m Institut fur
. . Technische Informatik und

Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Diego Adolf

Design and Implementation of SAFT
on ANA

autonomic network architecture

Semester Thesis, SA-2008-12
March 2008 until August 2008

Advisors: Ariane Keller, Simon Heimlicher

Supervisor: Prof. Dr. Bernhard Plattner

Contents

1 Introduction 1
1.1 Main Goals 2

2 Background Information 3
2.1 ANA: Autonomic Network Architecture. 3
2.1.1 ANA Node 3

2.1.2 Bricks 4

2.1.3 Compartments 4

2.1.4 Information Channels and Information Dispatch Points 5

2.1.5 Primitives 5)

2.2 SAFT: Store And Forward Transport 6
221 Overview 6

2.2.2 End-to-End Sublayer 7

2.2.3 Hop-by-Hop Sublayer 7

2.3 IP Compartment 8
2.3.1 Next Hop Address 9

2.3.2 Node Communication 9

3 Design of SAFT for ANA 11
3.1 Overview. 11
3.2 End-to-End sublayer 11
3.2.1 End-to-End Main Brick 12

3.2.2 Connection Congestion Control Brick 14

3.2.3 Connection Flow Control Brick 15

3.3 Sublayer Interface Brick 0. 15
3.4 Hop-by-Hop sublayer 16
3.4.1 Hop-by-Hop Main Brick 16

3.4.2 Link Congestion Control Brick 17

3.4.3 Link Flow Control Brick 19

3.5 Comparison to legacy network implementation 19

4 Implementation 20
4.1 Overview: Current State 20
4.2 Compartment Specific Settings 20
421 SAFT Header 21

4.2.2 Segment and Fragment types 24

423 XRPmessages 24

4.2.4 Application MTU 25

4.2.5 Segment, Fragment and Packet Sizes 26

4.3 End-to-End sublayer 000000 26

4.3.1 End-to-End main Brick 26

4.4 Sublayer Interface Brick 32
4.5 Hob-by-Hop sublayer 36
4.5.1 Hop-by-Hop Main Brick 36

4.5.2 Link Congestion Control Brick 40

4.6 Test Application: File Transfer 44

5 Validation 46
5.1 Overview 46
5.2 Test 1: Multiple Transmissions 47
5.3 Test 2: Single Transmission 48

6 Conclusion and Future Work 49
6.1 Conclusion 49
6.2 Future Worko 49
Bibliography 51
Appendix 53
A Appendix 53
Al Usage o e 53
A.2 Doxygen Documentation 53
A.2.1 SAFT End-to-End Main Brick 53

A.2.2 SAFT Sublayer Interface 63

A.2.3 SAFT Hop-by-Hop Main Brick 73

A.2.4 SAFT Link Congestion Control Brick 84

A.25 SAFT Main Include File 99

A.2.6 SAFT Demo Brick 118

A3 Assignment 129

i

Abstract

The main motivation for this thesis is to provide the ANA prototype with
a transport protocol. Since the primary goal of ANA is versatility and not
compatibility, we looked for a modular and highly adaptive transport pro-
tocol instead of implementing TCP. We chose SAFT, as it is designed for
challenging scenarios and is modular.

By splitting the SAFT functionalities into independent modules, so-called
bricks, we also aim at providing the groundwork for other transport proto-
col implementations. With some modifications to the current design and
implementation, basic versions of UDP or TCP can be created.

The current implementation, even though only incorporating a fraction
of the SAFT functionalities, provides a useful service for applications as
shown in our validation. Applications can resolve another node through the
SAFT compartment and send data to it using a semi-reliable communication
channel.

1 Introduction

Today communication amongst most computers connected to the Internet
or local area networks is handled using the Internet Protocol Suite specified
in [RFC1122] dating back to 1989. This suite, also known as TCP/IP be-
cause of its most prominent protocols, has a layered structure with IP as the
core protocol similar to that of the OSI reference model [OSIRM]. While
this structure allows flexible configuration, it strictly requires every node to
run IP. For some target scenarios, such as (mobile) ad hoc networks, sensor
networks or peer-to-peer networks, IP may be inappropriate [ANAB, p. 2].

To deal with this problem, is one of the objectives of the ANA project
(Autonomic Network Architecture). It aims at creating an architec-
tural framework which allows coexistence and communication between dif-
ferent types of networks using a “minimum generic interface” [ANAB, p. 2].
The new architecture should allow networks to perform functional scaling
both horizontally (more functionality) as well as vertically (different ways of
integrating functionality); the ultimate goal being: “[...] a novel autonomic
network architecture that enables flexible, dynamic, and fully autonomous
formation of network nodes as well as whole networks.” [ANAP].

The ANA project also aims at providing an implementation to test and
demonstrate the concepts developed. Currently a few basic protocols, e.g.,
Ethernet and IP, have already been adapted to run on the ANA prototype.
However, it is not one of the objectives of the project to solely reproduce
traditional protocol stacks. It allows for new protocols, such questioning
existing principles like the end-to-end approach, to be developed and used
where they provide advantages compared to traditional ones. This is the
case with hop-by-hop transport protocols that clearly outperform standard
end-to-end transport protocols like TCP in wireless mobile networks.

As part of the Internet Protocol Suite, TCP has become the most widely
used transport protocol. It was originally designed for wired networks with
a stable topology [DPD]. In such networks most packet loss occurs because
of congestion at certain nodes [CAC]. TCP, as an end-to-end protocol, has
congestion control mechanism implemented at the source and the destination
node. In wireless mobile environments however, this approach is shown not
to be optimal [HBT]. This is because in wireless mobile networks packet loss
is mainly due to route failure and link errors and not due to congestion.

To address this matter, the authors of [TLR] conclude that “ [...] it
seems helpful to include the intermediate hosts in the data transfer”. Proto-
cols that implement intelligence in intermediate nodes are called hop-by-hop
protocols. The simulation experiments done in [TLR] show that their hop-
by-hop protocol achieves up to three times faster delivery of messages than

TCP in mobile networks.

In this thesis we design and implement the first transport protocol for
ANA: SAFT (Store And Forward Transport), a hop-by-hop transport
protocol specially suited for wireless mobile networks.

Hop-by-hop protocols illustrate the fact that new technologies make it
necessary to reconsider current standards like the Internet Protocol Suite
and search for new ways of communication in order to cope with ongoing
changes.

1.1 Main Goals

As a full implementation of SAFT was outside the scope of a semester thesis,
we proposed ourselves three main goals that were to be reached at the end
of our work:

e Provide the basic functionalities for a reliable data transport solution,
specially on wireless mobile networks

e Achieve an implementation that complies with ANA guidelines

e Validate the implementation through test cases

2 Background Information

In this chapter we provide the reader with the concepts that are essential for
the understanding of this thesis. Our work is mainly founded on the ANA
core architecture and the SAFT design described in [TLR] and [SAFT]. Also,
some information on the IP compartment for ANA is provided, as it is the
network compartment that the current implementation uses.

2.1 ANA: Autonomic Network Architecture

The ANA project’s main documentation consists of [ANAB] and [ANAC].
Adhering to these, we will explain three concepts that we consider important:
the typical setup of an ANA node, the bricks that provide functionalities and
the compartment concept.

2.1.1 ANA Node

A typical ANA node is divided into two main parts as shown in fig. 1: the
Minmex and the ANA Playground.

ANA Node:

// Minmex

Brick Table \

KVR

Playground \

L
L

Figure 1: Exemplary ANA node

The Playground holds all software modules providing (network) func-
tionalities for ANA. These modules, so-called bricks, are explained in section
2.1.2.

The Minmex is needed for those modules to communicate with each other.
It is an essential part of ANA and is present in every node.

2.1.2 Bricks

Bricks can be thought of as software modules. They are present in the
ANA playground and are the units that actually provide functionality to the
node. In ANA most implementations of network protocols (or other network
related software) split the functionalities of their software into several bricks.
Thus, an implementation normally consists of two or more interdependent
bricks which as a group provide the targeted functionality. This group of
bricks is often called a compartment, even though the term has a vaster
meaning (see 2.1.3). The brick representing this compartment within the
ANA Playground is called compartment provider brick. It is the gateway for
other bricks wanting to use the functionalities offered by that compartment.

One of the advantages of dividing functionalities into several bricks is that
a single brick providing a very specific functionality, can easily be reused by
other applications. A good example for this is the checksum brick of the IP
compartment which offers a functionality useful for other compartments as
well.

2.1.3 Compartments

The official definition of a compartment states the following: “A compart-
ment is defined by the set of abstract entities (members) which are able and
willing to communicate among each other according to compartment’s oper-
ational and policy rules.” [ANAB, p. 8]. This very flexible definition allows
the use of compartments in many different scenarios and is regarded as one
of ANA’s most important concepts. Because of the complexity of the com-
partment concept, we will mainly focus on it’s applications within SAFT for
ANA. (For a complete description see [ANAB, sec. 3.1].)

The most relevant uses of compartments for this thesis are related to the
IP compartment. The IP compartment groups all nodes connected to each
other running the corresponding IP bricks (see fig. 2). All nodes that are
members of that compartment then can communicate with each other using
the IP protocol. Important to mention is that within the IP compartment a
set of nodes, e.g., a subnet, is represented as a compartment as well. This
implies that compartments can be overlaying or represent a subset of another
compartment.

Node A Node B

’ -_— - L] L L] —-— L] -_— -_— -_— L] —-_— -_— -_— -_— L -_— -— L |

| Network compartment ! \I
I ! (e.g IP, Ethernet)

_ Y, ——/ 1
[f ﬁ A o) I
! - :
\ -_— -_— -_— -_— — -_— _-— -_— — -_— _-— -_— _-— _— -_— -_— -_— -_— ’

A |y
Node C Node D

Figure 2: Several nodes as members of a network compartment

2.1.4 Information Channels and Information Dispatch Points

Information channels (IC’s) abstract the communication service provided by
a compartment. They are used to establish a communication channel between
two bricks. See section 2.3.2 for their use within the IP compartment.

Information dispatch points or IDP’s, are gateways for accessing bricks or
information channels. A brick or a compartment can create several IDP’s in
order for other bricks to access its functionalities. In most graphics they are
represented as black dots at the entrance points of bricks and information
channels.

2.1.5 Primitives

All communication among bricks in the ANA Playground is done using
primitives. The basic primitives implement fundamental communication
paradigms which need to be supported by every compartment. This is nec-
essary to provide a generic way for all compartments to interact with each
other, regardless of the functionality they provide. The five basic primitives
are:

e publish

With this primitive we can publish a certain service in a compartment
and make that service reachable through that compartment. This is
necessary if, e.g., we expect data that will arrive through that com-
partment. After the publish command, that compartment can locate
us and forward the data to us.

o unpublish
This command reverts the publish command, i.e., a service previously
published in that compartment will not be available anymore through
that compartment.

e resolve
Using the resolve primitive we can request a communication channel
through a certain compartment to a service previously published in
that compartment.

e Jookup
This primitive requests information from a compartment on a certain
service published inside that compartment.

e send
With this primitive we can send data to a service we have resolved
before using the resolve primitive

The above explanations have been simplified. For a in depth description of
ANA primitives see [ANAB, sec. 3.3.3].

2.2 SAFT: Store And Forward Transport

Our design and implementation of SAFT for ANA are based on two publica-
tions: [TLR] and [SAFT]. The following paragraphs summarize the structure
and functionalities of SAFT.

2.2.1 Overview

As already mention in the introduction, SAFT is a hop-by-hop transport pro-
tocol. Its main structure consists of two sublayers: the end-to-end sublayer
and the hop-by-hop sublayer. The separation into these two sublayers allows
the protocol to perform control mechanism separately for the connection and
for the links involved in the connection.

A connection represents the data connection between the source and the
destination node and is controlled by the end-to-end sublayer. The hop-by-
hop sublayer controls each link, which refers to a data connection between
two neighboring nodes on the route of the global connection. Figure 3 shows
a four node setup illustrating this. Here the network has been abstracted for
the sake of simplicity.

Source Destination
Application Application
Link Link Link

E——

Figure 3: Illustration of terms connection and link on a multi-hop connection

2.2.2 End-to-End Sublayer

The end-to-end sublayer handles the transmission requests from applications.
It is only active on the source and the destination node. The destination
node’s only tasks are to receive and reorder the data and acknowledge it to
the source. The source node is solely responsible for performing congestion
and flow control on the connection.

Similar to regular layers known from the OSI reference model [OSIRM],
this sublayer implements its own data unit, namely segments. The appli-
cation requesting a connection passes the data to the end-to-end sublayer
which then splits it into segments before further processing. These segments
are then passed on to the hop-by-hop sublayer which takes care of the actual
data transmission.

SAFT has no connection establishment procedure prior to data transmis-
sion like there is with TCP. Data received from the application is directly
sent to the destination node.

2.2.3 Hop-by-Hop Sublayer

As opposed to traditional transport protocols, which only run on both ends
of a connection, SAFT’s hop-by-hop runs on every node. This means that

7

data is passed to the hop-by-hop sublayer on every intermediate node. Figure
4 shows the data flow for a multi-hop connection illustrating this fact.

From the diagram one can also notice that the hop-by-hop sublayer is
the unit actually interacting with the network compartment or network layer
respectively for ANA and traditional network architectures. The end-to-
end sublayer passes its segments to the hop-by-hop sublayer which again
splits these segments into fragments before sending them over the network
(e.g., using IP or any other network protocol). At the destination node the
received fragments are reassembled and returned to the end-to-end sublayer
as segments.

One fact to be recalled is that fragments, even though part of the same
segment, may use different routes to reach the destination node. This is very
useful in scenarios where link failures occur often as it is the case in wireless
mobile networks.

Source Destination

Application Application

Intermediate Nodes

Figure 4: Data flow for a multi-hop connection

2.3 IP Compartment

In the current implementation of SAFT, the IP compartment is the network
compartment used. Its task are to provide the address of the next hop and
open a communication channel to it. These tasks are explained below. For
further details on IP refer to [IPCO].

2.3.1 Next Hop Address

The next hop is the next node to be reached on the route leading towards
the destination node from the current node’s point of view.

Every time a fragment is to be sent, the hop-by-hop sublayer request the
address of the next hop. This is necessary, because every fragment may take
a different route to reach the destination node.

Using the IP compartment, this can be done by querying the IP forward-
ing brick. This brick builds up a forwarding table with the help of a routing
protocol. In our case this was done using the RIP brick.

Once the address of the next hop is acquired through the IP forward-
ing brick, a communication channel to the required node can be requested
through the IP compartment’s main brick.

