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Abstract 

The IEC committee SC65 WG15 “Highly Available Automation Networks” published the 
IEC standard 62439 in 2008 to provide several redundancy methods to overcome the 
lack of a commonly accepted redundancy solution in Industrial Ethernet. As one of these 
methods, the Parallel Redundancy Protocol (PRP) IEC62439 Clause 6 relies on the 
parallel operation of two local area networks, and provides completely seamless 
switchover in case of failure of links or switches, thus fulfilling all the hard real-time 
requirements of substation automation. The High Availability Seamless Ring (HSR) which 
is proposed in IEC 62439-3 applies the PRP principle to build a simple seamless ring by 
treating each direction as a separate network. 

One main application of the HSR is the process bus in the substation automation network 
as specified in the IEC 61850 standard. This application is characterized by heavy traffic, 
real-time communication and requirement of bumpless switchover in case of fault.    

One challenging issue in HSR is to reject the duplicated frames coming from the both 
ports of a node and the frames circulating in the ring. The algorithm applied in PRP 
cannot be wholly transplanted into HSR because of HSR’s ring topology. In this thesis 
three algorithms are proposed to solve the duplicated and circular frame discarding. The 
proposed algorithms are compared with the help of the software network model. One 
algorithm is chosen. By designing a switch structure with the integration of the chosen 
algorithm, the HSR protocol is implemented in FPGA. 
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1 Introduction 

1.1 Context  
In April 2008 the IEC committee SC65 WG15 “Highly Available Automation Networks” 
published six industrial communication network protocols dedicated to provide the 
redundancy of the network.  Among these 6 protocols, the Parallel Redundancy Protocol 
(PRP) has been selected for the IEC 61850 communication network within substations.    

PRP applied the “redundancy in the nodes” method to offer the redundancy. Each PRP 
node (called a DANP or Doubly Attached Node with PRP) is attached to two independent 
LANs which may exhibit different topologies. The networks are completely separated and 
are assumed to be fail-independent. Figure 1.1 shows the topology of PRP.  

 
Figure 1.1 An illustration of the PRP topology [1] 

Compared to other protocols released in standard IEC62439, PRP provides completely 
seamless switchover in case of failure of links or switches, thus fulfilling all the hard real-
time requirements of substation automation. Whereas other protocols like RSTP and 
MPR (Media Redundancy Protocol) need a recovery time [2]. 

Since PRP requires doubling the network infrastructure, it overkills in some relative 
simple application scenarios. The High Availability Seamless Ring is proposed based on 
the PRP protocol (Figure 1.2). It allows a significant reduction of the hardware costs, 
since no switch is used, instead each end node must be equipped with a switch element 
to implement the ring protocol. Although the network layer and the algorithms in PRP and 
HSR are nearly the same, HSR cannot apply all the algorithms in PRP because of its ring 
topology and the application scenario of the HSR, which is characterized by high network 
traffic. Therefore additional features and modifications must be made to guarantee the 
performance of HSR. This becomes the motivation of this Thesis, which will be explained 
further in the next section.  
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Figure 1.2 An illustration of the HSR topology 

1.2 Motivation 
In PRP, an additional layer, the “Link Redundancy Entity” (LRE) (Figure 1.3) is placed 
under the link layer.  
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Figure 1.3 Location of the LRE in the network layer stack of PRP [3] 

The LRE connects the upper layer and the two Ethernet controllers and behaves towards 
the upper layer like a single Ethernet interface. When transmitting, it appends the 
Redundancy Check Tag (RCT) in the outgoing frame, duplicates the frame and sends 
both frames over the two sending ports of the node. These two frames travel through the 
network and arrive at the receiving node with certain time difference. If the receiving node 
works in the duplicates accept mode, the LRE receives both frames of a pair and 
forwards them to the upper layer. The rejection of one duplicate should occur at the 
higher layer in principle. In this case, the designed application should be able to handle 
duplicates. For example, the TCP is designed to handle duplicate. Applications using 
UDP must be able to treat duplicates since UDP is a connection-less protocol. If the 
receiving node works in the duplicate discard mode, the LRE should pass the first frame 
of a pair to the upper layer and reject the second. 

The duplicates rejection function of the LRE can be realized in software in PRP. But In 
the application scenario of HSR, the communication is often very heavy. If the function of 
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rejecting the duplicates of the LRE is executed in software, the processor will be heavily 
loaded.  

Besides, unlike in PRP that nodes only send and receive frames, nodes in HSR must 
also be able to forward frames based on the forwarding rules. The routing of the frame is 
executed by the switch logic in HSR nodes. Again, if the switch logic is implemented in 
software, the processor is heavily loaded due to the heavy traffic in HSR.  

To offload the processor, the duplicates rejection function of the LRE and the switch logic 
are preferably implemented in hardware. The performance of the implemented duplicates 
rejecting function should apply the “best effort principle”.  

One challenging issue in the implementation is to find an algorithm to reject the 
duplicated frames and circular frames (the generating of the circular frame will be 
explained in the next chapter), because the algorithm used in PPR is not resource 
efficient and not designed for handling the circular frames. Therefore, the motivation of 
this Thesis is to find an effective algorithm to reject the duplicated and circular frames 
and implement the HSR protocol (the switch logic and the LRE) together with the 
selected algorithm in hardware. 

1.3 Tasks 
The Tasks of this thesis are divided into 4 parts: 

First, different algorithms are proposed to reject the duplicated and circular frames. 

Second, a software simulation environment is set up to test the proposed algorithms.  

Third, the hardware structure of the switch is designed and programmed in VHDL 
language, the functionality is simulated with the ModelSim of Menthor Graphics. 

