
Porting the ZigBit 900 Platform to TinyOS

Team Project

Richard Huber
Thomas Fahrni

Advisors:
Roland Flury

Philipp Sommer

Supervisor:
Prof. Dr. Roger Wattenhofer

Distributed Computing Group
Computer Engineering and Networks Laboratory (TIK)

Department of Information Technology and Electrical Engineering

February 2009

3

Abstract

The ZigBit900 module of MeshNetics [1] combines a low-power microcontroller (Atmel AT-
mega1281 [2]) and a radiomodule (ZigBee) in the 900MHz-Band (Atmel AT86RF212 [3]) on a
single chip. Meshbean900 and Pixie are two new nodes for wireless embedded sensor networks,
using the ZigBit900 module. TinyOS [4] is a popular operating system for wireless embedded
sensor networks. In this team project we extended TinyOS to support the ZigBit900 module.
Therefore we added a new platform for each of the two nodes and adapted existing driver soft-
ware (especially for microcontroller, radio module, LEDs, user buttons and UART) to the new
environment.

4

Contents

1 Introduction 7

2 ZigBit900 9
2.1 ATmega1281 Microcontroller . 9
2.2 AT86RF212 RF Transceiver . 9
2.3 Pin Assignment . 9

3 The Meshbean900 Platform 11
3.1 The .platform File . 11
3.2 The platform.h File . 13
3.3 ATmega1281 Hardware Driver . 13
3.4 Makefiles . 13
3.5 LEDs . 14
3.6 User Buttons . 15
3.7 Serial Port (UART) . 16
3.8 Radio Module Hardware Driver . 16

4 The Pixie Platform 19
4.1 Differences between Pixie and Meshbean900 19
4.2 Programming the Pixie . 20
4.3 The Name Pixie . 20

5 Setting up the Development Environment 21
5.1 Installing TinyOS . 21
5.2 The TinyOS 2 Plugin for Eclipse . 21
5.3 AVRDUDE . 22
5.4 AVR JTAGICE mkII . 22

6 Evaluation 25
6.1 Demo Application . 25

7 Conclusion 27
7.1 Further topics . 27

A Appendix 29
A.1 Tables of Pin Assignment . 29

Bibliography 31

5

6 CONTENTS

1
Introduction

TinyOS [4] is an open source operating system designed for wireless embedded sensor networks.
Its component library includes network protocols, distributed services, sensor drivers and tools
for various different tasks. The component-based architecture with an event-driven execution
model match the requirements effected by the constraints of power and memory. The program-
ming language used to write applications and drivers is called ’NesC’, which is in fact a dialect
of C. In the past years, TinyOS has become a de facto standard in academic research on wireless
sensor networks.

The ZigBit900 radio module by MeshNetics [1] combines a low-power microcontroller (Atmel
ATmega1281 [2]) and a radio module (ZigBee) in the 900MHz-Band (Atmel AT86RF212 [3])
on a single chip. The two components are internally connected such that no external devices are
necessary, except of a power source and an antenna.

MeshNetics offers development boards called Meshbean900 [6] to demonstrate the capabilities
of their ZigBit900 Module. The Meshbean boards can be programmed with BitCloud [7], Mesh-
Netics own proprietary operating system. Up to now there was no support for TinyOS. Another
sensornode using the ZigBit900 module is Pixie, developed at the TIK. It’s a very basic platform,
which can be used and extended in further projects.

The task of this team project was to extended TinyOS to support the ZigBit900 chip. Furthermore
the Meshbean900 and the Pixie schould be intergrated into TinyOS as new platforms.

7

8

2
ZigBit900

The ZigBit900 module was developed by MeshNetics. It wires internally Atmel’s AT-
mega1281V microcontroller and AT86RF212 RF transceiver. The module includes all the nec-
essary passive components, so it can easily be mounted on a simple PCB with a minimum of
required external connections. This makes it easy and fast to develop new prototypes. Also soft-
ware debugging becomes easier, because hardware failures hardly happen. A block diagram of
the ZigBit900 module is shown in Figure 2.1.

2.1 ATmega1281 Microcontroller

ATmega1281 is a low-power 8-bit microcontroller. It is part of Atmel’s well known AVR series.
The microcontroller runs with up to 16 MIPS throughput at 16 MHz and there is 128-KByte flash
program memory and 8-KByte SRAM included. It uses the common programming interfaces
JTAG and ISP, which both are accessable from outside the ZigBit900 (see Section 2.3).

