
Distributed Computing Group
Prof. R. Wattenhofer

Summersemester 2008

Student: Advisor:

Ronny Milani Thomas Locher

Semester Thesis

Extending the Functionality of
BitThief

Abstract

The BitTorrent client BitThief was implemented as a proof of concept showing that
free riding in BitTorrent is indeed possible. As such it only needed to contain the
basic features of the protocol and did not deliver much user comfort or additional
functionalities.
This thesis describes the new features added to BitThief. Their main aim is to
improve the client’s efficiency and to render it more user-friendly. Additionally,
some suggestions for further improvements are outlined.

Contents

Abstract i

1 Introduction 2
1.1 Motivation . 2
1.2 Contents . 3

2 BitTorrent and BitThief 4
2.1 BitTorrent Protocol . 4

2.1.1 Distributing and Accessing Content 4
2.1.2 Peer-to-Peer Communication 5

2.2 BitThief . 6
2.2.1 Connection Opening . 6
2.2.2 Exploiting Seeders . 6
2.2.3 Uploading Garbage . 6

3 Extensions for BitThief 7
3.1 Upload . 7
3.2 Enhanced Resume Functionality . 7
3.3 Multi-Tracker . 8
3.4 Connection Limit . 9
3.5 Speed Limit . 10

4 Further Extensions 12
4.1 Improve Memory Usage . 12
4.2 Peer Exchange (PEX) . 12
4.3 Fake ID . 13

5 Conclusion 14

List of Figures

2.1 State Diagram . 5

3.1 Speed Limitation in Action - No Limit -> 50kB/s -> 125kB/s ->
300kB/S -> No Limit . 10

4.1 BitTorrent swarms relying only on PEX can easily get partitioned. . 13

Chapter 1

Introduction

In this thesis, we look deep into the interiors of BitThief, a free riding BitTorrent
client. The aim is the elimination of bugs and the improvement of the client’s overall
performance. Especially the startup phase will get some attention as a lot of time
is spent there.
Also some additional features will be added to expand the functionality and help
BitThief to become a full BitTorrent client.

1.1 Motivation

Since BitTorrent became one of the most popular network protocols for file sharing,
also a large number of clients have been developed, most of them adhering to the
guidelines of the original proposed BitTorrent protocol by Bram Cohen [1]. Because
this describes a fair file sharing protocol, their users are expected to contribute to
get an acceptable download rate in return.
Especially for users with a small upload bandwidth this may result in a bad down-
load performance. For those people a client that does not force its users to upload
would be better suited.
Another reason for not contributing is the legal aspect. In Switzerland downloading
copyrighted material is legal — except for software — while uploading would result
in a copyright infringement. In countries with this legal position, being able to set
the upload rate to zero would help to avoid legal problems.

BitThief delivers exactly the ability to free ride in BitTorrent networks. We
now try to enhance BitThief ’s performance and also its functionality to get a fully
functional client well suited for everyday use.

1.2 Contents 3

1.2 Contents

In the following, we take a short look at the BitTorrent protocol and outline espe-
cially the mechanisms used in BitThief to make free riding possible.
Further, we describe the extensions made during this thesis to BitThief to improve
its performance and expand its functionality.

Chapter 2

BitTorrent and BitThief

The BitTorrent Protocol as well as the reference implementation known as the main-
line client, were devised in 2001 by Bram Cohen. The intention was to distribute
network traffic among all those peers actually downloading or having downloaded
the offered content. This is achieved by using downloaders at the same time to
upload already received data to other peers.

The BitThief client, was originally developed by Patrik Moor [2]. It was a proof
of concept showing that free riding in BitTorrent, contrary to popular beliefe, is
possible.

2.1 BitTorrent Protocol

2.1.1 Distributing and Accessing Content

Sharing files over BitTorrent requires three different components. A torrent metafile,
a server/tracker and clients sharing the file. All these together form a so called tor-
rent swarm.

The torrent metafile contains all necessary information to contact the swarm
and details about the files being shared:

• names/folders

• size

• tracker url

• number and size of pieces (the files are split into smaller pieces)

• hash value of all pieces

Metafiles can be stored and distributed in every desirable way.

2.1 BitTorrent Protocol 5

The tracker mentioned in the metafile is responsible for storing the IP addresses
of all clients together with a hash of the metafile (info hash). The tracker then for-
wards this list on request to other peers.