Fourth, the VHDL code is synthesized with Quartus of Altera and the function of the 
design is evaluated by the pos-Synthesis simulation. 

1.4 Contributions 
In respect to the work of rejecting the duplicated frames in HSR, the University Zurich of 
Applied Science has done an architecture study of the Redundancy Box in year 2007 [8]. 
In 2008 they implemented the RedBox in FPGA [7]. The algorithm they applied for 
rejecting the duplicated frames is “circular buffer”. In this method, a frame is declared as 
not in the table only after the entire table is searched, which introduces a long delay. The 
work by Christoph Klarenbach introduced a method of integrating the real-time Ethernet 
in the FPGA[26], which gives an example for the FPGA implementation in this Thesis. 

In this Thesis, 3 algorithms are proposed to reject the duplicated and circular frames in 
the ring. A software test environment has been set up to simulate the communication in 
the ring. The performance of the 3 algorithms is simulated and compared with the help 
software simulation environment. The advantages and disadvantages of the algorithms 
and their different configurations are also explained in respect of the performance and the 
hardware complexities. The structure of the switch has been designed to implement the 
HSR protocol including the selected algorithm. 

The selected algorithm for rejecting the duplicated and circular frames has reached 
almost 100% rejection ratio under the network configuration given in IEC61850-9-2 
standard and in a network scale less than 64 nodes in a ring. The searching time is 
significantly reduced compared with the algorithm proposed by the University Zurich of 
Applied Science. The limitation of the proposed algorithm in respect to the scale of the 
network is further discussed. Finally, the designed switch executes all the functionalities 
successfully according to the pos-Synthesis simulation. 
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1.5 Overview 
In chapter 2, the High Availability Seamless Ring is introduced. The introduction includes 
its topology, the communication rules, and the challenging issues by now. 

In chapter 3, the three proposed algorithms are explained. The advantages and 
disadvantages are discussed in respect to the searching time and the complexity of the 
hardware implementation. 

In chapter 4, the software simulation model is introduced. The performance of the three 
proposed algorithms with different configurations is compared. A short insight into the 
limitation of the proposed algorithms is given. 

In chapter 5, the designed structure of the switch is explained; the way each component 
works is described in detail, several issues in the FPGA design is introduced. The 
programmed switch is synthesized in Quartus, a brief synthesis report is presented. After 
the synthesis, the pos-Synthesis simulation is performed to verify the correctness of the 
design 

In chapter 6, a conclusion of this thesis and a view of possible future work are given. 
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2 The High Availability Seamless Ring  
This chapter gives an overview of the High Availability Seamless Ring (HSR) protocol. 
The topology and the communication rules of the HSR are first described, then the 
network layer model and the structure of the switch unit is illustrated. The typical 
application scenario is introduced and the problems existing in the communication by 
now are explained. 

2.1 The Topology of HSR 
One topology of HSR is shown in Figure 2.1 and Figure 2.2 with unicast traffic and 
multicast traffic respectively. Each end node has two ports connected to the ring. For 
each frame to send, the node sends it duplicated over both ports (A-frame and B-frame). 
One frame of the pair travels in the ring in the clockwise direction, the other frame travels 
in counter-clockwise direction.  

Nodes within the ring are restricted to be HSR-capable switching end nodes. General 
purpose nodes (e.g. the singly attached node in Figure 2.1) cannot be attached directly to 
the ring, but require a Redundancy Box (RedBox). A pair of such RedBox can be used to 
connect hierarchically a HSR to a PRP network. All the frames in the ring must be a HSR 
frame. A non-HSR frame must be appended with a HSR tag when it entries the ring (blue 
arrows in Figure 2.2). 

 

solid arrows: unicast traffic
void arrows: not received unicast
traffic
cross: remove from the ring

end 
node

end 
node

end 
node

end 
node

end 
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Figure 2.1 HSR with  unicast traffic: the solid arrows stand for the unicast traffic, 

the void arrows stand for not received unicast traffic, the cross stands for the 
traffic removed from the ring [3]. 
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Figure 2.2 HSR with multicast traffic: the solid arrows stand for the multicast 

traffic, the void arrows stand for not received multicast traffic, the cross stands for 
the traffic removed from the ring [3]. 

2.2 The Network Management 
A node has the same MAC address on both ports, and only one set of IP addresses 
assigned to that address. This makes redundancy transparent to the upper layers and 
therefore it is a layer 2 redundancy. This configuration allows the Address Resolution 
Protocol (ARP) to work the same as with a Singly Attached Node (SAN).  TCP/IP traffic is 
not aware of the layer2 redundancy, but it is designed to deal with duplicates. 

2.3 The Communication Rules of the Switch End Node in HSR 
The communication rules are defined in the IEC 62439-3 standard [4]. 

2.3.1 Sending 

For each frame to send on behalf of the higher protocol layers, a sending node (e.g. 
“sender” in Figure 2.1) detects which kind of traffic (HSR or non-HSR) it generates. This 
decision is application-dependent; it can for instance be based on the protocol type or a 
priority field. By default, all traffic is HSR. 

Based on that decision, the node shall:  

1) for the HSR traffic (if the node is attached to the ring): send two frames tagged as 
HSR, one over each ring port, called “pair”, otherwise 

2) for a non-HSR traffic (if the node is not attached to the ring): send the frame 
unmodified to the switching element, which will treat it according to its bridging 
protocol (e.g. send only over the non-blocking port). 
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2.3.2 Receiving 

A receiving node (e.g. “receiver” in Figure 2.1) detects the type of traffic of the received 
frame based on the HSR tagging and shall: 

1) for a non-HSR frame(if the node is not attached to the ring): pass it 
unchanged to its higher protocol layers, otherwise 

2) for an HSR frame(if the node is attached to the ring): remove the HSR 
tagging and pass the modified frame to its higher protocol layer, if this is 
the first frame of a pair, otherwise 

3) discard the duplicate if this is the second frame of a pair. 

