data structure, see below

The implementing technology should allow more fields to be added to this (and possibly other) data
structures. This allows to pass additional parameters which might enable extensions only supported
by some server implementations.

2.2.4.1 Image Record Data Structure

Each image record contains an image of the application to be tested and a list of nodes to be
programmed with this application.

Field Name Data type Description

Name String Short name of the image.

Type Strings Type of the image file contained in the image record. Must be one of the
following:
HEX the image is in Intel IHEX format
BINARY the image is binary

Image File String The actual image to be programmed to the nodes. If the image is of type
HEX, this field contains exactly the content of the image file. If it is of
type BINARY, the image file is encoded in Base64. Because of the given
testbed implementations, this data type could not be standardized, but
should be adapted to the testbed used. A client could automatically
switch the right format, based on the testbed description.

Node List List of
Strings

List of unique node identifiers, denoting the nodes to be programmed
with this image.

2.2.5 Get Job Status

Because execution of test jobs is done by the testbed completely without any interaction, a special
operation is provided to gather information about the current status of the job. Calling it might be
useful right after submitting a test job, to make sure it was scheduled correctly, or when waiting for
a job to finish, not to ask for results before it is actually done.

13

2 The Interface

Description Find out the status of a certain job that was previously scheduled.

Input Job ID Unique identifier of the job in question, as returned by Submit Job.

Output Status The current state of the test job. Must be one of the following:
SCHEDULED the job is scheduled correctly but execution has not

begun yet.
RUNNING the job is currently running
DONE the job was successfully executed
ERROR An error occurred while executing the job. You might

still get additional information using the next method.

Error conditions Job non-existent

2.2.6 Get Job Output

After execution of a test job, it is essential to retrieve the generated log data. This is to be returned
in a set of log files, one for each node involved in the test run and possibly more added by the
testbed itself. This operation should also return helpful data if the execution of the test job failed,
for example because of a fault while setting up the testbed.

Description Fetch the logging output of a job after it has run.

Input Job ID Unique identifier of the job in question, as returned by Submit Job.

Output Data All log data produced by the job to be returned as list of pairs of strings.
The first member of each pair denotes the origin of the log messages in
the second member. This can be seen as a collection of log files, each of
which has a name (the identifier of the originating node). The format of
the log contents (the second member) is free, but will usually be a list of
log messages including a timestamp and maybe more meta information.
The testbed server is free to add additional entries tracing the execution
of the test job itself.

Error conditions Job non-existent
Job has not finished execution

2.3 Error Handling

We do not define special return values in the different operations to indicate errors that occurred,
but we rely on the error reporting mechanism of the implementing technology. In our
implementation in Java the method throw a custom exception and in XML-RPC the native error
reporting mechanism is used, adding <fault> clauses to the response.

2.4 Authentication

Just as error handling, authentication is intentionally left out in this specification and is assumed to
be implemented on a lower protocol level. Our implementation in XML-RPC uses the HTTP basic
access authentication scheme.

14

2 The Interface

2.5 Implementation

As part of this semester thesis the described interface was implemented using XML-RPC[13]. We
chose this protocol for its simplicity, portability and the availability of implementations for almost
any programming language. On the server side, we expanded the existing DSN server written in
Java to support the new interface and for the client side we wrote a standalone program to connect
to any server implementing the interface.

The DSN server had so far no notion of a test job. The existing client, DSNTargetLogger had all
needed control logic included to steer the relatively dumb testbed server through the test runs. To
fulfil the Rams interface, this logic had to be ported into the DSN server itself. As for scheduling
jobs, we decided only to support immediate execution of test jobs, unlike e.g. MoteLab, where jobs
can be scheduled for execution in advance.

To prevent collisions of test jobs from different (or the same) users, a simple locking mechanism
was added to the DSN server: Whenever one job is running, the Rams implementation is considered
in use, and any jobs submitted in the meantime are rejected. In theory it would be possible to run
two test jobs on two disjoint node sets, but this was not deemed any practical importance.