2.3.2 Node Communication

In order to send fragments, SAFT requests the IP compartment to create a
communication channel by which data can be passed directly to the SAFT
instance running on the next hop.

In the ANA world such a communication channel consists of two elements:
an IDP (Information Dispatch Point) and an IC (Infomation Channel). The
information channel abstracts the transmission’s underlaying process. The
IDP serves as a gateway for this information channel. The sending node sim-
ply deploys the data to be sent at this IDP and the data will be forwarded
to the next hop through the information channel. In fig. 5 two nodes con-
nected through an IC are depicted. SAFT’s hop-by-hop sublayer running
on the source node requests an 1C using the network compartment in order
to forward the data from the application to the next hop. When the trans-
mitted fragments arrives at the destination node, the data will be returned
to the end-to-end sublayer and from there passed on to the corresponding
application.

Worth mentioning in this context is that ANA’s modular structure allows
it to use protocols in a different order as in normal network architectures.
For example, one could run SAFT directly over Ethernet, thus skipping the
network layer of traditional architectures. The process of connecting two
nodes as shown in fig. 5 would still be the same, only addressing would be
done using MAC addresses instead of IP addresses.

Source node Next hop

) €)

SAFT
End-to-End

.

Application

Network compartment

Information channel

\

Figure 5: Data transmission to next hop through network compartment

10

3 Design of SAFT for ANA

For the design of SAFT for ANA we guided ourselves by two main objectives:
e Isolate the main functionalities of SAFT and assign them to bricks
e Make both SAFT sublayers work independently

The purpose of these two objectives is to create a design that makes it easier
for other applications to reuse our bricks.

To reach the first objective, we analyzed the framework for hop-by-hop
transport protocols proposed in [TLR]. We designed a brick for each of the
main functionalities extracted out of this framework and specified its tasks.
The second objective was reached by designing a brick that decouples the
dependencies of the hop-by-hop and the end-to-end sublayer and acts as an
interface when communicating with the sublayers.

The sections below show how the SAFT functionalities have been assigned
to different bricks and what the task of each brick are.

3.1 Overview

The skeleton of our design consists of the end-to-end and the hop-by-hop
sublayer. Each of these sublayers holds three bricks providing the function-
alities of their corresponding sublayer. An additional brick, the so-called
sublayer interface, connects these two sublayers by providing the communi-
cation mechanisms necessary.

Each sublayer has one main brick: the SAFT end-to-end and SAFT hop-
by-hop brick respectively. The main bricks are the only bricks actively inter-
acting with elements outside the SAFT compartment. The SAFT end-to-end
brick is the compartment provider brick and is responsible for processing the
requests from applications. The SAFT hop-by-hop brick is the brick inter-
acting with the network compartment.

The control mechanisms of each sublayer are implemented as separate
bricks and only communicate with bricks inside their own sublayer. Figure 6
shows the arrangement of bricks inside the SAFT compartment. The arrows
shows which bricks interact with each other.

3.2 End-to-End sublayer

The end-to-end sublayer sublayer, is active on the source and the destination
node and interacts directly with the application. It is the sublayer responsible

11

Application

End-to-End
Sublayer

Data units: Segments

Hop-by-Hop
Sublayer

Data units: Fragments

Network compartment

Figure 6: Structure of SAFT design and arrangement of bricks

for guaranteeing end-to-end reliability, i.e., making sure that data arrives
consistently at the destination node.

To achieve this, three basic functions are implemented separately in bricks:
connection-based send and receive functionality, connection congestion con-
trol and connection flow control. Each brick and its tasks are described below
in a separate subsection.

3.2.1 End-to-End Main Brick

This brick is responsible for interacting with the applications. It also is the
brick that handles the data on the end-to-end sublayer, i.e., takes care of
sending and receiving it. Its functions are described in detail below.

Handle Application Request

This brick, being the compartment provider brick, handles the transmission
request by applications on the source node. It is also responsible for deliv-
ering the transmitted data to the corresponding application upon arrival at
the destination node.

Create Segments from Application Data

12

As soon as an application passes its data to the SAFT compartment for
transmission this data is packed into segments. These are data units that
contain the application data and have a header preceding the data. This
header contains all information needed to deliver the data consistently to the
destination node and implement control mechanisms. (For implementational
details on the header see section 4.)

Sending data

Every segment (representing application data) is stored locally before send-
ing. To send a segment, sending permission has to be requested through the
connection congestion control (CCC) brick. If sending permission is granted,
the segment is passed on to the sublayer interface which takes care of the rest
of the process. In case sending permission is denied, the segment is stored
for later use, i.e., it will be resent by order of the CCC brick.

Note: SAFT has no connection establishment procedure, i.e., data is sent
directly. Connection establishment is not suitable for wireless mobile net-
works, because frequent link failures difficult that process.

Note: The segment buffering system (e.g., a dynamically allocated buffer) is
managed exclusively by the CCC brick. This means, the end-to-end main
brick implements the buffer but only stores newly created segments. Deletion
and retransmission of segments is ordered directly by the CCC brick.

Receiving data

When the application data has arrived at the destination node, the sublayer
interface passes the data to the end-to-end main brick in form of segments.
This brick then delivers the segments to the corresponding application and
reorders them previously in case they have arrived out of order (e.g., due to
packet loss on the route). For every received segment a segment acknowl-
edgement is sent back to the source informing the sending node that the data
has arrived at the destination. This also applies if a segment is received more
than once (e.g., because of a lost acknowledgement).

Note: Segment acknowledgements are also received by this brick. However,

they are not processed locally but are passed on to the CCC brick as soon
as they arrive.

13

3.2.2 Connection Congestion Control Brick

The connection congestion control (CCC) brick implements the congestion
control mechanisms of the end-to-end sublayer. The design of this mecha-
nism is explained in the following paragraphs.

Congestion Control

The CCC brick runs only on the source node. It decides if the end-to-end
main brick is allowed to send a certain segment or not. It limits the amount
of unacknowledged segments for each connection. The end-to-end main brick
request sending permission for every segment it wants to send. If the trans-
mission windows for the connection of that segment is not yet exhausted, i.e.,
the number of unacknowledged segments has not been exceeded, permission
is granted. Else, permission is denied and the CCC brick send a transmis-
sion order for that segment to the main brick as soon as an older segment is
acknowledged.

Connection Management

In order to manage the connections initiated by the end-to-end main brick
a system has to implemented by which the status of each connection and
segment can be stored and updated. This is necessary to keep count of un-
acknowledged segments and the status of the transmission window.

Segment Acknowledgements

The end-to-end main brick passes all segment acknowledgements without
processing them to the CCC brick. Segment acknowledgements are needed
to update the status of segments (i.e., mark them as acknowledged) and their
corresponding transmission windows.

Segment Retransmissions

As data can get lost on its way towards the destination node for several rea-
sons, segments may need to be retransmitted. For this to work efficiently,
the connection management system should implement timers to detect if a
segment has not been acknowledged after its timeout. Retransmission of
unacknowledged segments should be implemented respecting exponentially
increasing back-off intervals. This guarantees system stability and allows fair
coexistence with other protocols [TLR, p. 2.

14

3.2.3 Connection Flow Control Brick

This brick was not included in the initial design as it seemed that most
connection-based control mechanism could be implemented in the connec-
tion congestion control brick and that link-based flow control was sufficient.
Nonetheless, future implementations should consider flow control for the end-
to-end sublayer.

3.3 Sublayer Interface Brick

This brick is the interface between both sublayers and handles the commu-
nication between them. Mainly this means converting the data units used
by one sublayer into the data units of the other sublayer, i.e., split segments
received from the end-to-end sublayer into fragments for the hop-by-hop sub-
layer and vice versa.

This brick also helps to separate the dependencies between the two sub-
layers. The idea is to allow independent use of each sublayer. In case the
functionality of a single sublayer is reused for a certain implementation, only
the sublayer interface brick needs to be adapted. The advantage of this
approach is that modifying the sublayer interface is much easier than any
other brick because it has a very simple structure and contains only limited
functionality. An example for this would be the implementation of and end-
to-end protocol needing only the functionalities of the end-to-end sublayer.

This brick performs the following tasks:

Split Segments

Every segment that needs to be sent over the network will be handed over
to this brick by the end-to-end main brick. This brick will split the received
segments into fragments and then pass them on to the hop-by-hop main brick
which takes care of the actual data transmission using a network compart-
ment.

To create the fragments, the application data contained in the segment
will be divided into several chunks. The header of the original segment will
be appended to these chunks and the fragment number field in the header
modified according to the order of the data. (For details on the header see
section 4.)

Reassemble Segments

Every fragment received by the hop-by-hop main brick at the destination
node will be passed to this brick. This brick will sort out all fragments corre-

15

sponding to the same segment, extract the application data of each fragment
and create a segment containing the original header and the application data.
The application data can be restored using the fragment numbers. Note that
this brick needs to implement reordering of fragments as they may arrive out
of order because retransmissions.

3.4 Hop-by-Hop sublayer

The hop-by-hop sublayer implements the actual store and forward mecha-
nism on each link a of connection and thus runs on every node involved in it.
The goal is to make data transmission between two neighboring nodes more
resilient to link and route failures. This is specially useful in wireless mobile
networks were such errors occur often.

This sublayer’s functionality is divided into three bricks implementing the
following functions: link-based send and received functionality, link conges-
tion control and link flow control. Each brick is described below in a separate
subsection.

3.4.1 Hop-by-Hop Main Brick

This brick is the unit handling the application data received from the end-to-
end sublayer through the sublayer interface. It is the only brick interacting
with the network compartment and thus, is responsible for requesting con-
nections to the next hop and forwarding the application data. The functions
of this brick are described in detail below.

Store and Forward Procedure

The store and forward procedure applies to all fragments that need to be
forwarded to another node. This means, all fragments arriving either from
the end-to-end sublayer or from another node and still on their way to their
final destination. These fragments are stored locally and then sent to their
corresponding next hop. As soon as a fragment has been acknowledged by
the node receiving the data, i.e., the next hop, the fragment can be deleted
locally. Otherwise, it is kept for retransmission or is deleted after a certain
amount of retransmission attempts.

Sending Data

All data to be sent comes either from the end-to-end sublayer or another
node. This data is received as fragments and is stored locally in some sort
of buffer system (e.g. a dynamically allocated buffer). Before fragments can
be sent, sending permission need to be requested through the link conges-

16

tion control (LCC) brick. If permission is granted, the sending process can
continue. Otherwise, the fragment is kept in the buffer in order to be sent
later.

After sending permission has been granted, the address of the next hop
is retrieved through the network compartment or routing protocol. The next
hop address is retrieved for every single fragment, even if some of them be-
long to the same connection. This is because in mobile networks routes can
change frequently. Once the next hop address has been acquired, a com-
munication channel to the next hop is requested through the network com-
partment and the fragment is sent. (Read section 2.3.2 for details on this
communication channel.) Note that before sending, fragments may need to
be split into smaller data units, so-called packets, in order to respect the net-
work compartment’s MTU (Maximum Transmission Unit). The conversion
of fragment to packets and vice versa works identically to that of segment to
fragments (see 3.3).

Note: The fragment buffering system is implemented in the hop-by-hop main
brick, but this brick only stores the fragments. The brick actually managing
this buffer system is the LCC brick. This means, retransmission, fragment
deletion and buffer flushing are ordered directly by the LCC brick.

Receiving Data

Every fragment received is immediately acknowledged to its previous hop,
i.e., the node that sent the fragment. (Duplicated fragments must also be
acknowledged in case a previous acknowledgement was lost.) Afterwards the
procedure depends upon the destination of the received fragment: if the frag-
ment has arrived at its final destination, it is handed over to the end-to-end
sublayer through the sublayer interface for delivery. If the fragment needs to
be forwarded to another node it undergoes the store and forward procedure
explained above.

Note: Fragment acknowledgements are also received by this brick. How-
ever, they are not processed locally but are passed on to the LCC brick as
soon as they arrive.

3.4.2 Link Congestion Control Brick

This brick implements congestion control for the hop-by-hop sublayer. It
runs on every intermediate node, i.e., every node on the route of the connec-
tion. The brick design is explained below.

17

Congestion Control

This brick limits the transfer on a link and thus, is active on the sending side
of a link. It limits the transfer to the next hop by allowing only a certain
number of unacknowledged fragments. It should be remembered that frag-
ments may take different routes towards their final destination and thus do
not arrive continuously at every node.

Every time the hop-by-hop main brick wants to send a fragment, sending
permission has to be requested at this brick. If the link to which the frag-
ment belongs to has not exceed the number of unacknowledged fragments,
permission is granted. Otherwise, permission is denied and a transmission
order for that fragment is sent to the hop-by-hop main brick as soon as a
older fragment is acknowledged.

Link Management

To implement link congestion control efficiently, a system is necessary to
keep track of the state of every fragment and the number of unacknowledged
fragment on each link.

Fragment Acknowledgements

All fragment acknowledgements are received by the hop-by-hop main brick
but are passed to this brick for processing. The acknowledgements are used
to update the status of the corresponding fragments and the counters of un-
acknowledged fragments of each link.

Fragment Retransmissions

Specially on wireless mobile networks link failures occur often leading to
packet loss. This is way fragments may need to be retransmitted. The link
management system should implement timers for each fragment in order to
check if a fragment has not been acknowledged after its timeout. Retrans-
mission on the hop-by-hop sublayer should always occur in the same time
intervals, i.e., not in exponentially increasing back-off intervals as for the end-
to-end sublayer. This is because the cause of packet loss on the hop-by-hop
sublayer is due to link failure and not due to congestion.

Additional Features
To increase performance and optimize resources the following functionalities
can also be implemented:

e Estimation of sending rate to next hop with the use of measured trans-
fer time of each fragment to limit transfer more accurately. (To be used
in conjunction with the information provided by the link flow control

18

brick)

e Determine an adequate fragment buffer size according to usage

3.4.3 Link Flow Control Brick

This brick implements flow control for the hop-by-hop sublayer. However,
the implementation should allow this brick to share its information on links
with several protocols and eventually even gather feedback through them.
The tasks of this brick are as follows:

Link Flow Control

This brick runs on the sending side of a link and counts outgoing packets
and bytes to determine a link’s rate. With the help of that information, the
brick can also estimate if a hop has moved away or not. The information
gathered by this brick is to be shared with all connections using the involved
links upon request. In the context of SAFT for ANA, this brick will mainly
be useful for the LCC brick.

3.5 Comparison to legacy network implementation

To ease the implementation of the above design on ANA, some differences to
an implementation on a legacy network architecture should be recalled.