2.3.3 Forwarding  

A node that receives a valid frame over one ring port shall: 

1) If it identifies this frame as a non-HSR frame, handle it according to the 
rules of its bridging protocol, otherwise:  

2) If it identifies the frame as HSR frame, it shall forward it without 
modification over its associated ring port, except that it shall discard it: 

a) if it identifies the frame as an HSR frame that it already sent in the 
same direction, which is usually the case for multicast frames 
(solid arrows in Figure 2.2) but also for unicast HSR-frames 
without a receiver (void arrows in Figure 2.1); 

b) if the node is the sender of this node, as shown in Figure 2.1; this 
condition is enabled by default and can be disabled for debugging 
purpose.  

c) if the associated ring port of the node is not operating or its link not 
active. If a previously connected port is not connected to the 
network for a time longer than 1 s, a node shall purge the port’s 
buffer so that it cannot send an obsolete frame, and only allow 
buffering when the port is reconnected. 

These rules remove circulating HSR frames and open the ring, in the same way as an 
RSTP or similar protocol. It applies to frames originally sourced by the node and to 
frames circulating in case a device is removed after having sent a frame, and the ring is 
closed again, for instance by a mechanical bridging device or when a Singly Attached 
Node (SAN) is removed.  

The arriving time difference between two frames of a pair depends on the relative 
position of the receiving node and the sending node. Assuming a worst case in which 
each node in the ring is transmitting at the same time its own frame with the largest size 
of 1536 octets, each node could introduce 125 us of delay at 100 Mbit/s. With 50 nodes, 
in case of uncast traffic, the time skew may exceed 6 ms, so there is possibility that the 
situation described above exists.  

2.3.4 Cut-through 

Nodes in HSR should work in the cut-through mode to reduce the forwarding delay. After 
the destination address, source address and sequence number have been received and 
the frame is confirmed as not received or not sent before, the node begins forwarding the 
frame over the other line. The cut-through operation is not applied to the receiving port to 
the host. The frame passed to the host is always completely received first. Only good 
frames are passed to the host. 
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2.3.5 Bad Frame Handling 

Special care is needed to handle the bad frames when nodes in the ring are operating in 
the cut-through mode. If a frame is asserted as bad frame before the cut-though 
operation is performed, it is simply dropped. If a frame is detected as a bad frame after 
the cut-through operation is performed, a garbling sequence is appended at the end of 
the frame and the source address of this frame will be registered by the node. If a frame 
with the same source address is received again on the same line, no cut-through is 
performed, the frame is sent only after it is completely received and verified to be a good 
frame. If the frame is a good frame, the entry of this source address is cleared. Next time 
a frame with the same source address is received, the frame is sent in cut-through mode 
again. 

A node in HSR should be able to detect the garbling sequence appended at the end of 
the frame. A garbling sequence tells a node that the frame is already been registered by 
another node as a bad frame, this node does not need to register this bad frame again.  
By doing so, only the first node which received the bad frame performs store-forward on 
the frames with same source address, other nodes still operate in cut-through when a 
frame with the same source address is received. This can reduce the transmission time 
in the ring of a good frame with the same source address as the bad fame. A bad frame 
appended with a garbling sequence will be passed around the ring until it is discarded by 
the node which sends it or is rejected as a circular frame.  

2.4 Frame Format for HSR 
A HSR frame is identified uniquely by their source MAC address, destination MAC 
address and the HSR Tag. The frame format is shown in Figure 2.3. 

The HSR tag is placed at the beginning of the frame to allow early identification of frames 
for cut-through operation. After the destination address, the source address and the 
sequence number are received, the frame is uniquely identified. 

The HSR tag is announced by the dedicated Ethertype = 0x88FB, which is the same as 
IEC 62439-3’s Ethertype. If the frame carries a tagging according to 802.1Q, it shall be 
inserted before the HSR tagging.  

The 4 most significant bits of the16-bits HSR tag distinguish a PRP management frame 
from a HSR management frame or a HSR payload.  

a) 4-bit path identifier which can be a ring identifier or indicate a PRP 
supervision frame  

b) 12 bit frame size (LSDU_size) 

c) 16-bit sequence number (SequenceNr) 

timedestination source LLC FCSpayloadpreamble size sequence
counterlin

e

standard Ethernet frame 

PT

HSR Tag

0 6 12 14octet position

original LPDU

20  
Figure 2.3 The frame format of HSR [4] 

The sequence number is inherited from PRP, where they are used to discard the 
duplicated frames when receiving. The concept of “Duplicate Discard” in PRP will be 
explained later in section 3.1, and the reason why it cannot be wholly applied in HSR is 
also given there. 
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Because of the insertion of the HSR tag, the length of the frame may exceed the 
maximum length of 1522 octets allowed by the IEEE 802.1 D standard. But since the 
traffic in the ring is private, the modification can be done in the switch element to adapt 
the exceeded frame length and this will have no influence on the Ethernet traffic outside 
the ring. 

protocol type HSR protocol type HSR protocol type HSR

length <x0600

destination

source

DSAP
LLC

SSAP
protocol type >x0600

destination

source

destination

source

protocol type

ETPID = x8100
TCI, CFI = x8100

1518 octets 1518 octets 1522 octets

802.1D802.3/802.2Ethernet II

LPDU = 1492 octets
LPDU = 1496 octets

LPDU = 1492 octets

sequence

checksum

sequence

checksum

sequence

sizeline sizeline sizeline

checksum

HSR Tag
connectionconnectionconnection

 
Figure 2.4 Frame format in different Ethernet standard after insertion of the HSR 
tag. The additional six  bytes could generate oversize frames of more than 1522 

octets [7] 

2.5 The Node Structure and Operation in HSR 
The structure of the node in HSR is shown in Figure 2.5.  

When sending, the LRE duplicates each frame and send the pair of the frame over port A 
and port B (1, 2).  