Using Java on both the server and the client side, we could share the code for the interface in both
programs and encapsulate the protocol specific implementation on both sides. On the client side,
there is a RamsProxy class, which implements the Rams interface and simply relies the method
calls to XML-RPC calls. This component could be replaced by any other implementation of the
Rams interface, allowing to easily switch the underlying protocol. In the server we use a
RamsServlet, which accepts the XML-RPC requests and calls the corresponding methods on an
implementation of the Rams interface. This servlet could be used by any testbed server
implementing the Rams interface.

15

Figure 5: Calling diagram between the Rams client and the Rams implementation in the DSN
server.

3 The Client

3 The Client
As mentioned before, one important part of this work was the implementation of a client for the
Rams interface. Because this program is targeted at a very specific group of users, namely
developers of applications for wireless sensor network devices, care was taken to find out what they
expect from such an application and what functions it should implement to help them the most. So
before starting to implement, we compiled a list of requirements for the client application.

3.1 Requirements

We present here the most important requirements in a non-formal textual description. While most of
them are simple functional requirements, for some it is not that clear how they will affect
implementation. In this respect, the requirements are listed in order of increasing 'fuzziness'.

3.1.1.1 The client must be able to program the testbed.

The most obvious and most important feature. Given a description of a test job, the program has to
connect to the specified testbed server and submit the job using the respective method of the
interface.

3.1.1.2 The client must collect the output of test run.

Once a test job is submitted to a testbed server, the program is able to determine when the execution
of the job has ended and will then retrieve the log output of that test run. This output is then stored
in several files containing the different parts of the log messages, in a configurable location.

3.1.1.3 The client should be able to run in one or two phases.

Given a test scenario that runs for e.g. six hours, it is desirable that the client can stop execution
after the first phase of submitting the job and can later be reinvoked to collect the results of the test
run. Thus the client has to support two modes: In the first one it submits a test job, waits for it to
finish and collects the output in one single run. In the second mode, it exits after the first step,
saving its current status (such as the identifier of the submitted job) in a status file, to be executed
again later for the second step.

3.1.1.4 The client should be able to explore a testbed.

Given the address of a testbed server and valid credentials, where applicable, the client connects to
this server, and lists all nodes with detailed information. It is also able to generate a sample
configuration file as a starting point for the user to build his test scenarios.

3.1.1.5 The client should be appropriately configurable.

The configuration should be highly adapted to the problem at hand and support quick creation of
new test scenarios, allowing to reuse parts of the existing configurations.

16

3 The Client

3.1.1.6 The client should be integrated into the TinyOS build system.

Since most of the prospecting users work on TinyOS applications, the client invocation has to be
seamlessly integrated into the TinyOS buid system. Ideally it would suffice only to add one
additional argument to the usual make command line to invoke a completely automated test cycle.

3.2 Implementation

Just as the DSN server, the client was implemented in Java using the Apache XML-RPC library
[14].

3.2.1 Configuration

The configuration is based on an XML file. We chose this standard for the availability of mature
parsers and its well known syntax, allowing anybody with basic understanding of XML to edit a
configuration file by hand. In the following discussion we will not use the term 'node' in the way it
is usually used in the scope of the DOM, but instead use the more general term 'entity', to avoid
confusion with sensor nodes.

The configuration file contains one single ramsconfig entry
at the top level. On the next lower level a free number of
testcase and testbed entries can be defined.

A testbed entity contains all information that is specific to
one testbed instance. This is for one a the name and URI of
the testbed server, as well as the credentials used to log in.
Furthermore, it also contains sets of node lists in entities
called topology.

These entries all have a name as an attribute and contain
one or more nodelist elements, each of which in turn
contains a list of node entities. The node entities contain
valid node identifier for the enclosing testbed, each of
which can only occur once in all the nodelists of a
topology. Thus each topology entity defines a partition of
all nodes of a testbed in different named subsets.

The testcase entities on the other hand roughly contain the
information needed to describe a test job (see 2.1.2). Apart
from a name and a description (which is of no semantic
importance) this is for one the timing information. Valid
values are the same as for the Job Description data
structure (see 2.2.4). A scenario entity specifies on which
testbed a test case should be running and what topology is to be used. The content of both attributes
must refer to the name of a testbed entity and a topology contained therein.