2.2 AT86RF212 RF Transceiver

The AT86RF212 is a fully integrated 800/900MHz-band transceiver implementing the IEEE
802.15.4 standard. Its low current consumption makes it optimal for the use in wireless embed-
ded sensor networks. The communication between the microcontroller and the RF module is
fully encapsulated inside the ZigBit900 and uses the SPI bus.

2.3 Pin Assignment

Most - but not all - of the pins of the microcontroller and the RF transceiver are connected to
the external pins of the ZigBit module. Unfortunately the way these pins are connected is not
documented in the product datasheet [5]. Since the module comes boundled with an embedded
software stack called BitCloud [7], the header files of this software could give us some hints on
how this connection is done. The results we found are listed in Table A.1.
We also found a datasheet of an older version of the ZigBit module, where a table indicates

9

10 2.3. PIN ASSIGNMENT

Figure 2.1: Block diagram of the ZigBit 900 module
(ZigBit Datasheet [5])

which pin of the microcontroller is connected to a given external pin of the ZigBit (see Appendix
A.1). Although this older version uses a different radio module, all the pins we used were
connected exactly the way it is described in this datasheet. Anyway, developers must be aware
that this table has to be seen as a proposal and not as a fact.

3
The Meshbean900 Platform

The Meshbean900 platform is a development board, distributed by MeshNetics. It comes with
a light- and a temperature sensor as well as a number of other peripheral devices, such as dip-
switches, buttons and several connectors. A picture of the Meshbean900 is shown in figure 3.1.
This platform offers a well-defined and well-tested environment, which makes software devel-
opment easier since failures in the hardware can be disregarded. Unfortunately, the pins of the
ZigBit900 which are internally connected to the ISP port of the ATmega1281 are not connected
on the board. So the Meshbean900 platform has to be programmed by a JTAG programmer.1

3.1 The .platform File

Every platform in TinyOS has its own .platform file. It indicates the order of the include directo-
ries and some compile options. For the Meshbean900 platform, the .platform file belongs to the
directory tos/platforms/meshbean900.

1 push(@includes, qw(
2

3 %T/platforms/meshbean900
4 %T/platforms/meshbean900/chips/atm1281/pins
5 %T/platforms/meshbean900/chips/atm128/i2c
6 %T/platforms/meshbean900/chips/rf212
7 %T/platforms/meshbean900/chips/tsl2550
8 %T/platforms/meshbean900/chips/lm73
9 %T/platforms/meshbean900/chips/ds2411

10 %T/platforms/iris
11 %T/platforms/iris/chips/rf230
12 %T/platforms/micaz
13 %T/platforms/mica
14 %T/chips/rf230
15 %T/chips/atm1281

1Anyway the ISP bus can be accessed by soldering very thin conductors to the corresponding pins of the ZigBit900
module. But this can only be an emergency solution for example if one deactivates the JTAG interface by setting the
wrong fusebits.

11

12 3.1. THE .PLATFORM FILE

16 %T/chips/atm1281/adc
17 %T/chips/atm1281/timer
18 %T/chips/atm128
19 %T/chips/atm128/adc
20 %T/chips/atm128/pins
21 %T/chips/atm128/spi
22 %T/chips/atm128/i2c
23 %T/chips/atm128/timer
24 %T/lib/timer
25 %T/lib/serial
26 %T/lib/power
27 %T/lib/diagmsg
28));
29

30 @opts = qw(
31

32 -gcc=avr-gcc
33 -mmcu=atmega1281
34 -fnesc-target=avr
35 -fnesc-no-debug
36 -fnesc-scheduler=TinySchedulerC,TinySchedulerC.TaskBasic,TaskBasic,

TaskBasic,runTask,postTask
37);
38

39 $ENV{’CIL_MACHINE’} =
40 "version_major=3 " .
41 "version_minor=4 " .
42 "version=avr-3.4.3 " .
43 "short=2,1, " .
44 "int=2,1 " .
45 "long=4,1 " .
46 "long_long=8,1 " .
47 "pointer=2,1 " .
48 "enum=2,1 " .
49 "float=4,1 " .
50 "double=4,1 " .
51 "long_double=4,1 " .
52 "void=1,1 " .
53 "fun=1,1 " .
54 "wchar_size_size=2,2 " .
55 "alignof_string=1 " .
56 "max_alignment=1 " .
57 "char_wchar_signed=true,true " .
58 "const_string_literals=true " .
59 "big_endian=false " .
60 "underscore_name=false " .
61 "__builtin_va_list=true " .
62 "__thread_is_keyword=true";