When forwarding, the switching logic relay frames from one port over the other port (3, 4), 
except it is the frame it already forwarded or it is the sender of this frame. 

When receiving, the LRE receives both frames, keeps the first frame and discards the 
duplicate (7). 
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Figure 2.5 The node structure in HSR [3] 

 

2.6 Duplicate Handling 
Duplicate Handling is an important issue in HSR. The duplicate handling can work in two 
modes: 

a) Duplicate Accept, in which the sender LRE uses the original frames and 
the receiver LRE forwards both frames it receives to its upper protocol 
layers. 

b) Duplicate Discard, in which the sender LRE appends a Redundancy 
Control Trailer to both frames it sends and the receiver LRE uses that 
Redundancy Control Trailer to send only the first frame of a pair to its 
upper layers and filter out duplicates.  

It is advantageous to discard duplicates already at the link layer. It is because not 
all the protocols in the upper layers can deal with duplicates. From the view of 
costs, the processor has twice as many interrupt requests as when only one ring 
exists. To offload the application processor, the LRE can perform “Duplicate 
Discard”, which should be realized in hardware. 

In PRP, the Sequence Number, which is located in the HSR frame format shown 
in Figure 2.4.1, is used to drop the duplicates (recall that HSR is a modified 
application of PRP). Each time an LRE sends a frame to a particular destination it 
increases the sequence number corresponding to that destination and sends both 
frames over both LANs. 
The algorithm used for rejecting the duplicates is the “Drop Window” algorithm. 
Briefly speaking, it builds a window at each line A, B. If the received frame at one 
line falls into the window of the other line, the frame will be dropped. This is 
shown in Figure 2.6. 
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Figure 2.6 The drop window algorithm [4] 

2.1 The Problem with the Drop Window Algorithm in HSR 
The drop window algorithm works well in PRP because each node in PRP only sends or 
receives frames, it never relays a frame. In HSR, each node also forward frames except 
receiving and sending. As stated before, the situation may happen that a multicast frame 
losing the sender or a unicast frame losing both the receiver and the sender will circulate 
in the ring. There must be a mechanism to remove such circular frame from the ring. 
Since it is not possible to use the “Drop Window” algorithm for such purpose, it is 
preferred to find another algorithm which can not only be able to reject the duplicated 
frames but also the circular frames.  

Another reason why the Drop Window algorithm is not used here is that the 
implementation of the “Drop Window” algorithm in hardware is less efficient than the 
lookup table method which will be introduced later in this Thesis [8]. For these reasons, 
new solutions are found and proposed in the next chapter. 
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3 The Proposed Algorithms for Rejecting the Duplicated 
and Circular Frames 

In this chapter, three algorithms are proposed for finding an efficient way to reject the 
duplicated and circular frames. Their operation principle is explained, the advantages and 
disadvantages of each algorithm are discussed in respect to the collision possibilities, the 
searching time and the hardware implementation complexity. 

3.1 General Principle 
Instead of the “Drop Window” algorithm applied in PRP, algorithms based on look-up 
tables are applied. The basic idea is: 

Each frame in HSR is uniquely identified by its destination address, source address and 
the sequence number (recall that the sequence number for each destination address is 
increased by one when a frame is sent to this destination address). Therefore the 
destination address, the source address and the sequence number can be stored as an 
entry in the table to show that this frame has already been received. 

 
Figure 3.1 The searching and writing operation in the table for rejecting the 

duplicated frames 

The working principle is stated as below: 

1. For rejecting the duplicated frames (the frames can be unicast or multicast 
frames) 

There is one table for each line to store the entry of frames which have been 
successfully received on this line (means no error occur during receiving). 

During receiving at one line, after the destination address, the source address 
and the sequence number of the frame have been received, the frame is 
searched first in the table of the other line. If it is found in the table of the other 
line, it will be discarded and the receiving process is aborted otherwise 
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If the entry of this frame is not found in the table, the receiving process will 
continue. If the frame turns out to be a good frame at the end of the receiving, the 
entry of the frame will be stored in the table of the line at which it is received. 

If frames of a pair are received on both lines when there is no entry of either 
frame in the table (for example two frames are received on both lines at the same 
time), the Window Function described in Section 5.4.3 is applied. 

The case of rejecting the duplicated frames is illustrated in Figure 3.1. 

2. For rejecting the circular frames (the frame can be any traffic type of frames) 

To reject the circular frames, there is one table on each line to store the entry of 
frames which have been successfully received on this line (means no error 
occurs during receiving). 

During receiving at one line, after the destination address, the source address 
and the sequence number of the frame have been received, the frame is 
searched first in the table of this line. If it is found in the table of the this line, it will 
be discarded and the receiving process is aborted otherwise 

If the entry of this frame is not found in the table, the receiving process will 
continue. If the frame turns out to be a good frame at the end of the receiving, the 
entry of the frame is stored in the table of the line at which it is received. 

The case of rejecting the circular frames is similar with the case of rejecting the 
duplicated frame except that the entry is searched and written in the same table of the 
line on which the frame is received but not in the table of the other line.  