Furthermore, a testcase lists several image entities, which reference files located on the local
filesystem. File names are always interpreted relative to the location of the configuration file, unless
they are absolute. An image entry also has to specify the type of the image file (binary / hex) and on
which nodelist this image is to be programmed. These attributes must refer to a name of a nodelist
in the topology referenced by the scenario.

17

Figure 6: Sample configuration file
in the Eclipse XML editor.

3 The Client

Last but not least each testcase has its own logfolder entry, which specifies a directory in which the
log files are to be stored. Again the name is interpreted relative to the directory containing the
configuration file, unless it is absolute.

While a textual description of the configuration sounds rather involved, it is actually quite simple to
write and extend configuration files. A simple example should demonstrate this: For an application
having one sink node and a lot of sources one could would define a number of topologies
containing two node lists: one named 'sources', containing several nodes, and one named 'sink',
containing only one node. Different topologies could differ for example in the number of source
nodes, forcing the application to set up multi-hop routes in one case, while all nodes can
communicate directly with the sink in another.

One would then create a number of testcase entries, each of which contains the same image entries:
one for the 'source' node list and one for the 'sink'. The different test cases would differ in the
topology, that is selected, the log folder and maybe the timing setup.

3.2.2 Invocation

The Rams client is usually deployed as a Java jar file and a wrapper script, which completely hides
the Java specific details of invocation, so that on UNIX compatible system execution is no different
from any other program.

Except for the special functions of exploring a testbed and generating a sample configuration file,
the user must specify a configuration file and a test case in each invocation, in this order. The order
of the other options does not matter, however they cannot be concatenated.

Option Meaning

-p1 Only perform the first phase (submit job). Saves the job identifier returned by the testbed
in the file 'state.xml' (in the same directory as the configuration file) to be retrieved later.

-p2 Only perforrm the second phase (get job output). Tries to find the job identifier in the file
'state.xml'. If one is found, the testbed is queried for the log output and the identifier is
removed from the state file.

-n Don't remove the job identifier from the state file when performing the second phase.

-e Explore a given testbed. The program expects the URI of a testbed as parameter,
including the credentials. It will print a list of all nodes and detailed information, if the -v
switch is specified.

-g Generate a sample configuration file. Expects the same parameter as -e. The generated
file is printed to standard output.

-v Be verbose. Adds a lot of additional information in almost every run mode.

-d Show debugging output. Shows backtraces to all exceptions caught internally, useful
mostly for debugging.

-h Show terse usage information describing the possible options.

3.2.2.1 Examples

We show two examples of how the Rams client is typically invocated.

18

3 The Client

Generate a sample configuration file for the Rams instance running on the machine pc-4720 on port
8889, using the username 'freyd' and the password 'lustig'. The output is saved in the file
'config.xml'.

$ ramsclient -g http://freyd:lustig@pc-4720:8889 > config.xml

Run the testcase with the name 'local_twonode_short' as defined in the configuration file
'config.xml'. Additional information about the job and the testbed used are printed.

$ ramsclient -v config.xml local_twonode_short

3.2.3 Output

As descried in 3.2.1, every test case has its own folder for storing the log files. While this provides
for separate folders for different test cases, another approach is taken to separate different runs of
the same test case: Upon retrieval of the output, a new directory named after the current date and
time is created. A run ending at June 5. 2008, 10:45 would produce a folder named '200806051045'.
In this directory all log files are saved with the names as returned by the testbed.

3.3 Limitations

The specification of the Rams interface and this client were always intended to be as generic as
possible. While this has the advantage that virtually every testbed could be adapted to offer the
interface and thereby be programmed by the client, it makes it difficult to use testbed features not
included in the specification.

3.3.1 Special features

There exists a deployment of the DSN server which was equipped with a power measurement
infrastructure. Support for this feature currently only exists in the DSNTargetLogger, which
simultaneously connects to the DSN server as well as to the power measurement device. The Rams
client currently cannot support this feature, because it is not integrated into the DSN server.

Just as for other special features, an implementation could be achieved as follows:

● Integrate the functionality into the testbed server.

● Add an additional flag to the feature field of the Testbed Description.