ANA allows dynamic protocol stacks, i.e., there is no strict layer system
as known from the OSI reference model [OSIRM]. This means, SAFT can
be implemented in a way that it also works without the functionalities of
a network protocol when those functionalities are not available or are not
needed. For example, SAFT could be run directly over Ethernet instead of
IP, thus skipping the network layer of traditional architectures.

Significant is also the fact that ANA uses targets and contezts to specify
which brick is to be found where. The effect this has on an implementation of
SAFT is that the header of a packet will not have a fixed length as the source
and destination of a packet will contain target and context fields which are
strings of variable length. (For a detailed description of the terms target and
context see section 4.2.1.)

19

4 Implementation

The current implementation of SAFT uses the design proposed in section
3 as a guideline. For the implementation of the header, [SAFT] is used as
a reference with some adaptations for ANA. Several tools provided by the
ANA API (see [ANAC]) are used as well. The programming language used
for SAFT and most implementations running on the ANA prototype is C.

The following sections give an overview of the state of the current imple-
mentation and discuss the functionalities implemented in the bricks of the
SAFT compartment.

4.1 Overview: Current State

At this point, SAFT provides semi-reliable transport for a single connection.
Semi-reliable means that data is acknowledged for each link, but not for
the whole connection. This means, an intermediate node receives acknowl-
edgement messages from its next hop, but the source node never receives
acknowledgements from the destination node.

Nonetheless, the current functionality is provided by four bricks (see
fig. 7): the end-to-end main brick, the sublayer interface, the hop-by-hop
main brick and the link congestion control brick. The latter implements the
intelligence needed to provide semi-reliability whereas the other three pro-
cess the application data. At this stage, the above mentioned bricks only
implement partially the functionalities specified in their design.

To avoid confusion, several synonyms for the implemented bricks dis-
cussed in the following sections are listed below:

e SAFT end-to-end main brick: end-to-end main brick, end-to-end brick,
saftEtE

o SAFT sublayer interface brick: sublayer interface, SLI brick, saftSLI

o SAFT hop-by-hop main brick: hop-by-hop main brick, hop-by-hop
brick, saftHbH

e SAFT link congestion control brick: link congestion control brick, LCC
brick, saftLCC

4.2 Compartment Specific Settings

In this section some implementational details concerning the whole compart-
ment, i.e., all bricks, are explained. Most functions or settings relevant for

20

Application

SAFT
Connection

-3

SAFT

. | Connection

Congestion | Flow
Control Control
SAFT
Link Flow
Control

Network compartment

End-to-End
Sublayer

Data units: Segments

Hop-by-Hop
Sublayer

Data units: Fragments

Figure 7: Currently implemented bricks (solid color) of SAFT compartment

the whole compartment can be found in the saft.h file. The most important

are mentioned below.

4.2.1 SAFT Header

In order for the SAFT bricks to perform control mechanisms on the applica-
tion data and to deliver it to the right nodes, all data units used by the SAFT
compartment need to prepend a header to the application data they carry.
When running SAFT on ANA the following header fields are necessary:

e source target and context

e type

segment number

fragment number

packet number

destination target and context

21

e segment acknowledgemente number

fragment acknowledgemente number

segment length (in number of fragments)

fragment length (in number of packets)

packet length (in bytes)

The header fields are explained below:

Source and Destination: In ANA the term target refers to a certain brick
and the term context specifies where this brick is to be found. Pragmatically
speaking, targets specify the applications sending or receiving data through
the SAFT compartment and the context specifies the source and destination
address (e.g., an IP address) of the nodes running those applications. This
replaces the address and port fields, e.g., when running TCP or UDP over
IPv4 on legacy network architectures.

To clarify this, source and destination for a http request are described: the
source node running a web browser on IP address 10.0.0.2 sends a http request
for a website running on the destination node’s web server on IP address
10.0.0.1. In this example the web browser will ask the SAFT compartment
to deliver its http request to the web server. The source and destination
fields for the header of the SAFT segment carrying this http request are:

e source context: “10.0.0.2”

source target: “webbrowser”

destination context: “10.0.0.17

destination target: “webserver”

Type: The type field specifies if a data unit, i.e., a segment or a fragment,
carries application data or control information (e.g., fragment or segment
acknowledgements). This field is often refered to as packet type.

Segment, Fragment and Packet Numbers: These fields are used to order
the application data. The segment number defines the order in which the
application data was received at the source node allowing correct deliver at
the destination node. The fragment number is used to retain the order of
the data contained in the segments after they are split into fragments. The

22

packet number serves the same purpose when splitting fragments into pack-
ets before sending them through the network compartment.

Segment, Fragment and Packet Acknowledgment Numbers: These fields are
only used in segment and fragment acknowledgements. They contain the
number of the fragment or segment to be acknowledged to the sender of the
original segment or fragment.

Segment, Fragment and Packet Length: The segment and fragment length
fields are used when reassembling those data units. They are necessary for
the receiving node to know how many fragments or packets to expect when
reassembling segments and fragments respectively. The packet length field
indicates the size in bytes of the payload that the packet carries.

In the current version of SAFT the header has been implemented the fol-
lowing way:

’ SAFT Header ‘

Field Name Explanation Data Type
srcContextLen | length of the source context string uint8_t
srcContext source context char array
srcTargetLen length of the source target string uint8_t
srcTarget source target char array
destContextLen | length of the destination context string | uint8_t
destContext destination context char array
destTargetLen | length of the destination target string | uint8_t
destTarget destination target char array
type type of data unit uint8_t
segno segment number uint16_t
fragno fragment number uint8_t
pktno packet number uint8_t
segack number of acknowledged segment uint16_t
fragack number of acknowledged fragment uint8_t
seglen length of segment in fragments uint8_t
fraglen length of fragment in packets uint8_t
pktlen length of packet in bytes uint16_t

23

4.2.2 Segment and Fragment types

At this stage, the only packet types used by SAFT are: data and fragment
acknowledgement. The type segment acknowledgement is defined but not yet
used by any brick. The current packet types are define in saft.h with the
following commands:

e #define SAFT_DATA 1
o #define SAFT_FRAGACK 2
o #define SAFT _SEGACK 3

4.2.3 XRP messages

To exchange information among bricks, XRP messages are used. XRP mes-
sages allow one to append meta data to the actual payload or information
being sent. This is useful to specify the sender, the receiver, the type of con-
tent, etc., contained in a message. The most common XRP messages, mainly
those implementing basic primitives, are included in the ANA API. How-
ever, SAFT implements some compartment specific XRP messages mainly
to facilitate the communication between the link congestion control and the
hop-by-hop main brick. The SAFT specific messages are explained in detail
below. For more general information on XRP messages consult [ANAC, sec.
4.11]. Usage of basic primitives is explained in [ANAC, sec. 4].

e Sending Permission Request: This XRP message is used by the hop-
by-hop main brick when requesting sending permission from the LCC
brick for a specific fragment.

Command Type: XRP_CMD_PERMREQUEST

Number of Arguments: 1

Argument Class: XRP_CLASS_SAFTHDR

Argument: header of fragment to be sent, type struct saftHdr

e Sending Permission Response: This message is used by the LCC brick
to answer a sending permission request received from the hop-by-hop
main brick.

Command Type: XRP_CMD_PERMRESPONSE

24

Number of Arguments: 1
Argument Class: XRP_CLASS_PERMISSION

Argument: permission , type uint8_t

permission can either be GRANTED or DENIED. Both are defined
in saft.h as:

— #define GRANTED 1
— #define DENIED 2

e (Re)Transmission Order: This message is used by the LCC brick to
order a transmission or a retransmission of a specific fragment from
the hop-by-hop brick.

Command Type: XRP_CMD_RESEND

Number of Arguments: 1

Argument Class: XRP_CLASS_ENTRYNAME

Argument: name of fragment’s entry in the fragment repository of
saftHbH, type char[22]

e Deletion Order: With this message the LCC brick commands the hop-
by-hop brick to delete a certain fragment in its local repository after a
fragment has been acknowledged or resent a maximum number of times.

Command Type: XRP_CMD_DELENTRY

Number of Arguments: 1

Argument Class: XRP_CLASS ENTRYNAME

Argument: name of fragment’s entry in the fragment repository of

saftHbH, type char[22]

Note: Because SAFT uses XRP messages bigger than most other bricks of
the current ANA prototype, the XRP specs have to be modified. This is done
with help of the initSaft XRPSpecs() function which is run at brick startup
and is implemented in saft.h.

4.2.4 Application MTU

Currently in ANA there is no way to discover the MTU (Maximum Trans-
mission Unit) of another brick automatically. If an application wants to send
data messages using the SAFT compartment it can check the MTU_APP
value, defined in the saft.h file, in order to find out the maximal message
size. This value is important in order to know how big XRP messages will

25

be or to be able to set the size of fragments and packets to an optimal value.
Definition:

e F#define MTU_APP X
where X is a size in bytes

4.2.5 Segment, Fragment and Packet Sizes

The size of fragments and packets needs to be adapted according to the
network SAFT is used in. However, to determine the optimal values for
different network scenarios is outside the scope of this thesis. These values
are set in saft.h using the following commands, where X specifies a size in
bytes:

o F#define MAX_SAFTPKT SIZE X
o F#define MAX SAFTFRAG SIZE X

The size of a segment is determined by the application MTU and the header
size. The header size is variable due to the fact that it contains context and
target fields for the source and the destination which are strings of variable
length. Nonetheless, considering 100 bytes as a maximum header size is
sufficient in most cases. It allows for context and target strings to be up to
20 chars long if the space is distributed evenly. This is enough to use IPv4
and MAC addresses. Thus, the segment size does not exceed MTU_APP +
100 bytes in most cases.

4.3 End-to-End sublayer

This sublayer at the moment only implements one brick, the end-to-end main
brick. Basically, it can manage one application request and perform the send
and receive procedures necessary for the connection corresponding to the
application request.

4.3.1 End-to-End main Brick

This brick’s functions are implemented in the saftEtE.c file. Mainly these
consist in handling a single application request, encapsulating the application
data into segments and sending it. On the destination node the segments
are reordered and delivered to the corresponding application. As this is the
compartment provider brick, the above functionalities are shared using ANA
primitives, thus the description of this brick’s implementation focuses on the
supported primitives, which currently are publish, resolve and send.

26

Essential functions
Here three functions are discussed which are essential for the brick to work.

brick_start(): This function must exist in every brick and is run at startup. It
is used to initialize the brick. In the end-to-end main brick the initialization
process comprehends the following tasks:

e initialize quick repository to buffer incoming segments (for QREP’s see
[ANAC, sec. 8])

e initialize an analock to control access to the above repository (for
analocks see [ANAC, sec. 9])

e set the XRP Specs needed by SAFT using initSaft XRPSpecs()

e resolve the IP compartment to retrieve all local IP addresses and store
them in a list

e publish the saftEtE brick in the sublayer interface in order to receive
data from the hop-by-hop sublayer

e publish the saftEtE brick in the Minmex so other brick can find the
SAFT compartment

entryPoint(): This function is bound to the IDP published in the Minmex.
This means, publish and resolve request from applications will be received
here. The task of this function consists in forwarding the requests to the
corresponding functions handling them, i.e., handlePublish() or handleRe-
solve().

brick_exit(): This function must also be present in every brick. It is run on
brick shutdown and is used mainly to free permanently allocated ressouces.
In this brick the tasks performed at shutdown are:

e free permanently allocated IDP’s
e free the quick repository initialized in brick start()

e free the list containing the local TP addresses

27

Publish Primtive

After the saftEtE brick has published itself in the Minmex, other bricks can
resolve the SAFT compartment and publish themselves in it. These will
mostly be applications making themselves visible in the SAFT compartment
in order to receive data through it.

Publish requests are handled by the handlePublish() function. Upon re-
ception of a publish request, the IDP, through which the brick publishing
itself wants to be reached, is stored in a permanently allocated IDP. No
database or repository is yet implemented to handle multiple publish request
as the remaining bricks of the SAFT compartment currently only support
one application as well.

After the brick’s IDP is stored, a reply to the publish request is sent
back. If the publish request was handled successfully, all data destined to
the published application received from the hop-by-hop sublayer through the
sublayer interface is delivered. For further information on receiving data see
the paragraph Receiving Data below.

See [ANAC, sec. 4.12.2] for general information on handling primitives.

Resolve Primtive

Through this primitive the actual functionality of the SAFT compartment
is provided, i.e., a reliable communication channel to an application running
on another node. At this stage, the communication channel only provides a
semi-reliable connection, because control mechanisms are only implemented
on the hop-by-hop sublayer. Nonetheless, this primitive allows an applica-
tion to request a semi-reliable communication channel, i.e., an information
channel using ANA terminology.

If an application wants to request an information channel through SAFT,
the first step it has to take, is resolve the SAFT compartment to acquire the
IDP bound to the entryPoint() function. Afterwards, it can send a resolve
request to the SAFT compartment provider brick, i.e., this brick.

The resolve request received is handed over to the handleResolve() func-
tion where it is processed. Establishing an information channel requires the
following steps:

1. extract the connection details out of the resolve request, i.e., source
target and context and destination target and context of the brick to
be resolved

2. request an IDP from the sublayer interface (using a resolve command)
through which we will send the application data to the hop-by-hop
sublayer

28

3. create and register an IDP to the callback function named infochan()
which will handle the application data to be sent

Important: when registering the callback function, all connection de-
tails are passed as arguments. This is needed for the callback function
to have the necessary information for creating segment headers and
send them to the right IDP requested from the sublayer interface in
step 2.

4. send a reply to the brick that issued the resolve command containing
the IDP bound to the callback function created in step 3 that will
handle all application data to be sent

After this process, the application that sent the resolve command can send
data to the target it resolved using the IDP it received in the resolve reply.

Note: The resolve request sent by the application triggers a “chain reac-
tion” inside the SAFT compartment. As soon a resolve request is received,
the end-to-end main brick resolves the sublayer interface and the sublayer
interface resolves the hop-by-hop brick (see fig 8). This way, all functions
on the data path can be accessed on data reception and do not have to be
resolved first. Also, an IDP to the next brick only has to be resolved once,
when the callback function is registered, and not every time data is received.
Figure 9 shows the data path after the resolve process. Notice the new IDPs
that were created in order to receive data.

29

SAFT Compartmen

s TTTT" RN

Application —@ / \
| |
m [
I 1

I |

I Resolve I

| |

| |

I 1

I |

I Resolve I

| |

| |

= I

| |

\ 4

~ e

Figure 8: Chain reaction triggered by resolve request

Send Primtive
The send primitive is not received through the entryPoint() function like the
publish and the resolve primitives. It is used by a brick that previously issued
a resolve command to send data through the information channel created by
SAFT.