The entry of a frame is written in the table only after the frame is completely received and 
verified to be a good frame. If a frame turns out to be a bad frame it will not be registered 
in the table, so when the other frame of this pair is received on the other line, the entry 
will be not be found in the table and the frame is therefore received. The same reason 
applies for the circular frames. 

The operation of rejecting the duplicated frame stated above implies that the table can be 
read and written at the same time. For this purpose, the Dual Port RAM should be used. 

The general principle is clear by now, the issue left is to find an efficient data structure to 
implement such table. There are several methods to lookup an item in table. The 
conventional methods are like the binary search algorithm and hash table. Binary search 
is based on the sorted table. But here the sorting is difficult to define (e.g. what criteria 
should be used to sort the entries) and the hardware is difficult to implement. There are 
different ways to implement a hash table, some methods are suitable in our situation, 
some not. The discussion of the hash table will be conducted in later sections. In the 
following sections, three algorithms are proposed to implement the lookup table 
described above. 

3.2 Algorithm 1: Circular Buffer 
The Circular Buffer method is introduced by the Zurich University of Applied Sciences 
(ZHAW, Winterthur) to implement the rejection of the duplicated frames in the 
Redundancy Box [7].  

In this method, the entries are simply registered in the table one after another. The write 
pointer moves downwards by one after an entry has been registered. In this way, the 
entry of higher position is older. After the write pointer reaches the end of the table, it will 
go back to the beginning of the table and start over. This is shown in Figure 3.2. In this 
way, the older entry is automatically replaced by the new entries. 
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In this algorithm, the length of the table has to be selected according to the receiving 
delay of the frame of a pair between the two lines [8]. Take a ring with 6 nodes for 
example (Figure 3.3). If node 1 send a unicast frame to node 2, one frame of the pair 
goes the clockwise direction and arrives at node 2; the other frame of the pair travels the 
counter-clockwise and must goes through 4 nodes until arrives at node 2. Assuming that 
the length of all the frames in the ring is the same, node 1 could receive 4 other frames, 
until the frame sent by node 1 arrives at node 2, which means that 4 more entries are 
registered in the table during this time. Therefore the table should have places for at least 
5 entries so that the entry of the first frame of a pair sent by node 1 is not overwritten by 
other entries before the second frame of the pair arrives at node 2. 
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Figure 3.2 The operation principle of a circular buffer 
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Figure 3.3 The receiving delay of a pair unicast frame in a ring 

This is just a simple example to illustrate that the length of the table is related to the 
receiving delay between the two lines, the reality is more complex. 

Because the entries are simply registered in the table one after another, the hardware 
implementation is simple. If the table is large enough, frames’ entry can be found in the 
table before their entries are overwritten. But one should go through all the entries to 
verify that the received frame is not in the table. In a ring with more nodes, the search will 
cost more time and therefore cause longer delay when forwarding. If cut-through 
operation is required, this method is not suitable. 
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3.3 Algorithm 2: Hash Table with Open Addressing and Aging 

3.3.1 Why Open Addressing 

To increase the search efficiency, hash table is used. There are many algorithms to 
implement a hash table and resolve the collisions. The conventional ones are like 
chaining, open addressing and so on.  

Chained hash tables have advantages over open addressed hash tables in that the 
removal operation is simple and resizing the table can be postponed for a much longer 
time because performance degrades more gracefully even when every slot is used. 
Indeed, many chaining hash tables may not require resizing at all since performance 
degradation is linear as the table fills. For example, a chaining hash table containing 
twice its recommended capacity of data would only be about twice as slow on average as 
the same table at its recommended capacity [9]. 

But chained hash tables need to allocate memory for adding elements to the linked list. 
The overhead required by the operation of allocating new memory will cause more delay 
and therefore is not preferred in real-time system. Furthermore, a memory allocator is 
more difficult to implement than the open addressing.  

Compared with chaining, open addressing is [9]: 

More space-efficient since it doesn't need to store any pointers or allocate any additional 
space outside the hash table, this makes it more suitable to be implemented in memory 
constrained devices like FPGA.  

The Insertion of elements avoid the time overhead of memory allocation, and can even 
be implemented in the absence of a memory allocator.  

Because it uses internal storage, open addressing avoids the extra indirection of the 
external storage required by chaining. It also has better locality of reference, particularly 
with linear probing. With small record sizes, these factors can yield better performance 
than chaining, particularly for lookups.  

At last, they can be easier to serialize, because they don't use pointers. 

3.3.2 Open Addressing Algorithm and its Constraints 

The open addressing algorithm can be briefly explained as follows [10]: 

 A hash table T is an array T[0,….m-1], m is a positive integer called the size of 
the table. 

If we have a sequence of hash functions >< −1,210 ......,,, mhhhh , such that for 

any item x, the probe sequence >< − )()......,(),(),( 1,210 xhxhxhxh m  is a 

permutation of >−< 1......,2,1,0 m . In other words, different hash functions in 
the sequence always map x to different locations in the table. 

 x is searched by using the following algorithm, which returns the array index i if 
T[i] = x, “absent”  if x is not in the table but there is an empty slot[11], and “full” if 
x is not in the table and there no empty slots. This is shown in figure below. 
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Under the strong uniformity assumption, that is for any key Uk∈  
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the expected lookup time is calculated as  

)1/(1)),(( α−≤nmTE     (3.2) 

Here mn /=α  is called the load factor of the table and n is the number of 
current element in the hash table. 

Here we can see, with the increasing of the load factor α, the expected lookup time 
increases dramatically, if the table is almost full, the lookup will take increased to certain 
degree that one has to go through the entire table to found out whether an element is in 
the table or not. 