Listing 3.1: .platform: Defining include directories for the Meshbean900 platform

CHAPTER 3. THE MESHBEAN900 PLATFORM 13

Figure 3.1: The Meshbean900 development board
(MeshNetics website [6])

3.2 The platform.h File

General declarations applying to the whole platform can be stated in the platform.h file, stored
in the tos/platforms/meshbean900 directory. For the Meshbean900 platform there are no such
declarations, so the platform.h file is empty.

3.3 ATmega1281 Hardware Driver

The ATmega1281 is already used by several other platforms. Therefore all necessary information
about the hardware driver can be found in the tos/chips/atm1281 directory.

3.4 Makefiles

Every platform needs a makefile which provides an easy way to compile and install applications.
We could reuse the existing makefile from the Iris platform with just a small change: The make-
file from the Iris node disabled JTAG by removing the JTAGEN fusebit. This was particularly
important because JTAG is the only way to program the Meshbean.

1 #-*-Makefile-*- vim:syntax=make
2 #$Id: iris.target,v 1.4 2008/07/09 15:36:50 sallai Exp $
3

4 PLATFORM = meshbean900
5 SENSORBOARD ?= micasb
6 PROGRAMMER ?= avrdude
7

8

9 AVRGCC_SUPPORTS_ATM1281 = $(shell avr-gcc --target-help 2>&1 | grep -
c atmega1281)

10 ifneq ($(AVRGCC_SUPPORTS_ATM1281),1)

14 3.5. LEDS

11 $(error Found avr-gcc with no ATMega1281 support. For details on
upgrading your toolchain, please see "http://www.isis.vanderbilt
.edu/projects/NEST/tinyos-2.x-iris/doc/html/install-tinyos-iris.
html")

12 endif
13

14 ifeq ($(PROGRAMMER),avrdude)
15 PROGRAMMER_PART ?= -pm1281 -P usb -U efuse:w:0xff:m -U lfuse:w:0xc2

:m
16 endif
17

18 ifeq ($(PROGRAMMER),uisp)
19 PROGRAMMER_PART ?= -dpart=ATmega1281 --wr_fuse_e=ff
20 endif
21

22 #Setting Fusebits as default
23 AVR_FUSE_H ?= 0x99
24 AVR_FUSE_L ?= 0xff
25

26 ifdef RF230_CHANNEL
27 PFLAGS += -DRF230_DEF_CHANNEL=$(RF230_CHANNEL)
28 endif
29

30 $(call TOSMake_include_platform,avr)
31

32 meshbean900: $(BUILD_DEPS)
33 @:

Listing 3.2: meshbean900.target: Makefile for the Meshbean900 platform

3.5 LEDs

The Meshbean900 comes with three LEDs: a red, a green and a yellow one. Since LEDs are part
of almost every platform, we were able to reuse existing code. The only task was to find out,
which LED is wired to which pin of the ATmega1281 (see Section 2.3). In the PlatformLedsC.nc
file, these connections are stated:

1 configuration PlatformLedsC
2 {
3 provides interface GeneralIO as Led0;
4 provides interface GeneralIO as Led1;
5 provides interface GeneralIO as Led2;
6

7 uses interface Init;
8 }
9

10 implementation
11 {
12 components HplAtm128GeneralIOC as IO;
13 components PlatformP;
14

15 Init = PlatformP.MoteInit;
16

17 Led0 = IO.PortB5; // Red LED

CHAPTER 3. THE MESHBEAN900 PLATFORM 15

18 Led1 = IO.PortB6; // Green LED
19 Led2 = IO.PortB7; // Yellow LED
20 }

Listing 3.3: PlatformLedsC.nc: Defining pins for LEDs

3.6 User Buttons

The Meshbean900 platform has two user buttons, each providing a GET (polling) and a NOTIFY
(interrupt) interface. In this case we did not just have to find the GeneralIO port - like we did
for the LEDs - but also the corresponding interrupt addresses. This matching is done in the
HplUserButtonsC.nc file.