As explained in the above paragraph, the resolve reply contains an IDP
which can be used by the application requesting a communication channel
to send data directly to the application it resolved. The send primitive is
thus expected to be received at that IDP. The callback function to which
that IDP is bound (infochan()) was previously registered when the resolve
request was received.

In each brick a callback function named infochan() is implemented. It
provides a part of the information channel’s underlaying functionality and
processes outgoing data. In this brick, the data received with every send
command is processed in that callback function as follows:

1. the connection details which where passed to the callback function when
registering it are retrieved and inserted into a segment header.

Note: the application does not know its local context. The local con-

30

SAFT Compartmen

Application —®@ ’

e - o o e o = oy

A Function

bound to IDP:

~
RN
-

— |

Application Data 1. infochan():

encapsulate data
in segments

2. infochan():

split segment into
fragments

3. sortFrag():

sort fragment
and passiitto
frag2net() for
store and
forward

Segments

2.

Fragments

Figure 9: Data path after resolve process

text (e.g., local IP addresses) is retrieved through the IP compartment
at startup (see brick_start() function) by this brick and stored in a list.
The source context field is thus filled using the IP address stored in
that list.

. the missing header fields, i.e., segment number and packet type are
added. As application data is processed here, packet type will always
be SAFT_DATA.

Note: header fields irrelevant for a data segment, e.g, fragment and
packet number, are left blank. These are filled afterwards by other
SAFT bricks when necessary.

. the now complete segment header and the received application data are
serialized, i.e., are converted into a unpadded sequence of bytes

. the serialized segment is sent to the sublayer interface through the IDP
which was passed to the callback function when it was registered

Now the sublayer interface will split the segment into fragments and hand
them over to the hop-by-hop main brick which will send the data to the next

31

hop.

Receiving Data

In order to receive data from the hop-by-hop sublayer destined for appli-
cations, this brick publishes itself at startup in the sublayer interface (see
brick_start() function). The IDP published in the sublayer interface is bound
to the saftSLIRecv() callback function. All fragments received at the hop-by-
hop sublayer reaching their destination node will be received at this callback
function in form of segments after being process by the sublayer interface.
The callback function handles incoming segments the following way:

1. deserialize received segment, i.e., reconstruct header and separate it
from the application data

2. if the segment number is the next in line to be sent to the application,
it is delivered along with all the succeeding continuous segments stored
in the segment repository

3. else, stored segment in repository and send it as soon as its preceding
segments have arrived

The above mechanism is implemented to order incoming segments, as it is
possible that they arrive out of order due to packet loss on the connection
routes.

4.4 Sublayer Interface Brick

The sublayer interface consists of one brick and is implemented in the saftSLI.c
file. It fulfills the following tasks:

e split segments received from the end-to-end main brick into fragments
and pass them to the hop-by-hop main brick

e receive fragments arriving at their final destination from the hop-by-
hop main brick and reassemble them into segments for the end-to-end
main brick

These tasks are achieved with three implemented primitives: publish, resolve
and send. How the primitives and other functions of this brick are imple-
mented is explained below.

Essential functions
Here three functions essential for the brick to work are explained:

32

brick_start(): This function must exist in every brick and is run at startup. It
is used to initialize the brick. In the sublayer interface brick the initialization
process comprehends the following tasks:

e initialize a quick repository to buffer incoming fragments
e initialize a lock to control access to the fragment repository

e set XRP specs needed by the SAFT compartment with the initSaft XRP-
Specs() function

e publish the saftSLI brick in the hop-by-hop main brick in order to
receive data from it destined to the end-to-end sublayer

e publish this brick in the Minmex so other bricks, e.g., the saftEtE brick,
can resolve us

entryPoint(): This function is bound to the IDP published in the Minmex.
This means, publish and resolve request will be received here. The task of
this function consists in forwarding the requests to the corresponding func-
tions handling them.

brick_exit(): This function must also be present in every brick. It is run on
brick shutdown and is used mainly to free permanently allocated ressouces.
In this brick the tasks performed at shutdown are:

e free permanently allocated IDP’s
e free the quick repository initialized in brick start()

Publish Primtive

This primitive is used mainly by the end-to-end main brick. The saftEtE
brick publishes itself in the sublayer interface in order to receive data des-
tined for the end-to-end sublayer coming from the hop-by-hop sublayer. The
publish requests are handled by the handlePublish() function. The tasks
performed within this function upon reception of a publish request are as
follows:

1. extract the IDP on which saftEtE wants to be reached out of the XRP
messaged received and store it in a permanently allocated IDP (no
support for multiple publish requests is yet implemented)

2. send a reply confirming the publish request

33

After this process, all data received for the end-to-end sublayer can be sent
to the IDP the saftEtE brick used to publish itself.

Resolve Primtive

The resolve primitive will also be used mainly by the saftEtE brick. The
end-to-end main brick sends a resolve request to the sublayer interface every
time it receives a resolve request from an application. The IDP contained
in the resolve reply is used by the end-to-end main brick to send segments
containing application data to the hop-by-hop sublayer. The resolve request
received at this brick is processed by the handleResolve() function. The tasks
performed by that function are detailed below:

1. request an IDP from the hop-by-hop main brick (using a resolve com-
mand) through which we will send the data received from the end-to-
end sublayer to the hop-by-hop sublayer

2. create and register an IDP to the callback function named infochan()
which will handle the segments received from the end-to-end main brick

Important: when registering the callback function, the IDP we ‘“re-
solved” in step 1 needs to passed as an argument. The infochan()
function then can retrieve that IDP upon reception of segments form
the end-to-end sublayer and send them converted as fragments to the
hop-by-hop main brick.

3. send a resolve reply to the saftEtE brick containing the IDP bound to
the callback function registered in step 2

After the above process, segments sent by the end-to-end to the sublayer in-
terface are automatically passed to the hop-by-hop main brick as fragments
after being process by the infochan() function of this brick.

Send Primtive

After the end-to-end main brick sent a resolve request to this brick, it can
send segments to be processed by the sublayer interface using the send prim-
itive. The segments are sent to the IDP which was received as a reply to the
resolve request. The callback function bound to that IDP is the infochan()
function. The tasks performed by that function upon receiving a segment
are explained below:

1. deserialize the received segment

34

2. calculate how many fragments will be needed to carry the segments
payload and the header. (It is to be remembered that the header is of
variable length and that fragments have a fixed size. Thus the space
available for payload must be calculated for every segment.)

3. create the necessary fragments by splitting the application data carried
by the segment into several chunks and appending a header to them.
The fragment number field of the header is filled in according to order
of the application data.

4. send the created fragments to the hop-by-hop main brick through the
IDP stored in the callback function’s parameters. (That IDP was re-
trieved when this brick received a resolve request from the end-to-end
main brick.)

Receiving Data

This brick receives all fragments that have reached their final destination
from the hop-by-hop sublayer in order to reassemble them into segments and
hand them over to the end-to-end sublayer. Before data can be received,
this brick has to publish itself in the hop-by-hop main brick. This is done at
startup in the brick_start() function. If the publish request in the hop-by-hop
main brick was successful, all fragments are delivered to the IDP which is
bound to the saftHbHRecv() function. There fragments are processed the
following way:

1. store received fragment in fragment repository

2. check if all fragments belonging to the same segment have been received,
i.e., the segment is complete

3. if segment is complete, reassemble it and send it to the end-to-end main
brick using the IDP with which that brick published itself in the sub-
layer interface. (After sending, fragments in the repository belonging
to the reassembled segment are deleted)

4. if segment is not yet complete, exit callback function

The above process is necessary to reorder the incoming fragments and convert
them into segments before handing them over to the end-to-end main brick.

35

4.5 Hob-by-Hop sublayer

Currently this sublayer consists of two bricks implementing the store and
forward procedure for a single connection. The hop-by-hop main brick imple-
ments link-based send and receive functionality, whereas the link congestion
control brick implements the intelligence needed to provide a semi-reliable
connection through the SAFT compartment.

4.5.1 Hop-by-Hop Main Brick

This brick is implemented in the saftHbH.c file. It interacts mainly with the
sublayer interface, the link congestion control brick and the network com-
partment. The supported primitives include: publish, resolve, send and two
compartment specific primitives used for congestion control. The implemen-
tation of this brick is detailed below.

Essential functions
Here three functions are discussed which are essential for the brick to work.

brick_start(): This function must exist in every brick and is run at startup.
It is used to initialize the brick. In this brick, the initialization process com-
prehends the following tasks:

e initialize repository to buffer packets coming in through the network
compartment

e initialize repository to store assembled fragments that need to be for-
warded

e initialize analocks to control access to the above repositories

e set the XRP Specs needed by the SAFT compartment using init-
SaftXRPSpecs()

e publish this brick in the LCC brick in order to use congestion control

e publish this brick in the IP compartment to receive data through the
network

e resolve the IP forwarding brick (ip_fwd) which is used to determine the
next hop when forwarding fragments

e publish the saftHbH brick in the Minmex so other bricks can find it

36

e retrieve all local IP addresses through the IP compartment and store
them in a list (needed to determine if a fragment is to be forwarded or
delivered)

entryPoint(): This function is bound to the IDP published in the Minmex.
This means, publish and resolve requests will be received here. The task of
this function consists in forwarding the requests to the corresponding func-
tions handling them. The primitives received from the the LCC brick are
handled separately in the saft LCCRecv() function.

brick_exit(): This function must also be present in every brick. It is run on
brick shutdown and is used mainly to free permanently allocated ressouces.
In this brick the tasks performed at shutdown are:

e free permanently allocated IDP’s
e free the repositories initialized in brick_start()
e free the list containing local TP addresses

Publish Primtive

In order for the sublayer interface to receive data destined for it, it has to
publish itself in this brick. The data received by the sublayer interface are
fragments that need to be reassembled into segments and handed over to the
end-to-end main brick. Publish requests are handled by the handlePublish()
function by performing the following tasks:

1. extract the IDP on which saftSLI wants to be reached out of the XRP
messaged received and store it in a permanently allocated IDP (no
support for multiple publish requests yet)

2. send a reply confirming the publish request

Resolve Primtive

This primitive is intended to be used mainly by the sublayer interface. For
each resolve request the sublayer interface receives, it has to “resolve” an
IDP from the hop-by-hop main brick in order to pass the data received from
the end-to-end sublayer to the hop-by-hop sublayer. The handleResolve()
function handles these request. Upon reception, a resolve request is handled
the following way:

1. create and register an IDP to the callback function named sortFrag()
which will handle the fragments received from the sublayer interface

37

Note: Unlike the other bricks discussed before, the hop-by-hop main
brick does not resolve a communication channel upon reception of a
resolve request. A communication channel is resolved separately for
every fragment at transmission time because each fragment received
may have a different next hop

2. send a reply to the saftSLI brick containing the IDP bound to the
callback function created in step 1

After the resolve request was handled successfully, the saftSLI brick can send
fragments destined for another node to the hop-by-hop main brick using the
IDP created in step 1.

Send Primtive

The sublayer interface uses this primitive to send fragments to the hop-by-
hop main brick. The fragments are sent to the IDP contained in a previous
resolve request. That IDP is bound to the sortFrag() function of the hop-by-
hop main brick and handles all incoming fragments. See paragraph Handling
Incoming Fragments for further information.

Receiving Data through IP Compartment

In order for the SAFT compartment to receive data through the IP com-
partment, the hop-by-hop main brick publish itself in it at startup (see
brick_start() function). The IDP that is published, is bound to the ipRecv()
function. As mentioned in previous sections, fragments have to be split be-
fore sent through the network to respect the network compartment’s MTU.
Thus, data received through the network compartment is encapsulated in
packets as well. The ipRecv() function implements a mechanism to reorder
packets and reassemble them to fragments:

1. if received packet is of type fragment acknowledgement, send it to LCC
brick and exit

2. else, store the received packet in the packet repository

3. check if all packets belonging to the same fragment have been received,
i.e., the fragment is complete

4. if fragment is complete, reassemble it and send it to sortFrag() function
for further processing

38

5. if fragment is not yet complete, exit the callback function

As stated in step 4, completed fragments are passed to the sortFrag() func-
tion which decides if a fragment has to be forwarded to another node or
delivered locally. See Handling Incoming Fragments for more details.

Handling Incoming Fragments

All fragments received at this brick, either through the network compartment
or from the end-to-end sublayer are received at the sortfrag() function. This
function acknowledges all fragments necessary and afterwards sends those ar-
riving at their final destination to the sublayer interface (using the IDP that
brick published) and those destined for another node to the frag2net() func-
tion. The frag2net() function implements the store and forward procedure.
Fragments received at this function undergo the following procedure:

1. store fragment in fragment repository
2. request sending permission for fragment through LCC brick

3. if permission is granted, retrieve next hop address using the IP for-
warding brick and send fragment

4. exit function

In case sending permission is granted, an information channel is requested
through the IP compartment by resolving the next hop. The resolve request
contains the IP address of the next hop as destination context and saftHbH as
destination target. Figure 10 shows an information channel between a source
node and its next hop. One important detail to mention is that, the channel
type argument of the resolve request must be set to 'm’ (multicast) even if
we only address one node. This is necessary because all other channel types
establish a connection, which is not suitable for wireless mobile networks
where frequent link failures difficult the connection establishment procedure.
It is better to send data directly, without establishing a connection, as it is
done with a multicast channel.

Fragments which did not receive sending permission are ordered to be
sent by the LCC brick once older fragments have been acknowledged. Those
fragments that were sent, but have not been acknowledged before their time-
out, are ordered to be resent by the LCC brick. It should be remembered
that the fragment repository is managed by the LCC brick even though it is
implemented in the saftHbH brick.

39

Source node Next hop

N €)

SAFT
End-to-End

.

Application

Network compartment

Information channel

\

Figure 10: Information channel to next hop using IP compartment

Note: currently, fragments are acknowledged selectively, i.e., an acknowl-
edgement is sent for every single fragment.
Handling Communication with Link Congestion Control

In order to handle the requests from the LCC brick, which manages the frag-
ment repository, the saftHbH brick publishes itself in that brick on startup.
After the publish request, all LCC messages are received at the saftL CCRecv()
function. We expect two types of XRP messages: (re)transmission orders and
deletion orders. Upon reception of such an order, the fragment specified in
the message is retrieved from the fragment repository and (re)sent or deleted.

4.5.2 Link Congestion Control Brick

This brick provides congestion control for the hop-by-hop sublayer. It is im-
plemented in the saftLCC.c and saftLCC.h files. It limits the transfer of the
hop-by-hop main brick by granting or denying sending permission of frag-
ments depending on the number of outstanding fragment acknowledgements.
Details on the implementation are below.