Deleting an element in the table is also not simple. We cannot simply clear out the slot in 
the table, because we may need to know that T[h(x)] is occupied in order to find other 
items. Instead simply deleting a slot, we should mark it as a wasted slot. But a sufficiently 
long operation of insertions and deletions could eventually fill the table with marks, 
leaving little room for any real data and causing searches to take linear time. Therefore 
the size of the table should be increased when the load factor reaches a threshold value. 
The time costs of such operation can be very expensive. This can be shown by the 
amortized analysis but not an issue in this thesis.  

On the other hand, the implementation of a hash table in real-time system cannot afford 
the time cost of enlarging the hash table all at once, because it may interrupt time-critical 
operations. And the device like FPGA with a constrained memory may not allow the 
increasing of the table size [9]. 

Because it is not desirable to go through the entire table until to find out whether the 
element is in the table and it may not possible to resize the table, we have to find another 
way to implement the table. A commonly used technique “Aging” is applied here. 

3.3.3 Open Addressing With Aging 

Figure 3.4 shows the entry structure in open addressing with aging. A one-byte “Aging 
Tag” (AT) is added at the beginning of each entry [12].  The meaning of the AT is: 

x“00”     An empty bin 

x”FF”    The maximum bin 

for 1=i to 1−m  

    if  [ ] xxhT i =)(  

      return )(xhi  

   else if [ ] φ=)(xhT i  

      return Absent 

return Full 
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At the beginning, the value of the AT is x”00”. Every time an entry is written to a bin, the 
AT of this bin is assigned to the value of x“FF”. An aging process runs in the background 
with certain time distance, which is determined by the scale of the network. The value of 
the AT is subtracted by one until the AT becomes x”00” again. Therefore, the smaller the 
value of the AT is older the entry. 

DA SA SEQ00

DA SA SEQFF

The Aging Tag

Empty bin 

Maxim bin
 

Figure 3.4 The entry format with "Aging Tag" 

 

The searching algorithm is described as following 

 

 

 

This algorithm states if an entry is found in the table, the corresponding place will be 
cleared by writing AT of the bin with x”00”.  The max_bin defines the maximum probe 
time, after the max_bin is reached, the searching stops and return Absent to indicate 
that the entry is not found in the table. 

The writing entry algorithm is a little more complicated, which is described as follows 

for 1=i to binmax_  

if  [ ] xxhT i =)(  

   [ ] "00".)( xATxhT i =  

      return )(xhi                   

return Absent 
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The figure above states, when writing an entry in the table: 

If an empty bin is found, the entry will be written at this bin. If the bin is not empty, the AT 
of this bin will be stored in the variable Oldest, and the position of this pin is stored in the 
variable Oldest_Pos. 

Every time when the bin is not empty, if the AT of this bin is older than the Oldest, the 
Oldest will be replaced by the AT of this bin and the Oldest_Pos is replaced by the 
position of this bin. 

 If no empty bins are found in the end, the entry will be written at the place of the 
Oldest_Pos bin.  

The algorithm described above is illustrated in Figure 3.5. 

The advantage of introducing the max_bin is that it constraints the searching and writing 
time in the worst case to max_bin steps, so that the decision can be made in much 
shorter time than going through the entire table, which is the case in the conventional 
open addressing hash table.  

The aging mechanism is necessary for deciding the bin to write when all the bins are 
filled with entries. In other words, the resizing of the table is replaced by just writing at the 
bin with the eldest AT. This takes place in the same store area, and do not require 
additional memories. Another use of AT, although dose not likely to occur under heavy 
traffic, is to time out the entries which are not received at the other line for a long time. 

for 1=i to binmax_  

if  [ ] φ=ATxhT i .)(  

   [ ] xxhT i =)(  

   [ ] "".)(1 FFxATxhT =  

   return  

   else  

      Oldest_Pos = [ ] PosOldestxhOldestATxhT ii _:)(?.)( ≤  

      Oldest = [ ] [ ] OldestATxhTOldestATxhT ii :.)(?.)( ≤  

return  Oldest_Pos                                

 [ ] xPosOldestT =_  
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Figure 3.5 The search and write operation in modified hash table with open 

addressing 

The time distance of subtracting the aging tag should consider the scale of the network. 
Take a look at the simple example of unicast traffic again, shown in Figure 3.6. 
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Figure 3.6 The receiving delay between the two lines of a unicast frame 

In the ring having nodes of number n, the transmit delay (the time delay between 
completely receiving a frame and completely sending it out) is delayt  at each node. 

When for example a unicast frame of a pair sent by node 1 arrives at node 2, its entry is 
registered in the table. The time delay of the arriving of the second frame of this pair on 
the other line is calculated as  

∑
−

=

=
2

1
__

n

i
idelaytotaldelay tt     (3.3) 

 Therefore 
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256
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totaldelay

evalsubtract

t
t ≥     (3.4) 

Recall that the maximum of AT is x”FF”. 

Therefore the time distance of aging cannot be so frequent that the entry times out before 
the totaldelayt _  is reached. In reality the traffic is more complex. One should configure the 
time distance of subtracting the aging tag enough long to ensure that the case described 
above does not happen. 