1 configuration HplUserButtonsC
2 {
3 provides interface GeneralIO as GeneralIOUB1;
4 provides interface GpioInterrupt as GpioInterruptUB1;
5

6 provides interface GeneralIO as GeneralIOUB2;
7 provides interface GpioInterrupt as GpioInterruptUB2;
8

9 provides interface Init;
10 }
11 implementation
12 {
13 components HplAtm128GeneralIOC as GeneralIOC;
14 components HplAtm128InterruptC as InterruptC;
15

16 // GeneralIO
17 GeneralIOUB1 = GeneralIOC.PortE6;
18 GeneralIOUB2 = GeneralIOC.PortE7;
19

20 // Interrupt UB1
21 components new Atm128GpioInterruptC() as

InterruptUserButton1C;
22 InterruptUserButton1C.Atm128Interrupt -> InterruptC.Int6;
23 GpioInterruptUB1 = InterruptUserButton1C.Interrupt;
24

25 // Interrupt UB2
26 components new Atm128GpioInterruptC() as

InterruptUserButton2C;
27 InterruptUserButton2C.Atm128Interrupt -> InterruptC.Int7;
28 GpioInterruptUB2 = InterruptUserButton2C.Interrupt;
29

30 // Init
31 components HplUserButtonsP;
32 Init = HplUserButtonsP;
33 HplUserButtonsP.GeneralIOUB1 -> GeneralIOUB1;
34 HplUserButtonsP.GeneralIOUB2 -> GeneralIOUB2;
35 }

Listing 3.4: HplUserButtonsC.nc: Defining pins and interrupt addresses for user buttons

16 3.7. SERIAL PORT (UART)

The pullup resistors of the ATmega1281, required to indicate whether a user button is pressed or
not, are switched off by default. The init procedure therefore has to activate them. This is done
in the HplUserButtonsP.nc file.

1 module HplUserButtonsP
2 {
3 uses interface GeneralIO as GeneralIOUB1;
4 uses interface GeneralIO as GeneralIOUB2;
5 provides interface Init;
6 }
7 implementation
8 {
9 command error_t Init.init()

10 {
11 // Setting internal pullup resistors for both user

buttons
12 call GeneralIOUB1.set();
13 call GeneralIOUB2.set();
14

15 return SUCCESS;
16 }
17 }

Listing 3.5: HplUserButtonsP.nc: Activate pullup resistors for user buttons

3.7 Serial Port (UART)

The Meshbean uses a UART to USB Bridge to provide a USB interface. On the ZigBit900
module this converter chip is connected to UART1. To get it working we first had to add UART1
to the atm128 driver. This is done with the file chips/atm128/Atm128Uart1C.nc which is almost
a copy of Atm128Uart0C.nc.
Then we declared UART1 as the platforms default serial port with PlatformSerialC.nc. The
platforms default baudrate is 57600 and can be changed in hardware.h.
The file chips/atm128/Atm128Uart.h contained some wrong constants, which produced really
strange results. The correct ones can be found in the ATmega 1281 datasheet and are:

ATM128_38400_BAUD_8MHZ_2X = 25
ATM128_57600_BAUD_8MHZ_2X = 16

Furthermore there exists the fusebit CKDIV8 (Divide clock by 8) which is set by default, for
compatibility reasons. With this fusebit set, the clock-division factors would be completely
different. In the makefile we specified this fusebit to be automatically removed.

3.8 Radio Module Hardware Driver

The radio module used on the ZigBit900 (AT86RF212) is very similar to the one used on the Iris
platform (AT86RF230). Both radio modules use the same state machine and SPI protocol. Thus
it was obvious to try to reuse the hardware driver of the Iris platform. After a few adaptions,
the radio module turned out to run well with the hardware driver of the RF230. Still a problem
is the difference between the two platforms in the wiring of the microcontroller and the radio
module. On the Iris platform, interrupt signals from the radio module are sent to a pin of the

CHAPTER 3. THE MESHBEAN900 PLATFORM 17

microcontroller where the hardware is able to set a timestamp. The pin, which captures this
interrupt on the ZigBit900 is not able to do this, therefore the software interrupt handler has
to take over this task. Since the operating system may be in a atomic section, there could be
an unpredictable time delay between the reception of an interrupt and the acquisition of the
corresponding timestamp. Because of this delay, an exact synchronization is not possible with
the current software version.