Essential functions
Here three functions are discussed which are essential for the brick to work.

brick_start(): This function must exist in every brick and is run at startup.

40

It is used to initialize the brick. In this brick, the initialization process com-
prehends the following tasks:

e initialize repository to store the status of fragments

e initialize analocks to control access to the above repository and the
unacknowledged fragments counter

e set the XRP Specs needed by the SAFT compartment using init-
SaftXRPSpecs()

e publish the saftLCC brick in the Minmex so other bricks can find it

Note: this brick does not publish itself in any other brick

entryPoint(): This function is bound to the IDP published in the Minmex.
The task of this function consists in forwarding the requests received to the
corresponding functions handling them. Currently, control messages, publish
requests and sending permission requests are expected.

brick_exit(): This function must also be present in every brick. It is run on
brick shutdown and is used mainly to free permanently allocated ressouces.
In this brick the tasks performed at shutdown are:

e free permanently allocated IDP’s
e free the fragment status repositoriy initialized in brick start()

Publish Primtive
The publish primitive will be used by the saftHbH brick. It publishes itself in
this brick in order to be able to receive (re)transmission and deletion orders.

Handling Sending Permission Requests

As mentioned before, sending pemission requests are received through the
IDP published in the minmex. They are processed in the handlePermRe-
quest() function the following way:

1. extract the fragment header contained in the XRP message received
2. create a entry in the fragment status repository

3. check the unacknowledged fragments counter if sending permission can
be granted or not

41

4. set a timer to check the status of the fragment after a specific timeout
5. create permission response XRP message

6. set the permission in the message to GRANTED if the number of un-
acknowledged fragments has not been exceeded, otherwise set it to
DENIED

7. send the response message back to the saftHbH brick

The above procedure creates an entry in the fragment status repository for
every fragment received. Currently the fragment status repository supports
only one connection. Thus, the unacknowledged fragment counter is imple-
mented as single variable.

Every time a new fragment is received, a timer is started that executes the
checkFragStatus() function after a specific timeout. More details on updating
a fragments status can be found in the paragrapgh Updating Fragment Status.

Handling Control Messages

All control messages of the hop-by-hop sublayer are received at this brick.
The hop-by-hop main brick receives them through the network compart-
ment and send them directly to this brick. They are processed in the
handleCtriMsg() function. Currently only fragment acknowledgements are
expected. Upon reception of an acknowledgement the following tasks are
performed:

1. mark corresponding fragment as acknowledged
2. decrease the unacknowledged fragment counter.

Updating Fragment Status

All fragments that have an entry in the fragment status repository have a cor-
responding timer activated. This timer checks the status of the corresponding
fragment by executing the checkFragStatus() function after a specific time-
out. Depending on the fragment’s status, it is ordered to be (re)transmitted
or deleted by sending a special XRP message (see sec. 4.2.3) to the hop-by-
hop main brick. The checkFragStatus() function performs the following tasks
upon receiving a fragment:

1. if fragment is unsent and counter of unacknowledged fragments has
reached its maximum value:

e reset timer

e cxit

42

2. if fragment is unsent but counter of unacknowledged fragments has not
reached its maximum value:
e change fragment status to unacknowledged
e increase unacknowledged fragments counter
e send a transmission order to saftHbH
e reset timer
e exit
3. if fragment is unacknowledged and it has not exceeded its maximum
retransmission attempts:
e increase its retransmission counter
e send a retransmission order to saftHbH
e reset timer
e exit

4. if fragment is unacknowledged and it has exceeded its maximum re-
transmission attempts:

e stop its timer

delete its fragment status repository entry
send a deletion order to saftHbH

decrease unacknowledged fragment counter
e exit
LCC Settings
The LCC brick has several parameters that can be adjusted in the saftLC'C.h

file. These parameters can influence the performance and should be set
according to each network. They are explained below:

o F#define MAX_UNACKED_FRAGS X

Defines the maximum number of unacknowledged fragments X allowed
for a link.

e #define MAX_FRAG_RETRIES X
Defines the maximum number of retransmission attempts X per frag-

ment. If X is set to a value higher than 255, retransmission attempts
will be unlimited.

43

o F#define FRAG_.CHECK_INTERVAL X

Defines a time in miliseconds after which the timer of the fragment
expires and the status of the fragment is checked. Keep in mind that
the current ANA prototype has an internal timeout of 3 seconds that
applies to all request done using basic primitives like publish and re-
solve.

4.6 Test Application: File Transfer

In order to test our SAFT implementation, an application was required. A
simple tool to send a file from one node to another was therefor implemented.
Its source code can be found in the saftDemo.c and saftDemo.h files. To
send a file, the source node resolves the destination node through the SAFT
compartment and sends the data to the IDP received in the resolve reply.

Once the SAFT compartment is running, to send a file the following steps
have to be taken:

e on the destination node, start the saftDemo brick without additional
command line parameters

e on the source node, start the saftDemo brick with the following param-
eters:

saftDemo -n URL -¢ URL -d URL -a <destination> -a <file> -a <delay>

The paramaters -n’, -¢’ and ’-d’ specify the Minmex URL, the control
gate URL and the data URL respectively. The additional parameters
specify:

— <destination>: TP address of the destination node, e.g., 192.168.0.10
— <file>: path to the file to be sent, e.g., ./myfile.dat

— <delay>: delay in seconds between to data messages sent. Useful
to avoid flooding the SAFT compartment while no connection
congestion control is implemented.

Additionally, the script in the . /scripts folder can be used to start a node
with all bricks necessary to run SAFT. The scripts also includes a simple
shell script interface to send files using the saftDemo brick. This shell script
also has a testing mode which performs the tests used for the validation.

The saftDemo brick creates a folder named ./saftDemoRecv in the home
directory of the user running it in order to store received files an write out

44

a log file (log.csv). The log file is a comma separated value table containing
information on received files and all SAFT parameters set on brick start.
This information can be useful for benchmarks and evaluations and was used
for the validation of SAFT (see sec. 5).

45

5 Validation

A validation was performed to test the functionalities implemented in the
SAFT compartment so far. The validation comprehends two test. Both
tests and their results are presented below.

5.1 Overview

As a testing application the saftDemo brick was used (see sec. 4.6). Ran-
dom files were created and sent through the network scenario depited below
(fig. 11) simulating different levels of packet loss. Packet loss was simulated
using tc (Traffic Control)for linux.

Intermediate node

Destination node
Source node

Figure 11: Network setup used for validation

The parameters used for the SAFT compartment during validation are listed
below:

e application MTU: 10140B

e fragment size: 25608

packet size: 640B
e max. number of unacknowledged fragments: 10

e max. retransmissions of fragment: unlimited

46

e fragment retransmission interval: 3500ms

The saftDemo brick was setup to send a data message every 5 seconds. Con-
sidering the application MTU, this equals to an approximate transfer rate
of 2 KB/s. This was necessary to avoid flooding the hop-by-hop sublayer as
currently there is no connection congestion control implemented.

5.2 Test 1: Multiple Transmissions

For the first test a single random file, sized 30KB, was transmitted 100 times
from the source node to the destination node over the network depicted
in fig. 11. The test was done 4 times with different packet loss levels: no
packet loss, 5% packet loss, 10% packet loss and 20% packet loss. Figure 12
shows the average transmission time for the different packet loss levels. Also,
the relative increase compared to the non-lossy case is indicated on top of
each column. An increase in average transmission time is visible: the higher
the packet loss, the higher the average transmission time. However, the
values of the increase have not been compared to mathematically expected
values. Nonetheless, the test served to show that the SAFT compartment
still delivered the file consistently after several successive transmissions.

A Avg. time for one transmission

28 26.95s
27 (+15%)
25.65s
26 25.26s (+10°A))
(+8%)
0 25
®
€ 24
= 23.33s
23
22
214
0% 5% 10% 20%
Packetloss

Figure 12: Avg. transmission time for 100 x 30KB

47

5.3 Test 2: Single Transmission

In this test, three random files, sizes 1B, 1.3KB and 14MB, were sent once
from source to destination simulating the following packet loss levels: no
packet loss, 5% packet loss and 10% packet loss. All files were received
consistently for the different packet loss levels. Figure 13 shows the average
transfer rate for the transmission of the 14MB file. The transfer rate for all
packet loss levels is almost identical, due to the fact that the application’s
transfer rate creates s bottle neck. Thus, the influence of the packet loss
is not visible. Despite the fact, this test showed that SAFT can handle a
“larger” file and manage the involved congestion control properly.

Avq. transfer rate
2.50‘ 9

[N - N
o O)] o
o o o

Transfer rate [KB/s]

o
)
o

o
o
@

>

0% 5% 10% 20%
Packetloss

Figure 13: Avg. transfer rate for a 14MB file

48

6 Conclusion and Future Work

The paragraphs below summarize the work done in this thesis. Moreover, its
relevance for the ANA project is considered, as well as the most important
future work on SAFT for ANA.

6.1 Conclusion

With this semester thesis, the fundament for the first transport protocol to
run on the ANA core architecture has been laid. As a hop-by-hop transport
protocol, SAFT can provide great benefit for the ANA project through its
strength on wireless mobile networks. It exemplifies that an architecture
allowing easy incorporation of new protocols with non-traditional approaches
can have great advantages.

Being the first transport protocol implemented, new possibilities are opened.
A transport protocol providing reliability can be the motivation to create an
interface for applications that run on legacy network architectures.

Also, by providing a flexible and modular design, the implementation of
other transport protocols using SAFT as a groundwork has been eased. The
design we proposed allows it to create basic versions of UDP and TCP with
some modifications.

This initial implementation of SAFT provides semi-reliable communica-
tion channels. Thus, the next version of SAFT should focus on implementing
connection congestion control to achieve full reliability and extend SAFT’s
range of applications. Nonetheless, the validation shows that, even though
only a fraction of the SAFT design has been implemented, the current ver-
sion of SAFT can provide a useful service for applications that work on
semi-reliable communication channels.

6.2 Future Work

At current state, SAFT only implements a fraction of the bricks and functions
proposed in our design. Hence, the next versions of SAFT should center on
completing the implementation according to the design. However, the most
urgent additions to be made are:

e Connection Congestion Control
Currently SAFT only provides semi-reliable communication channels
due to the fact that congestion control is only implemented on the
hop-by-hop sublayer. This means, if data is lost on the route only
the previous node and not the source node notices this. Additionally,

49

without congestion control on the end-to-end sublayer the application
sending data through the SAFT compartment can “flood” the hop-by-
hop sublayer as there is no mechanism stopping it from sending data
or buffering the data.

e Multiple Connection Support

At the moment, all bricks only support one connection. Repositories
need to be implemented to handle multiple publish requests. The seg-
ment, fragment and packet buffers are implemented using quick repos-
itories and packet numbers are used as repository entry identifiers. To
store multiple connections in the same repository, a hash value could
be computed from the header of each data unit and used as repository
entry identifier.

Other, less urgent, topics to be addressed:

e Variable Network Compartment
In the current implementation several functions only work in conjunc-
tion with the IP compartment. Ideally, the SAFT compartment should
be able to work with any network compartment.

e End-to-End Transportation
A modification of SAFT, implementing only end-to-end functionality,
should be created in order to test the reusability of the bricks and the
feasibility of an end-to-end protocol.

e Performance Evaluation
A performance evaluation would certainly help to define SAFT’s cur-
rent capabilities and where optimization needs to be done.

50

References

[TLR]

[SAFT]

[ANAB]

[ANAC]

[ANAP]

[IPCO]

[RFC1122]

[OSIRM]

[DPD]

Simon Heimlicher, Rainer Baumann, Martin May and Bern-
hard Plattner. Computer Engineering and Networks Labora-
tory, ETH Ziirich. January 2007

The Transport Layer Revisited

Simon Heimlicher. Master Thesis, April 2005, ETH Ziirich.
SAFT: Store And Forward Transport. Reliable Transport in
Wireless Mobile Ad-hoc Networks

Christian Tschudin (UBasel), Christophe Jelger (UBasel),
Ghazi Bouabene (UBasel), Guy Leduc (ULg), Lorenzo Peluso
(FOKUS), Manolis Sifalakis (ULancs), Marcus Schoeller
(ULancs), Martin May (ETHZ), Matti Siekkinen (UOslo),
Rudolf Roth (FOKUS), Stefan Schmid (NEC), Tanja Zseby
(FOKUS), Thomas Plagemann (UOslo), Vera Goebel (UOslo)

ANA Blueprint - First Version Updated

Ghazi Bouabene (UBasel), Christophe Jelger (UBasel), Ariane
Keller (ETHZ)

ANA Core Documentation D.1.8b

The ANA project’s website. September 2008
http://www.ana-project.org

Stephan Dudler. Master Thesis, March 2008, ETH Ziirich

New Protocols and Applications for the Future Internet

R. Braden. Internet Engineering Task Force. October 1989.
RFC 1122

John D. Day and Hubert Zimmermann. Proceedings of the
IEEE, Vol. 71, No. 12. December 1983

The OSI Reference Model

David D. Clark. Massachusetts Institute of Technology, Labo-
ratory of Computer Science. 1988

The Design Philosophy of the DARPA Internet Protocols

o1

[HBT] Zhenghua Fu, Xiaogiao Meng, Songwu Lu. UCLA Computer
Science Department. 2002

How Bad TCP Can Perform In Mobile Ad Hoc Networks

[CAC] Van Jacobson. University of California, Lawrence Berkeley
Laboratory.

Congestion Avoidance and Control

92

A Appendix

A.1 Usage

To start the SAFT compartment the following bricks and compartments have
to be running and configured:

e Minmex

e Vlink

e Ethernet compartment
e [P compartment

e RIP brick

After that, the SAFT bricks can be started. The bricks do not need any
additional parameters. Only Minmex, control and data URL need to be
specified. The bricks can thus be started the following way:

1. saftLCC -n <Minmex URL> -¢ <control URL> -d <data URL>
2. saftHbH -n <Minmex URL> -¢ <control URL> -d <data URL>
3. saftSLI -n <Minmex URL> -c <control URL> -d <data URL>

4. saftEtE -n <Minmex URL> -¢ <control URL> -d <data URL>

Ensure that the bricks are started in the order specified above, as they de-
pend on each other.

Additionally, the scripts in the ./saft/scripts folder can be used to setup
a three node network using SAFT. The scripts in the silentstart subfolder
include a shell script interface for using the saftDemo brick. See the Readme
files in the ./scripts folder for instructions on running the different scripts.