3.3.4 Choose the Random Probe Sequence 

In practice the truly random probe sequence >< − )()......,(),(),( 1,210 xhxhxhxh m is 
difficult to find, so one of the heuristics can be used 

1) Linear probing 

Using a single hash function h(x), and define 

mixhxhi mod))(()( +=  (3.5) 

The operation in this equation is simple, but it suffers from a phenomenon known 
as primary clustering, in which large chains of occupied positions begin to 
develop as the table becomes more and more full. This results in excessive 
probing 

2) Quadratic probing 

Also using a single hash function h(x), and define 

mixhxhi mod))(()( 2+=  (3.6) 

Unfortunately, for certain values of m, the sequence of hash values >< )(xhi  
does not hit every possible slot in the table; we can avoid this problem by making 
m a prime number. Although quadratic probing does not suffer from the same 
clumping problems as linear probing, it does have a weaker clustering problem 
known as secondary clustering: If two items have the same initial hash value, 
their entire probe sequences will be the same. 

3) Linear Double Probing 

We use two hash functions h(x) and g(x), and define 

mxigxhxhi mod))()(()( +=        (3.7) 

To guarantee that this can hit every slot in the table, the stride function g(x) and 
the table size m must be relatively prime. This can be guaranteed by making m 
prime. The key advantage of linear double hashing over linear probing is that it is 
possible for both h(k) and g(k) to vary with k. Thus, in )(xhi the probe sequence 
depends on k through both h(k) and g(k), and is linear in h(k) and g(k). A widely 
used member hash function proposed by Knuth is [13] 

)2mod()(
mod)(

−=
=

mkkg
mkkh

    (3.8) 
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3.3.5 Randomization of the Un-uniform Distributed Keys 

The ordinary hash function h(x) used in equation (3.4) and equation (3.5) has a dramatic 
impact on the performance of linear probing and quadratic probing. A common choice like:  

mxxh mod)( =     (3.9) 

This performs only well when the key x is uniformly distributed, so that this ordinary 
function can generate uniformly distributed sequences. When the key x diverges from the 
uniform distribution, the performance of linear probing and quadratic probing degrades 
dramatically[14].  

This is unfortunately our case. Assume a ring has 10 nodes, the variation of the key 
which is the concatenation of the destination address, source address and the sequence 
number is limited. This is because: 

 First, the first 3 bytes of the MAC address is the manufacturers Organizational 
Unique Identifier (OUI). In a ring, the manufacturers are not likely to exceed 20. 
So the variation of this part is very limited 

 Second, if the traffic is multicast, the destination is always the multicast address. 
The most traffic in the ring is multicast traffic. 

 Third, although the sequence number varies most frequently (from 0 to 65535), it 
varies only at the end of a key.  

Therefore the key in our case is far from uniformly distributed. 

Two approaches are commonly used to address this problem. First, one can apply a 
randomizing transformation to the keys prior to supplying them to Equation 3.9. This is 
actually a natural step to take in many applications. For example, consider compiler 
symbol tables, where strings must be converted into numeric key values in order to 
“hash” them into the table. One such popular algorithm, called hashPJW()[15], takes a 
string as input, and output an integer in the range ]12,0[ 32 − . The transformation 
performed by hashPJW() tends to do a good job of producing numbers that appear 
uniformly over certain interval, even when the strings being hashed are very similar. 

A second approach involves using a more complicated ordinary hash function h(x) so that 
the initial probe into the hash table is more random. In addition, by randomizing the 
choice of h(x) itself we can guarantee good average-case performance (relative to any 
fixed ordinary hash function) through the use of universal hashing[16].   

A set H of hash function is universal if it satisfies the following property: 

For all pairs of distinct keys yx ≠ , if a hash function h is chosen uniformly 
random from the hash function family set H, then 

Vyhxh /1)]()(Pr[ ≤=     (3.10) 

|V| denote size of V, the number of possible hashed values. 

A good example of a universal hash function is  

mpbakkh mod)mod)(()( +=     (3.11) 

Here pZba ∈∈ ,Z*
p , *

pZ denotes the set {1, 2, 3, ……, p - 1} and p is a prime number 

large enough so that every possible Uk∈ is in ]1,0[ −p . Thus, for fixed p and m, there 
are p(p – 1) different hash functions in this family. 
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Although the universal hash functions provide a good performance, the multiplication 
operation in the FPGA is very expensive especially when the key k is more than 32 bits. 
There are ways like addition tree can work around this problem, but again it sacrifices 
time and causes longer delay. Besides, the mod operation of a prime is difficult to realize. 
Only the mod operation of the order of 2 is able to be synthesized. Therefore, the 
randomizing transformation method is chosen. 

3.3.6 The Randomness of Double Hashing 

If the goal is to minimize the total number of collisions and thus memory accesses, then 
from a probabilistic perspective, the ideal case for open address hashing is uniform 
hashing[17][18]. 

A uniform hash function always produces probe sequences of length m (in the table 
space), with each of the !m  possible probe sequences being equally likely. The obvious 
way of implementing a uniform hash function involves the generation of independent 
random permutations over the table space for each key Uk∈ . However, the 
computational costs associated with this strategy make it completely impractical.  

Through probabilistic analysis, the function described by Equation (3.7) offers a 
reasonable approximation to uniform hashing[19][20]. This conclusion is based on the 
strong uniformity assumption shown in Equation (3.1). Thus, these results only hold 
under the assumption that the keys will produce hash value pairs that are jointly uniformly 
distributed over the table space. This strong assumption has requirements both on the 
initial data distribution and the choice of h(k), g(k). As the most data set are far from 
uniform (which is indeed our case), and the popular candidate for h(k), g(k), which is 
described previously, has to be considered poor choices  to satisfy the Equation (3.1). 

3.3.7 Memory Access Serialization 

According the algorithm applied by the hash table with open addressing and aging. It can 
be seen that there are three processes that need both read and write access to the table: 

1) The aging process, which runs in the background. It needs read the aging 
tag, and subtracts AT by one if it is not equal to zero.  