In order to start downloading a file a client has to obtain the metafile and
announce itself to the tracker. The clients IP will be stored at the tracker and in
return a list of active peers interested in the same file is sent back. This precedure
has to be done regularly to always keep a current picture of the swarm. The client
is now able to contact other peers in the swarm and start downloading from them.

2.1.2 Peer-to-Peer Communication

Before downloading from a peer a handshake is performed to establish the connec-
tion. Afterwards the actual download progress is communicated. This information
is held up to date by sending a “have” message when a new piece has been received.

Peers interested in a piece not yet downloaded will send an“interested”message.
If a remote peer has no pieces of interest anymore this can be indicated by sending
a “not-interested” message. Initially, peers are always not interested in each other.
This mechanism helps to efficiently choke and unchoke the right peers, as we now
know which peer will request pieces.

Unchoking/choking decides whether we allow a peer to download or not. By
sending an “unchocke” message we signal that requests will be answered while a
“chocke” message signals that requests will be ignored. This decision is reconsidered
from time to time and is based on the amount of data the remote peer uploaded to
us.

Figure 2.1: State Diagram

6 2 BitTorrent and BitThief

Hence, a peer can be in one of four states depicted by the state diagram in
Figure 2.1. A peer being interested and unchoked is allowed and also willing to
send a “request”. Requests already answered by other peers can be aborted by
sending a “cancel” message.

2.2 BitThief

Now we will have a look at the mechanisms used by BitThief to exploit the weak-
nesses of the BitTorrent protocol.

2.2.1 Connection Opening

To speed-up the bootstrapping process, BitThief opens as many connections as
possible as fast as possible. Since a single announce to the tracker usually only
delivers a list of up to 50 peers, BitThief contacts the tracker more often than the
announced interval, to get more peers in a short time. Surely this should not be
exaggerated to avoid being banned from the tracker.

2.2.2 Exploiting Seeders

The probably weakest point in the BitTorrent protocol is the seeders behavior. The
term seeders refers to clients being in posession of the whole file. Clients missing
any pieces are referred to as leechers.
As seeders do not download from other peers, they have no possibility to know
which peers are uploading to the swarm and which are not. Their decision which
peer to choke and which to unchoke is therefore not based on the level of contri-
bution. They simply upload using a round-robin algorithm. Hence, also peers not
uploading anything are served.

2.2.3 Uploading Garbage

To convince leechers that a free riding peer actively participates in the swarm, there
is the possibility to upload fake data instead of valid pieces. As complete pieces will
be checked against the hash value in the metafile, uploading a full piece would re-
veal the free rider’s bad intentions.
The fact that pieces are additionally broken into blocks gives us the possibility to
upload only a percentage of all blocks and therefore prevent a hash check or at least
keep the downloader in the dark about which peer sent garbage if it received blocks
from different peers. Unfortunately modern clients try to download full pieces from
a single peer. Just not answering requests for certain blocks would end in the op-
posite side stalling our requests. Therefore this attack is not really useful.

Chapter 3

Extensions for BitThief

This chapter presents the new functionalities added to BitThief.

3.1 Upload

As BitThief was up to now only used to send garbage over the network, seeding
own content was not yet possible. But as a user might want to do exactly this or
maybe someone really wants to contribute in a swarm by uploading real data, the
uploading functionality was added to enable this. But although the possibility to
upload exists now, BitThief remains a free riding client if not told explicitly to
upload.

3.2 Enhanced Resume Functionality

A user starting a client or resuming a paused download is highly interested in
achieving the client’s maximum performance again as fast as possible. Also if a
client only runs for short time intervals one nontheless expects some progress to be
made.

BitThief had one major shortcoming preventing him to achieve a quick startup
period. Resuming a download resulted in checking the hole file for already down-
loaded pieces by first reading them and afterwards verifying them against their hash
value. Especially for large files this operation took a long time.
Another drawback of this procedure lies in the impossibility to recover partially
downloaded pieces. As the hash value of the stored piece will not be equal to the
one given in the metafile, they will be automatically identified as not yet down-
loaded. Since BitThief tries to get as many pieces in parallel as possible, there
might be a lot of pieces in progress at any time resulting in many lost blocks if the
download is stopped in such an unfortunate moment.