A.2 Doxygen Documentation

A.2.1 SAFT End-to-End Main Brick

33

SAFT End-to-End Main Brick

Generated by Doxygen 1.5.5

Thu Sep 18 06:28:44 2008

o4

95

26

Contents

1 File Index
1.1 File List e e e

2 File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftEtE.c File Reference

o7

o8

Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/SA/saft/saftEtE.c

File Index

29

Generated on Thu Sep 18 06:28:44 2008 for SAFT End-to-End Main Brick by Doxygen

60

Chapter 2

File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftEtE.c File Reference

#include "analib2.h"
#include "brick_template.h"
#include "./saft.h"
#include "quickRepository.h"
#include "analock.h"

#include "../ip/ip.h"

Defines

¢ #define MODULE_NAME saftEtE

Functions

* void AGENTCLASSMEMBER entryPoint (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handlePublish (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handleResolve (struct anal.2_message *msg)

¢ void AGENTCLASSMEMBER saftSLIRecv (struct anal.2_message *msg)

e NSSTATIC void AGENTCLASSMEMBER infochan (char *data, int len, anal.abel_t input, void
*aux)

* struct fullTarget * cloneFullTarget (struct fullTarget *ft)

* void freeFullTarget (struct fullTarget «ft)

* void AGENTCLASSMEMBER brick_exit ()

* int AGENTCLASSMEMBER brick_start ()

Variables

e char mymodename [] = "saftEtE"
e char x validatebuf
¢ NSSTATIC analabel_t entryPointIDP

4 File Documentation

61
* NSSTATIC analabel_t saftSLIIDP

e NSSTATIC anal.abel_t saftSLIRecvIDP
e NSSTATIC analabel_t appIDP

* struct List ipList

* uintl6_t outgoingSegNum = 1

* struct QREP segRep

* uint16_t incomingSegNum = 1

« analock_t segRepLock

2.1.1 Define Documentation

2.1.1.1 #define MODULE_NAME saftEtE

2.1.2 Function Documentation

2.1.2.1 void AGENTCLASSMEMBER brick_exit ()

2.1.2.2 int AGENTCLASSMEMBER brick_start ()

2.1.2.3 struct fullTarget cloneFullTarget (struct fullTarget « ff) [read]

2.1.2.4 void AGENTCLASSMEMBER entryPoint (struct anal.2_message * msg)

This Callback Function handles the different requests from other bricks, e.g when a IDP is requested for
data transmission trough a resolve command.

2.1.2.5 void freeFullTarget (struct fullTarget * f)
2.1.2.6 void AGENTCLASSMEMBER handlePublish (struct anal.2_message x msg)
2.1.2.7 void AGENTCLASSMEMBER handleResolve (struct anal.2_message * msg)

2.1.2.8 NSSTATIC void AGENTCLASSMEMBER infochan (char * data, int len, anaLabel_t
input, void * aux)

This function is bound to an IDP representing an information channel. The information channel IDP was
created before through a resolve request of an application brick (e.g. an application wanting to send data
using th SAFT compartment). This function is AL1 style.

2.1.2.9 void AGENTCLASSMEMBER saftSLIRecv (struct anal.2_message * msg)

This function is called when receiving segments from the sublayer interface that need to be sent to an
application.

Generated on Thu Sep 18 06:28:44 2008 for SAFT End-to-End Main Brick by Doxygen

2.1 /Users/diego/Desktop/SA/saft/saftEtE.c File Reference

2.1.3

2.1.3.1
2.1.3.2
2.1.3.3
2.1.34
2.1.3.5
2.1.3.6
2.1.3.7
2.1.3.8

2.1.3.9

Variable Documentation
NSSTATIC anaLabel_t appIDP
NSSTATIC analLabel_t entryPointIDP
uint16_t incomingSegNum = 1

struct List ipList

char mymodename|] = "saftEtE"
uint16_t outgoingSegNum = 1
NSSTATIC anaLabel_t saftSLIIDP
NSSTATIC analLabel_t saftSLIRecvIDP

struct QREP segRep

2.1.3.10 analock_t segRepLock

2.1.3.11 charx validatebuf

62

Generated on Thu Sep 18 06:28:44 2008 for SAFT End-to-End Main Brick by Doxygen

A.2.2 SAFT Sublayer Interface

63

SAFT Sublayer Interface Brick

Generated by Doxygen 1.5.5

Thu Sep 18 06:26:18 2008

64

65

66

Contents

1 File Index
1.1 File List e e e

2 File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftSLI.c File Reference

67

68

Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/SA/saft/saftSLL.e

File Index

69

Generated on Thu Sep 18 06:26:18 2008 for SAFT Sublayer Interface Brick by Doxygen

70

Chapter 2

File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftSLI.c File Reference

#include "analLib2.h"
#include "brick_template.h"
#include "saft.h"

#include <math.h>

#include "quickRepository.h"
#include "analock.h"

#include <assert.h>

Defines

¢ #define MODULE_NAME saftSLI

Functions

¢ void AGENTCLASSMEMBER entryPoint (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handlePublish (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handleResolve (struct anal.2_message *msg)

* void AGENTCLASSMEMBER saftHbHRecv (struct anal.2_message *msg)

* NSSTATIC void AGENTCLASSMEMBER infochan (char *data, int len, analabel_t input, void
*aux)

* void AGENTCLASSMEMBER brick_exit ()

* int AGENTCLASSMEMBER brick_start ()

Variables

¢ char mymodename [] = "saftSLI"

¢ char * validatebuf

* NSSTATIC analabel_t entryPointIDP = NULL
¢ NSSTATIC analLabel_t saftHbHIDP = NULL

4 File Documentation

71

NSSTATIC anaLlabel_t saftHbHRecvIDP = NULL

NSSTATIC anaLabel_t saftEtEIDP = NULL
* struct QREP fragRep

« analock_t fragRepLock

2.1.1 Define Documentation

2.1.1.1 #define MODULE_NAME saftSLI

2.1.2 Function Documentation

2.1.2.1 void AGENTCLASSMEMBER brick_exit ()

2.1.2.2 int AGENTCLASSMEMBER brick_start ()

2.1.2.3 void AGENTCLASSMEMBER entryPoint (struct anal.2_message * msg)

This callback function handles the different requests from other bricks, e.g when a IDP is requested for
data transmition trough a resolve command.

2.1.2.4 void AGENTCLASSMEMBER handlePublish (struct anal.2_message * msg)
2.1.2.5 void AGENTCLASSMEMBER handleResolve (struct anal.2_message * msg)

This function handels the resolve requests coming in through entryPointIDP. This will mainly be requests
from the End-to-End sublayer brick wanting an information channel.

2.1.2.6 NSSTATIC void AGENTCLASSMEMBER infochan (char x data, int len, anaLabel_t
input, void * aux)

This function is bound to an IDP representing an information channel. The information channel IDP
was created before through a resolve request by a brick wanting to send data (e.g. the sublayer interface
forwarding data from the End-to-End sublayer). This function is AL1 style.

Here we (Sublayer Interface) convert segments into fragments and pass them on to the SAFT Hop-by-Hop
brick.

2.1.2.7 void AGENTCLASSMEMBER saftHbHRecv (struct anal.2_message * msg)

The following callback function handles the fragments coming in from the Hop-by-Hop sublayer/brick on
the saftHbHRecvIDP. It converts them to segments and passes them on to the End-to-End brick (saftEtE).
The order in which the segments are passed to the End-to-End is not defined.

Generated on Thu Sep 18 06:26:18 2008 for SAFT Sublayer Interface Brick by Doxygen

2.1 /Users/diego/Desktop/SA/saft/saftSLI.c File Reference

2.1.3 Variable Documentation

2.1.3.1 NSSTATIC anaLabel_t entryPointIDP = NULL
2.1.3.2 struct QREP fragRep

2.1.3.3 analock_t fragRepLock

2.1.3.4 char mymodename[] = "saftSLI"

2.1.3.5 NSSTATIC anaLabel_t saftEtEIDP = NULL
2.1.3.6 NSSTATIC anaLabel_t saftHbHIDP = NULL
2.1.3.7 NSSTATIC anaLabel_t saftHbHRecvIDP = NULL

2.1.3.8 charx validatebuf

Generated on Thu Sep 18 06:26:18 2008 for SAFT Sublayer Interface Brick by Doxygen

A.2.3 SAFT Hop-by-Hop Main Brick

73

SAFT Hop-by-Hop Main Brick

Generated by Doxygen 1.5.5

Thu Sep 18 06:19:20 2008

74

75

Contents

1 File Index
1.1 FileList

2 File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftHbH.c File Reference

76

77

Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/S A/saft/saftHbH.c

78

File Index

79

Generated on Thu Sep 18 06:19:20 2008 for SAFT Hop-by-Hop Main Brick by Doxygen

80

Chapter 2

File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftHbH.c File Reference

#include "analLib2.h"
#include "brick_template.h"
#include "../ip/ip.h"
#include "saft.h"

#include <math.h>

#include "quickRepository.h"

Defines

¢ #define MODULE_NAME saftHbH

Functions

¢ void AGENTCLASSMEMBER entryPoint (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handlePublish (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handleResolve (struct anal.2_message *msg)

* void AGENTCLASSMEMBER ipRecv (struct anal.2_message *msg)

* void AGENTCLASSMEMBER saftLCCRecv (struct anal.2_message *msg)

* void frag2net (void *frag, unsigned int fragl.en)

« int sendFrag (char xdata, int len, analLabel_t ipEncIDP, anal.abel_t ipFwdIDP)
e char * getNextHop (anaLabel_t ipFwdIDP, char xip)

¢ int sendFragACK (struct saftHdr «hdr, char xprevHop)

* NSSTATIC void AGENTCLASSMEMBER sortFrag (char xdata, int len, anal.abel_t input, void
*aux)

* void AGENTCLASSMEMBER brick_exit ()
¢ int AGENTCLASSMEMBER brick_start ()

4 File Documentation

81
Variables

e char mymodename [] = "saftHbH"

e char * validatebuf

e struct List ipList

¢ NSSTATIC analabel_t entryPointIDP

* NSSTATIC anaLabel_t ipEncIDP

¢ NSSTATIC analabel_t ipRecvIDP

¢ NSSTATIC anal.abel_t ipFwdIDP

¢ NSSTATIC anaLabel_t saft LCCIDP

e NSSTATIC analabel_t saftLCCRecvIDP
¢ NSSTATIC analabel_t saftSLIIDP = NULL
* struct QREP pktRep

« struct QREP frags2netRep

* analock_t pktRepLock

« analock_t frags2netRepLock

2.1.1 Define Documentation

2.1.1.1 #define MODULE_NAME saftHbH

2.1.2 Function Documentation

2.1.2.1 void AGENTCLASSMEMBER brick_exit ()

2.1.2.2 int AGENTCLASSMEMBER brick_start ()

2.1.2.3 void AGENTCLASSMEMBER entryPoint (struct anal.2_message * msg)

This callback function handles the different requests from other bricks, e.g when a IDP is requested for
data transmition trough a resolve command.

2.1.2.4 void frag2net (void * frag, unsigned int fragLen)

This Function handles all fragments that need to be sent into the network and does the actual "store and
forward". The fragments to be sent come from the from the sortFrag() (p.6) function. A QREP is used
to buffer the outgoing fragments. Sending permission for each fragment is requested from link congestion
control (saftLCC). If LCC denies permission fragments is kept in the QREP for later use.

2.1.2.5 char * getNextHop (anaLabel_t ipFwdIDP, char x ip)

This function is used to find out the next hop of a route to certain IP address using the IP forwarding brick.
Do not forget to free the pointer returned as memory allocation is needed for return value.

Parameters:
ipFwdIDP 1DP through which we can reach the forwarding brick
ip The IP address for which we need the next hop

Returns:

IP address of next hop as char pointer or NULL on error

Generated on Thu Sep 18 06:19:20 2008 for SAFT Hop-by-Hop Main Brick by Doxygen

2.1 /Users/diego/Desktop/SA/saft/saftHbH.c File Reference 5

82
2.1.2.6 void AGENTCLASSMEMBER handlePublish (struct anal.2_message x msg)

2.1.2.7 void AGENTCLASSMEMBER handleResolve (struct anal.2_message * msg)

This function handles the resolve requests coming in through entryPointIDP. This will mainly be requests
from the sublayer interface brick wanting to send us fragments.

2.1.2.8 void AGENTCLASSMEMBER ipRecv (struct anal.2_message * msg)

The following callback function handles the data coming in from the IP compartment on the ipRecvIDP.

Here we join the received packets into fragments and pass them to the sortFrag() (p. 6) function.

2.1.2.9 void AGENTCLASSMEMBER saftLCCRecv (struct anal.2_message * msg)

This function receives instruction from SAFT link congestion control. It executes requested retransmission
of unacked fragments or deletes fragments in the local frags2net repository that were either successfully
sent or timedout.

2.1.2.10 int sendFrag (char * data, int len, anal.abel_t ipEncIDP, anal.abel_t ipFwdIDP)

This function takes a fragment destined to another node, splits it into packets and sends it to the next hop.
It also appends the local IP if no source context is specified.
Parameters:

data Fragment to be sent

len Size in bytes fo the fragment

ipEncIDP IDP of the ip_enc brick to which we send a resolve request for the next hop
ipFwdIDP 1DP of the IP forwarding brick from which we retrieve the ip address of the next hop

Returns:

0 if everything went well, else -1

2.1.2.11 int sendFragACK (struct saftHdr * hdr, char x prevHop)

This function sends an ACK message for the fragment specified in the header to the previous hop that sent
this fragment.

Important: For now we don’t set the source Context of the ACK message. At current state, this does not
have an influence, but it should be implemented in the future.

Parameters:

hdr SAFT header of the fragment to acknowledge
prevHop Context (e.g. IP address) of the node who sent the fragment

Returns:

1 on success, 0 else

Generated on Thu Sep 18 06:19:20 2008 for SAFT Hop-by-Hop Main Brick by Doxygen

6 File Documentation

83
2.1.2.12 NSSTATIC void AGENTCLASSMEMBER sortFrag (char * dafa, int len, anaLabel_t
input, void * aux)

This function processes the received fragments and forwards them to another node or passes them on to
the End-to-End layer for local delivery depending on ther final destination. The fragments can either come
from the sublayer interface or from the ipRecv() (p. 5) callback function. This function also sends ACK’s

for non-local fragments.

Parameters:

aux We expect this to be the IP address of the previous hop in case we need to send a ACK message.