● Define one or more additional fields for the Job Description data structure, that configure
the extension.

● Return the output as additional log files.

3.3.2 Multiple architectures

The integration into the TinyOS build system (see chapter 4) has currently no specific support for
different hardware architectures. It might be desirable to use the same test case when compiling for
different architecture and select the testbed according to the chosen architecture, which is currently
not possible. However, because a test case is mostly specific for a current architecture, it is probably
necessary to define a new test case for every architecture anyway.

19

http://freyd:freydsn@pc-4720:8889/

4 Integration in TinyOS Build System

4 Integration in TinyOS Build System
Experience has shown that it does not suffice to have a standalone program for software testing, but
that it needs to be integrated into the normal build process in order to be used. The more integrated
and the easier the execution of a testing facility is, the more likely it is to be used by application
developers.

Since most if not all applications for wireless sensor networks developed in the academic context
use TinyOS, a seamless integration in the existing build system was necessary. Many conventions
exist in that context, for example, the result of compiling an application is always called 'main.exe'
and is saved in a subfolder called 'build/architecture'.

We deemed it therefore valid to add another subdirectory called 'test', which has to contain the
configuration file called 'config.xml'. When using relative pathnames for the log folders, the output
of the test runs are thus saved in subfolders of the test directory.

To invoke testing, a new special target was added to the TinyOS build system: test. It has to be
followed by a comma and the testcase to use. The build system will compile the application as usual
and then invoke the Rams client.

4.1 Limitations

The configuration file currently has to be written by hand to comply with the TinyOS build system.
For example, the build system cannot signal the Rams client, where the image file is located after
compiling it (the location depends on the architecture compiled for), but the location is always read
from the configuration file.

Support for split phase execution (where the program returns after submitting the thest job to be
invoked again later) is currently not present.

20

Figure 7: Invocation of a test run directly through the TinyOS build system.

5 Summary

5 Summary
Designing and implementing applications for wireless sensor networks is not an easy task. One
important tool in the development process are testbeds, which can evaluate performance and
validate the correct working of applications.

To gain an overview about the current state of testbed implementations we conducted a little survey.
It showed that efforts to facilitate testing had been taken by many institutions, but the actual
implementations differ widely in feature richness, the amount and the quality of offered services. In
particular, no two testbeds are compatible and general purpose testbed clients are missing.

To cope with this shortcoming, as a first step a generic interface for wireless sensor network
testbeds was developed. It is intentionally kept very simple so that for every existing testbed an
implementation should be possible, be it only in parts.

The new interface called Rams was implemented for the DSN testbed server in use at ETH Zürich.
Substantial control logic had to be added to support the unattended execution of test jobs. Also, a
client was written, that runs test jobs on every testbed supporting the Rams interface. It was tested
on the DSN server but should be compatible with any future implementation.

Last but not least, the developed client was integrated seamlessly into the TinyOS build system.
Using just one additional target in the invocation of the make tool, a future developer can trigger a
fully automated test run, which delivers back neat log files into his source tree.

5.1 Future Work

One aim of developing a generic interface for wireless sensor network testbeds was to improve
interoperability between the different existing solutions. The next step now is to actually implement
the interface for as many testbeds systems as possible. In particular for MoteLab the necessary
changes should be rather straightforward, as it already supports the notion of test jobs. Other
testbeds could require more work, depending on the amount of control logic already present.

21

6 References

6 References
[1] Jan Beutel, Matthias Dyer, Roman Lim, Christian Plessl, Matthias Wöhrle, Mustafa Yücel,
Lothar Thiele, Automated Wireless Sensor Network Testing. In Proc. 4th International Conference
on Networked Sensing Systems (INSS 2007), IEEE, Piscataway, NJ, June 2007

[2] http://www.btnode.ethz.ch/, May 2008

[3] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele, Kevin Martin, Philipp
Blum, Deployment Support Network: A toolkit for the development of WSNs, Proc. 4th European
Workshop on Sensor Networks (EWSN 2007), ser.Lecture Notes in Computer Science, Vol. 4373, pp.
195–211., January 2007,