18 3.8. RADIO MODULE HARDWARE DRIVER

4
The Pixie Platform

The Pixie platform is a wireless sensor node, developed at the TIK. The developers wanted to
design a platform, which is easily adaptable to any given problem. The result was a sensor node
with only a ZigBit900 module, an antenna, a reset button and three LEDs. A picture of the
first Pixie sensor node can be seen in figure 4.1. Since every pin of the ZigBit900 is wired to a
connector, any kind of additional hardware (e.g. sensors, flash memory) can be mounted with a
minimal effort. The simple design and the few hardware parts allows it to produce this sensor
node fast and cheap.

4.1 Differences between Pixie and Meshbean900

In contrast to the Meshbean900, the Pixie has no sensors by default. Besides this, both nodes
are almost identical and use the same software. The only difference concerns the LEDs, they are
connected to different ports, as seen in Listing 4.1.

Figure 4.1: The Pixie Sensor Node

19

20 4.2. PROGRAMMING THE PIXIE

1 Led0 = IO.PortG2; // Red LED
2 Led1 = IO.PortD7; // Yellow LED
3 Led2 = IO.PortD6; // Green LED

Listing 4.1: PlatformLedsC.nc: (excerpt) Defining pins for LEDs

4.2 Programming the Pixie

On the Pixie sensornode, the JTAG and the ISP Interface are both available for programming.
You can choose which one you prefer.

4.3 The Name Pixie

Pixies are mythical creatures of folklore, related to fairy. They are usually depicted with pointed
ears, and often wearing a green outfit and pointed hat. In Devon (GB) pixies are said to be
invisibly small, and harmless or friendly to man. These attributes are exactly the same we expect
from a sensor node. Unfortunately, pixies are also said to sometimes play tricks on humans.
As every engineer knows, such devices and software also sometimes seems to play tricks on
developers, so Pixie seems to be the perfect name for our new sensor node.

5
Setting up the Development

Environment

There are two major steps required to run an application on the ZigBit900:

• Compile the source code

• Download the output of the compiler to the ZigBit900

Compiling is done by the NesC compiler ncc, which is started by command line instructions.
Makefiles can be used for the automation of this process. The executable files are downloaded
to the microcontroller by AVRDUDE, using either the ISP or the JTAG protocol. Although it is
possible to deal with these tools by hand, we strongly recommend to use the Eclipse plugin [8]
instead, since it takes all these processes out of the hand of the developer.

5.1 Installing TinyOS

Before sourcecode can be compiled, TinyOS must be installed on the system. There are several
methods how this can be done, depending on the operating system and the users habit. The
various installation procedures are well documented on the TinyOS webpage [4].

5.2 The TinyOS 2 Plugin for Eclipse

There is a TinyOS 2 plugin for Eclipse, developed by the Distributed Computing Group at the
ETH Zurich. It aims to provide developers with all the convenience functions expected from a
modern development environment, such as realtime code validation and syntax highlighting to
name but a few. A screenshot of the IDE can be seen in Figure 5.1. The plugin makes it possible
to compile and flash an application with one single mouse click, so the developper does not
have to mess around with makefiles and command line instructions. The plugin also provides
a component graph, which graphically shows the dependences between the configurations and
modules (see Figure 5.2).

21

22 5.3. AVRDUDE

Figure 5.1: Screenshot of the Eclipse IDE with the TinyOS 2 plugin

The installation of the plugin starts directly form within Eclipse. For more information about the
plugin and its setup visit the project’s webpage [8].

5.3 AVRDUDE

Avrdude is a command line tool to program various AVR microcontrollers with many different
programmers. Depending on the installation procedure you chose for TinyOS, you probably
already have avrdude installed. Note that the Avrdude package in Stanford’s TinyOS repository
for Ubuntu was compiled without USB support and can therefore not be used with the AVR
JTAGICE mkII programmer. We solved this issue by installing the package from the original
Ubuntu repository.

5.4 AVR JTAGICE mkII

To download the compiled program to the microcontroller, we used the AVR JTAGICE mkII
programmer. In Figure 5.4 you can see a picture of this programmer. AVRDUDE knows the
JTAGICE mkII as jtagmkII and jtag2slow (running the programmer with default speed 19200
Baud) or as jtag2 and jtag2fast (running at 115200 Baud). We decided to use the fast version
and therefore had to create a new file in the /support/make/avr folder called jtag2fast.extra. The
content of this file can be seen in Listing 5.1.