2.1.3 Variable Documentation

2.1.3.1 NSSTATIC anal.abel_t entryPointIDP
2.1.3.2 struct QREP frags2netRep

2.1.3.3 analock_t frags2netRepLock

2.1.3.4 NSSTATIC anaLabel_t ipEncIDP

2.1.3.5 NSSTATIC anaLabel_t ipFwdIDP

2.1.3.6 struct List ipList

2.1.3.7 NSSTATIC anaLabel_t ipRecvIDP

2.1.3.8 char mymodename[] = "saftHbH"

2.1.3.9 struct QREP pktRep

2.1.3.10 analock_t pktRepLock

2.1.3.11 NSSTATIC anaLabel_t saftLCCIDP
2.1.3.12 NSSTATIC anaLabel_t saftLCCRecvIDP
2.1.3.13 NSSTATIC anaLabel_t saftSLIIDP = NULL

2.1.3.14 charx validatebuf

Generated on Thu Sep 18 06:19:20 2008 for SAFT Hop-by-Hop Main Brick by Doxygen

A.2.4 SAFT Link Congestion Control Brick

84

SAFT Link Congestion Control Brick

Generated by Doxygen 1.5.5

Thu Sep 18 06:22:08 2008

85

86

87

Contents

1 Data Structure Index 1
1.1 DataStructures e e e e e 1
2 File Index 3
2.1 Fle List o 3
3 Data Structure Documentation 5
3.1 fragStat StructReference 5
4 File Documentation 7
4.1 /Users/diego/Desktop/SA/saft/saftLCC.c File Reference 7

4.2 /Users/diego/Desktop/SA/saft/saftLCC.h File Reference 10

38

89

Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

fragStat e e e

Data Structure Index

90

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/S A/saft/saftLCC.c
/Users/diego/Desktop/S A/saft/saftLCC.h

91

File Index

92

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

Chapter 3

Data Structure Documentation

3.1 fragStat Struct Reference

#include <saftLCC.h>

Data Fields

e uint8_t retries
e uint8_t status
* unsigned int timerID

3.1.1 Field Documentation
3.1.1.1 uint8_t fragStat::retries
3.1.1.2 uint8_t fragStat::status

3.1.1.3 unsigned int fragStat::timerID

The documentation for this struct was generated from the following file:

* /Users/diego/Desktop/SA/saft/saftLCC.h

93

Data Structure Documentation

94

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

Chapter 4

File Documentation

4.1 /Users/diego/Desktop/SA/saft/saftLCC.c File Reference

#include "analLib2.h"
#include "brick_template.h"
#include "saft.h"

#include "quickRepository.h"
#include "anatimer.h"
#include <assert.h>

#include "saftLCC.h"

Defines

¢ #define MODULE_NAME saftL.CC

Functions

* void AGENTCLASSMEMBER entryPoint (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handlePublish (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handleCtrlMsg (struct anal.2_message *msg)

* void AGENTCLASSMEMBER handlePermRequest (struct anal.2_message *msg)
* void checkFragStatus (char xfragID)

* void AGENTCLASSMEMBER brick_exit ()

* int AGENTCLASSMEMBER brick_start ()

Variables

e char mymodename [] = "saftLCC"

e char x validatebuf

NSSTATIC anaLabel_t saftHbHIDP
NSSTATIC anaLabel_t entryPointIDP
* struct QREP fragStatRep

95

8 File Documentation

96
« analock_t fragStatRepLock

¢ analock_t UNACKED_FRAGS lock

* unsigned int UNACKED_FRAGS =0

4.1.1 Define Documentation

4.1.1.1 #define MODULE_NAME saftLCC

4.1.2 Function Documentation

4.1.2.1 void AGENTCLASSMEMBER brick_exit ()

4.1.2.2 int AGENTCLASSMEMBER brick_start ()

4.1.2.3 void checkFragStatus (char x fragID)

This function is started by a timer in order to check the status of a fragment. If necessary it resends the
fragment or orders the deletion of it in the saftHbH brick. It also updates the counter of unacked fragments
if a fragment was sent successfully.

4.1.2.4 void AGENTCLASSMEMBER entryPoint (struct anal.2_message * msg)

This callback function handles the different requests coming mainly from the SAFT hop-by-Hop brick
(saftHbH).

4.1.2.5 void AGENTCLASSMEMBER handleCtrIMsg (struct anal.2_message * msg)

This function handles the control messages of the Hop-by-Hop sublayer. The saftHbH bricks does not
process them an passes them directly to this brick.

4.1.2.6 void AGENTCLASSMEMBER handlePermRequest (struct anal.2_message * msg)

This function handles the request for sending permission coming in from saftHbH. If we haven’t exceeded
the maximum number of unacknowledged fragments we grant permission to send fragment immediately.
Otherwise, we set a timer to order retransmission of fragment afterwards.

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

4.1 /Users/diego/Desktop/SA/saft/saftL.CC.c File Reference

97
4.1.2.7 void AGENTCLASSMEMBER handlePublish (struct anal.2_message x msg)

4.1.3 Variable Documentation

4.1.3.1 NSSTATIC anaLabel_t entryPointIDP
4.1.3.2 struct QREP fragStatRep

4.1.3.3 analock_t fragStatRepLock

4.1.3.4 char mymodename[] = "saftLCC"
4.1.3.5 NSSTATIC anaLabel_t saftHbHIDP
4.1.3.6 unsigned int UNACKED_FRAGS =0
4.1.3.7 analock_t UNACKED_FRAGS_lock

4.1.3.8 charx validatebuf

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

10 File Documentation

4.2 /[Users/diego/Desktop/SA/saft/saftLLCC.h File Reference

Data Structures

* struct fragStat

Defines

¢ #define STATUS_UNSENT 0

#define STATUS_ACKED 1

#define STATUS_UNACKED 2

#define MAX_UNACKED_FRAGS 10
#define MAX_FRAG_RETRIES 10000
#define FRAG_CHECK_INTERVAL 3500

4.2.1 Define Documentation

4.2.1.1 #define FRAG_CHECK_INTERVAL 3500
4.2.1.2 #define MAX_FRAG_RETRIES 10000
4.2.1.3 #define MAX_UNACKED_FRAGS 10
4.2.1.4 #define STATUS_ACKED 1

4.2.1.5 #define STATUS_UNACKED 2

4.2.1.6 #define STATUS_UNSENT 0

Generated on Thu Sep 18 06:22:08 2008 for SAFT Link Congestion Control Brick by Doxygen

A.2.5 SAFT Main Include File

99

100

SAFT Main Include File

Generated by Doxygen 1.5.5

Thu Sep 18 06:32:44 2008

101

102

Contents

1 Data Structure Index

1.1 DataStructures e e e e e

2 File Index
2.1 FileList

3 Data Structure Documentation
3.1 group Struct Reference
3.2 listelem Struct Referenceo

3.3 saftHdr Struct Reference

4 File Documentation

4.1 /Users/diego/Desktop/SA/saft/saft.h File Reference

~N O G W (O8]

o

103

104

Chapter 1

Data Structure Index

1.1 Data Structures

Here are the data structures with brief descriptions:

BEOUP . . . o o ot e e e e e e e e
listelem e
saftHdr e e

Data Structure Index

105

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

106

Chapter 2

File Index

2.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/SA/saft/safth 0 .

File Index

107

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

108

Chapter 3

Data Structure Documentation

3.1 group Struct Reference

#include <saft.h>

Data Fields

¢ uint8_t x safedUnits
¢ void * data
* unsigned int dataSize

3.1.1 Detailed Description

Struct to hold a group (p. 5), i.e. their data and a unit counter

3.1.2 Field Documentation
3.1.2.1 uint8_tx group::safedUnits

which packets/fragments have already been received

3.1.2.2 voidx group::data
3.1.2.3 unsigned int group::dataSize

this is needed because the actual size of a fragment/segment is not knwon until we receive its last
packet/fragment

The documentation for this struct was generated from the following file:

* /Users/diego/Desktop/SA/saft/saft.h

6 Data Structure Documentation

3.2 listelem Struct Reference 109

#include <saft.h>

Data Fields

e char x val

3.2.1 Detailed Description

List element, mainly store all local IP’s in our IP list

3.2.2 Field Documentation
3.2.2.1 charsx listelem::val
The documentation for this struct was generated from the following file:

* /Users/diego/Desktop/S A/saft/saft.h

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

3.3 saftHdr Struct Reference

3.3 saftHdr Struct Reference

#include <saft.h>

Data Fields

¢ char * srcContext

« saftHdrStrLen srcContextLen
e char * srcTarget

* saftHdrStrLen srcTargetLen
e char x destContext

¢ saftHdrStrLen destContextLen
¢ char * destTarget

o saftHdrStrLen destTargetLen
* uint8_t type

* uint16_t segno

* uint8_t fragno

¢ uint8_t pktno

* uintl6_t segack

* uint8_t fragack

* uint8_t seglen

e uint8_t fraglen

e uint16_t pktlen

3.3.1 Detailed Description

SAFT packet header

3.3.2 Field Documentation
3.3.2.1 charx saftHdr::srcContext

e.g. source IP or MAC address

3.3.2.2 saftHdrStrLen saftHdr::srcContextLen

3.3.2.3 charx saftHdr::srcTarget

e.g. the name of application sending the data

3.3.2.4 saftHdrStrLen saftHdr::srcTargetLen

3.3.2.5 charx saftHdr::destContext

e.g. destination IP or MAC address

110

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

Data Structure Documentation

3.3.2.6 saftHdrStrLen saftHdr::destContextLen
3.3.2.7 charx saftHdr::destTarget

e.g. destination application name

3.3.2.8 saftHdrStrLen saftHdr::destTargetLen
3.3.2.9 uint8_t saftHdr::type

type of data: DATA, ACK, NACK, etc.

3.3.2.10 uint16_t saftHdr::segno

contains segment ID

3.3.2.11 uint8_t saftHdr::fragno

contains fragment ID

3.3.2.12 uint8_t saftHdr::pktno

contains packet ID

3.3.2.13 uint16_t saftHdr::segack

last segment received by destination

3.3.2.14 uint8_t saftHdr::fragack

last fragment received by destination

3.3.2.15 uint8_t saftHdr::seglen

lenght of a segment in fragments

3.3.2.16 uint8_t saftHdr::fraglen

lenght of a fragment in packets

3.3.2.17 uintl6_t saftHdr::pktlen

size of packet payload in bytes

The documentation for this struct was generated from the following file:

* /Users/diego/Desktop/SA/saft/saft.h

111

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

Chapter 4

File Documentation

4.1 /Users/diego/Desktop/SA/saft/saft.h File Reference

#include <string.h>
#include <stdlib.h>
#include <stdio.h>

#include "1listAPI.h"

#include "ip_hdr.h"

Data Structures

e struct saftHdr
* struct group
« struct listelem

Defines

* #define SRC_CONTEXT_LEN_SIZE 1
¢ #define SRC_TARGET_LEN_SIZE 1

* #define DEST_CONTEXT_LEN_SIZE 1
¢ #define DEST_TARGET_LEN_SIZE 1

* #define TYPE_SIZE 1

#define SEGNO_SIZE 2
#define FRAGNO_SIZE 1
#define PKTNO_SIZE 1
#define SEGACK_SIZE 2
#define FRAGACK_SIZE 1
#define SEGLEN_SIZE 1
#define FRAGLEN_SIZE 1
#define PKTLEN_SIZE 2
#define SAFT_DATA 1
#define SAFT_FRAGACK 2
#define SAFT_SEGACK 3

112

10

File Documentation

113
#define MAX_SAFTPKT_SIZE 640

#define MAX_SAFTFRAG_SIZE 2560
#define MTU_APP 10140

#define XRP_CMD_PERMREQUEST "prq"
#define XRP_CMD_PERMRESPONSE "prp"
#define XRP_CMD_DELENTRY "dle"
#define XRP_CMD_RESEND "rsd"

#define XRP_CMD_SAFTCTRLMSG "scm"
#define XRP_CLASS_PERMISSION "prm"
#define XRP_CLASS_SAFTHDR "shd"
#define XRP_CLASS_ENTRYNAME "enm"
#define GRANTED 1

#define DENIED 2

Typedefs

typedef uint8_t saftHdrStrLen

Functions

int saftHdrSize (struct saftHdr «hdr)

void * saftSerialize (struct saftHdr «hdr, void *data, int datalLen, int xtotSize)
struct saftHdr saftDeserialize (void xpkt, int pktLen, void *xdata, int *datalen)
void freeSaftHdr (struct saftHdr *«hdr)

void printSaftHdr (struct saftHdr hdr)

struct saftHdr ft2saftHdr (struct fullTarget *ft)

void initSaftXRPSpecs ()

void freeGroup (struct group *grp)

void initSafedUnits (uint8_t xsU, unsigned int nbUnits)

int groupIsComplete (uint8_t «sU, unsigned int nbUnits)

void freelist (void xelem)

int ipIsLocal (struct List ipList, char *ip)

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

4.1 /Users/diego/Desktop/SA/saft/saft.h File Reference

11

4.1.1 Define Documentation

4.1.1.1 #define DENIED 2

4.1.1.2 #define DEST_CONTEXT_LEN_SIZE 1
4.1.1.3 #define DEST_TARGET_LEN_SIZE 1
4.1.1.4 #define FRAGACK_SIZE 1

4.1.1.5 #define FRAGLEN_SIZE 1

4.1.1.6 #define FRAGNO_SIZE 1

4.1.1.7 #define GRANTED 1

4.1.1.8 #define MAX_SAFTFRAG_SIZE 2560
4.1.1.9 #define MAX_SAFTPKT_SIZE 640
4.1.1.10 #define MTU_APP 10140

4.1.1.11 #define PKTLEN_SIZE 2

4.1.1.12 #define PKTNO_SIZE 1

4.1.1.13 #define SAFT_DATA 1

4.1.1.14 #define SAFT_FRAGACK 2

4.1.1.15 #define SAFT_SEGACK 3

4.1.1.16 #define SEGACK_SIZE 2

4.1.1.17 #define SEGLEN_SIZE 1

4.1.1.18 #define SEGNO_SIZE 2

4.1.1.19 #define SRC_CONTEXT_LEN_SIZE 1
4.1.1.20 #define SRC_TARGET_LEN_SIZE 1
4.1.1.21 +#define TYPE_SIZE 1

4.1.1.22 #define XRP_CLASS_ENTRYNAME "enm"
4.1.1.23 #define XRP_CLASS_PERMISSION "prm"
4.1.1.24 #define XRP_CLASS_SAFTHDR '"shd"
4.1.1.25 #define XRP_CMD_DELENTRY "dle"

4.1.1.26 #define XRP_CMD_PERMREQUEST '"prq"

114

ehedardd on ¥AlefipesSRPLONHARER MRILSEQONSE) DRERn

4.1.1.28 #define XRP_CMD_RESEND ''rsd"
4.1.1.29 #define XRP_CMD_SAFTCTRLMSG "scm"

A 19 Tyrradaof Dactismoanfafinm

12 File Documentation

115

Parameters:

grp Group to free

4.1.3.2 void freelist (void * elem)

Function to free our IP list and its elements

4.1.3.3 void freeSaftHdr (struct saftHdr = hdr)

Function used to free a SAFT header after calling saftDeserialize() (p. 13) or ft2saftHdr() (p. 12). This
function only free the char pointer inside the header and not the header itself. If you allocated memory for
the header struct you have to free it separately.