8 3 Extensions for BitThief

We solved both these problems by saving the actual download progress to a sep-
arate file. As the structure of this file may be changed or extended in later versions
of BitThief, XML was chosen for this task.
Every download gets its own progress file which is created or updated whenever
the download or BitThief itself is stopped. By removing the download from the
list the progress file will automatically be removed. To guarantee no conflicts with
filenames they are named after the ’file hash’.

The structure of the XML file is as follows:

<torrent_download>
<name>download name</name>
<valid_pieces>
<piece>x</piece>
...
<piece>y</piece>

</valid_pieces>
<downloaded_blocks>
<block>
<index>index</index>
<length>length</length>
<offset>offset</offset>

<block>
...

</downloaded_blocks>
</torrent_download>

3.3 Multi-Tracker

A single point of failure in a BitTorrent swarm is the tracker. In the original proto-
col a crashed tracker resulted inevitably in a dying swarm because peers could not
get any new peers from the tracker.

One method to diminish the consequences of a server breakdown is based on the
use of multiple trackers. For this purpose, in addition to the single tracker contained
in every metafile, a list of supplementary trackers is given. In fact a list of lists/tiers
is contained in the metafile.

[tracker-list] = [[tier0][tier1]..[tierN]]

The usage of these tiers is supposed to follow some simple rules.
First of all, tiers should be accessed sequentially one after the other. Every addi-
tional tier serves as a list of backup trackers. Moving to the next tier should only

3.4 Connection Limit 9

be done if no tracker in the former tier replied to our announce.

[tracker-list] = [[tier0][backup0]..[backupN]]

When accessing a tier for the first time the contained urls have to be shuffled
to guarantee load balancing among the different trackers. Afterwards, the trackers
are as well contacted sequentially one after the other. The first one replying to our
request will then be moved to the top of the list. Hence, in later announces it will
be used first from this tier.

Clearly, announcing to all trackers would lead to a shorter startup period as
we can get more peers in the same time. Therefore, such an algorithm seems very
interesting for us. Unfortunately trackers in one tier — and maybe also in different
tiers — are suggested to communicate their peer lists. So using such an aggressive
strategy could easily be counteracted in any desirable way by the trackers.

Nonetheless, we implemented both strategies for BitThief, the suggested and the
aggressive announce to all. It seemed as if actual trackers do not yet support this
peer list exchange, since no deficit could be detected. We were still served normally
by all contacted trackers.

3.4 Connection Limit

Due to BitThief ’s aggressive policy concerning the opening of connections to other
peers, a lot of memory is consumed. Also some reports of routers crashing due to
the massive number of tcp connections, require the possibility to limit the number
of concurrent connections.
Surely, just restricting to a maximum value would be no difficult task, but also not
a very desirable solution.
The main problem of this naive approach are bad connections. If the connection
limit is already attained but the bigger part of all connected peers influences the
download performance in an unfavorable way, we are stuck in this unfortunate sit-
uation.

Again the solution is fairly obvious. If new peers want to connect to a peer
although its limit is already reached, the bad connections are simply closed. But
this leads to the next question — how to characterize a bad connection?

We classify connections after different criteria. First, all connections being of
no interest, hence not having any required pieces, are considered bad. If no peers
fulfill this characteristic, those peers refusing to cooperate are closed. Should again
no peers have been selected yet, we disconnect from the peers with the lowest rate.

10 3 Extensions for BitThief

3.5 Speed Limit

Although we want our downloads to be as fast as possible, there are several occa-
sions where we would like to throttle our network speed.
In an environment where several persons use the same link to the Internet, it may
not be desirable to use up the whole bandwith only for downloading.
Maybe also the cpu load gets to high to allow normal usage of the computer.
Or a slower downloading torrent may starve due to a faster torrent using up all the
available link capacity.

To limit download speeds we regulate the period between two successive “re-
quest” packets. This way we can easily calculate a basic time interval as starting
point which we can slightly adapt to get even closer to the desired limit. In practice
it turned out to be sufficiently accurate to simply calculate the period (3.1).

Figure 3.1: Speed Limitation in Action - No Limit -> 50kB/s -> 125kB/s ->
300kB/S -> No Limit

3.5 Speed Limit 11

t = blocksize/speedlimit (3.1)

By the way, the same concept is used to adjust the upload speed. But as we do
not have to regard any delays or churn here, by using the same equation as for the
download we can calculate an exact value for this period.