[4] Geoffrey Werner-Allen, Patrick Swieskowski, Matt Welsh, MoteLab: A Wireless Sensor
Network Testbed. In Proc. of the Fourth International Conference on Information Processing in
Sensor Networks (IPSN’05), Special Track on Platform Tools and Design Methods for Network
Embedded Sensors (SPOTS), April 2005

[5] Vlado Handziski, Andreas Köpke, Andreas Willig, Adam Wolisz, TWIST: A Scalable and
Reconfigurable Testbed forWireless Indoor Experiments with Sensor Networks. In Proc. of the 2nd
Intl. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality, (RealMAN 2006), Florence,
Italy, May 2006

[6] http://www.btnode.ethz.ch/Projects/Jaws, May 2008

[7] http://enl.usc.edu/projects/tutornet/, May 2008

[8] Brent N. Chun, Philip Buonadonna, Alvin AuYoung, Chaki Ng, David C. Parkes, Jeffrey
Shneidman, Alex C. Snoeren, Amin Vahdat, Mirage: A Microeconomic Resource Allocation System
for Sensornet Testbeds. In Proc. of the 2nd IEEE Workshop on Embedded Networked Sensors, May
2005

[9] https://mirage.berkeley.intel-research.net/, May 2008

[10] http://www.millennium.berkeley.edu/sensornets/, May 2008

[11] Anish Arora, Emre Ertin, Rajiv Ramnath, William Leal, Mikhail Nesterenko, Kansei: A High-
Fidelity Sensing Testbed, , Vol. 10, No. 2, pp. 35-47, March 2006,

[12] http://en.wikipedia.org/wiki/ISO_8601, May 2008

[13] http://www.xmlrpc.com/, May 2008

[14] http://ws.apache.org/xmlrpc/, May 2008

22

7 Figures

7 Figures
Figure 1: Architecture of the DSN testbed...4

Figure 2: Architecture of the MoteLab testbed...5

Figure 3: Architecture of the TWIST testbed...5

Figure 4: Simplified communication between client and testbed...8

Figure 5: Calling diagram between the Rams client and the Rams implementation in the DSN
server...15

Figure 6: Sample configuration file in the Eclipse XML editor...17

Figure 7: Invocation of a test run directly through the TinyOS build system....................................20

23

	1Introduction
	1.1Related Work
	1.1.1Wireless Sensor Network Testbeds
	1.1.1.1Properties
	1.1.1.2Features
	Web Interface
	RPC Interface
	Logging
	Job Scheduling
	Scheduled Commands
	Power Control
	Power Logging
	Serial Port Forwarding
	Image Format

	1.1.1.3Examples
	JAWS - Deployment-Support Network
	MoteLab
	TWIST

	1.1.2WSN Testbed Clients
	1.1.2.1DSNTargetLogger

	1.2Problem Setting
	1.2.1General Problem – What is missing
	1.2.2Specific Problem Statement – What is to be done

	2The Interface
	2.1Approach
	2.1.1Name
	2.1.2Notion of a Test Job

	2.2Operations
	2.2.1Get Testbed Description
	Testbed Description Data Structure

	2.2.2Get Node List
	2.2.3Get Node Description
	Node Description Data Structure

	2.2.4Submit Job
	Job Description Data Structure
	2.2.4.1Image Record Data Structure

	2.2.5Get Job Status
	2.2.6Get Job Output

	2.3Error Handling
	2.4Authentication
	2.5Implementation

	3The Client
	3.1Requirements
	3.1.1.1The client must be able to program the testbed.
	3.1.1.2The client must collect the output of test run.
	3.1.1.3The client should be able to run in one or two phases.
	3.1.1.4The client should be able to explore a testbed.
	3.1.1.5The client should be appropriately configurable.
	3.1.1.6The client should be integrated into the TinyOS build system.

	3.2Implementation
	3.2.1Configuration
	3.2.2Invocation
	3.2.2.1Examples

	3.2.3Output

	3.3Limitations
	3.3.1Special features
	3.3.2Multiple architectures

	4Integration in TinyOS Build System
	4.1Limitations

	5Summary
	5.1Future Work

	6References
	7Figures