Parameters:

hdr SAFT header to free

4.1.3.4 struct saftHdr ft2saftHdr (struct fullTarget « ft) [read]

Function to extract the information of a fullTarget struct and create a SAFT header (struct saftHdr (p. 7))
with it. A fullTarget does no contain all the information needed to fill a SAFT header completely, so
you will have to add the missing fields manually. Remember to free the return header after use with
freeSaftHdr() (p. 12).

Parameters:

Jt pointer to the fullTarget from which to extract the information

See also:

freeSaftHdr() (p. 12)

Returns:

Returns a SAFT header that contains the fullTarget’s info

4.1.3.5 int groupIsComplete (uint8_t x sU, unsigned int nbUnits)

Function to check if a group (p. 5) is complete

Parameters:
sU safedUnits array to check

nbUnits The number of elements held in that array

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

4.1 /Users/diego/Desktop/SA/saft/saft.h File Reference 13

116
4.1.3.6 void initSafedUnits (uint8_t « sU, unsigned int nbUnits)

Function to initialize a safedUnits array

Parameters:

sU The safedUnits array to initialize

nbUnits The number of elements held in that array

4.1.3.7 void initSaftXRPSpecs ()

This function changes the default XRP Specs. We need this to increase the number of bytes that we can
send using an XRP message (e.g. with anal.2_forwardData()).

4.1.3.8 intiplIsLocal (struct List ipList, char x ip)
Function to determine if a certain IP addresses is local or not

Parameters:

list The list containing all local IP addresses

ip IP address to check

4.1.3.9 void printSaftHdr (struct saftHdr hdr)

Function to print out the contents of a SAFT header

Parameters:

hdr Input header to print out

4.1.3.10 struct saftHdr saftDeserialize (void * pkt, int pktLen, void *x data, int * dataLen)
[read]

Given a segment, fragment or packet this function will fill a SAFT header with the information extracted
from a packet and set pointers to the corresponding data. The data pointer will be set to point to the
payload of the packet within the original data, i.e. the data does not get copied. Remember to free the
header returned after use with freeSaftHdr() (p. 12).

Parameters:
pkt Pointer to the segment, fragment or packet to be deserialized
pktlen Lenght of the data unit (segment, fragment or packet)
hdr Pointer of a SAFT header to be filled with the extracted data
data Pointer to store the address of the extracted data (Hint: is actually a pointer to a pointer!)

dataLen Pointer to store the size of data

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

14 File Documentation

117

See also:

saftSerialize() (p. 14)
freeSaftHdr() (p. 12)

Returns:

SAFT header of packet, fragment or segment

4.1.3.11 int saftHdrSize (struct saftHdr * hdr)

Function that returns the size of the SAFT header in bytes.

4.1.3.12 voidx saftSerialize (struct saftHdr * hdr, void * data, int dataLen, int x totSize)

Function that joins and serializes a SAFT header with its corresponding data and returns a pointer to the
complete data unit (segment, fragment or packet including header). Remember to free the returned data
after use.

Parameters:
hdr Pointer to header of segment, fragment or packet
data Pointer to the data that is to be appended to the header

dataLen Lenght in bytes of the data

totSize Address that will contain total size of segment,fragment or packet

Returns:

Pointer to a complete segment,fragment or packet containing a SAFT header

Generated on Thu Sep 18 06:32:44 2008 for SAFT Main Include File by Doxygen

A.2.6 SAFT Demo Brick

118

119

SAFT Demo Brick

Generated by Doxygen 1.5.5

Thu Sep 18 06:36:22 2008

120

121

Contents

1 File Index
1.1 File List e e e

2 File Documentation
2.1 /Users/diego/Desktop/SA/saft/saftDemo.c File Reference
2.2 [Users/diego/Desktop/SA/saft/saftDemo.h File Reference

122

Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

/Users/diego/Desktop/S A/saft/saftDemo.c
/Users/diego/Desktop/S A/saft/saftDemo.h

123

File Index

124

Generated on Thu Sep 18 06:36:22 2008 for SAFT Demo Brick by Doxygen

Chapter 2

File Documentation

2.1 /Users/diego/Desktop/SA/saft/saftDemo.c File Reference

#include "analib2.h"
#include "brick_template.h"
#include <string.h>
#include "saftDemo.h"
#include <sys/types.h>
#include <sys/stat.h>
#include <stdint.h>
#include <stdlib.h>
#include "saftLCC.h"

Defines

¢ #define MODULE_NAME saftDemo

Functions

* void AGENTCLASSMEMBER entryPoint (struct anal.2_message *msg)

¢ void AGENTCLASSMEMBER handlePublish (struct anal.2_message *msg)
* void AGENTCLASSMEMBER handleResolve (struct anal.2_message *msg)
* void AGENTCLASSMEMBER saftEtERecv (struct anal.2_message *msg)

* void AGENTCLASSMEMBER brick_exit ()

* int AGENTCLASSMEMBER brick_start ()

Variables

¢ char mymodename [] = "saftDemo”
e char * validatebuf
e NSSTATIC analabel_t entryPointIDP

125

4 File Documentation

126
¢ NSSTATIC analabel_t saftEtEIDP

* NSSTATIC anaLlabel_t saftEtERecvIDP
¢ FILE * recvFile

¢ char * recvDir

¢ char * filename

¢ FILE x logfile

¢ char x logfileName

* unsigned long int totalBytes
* unsigned long int dataBytes
e struct timeval start_time

e struct timeval finish_time

¢ uint8_t sending_interval

* unsigned long int dataMsgCounter

2.1.1 Define Documentation

2.1.1.1 #define MODULE_NAME saftDemo

2.1.2 Function Documentation

2.1.2.1 void AGENTCLASSMEMBER brick_exit ()

2.1.2.2 int AGENTCLASSMEMBER brick_start ()

2.1.2.3 void AGENTCLASSMEMBER entryPoint (struct anal.2_message * msg)

This callback function handles the different requests from other bricks.

2.1.2.4 void AGENTCLASSMEMBER handlePublish (struct anal.2_message * msg)

This function handles the publish requests coming in through entryPointIDP.

2.1.2.5 void AGENTCLASSMEMBER handleResolve (struct anal.2_message * msg)

This function handles the resolve requests coming in through entryPointIDP.

2.1.2.6 void AGENTCLASSMEMBER saftEtERecv (struct anal.2_message * msg)

The following callback function handles the data coming in from the SAFT compartment. It will receive
files sent by another saftDemo brick.

Generated on Thu Sep 18 06:36:22 2008 for SAFT Demo Brick by Doxygen

2.1 /Users/diego/Desktop/SA/saft/saftDemo.c File Reference

2.1.3
2.1.3.1
2.1.3.2
2.1.3.3
2.1.34
2.1.3.5
2.1.3.6
2.1.3.7
2.1.3.8
2.1.3.9
2.1.3.10
2.1.3.11
2.1.3.12
2.1.3.13
2.1.3.14
2.1.3.15

2.1.3.16

Variable Documentation
unsigned long int dataBytes
unsigned long int dataMsgCounter
NSSTATIC anal.abel_t entryPointIDP
charx filename
struct timeval finish_time
FILEx logfile
charx logfileName
char mymodename| | = "saftDemo"’
charx recvDir
FILEx recvFile
NSSTATIC anaLabel_t saftEtEIDP
NSSTATIC anaLabel_t saftEtERecvIDP
uint8_t sending_interval
struct timeval start_time
unsigned long int totalBytes

charx validatebuf

127

Generated on Thu Sep 18 06:36:22 2008 for SAFT Demo Brick by Doxygen

6 File Documentation

2.2 /[Users/diego/Desktop/SA/saft/saftDemo.h File Reference

#include <stdint.h>
#include <string.h>
#include "saft.h"

#include <sys/time.h>

Defines

#define FILE_START 1
#define FILE_DATA 2
#define FILE_END 3

#define DEFAULT_DELAY 5

Functions

* void x filestart (char +filename, int xmsgSize)
¢ void sendFile (char xdContext, char xfilename)

2.2.1 Define Documentation

2.2.1.1 #define DEFAULT_DELAY 5

2.2.1.2 #define FILE_DATA 2

2.2.1.3 #define FILE_END 3

2.2.1.4 #define FILE_START 1

2.2.2 Function Documentation

2.2.2.1 voidx filestart (char x filename, int x msgSize)

This function is used to create a file start (FILE_START) message. This is the first message we send when
starting a file transfer.

Parameters:

filename full path name of file that is going to be sent
msgSize pointer that will be filled witht the size of the FILE_START message

2.2.2.2 void sendFile (char x dContext, char x filename)

This function will send a file to another instance of saftDemo running on a specified context/IP-address.

Generated on Thu Sep 18 06:36:22 2008 for SAFT Demo Brick by Doxygen

A.3 Assignment

129

m Institut fr
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich 130

Semester Thesis

Implementation of SAFT on ANA
Diego Adolf

Advisor: Ariane Keller, ariane.keller@tik.ee.ethz.ch
Co-Advisors: Simon Heimlicher, heimlicher@tik.ee.ethz.ch
Dr. Martin May, may@tik.ee.ethz.ch
Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

March 2008 - June 2008

1 Introduction

This semester thesis is in the context of the ANA project. The goal of the ANA project is to explore
novel ways of organizing and using networks beyond legacy Internet technology. The ultimate goal is to
design and develop a novel network architecture that can demonstrate the feasibility and properties of
autonomic networking. Many new protocols have been developed in the context of ANA.

In this thesis we focus on SAFT, a transport protocol designed for wireless networks. SAFT splits
data into chunks and forwards these through the network independently. At every intermediate node,
chunks are stored and then forwarded to the next node; thus SAFT does not depend on continuous
end-to-end connectivity.

The objective of this semester thesis is to implement a basic version of SAFT within the ANA
framework.

2 Assignment

This assignment aims to outline the work to be conducted during this thesis. The assignment may need
to be adapted over the course of the project.

2.1 Objectives

The goal of this semester thesis is to implement the SAFT transport protocol an ANA. The first step
will be to design the software architecture. The architecture has to clearly divide the SAFT protocol in
its elementary blocks and should allow its core mechanisms to be adapted or replaced in the future. In a
second step SAFT will be implemented in ANA. The final step will be to evaluate the architecture and
implementation.

2.2 Tasks

This section gives a brief overview of the tasks the student is expected to perform towards achieving the
objective outlined above. The binding project plan will be derived over the course of the first three weeks
depending on the knowledge and skills the student brings into the project.

2.2.1 Familiarization

e Study the available literature on ANA [1, 2].

Study the available literature on SAFT [3, 4].
Familiarize yourself with the ana svn, the ana wiki and the ana developer mailing list.
Setup a Linux machine on which you want to do your implementation, consider to use a viddare.

Setup a test network (either physical or virtual) that runs the ANA chat application over the IP
protocol (at least 3 nodes and 2 subnets).

In collaboration with the advisor, derive a project plan for your semester thesis. Allow time for the
design, implementation, evaluation, and documentation of your software.

2.2.2 Software Design

Determine the areas where your implementation will touch other ANA parts, e.g. the forwarding
table.

Divide the SAFT protocol in suitable ”Bricks”. Each Brick should be able to perform an indepen-
dent task.

Consider how the protocol will be configured and fine tuned.
Design a simple application that can test the implementation of SAFT.

Think about possible test scenarios.

2.2.3 Implementation

Determine the Bricks of your design which are needed for a minimalistic implementation of SAFT.
Implement the minimal set of Bricks.

Adhere to the Linux coding style guide [5].

Provide a simple validation script, that determines whether your Bricks work correctly.

Optional: If the minimal set of Bricks have been validated, implement the remaining Bricks.

Optional: Adapt your implementation to runs in Linux kernel space and ns2 as well.

2.2.4 Validation

Validate the correct operation of your implementation.

Check the resilience of the implementation, including its configuration interface, to uneducated
users.

Optional: Do a performance evaluation of your implementation. What is the impact of the param-
eters? How well is link failure handled? etc.

2.2.5 Documentation

Maintain an online documentation about the current status of your Bricks on the ana wiki [6].
Document your code with doxygene according to the ANA guidelines [7].

Write a documentation about the design, implementation and validation of SAFT in ANA.

3 Deliverables

e Provide a ”project plan” which identifies the mile stones.

e Mid semester: Intermediate presentation. Give a presentation of 10 minutes to the profegs%% and
the advisors. In this presentation, the student presents major aspects of the ongoing work including
results, obstacles, and remaining work.

e End of semester: Final presentation of 15 minutes in the CSG group meeting, or, alternatively, via
teleconference. The presentation should carefully introduce the setting and fundamental assump-
tions of the project. The main part should focus on the major results and conclusions from the
work.

e Any software that is produced in the context of this thesis and its documentation needs to be
delivered before conclusion of the thesis. This includes all source code and documentation. The
source files for the final report and all data, scripts and tools developed to generate the figures of
the report must be included. Preferred format for delivery is a CD-R.

4 Organization

e Student and advisor hold a weekly meeting to discuss progress of work and next steps. The student
should not hesitate to contact the advisor at any time. The common goal of the advisor and the
student is to maximize the outcome of the project.

e The student is encouraged to write all reports in English; German is accepted as well. The fi-
nal report must contain a summary, the assignment and the time schedule. Its structure should
include the following sections: Introduction, Background/Related Work, Design/Methodology, Val-
idation/Evaluation, Conclusion, and Future work. Related work must be referenced appropriately.

e The core source code will be published under the ISC license. Really smart Bricks will stay closed
source.

5 References

[1] ANA Core Documentation: All you need to know to use and develop ANA software. Available in the
ANA svn repository.

[2] ANA Blueprint: First Version Updated. Available from the ANA wiki

[3] Simon Heimlicher: SAFT - Store And Forward Transport: Reliable Transport in Wireless Mobile
Ad-hoc Networks [TTK MA-2005-08]

[4] Severin Hafner and Rafael Schoenenberger: Implementation of SAFT [TIK SA-2006-08]

[5] Available on your Linux box: file:///usr/src/linux/Documentation/CodingStyle

[6] https://www.ana-project.org/wiki

[7] http://www.stack.nl/ dimitri/doxygen/