CHAPTER 5. SETTING UP THE DEVELOPMENT ENVIRONMENT 23

Figure 5.2: A Component Graph generated by the TinyOS 2 plugin

1 #-*-Makefile-*- vim:syntax=make
2 #$Id: jtag2fast.extra,v 1.7 2008/06/18 20:22:51 razvanm Exp $
3

4 PROGRAM = jtag2fast
5

6 ifeq ($(PROGRAMMER),avrdude)
7 ifdef BOOTLOADER_IMG
8 ifeq ($(shell [-f /bin/cygwin1.dll] && echo cygwin),cygwin)
9 BOOTLOADER_IMG := $(shell cygpath -m $(BOOTLOADER_IMG))

10 endif
11 endif
12 PROGRAMMER_FLAGS = -c jtag2fast -U hfuse:w:$(AVR_FUSE_H):m $(

PROGRAMMER_PART) $(PROGRAMMER_EXTRA_FLAGS) $(
PROGRAMMER_EXTRA_FLAGS_MIB)

13 PROGRAMMER_INSTALL_SREC_FLAGS = -U flash:w:$(INSTALL_SREC):a
14 PROGRAMMER_INSTALL_BOOTLOADER_FLAGS = -V -D -U flash:w:$(

BOOTLOADER_IMG):a
15 endif
16

17 program: FORCE
18 @echo " installing $(PLATFORM) binary using jtag2fast"
19 $(PROGRAMMER) $(PROGRAMMER_FLAGS) $(

PROGRAMMER_INSTALL_SREC_FLAGS)
20

21 program_bl: FORCE
22 @echo " installing $(PLATFORM) bootloader using jtag2fast"
23 $(PROGRAMMER) $(PROGRAMMER_FLAGS) $(

PROGRAMMER_INSTALL_BOOTLOADER_FLAGS)

Listing 5.1: jtag2fast.extra: Introducing the AVR JTAGICE mkII programmer

24 5.4. AVR JTAGICE MKII

Figure 5.3: Selecting the jtag2fast programmer in Eclipse

Figure 5.4: The JTAGICE mkII programmer

With this jtag2fast.extra file, Eclipse automatically creates a checkbox in the “Make
Options/Extras”-Dialog (see Figure 5.3). Whenever this checkbox is selected, Eclipse tells AVR-
DUDE to use the JTAGICE mkII programmer. The procedure of integrating another programmer
will be exactly the same as long as the programmer is supported by AVRDUDE. A list of all sup-
ported programmers can be found in the avrdude.conf -file.
To allow AVRDUDE to use the programmer without root privileges, some additional UDEV
rules are necessary. In Ubuntu you can do this with a new file /usr/udev/rules.d/51-atmel-
programmer.rules with this content:

1 # JTAGICE mkII
2 SUBSYSTEM=="usb_device", SYSFS{idVendor}=="03eb", SYSFS{idProduct}=="

2103", GROUP="users", MODE="0666"
3 # AVRISP mkII
4 SUBSYSTEM=="usb_device", SYSFS{idVendor}=="03eb", SYSFS{idProduct}=="

2104", GROUP="users", MODE="0666"
5 # Dragon
6 SUBSYSTEM=="usb_device", SYSFS{idVendor}=="03eb", SYSFS{idProduct}=="

2107", GROUP="users", MODE="0666"

Listing 5.2: 51-atmel-programmer.rules: Allow users to use the programmer

6
Evaluation

We tested the developped software by running test applications which indicate user interactios
by either switching LEDs or by sending text messages to a computer using the UART.

6.1 Demo Application

To demonstrate the functionality of the sensor nodes, we developed a test application as shown
in Figure 6.1. First we connected a light sensor to one of our Pixie nodes. The Pixie was then
programmed to periodically sample the sensor and broadcast the measurement. On a Meshbean
node we installed the TinyOS Basestation [4], which simply dumps everything it receives to the
PC using the UART. On the PC we could now display the current sensor value in almost realtime.

Figure 6.1: Block diagram of light sensor application

25

26 6.1. DEMO APPLICATION

7
Conclusion

In this group project we implemented support for the ZigBit 900 module in TinyOS, reusing the
hardware drivers of the ATmega1281 microcontroller and the AT86RF230 radio module. We
introduced two new platforms called Meshbean900 and Pixie for the two sensor nodes, which
use the ZigBit 900 module. The microcontroller as well as the radio communication turned out
to run very well with the abovementioned software. For the Meshbean900 platform we also
implemented access to the onboard LEDs and user buttons. This software is well tested and
runs solid. Furthermore we adapted an UART interface, so the meshbean 900 platform can
communicate with a computer.