Chapter 4

Further Extensions

This chapter describes some ideas on how to improve BitThief.

4.1 Improve Memory Usage

The most obvious problem turned out to be the memory management. It seems that
memory allocated by a download is never really released again. When a torrent is
removed the former utilised memory space is still occupied.
Also big torrents proved to be a problem. This could be solved by writing partially
available pieces to the storage device instead of holding them in memory.

4.2 Peer Exchange (PEX)

Peer Exchange is intended to reduce the load on trackers. This extension allows
peers to gossip. Meaning that peer lists can also be obtained from other peers.
As this feature is not part of the official specification, several implementations have
been developed in parallel, the two most popular being the Azureus Message Pro-
tocol (AZMP) and the LibTorrent Extension Protocol (LTEP). Also a negotiation
procedure has been proposed which allows to agree on one of these two protocols.

Nevertheless, peer exchange cannot substitute the periodic announces to a tracker.
A short example shows how the reliance only on PEX could separate a swarm in
two individual partitions which would never join again until they contact a tracker.

Those being interested in the details of these protocols will find more informa-
tion under [3]. Unfortunately those specifications are not very accurate. A look into
an actual implementation would be unavoidable to successfully implement these
protocols.

The benefit of such a protocol would be minor for us. As we are not interested
in reducing the network load on the trackers, we only profit by getting more peers

4.3 Fake ID 13

Figure 4.1: BitTorrent swarms relying only on PEX can easily get partitioned.

in a shorter time.

4.3 Fake ID

BitThief indentifies itself as the Mainline client version 4.4.0. This is one reason
why blocking our client is not very easy.
But instead of just using the same ID for all connections one could gather and
store the IDs of connecting peers and reuse those for our own purpose. Blocking
our selfish client would become even more complicated.
Also our identity would reflect the current distribution of clients on the net and
always have an up-to-date version number.

Chapter 5

Conclusion

The achieved results are definitely of great value for the BitThief client. Especially
the startup phase could be shortened drastically. Also the numerous smaller changes
such as resolved error messages are valuable improvements to BitThief ’s stability.
Additionally the useability could be elevated observably. Mainly the interaction
with the user is faster than in previous versions. Deadlocks where the GUI does not
reply anymore to user interactions are banned. Though the program can still get
quite slow when a lot of CPU consuming tasks are running in parallel.

Although I was able to implement a few useful extensions, I would have liked
to go further. Unfortunately, it turned out to be much more time consuming to
code a new feature than I initially believed. Maybe this resulted also from my lack
of experience with such large projects. Also the fact that every new functionality
brought some new errors from previous changes to the surface, slowed down the
progress.

Nonetheless, it was a very interesting work from which I could benefit a lot. I
was able to deepen my knowledge of Java and its debugging methods and was able
to get familiar with subversioning.

Recapitulatory I am pleased with the added functionality and their quality.
However I am not satisfied with the progress I made. I would have liked to have at
least enough time to resolve the memory problem as well.

Bibliography

[1] BitTorrent wiki,
wiki.theory.org/BitTorrentSpecification.

[2] P.Moor. Free Riding in BitTorrent and Countermeasures,
Master Thesis Summer 2006.

[3] Peer Exchange,
wiki.theory.org/BitTorrentPeerExchangeConventions.

[4] T.Oetiker. The Not So Short Introduction to LATEX, February 2000.

[5] Wikipedia,
en.wikipedia.org.

[6] XML Pull Parsing,
http://www.xmlpull.org/.

[7] Java API,
java.sun.com/j2se/1.5.0/docs/api.

	Abstract
	Introduction
	Motivation
	Contents

	BitTorrent and BitThief
	BitTorrent Protocol
	Distributing and Accessing Content
	Peer-to-Peer Communication

	BitThief
	Connection Opening
	Exploiting Seeders
	Uploading Garbage

	Extensions for BitThief
	Upload
	Enhanced Resume Functionality
	Multi-Tracker
	Connection Limit
	Speed Limit

	Further Extensions
	Improve Memory Usage
	Peer Exchange (PEX)
	Fake ID

	Conclusion