7.1 Further topics

The process of integrating the ZigBit 900 module and the corresponding platforms to TinyOS
is not yet completed. As mentined in Section 3.8, the software is currently not able to run
a synchronization. Since synchronization is an important skill of a wireless sensor network,
further research should be spent on this topic. Other fields of interest could be:

• Measure the power consumption of the different platforms in order to estimate the battery
lifetime.

• Evaluate the range of the radio in different environments and determine whether there is a
difference in the range when the chip antenna is used compared to an external antenna.

• Develop drivers for the hardware on the Meshbean900 platform, which is not yet supported
(i.e. DIP-Switches, temperature sensor, light sensor, ADC-converter, etc.)

• Additional hardware for the Pixie platform (like flash memory modules) could be imple-
mented.

27

28 7.1. FURTHER TOPICS

A
Appendix

A.1 Tables of Pin Assignment

ATmega1281 Port AT86RF212 Port

B5 CLKM
E5 IRQ
B0 /SEL
A7 /RST
B4 SLP TR
B2 MOSI
B3 MISO

Table A.1: Connection of ATmega1281 and AT86RF212 inside the ZigBit900

ZigBit Pin Function

9,22,23 Digital Ground
25,24 Digital supply voltage (Vcc)

36 Analog Ground
44,46,48 RF analog ground

45,47 Differential RF Input/Output

Table A.2: Functions of ZigBit pins not directly related to ATmega1281

29

30 A.1. TABLES OF PIN ASSIGNMENT

ATmega 1281 Port ZigBit Pin

PB0 -
PB1 1
PB2 3
PB3 2
PB4 -
PB5 4
PB6 5
PB7 6

PD0 11
PD1 12
PD2 13
PD3 14
PD4 15
PD5 16
PD6 17
PD7 18

PE0 38
PE1 39
PE2 40
PE3 41
PE4 37
PE5 -
PE6 43
PD7 42

PF0 33
PF1 32
PF2 31
PF3 30
PF4 29
PF5 26
PF6 28
PF7 27

PG0 19
PG1 20
PG2 21
PG3 7
PG4 -
PG5 36
PG6 -
PG7 -

AREF 34
XTAL In 10
RESET 8

Table A.3: Pin assignment ZigBit / ATmega1281

Bibliography

[1] ZigBit 900 OEM Module, MeshNetics
http://www.meshnetics.com/zigbee-modules/zigbit900/

[2] Atmel ATmega1281, Atmel Corporation
http://www.atmel.com/dyn/products/Product card.asp?PN=ATmega1281

[3] Atmel AT86RF212, Atmel Corporation
http://www.atmel.com/dyn/products/Product card.asp?PN=AT86RF212

[4] TinyOS
http://www.tinyos.net/

[5] ZigBit 900 product datasheet
http://www.meshnetics.com/dl.php?id=41

[6] Meshbean Development Boards, MeshNetics
http://www.meshnetics.com/dev-tools/meshbean

[7] BitCloud (software stack from MeshNetics)
http://www.meshnetics.com/wsn-software/bitcloud/

[8] TinyOS 2 Plugin for Eclipse
http://www.tos-ide.ethz.ch

31

	Title
	Contents
	1 Introduction
	2 ZigBit900
	2.1 ATmega1281 Microcontroller
	2.2 AT86RF212 RF Transceiver
	2.3 Pin Assignment

	3 The Meshbean900 Platform
	3.1 The .platform File
	3.2 The platform.h File
	3.3 ATmega1281 Hardware Driver
	3.4 Makefiles
	3.5 LEDs
	3.6 User Buttons
	3.7 Serial Port (UART)
	3.8 Radio Module Hardware Driver

	4 The Pixie Platform
	4.1 Differences between Pixie and Meshbean900
	4.2 Programming the Pixie
	4.3 The Name Pixie

	5 Setting up the Development Environment
	5.1 Installing TinyOS
	5.2 The TinyOS 2 Plugin for Eclipse
	5.3 AVRDUDE
	5.4 AVR JTAGICE mkII

	6 Evaluation
	6.1 Demo Application

	7 Conclusion
	7.1 Further topics

	A Appendix
	A.1 Tables of Pin Assignment

	Bibliography