2) The searching process, which read the entry in the table, and clear the 
entry by writing AT to x”00” if it is found. 

3) The writing process, which first reads AT in the table and register the entry 
in the empty bin or the bin with the oldest AT if no bins are empty. 

Since the table is located in the dual port memory, it is allowed that reading and writing 
happens at the same time. But if two reading or writing operations are to be executed at 
the same time, the two operations must be serialized. A collision between two writing 
operation in the table for rejecting duplicated frames can be show in Figure 3.7 

For the table used for rejecting the circular frames, because the searching and writing 
process occurs at the same line and therefore naturally serialized (means the searching 
operation always come previous to the writing process), the serialization only have to be 
done between the aging process and the reading or writing process. Here the reading 
and writing process always have the higher priority than the aging process, because we 
want to make the decision as early as possible so that the cut-through can be performed 
earlier.  

For the table used for rejecting the duplicated frames, the searching and writing is 
required by different lines, the sequence of their occurrence is not deterministic. 
Therefore the searching, writing and aging process should be serialized respectively. The 
searching process has the highest priority, the reason is same as stated above to enable 
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earlier cut-through. Writing process has the second priority because it is not time critical 
like searching process. If during writing searching is required by other line, writing should 
be suspended and give the memory access control to the searching process. Finally the 
aging process has the least priority. 
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Figure 3.7 Clearing bin operation collides with the writing entry operation 

The time period from the sequence number to the end of the frame is plenty for the aging 
process, because the subtracting of the AT is only executed in a pre-configured time 
distance, but not at very instance. The memory access control transfer state machine is 
shown in Figure 3.8. 
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Figure 3.8 The memory access control transfer state machine of the hash table for 

rejecting the duplicated frames 

3.4 Algorithm 3: Hashing Combined with Circular Buffer 
In the previous section, the hash table with open addressing is modified by adding the 
max_bin parameter and the aging functionality to fix the worst case searching time and 
avoid resizing the whole table. But the aging functionality needs a process running on the 
background, and the serialization of the memory access among the aging, searching and 
writing process is also needed, these increase the complexity of the hardware 
implementation. To reduce the complexity of the implementation and still maintain a 
similar performance, the third algorithm is proposed. 

The proposed hash table structure combined with circular buffer is illustrated in Figure 
3.9. The table is divided into several regions, the hash value of the entry decided into 
which region the entry falls. In each region there are number of max_bin bins. The entry 
is written at the bin position.  
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Figure 3.9 The structure of the hash table combined with circular buffer 

The concept is similar to the chained hash table, except the element attached to each 
bucket is limited to the number given by max_bin parameter. If all the bins are taken, the 
entry is simply overwritten the eldest bin, and thus there is no need for memory allocator. 
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The operation principle is explained as follows: 

 When searching an entry of a received frame: 

When an entry is received, after the destination address, the source address and 
the sequence number are read, the hash value is calculated. The calculated 
value is mapped to certain area of the table. This mapping can be for example a 
mod operation. 

The position of the read pointer in this area is the position after last searching in 
this area. If the entry is not found at the current position, the read pointer moves 
downwards by one. If entry is found, the read pointer stays at the next position to 
the position where the entry is found. 

When searching steps has reached the max_bin, searching stops and the read 
pointer go back to its last initial position. 

 When writing an entry of a good frame 

Write the entry at the position of the write pointer and move the write pointer 
downwards by one. 

If the write pointer has reached the end of the area, it goes back to the beginning 
of this area 
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Figure 3.10 Read and write operation in the hash table combined with circular 

buffer for rejecting the duplicated frames 

In this algorithm, the maximum searching step is also limited to max_bin times, and there 
is no aging mechanism being applied. Each area has its own read and write pointer. The 
writing operation iterates through the area, the oldest entry is simply overwritten.  The 
writing entry process only does write operations, and the searching process only does 
read operation. Therefore there is no more than one process reading or writing at the 
same time and thus the memory access does not need to be serialized (Figure 3.10). 
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This simplifies the circuit dramatically compared with the hash table with open addressing 
and aging. 

The map of an entry to certain area is done by the hash function  

mxxh mod)( =   (3.10) 

Again, the key x here is far from uniform distributed, so the function for randomization of 
the un-uniform distributed Keys introduced in Section 3.3.5 should be used here before 
the hash operation. 

A drawback of this method is that it does not find an empty bin to write the new entry 
which is done in the hash table with aging algorithm. Instead it just overwrite the oldest 
entry in the area. So the probability that an unused entry is overwritten is higher than the 
hash table with aging. 

3.5 Comparison of the Proposed Algorithms 
In Table 3.1 the proposed algorithms are compared in respect to their collision probability, 
worst case searching time, implementation complexity. 

 

Proposed 
algorithms 

Collision Probability Worst Case 
Searching 

time 

Implementation Complexity 

 

Circular Buffer 

No collisions as long as the 
length of the table longer 
than frame arriving delay 
between the two lines 

must go 
through the 
entire table 

simplest 

Hash Table With 
Open 
Addressing and 
Aging 

Depending on the chosen 
probe sequence  

linear probe:  primary 
clustering 

quadratic probe: secondary 
clustering  

double hashing: most 
unlikely to collide compared 
with two others 

With the aging functionality, 
the entry always search first 
an empty bin to write and 
then the oldest 

limited by the 
max_bin 
parameter 

Most complex because of 
the aging functionality and 
the memory access 
serialization 

Hash Table 
Combined with 
Circular Buffer 

The oldest entry in each 
area is simply overwritten, 
but it is possible that the 
overwritten entry is not used 
yet 

 limited by the 
max_bin 
parameter 

Moderate 

Table 3.1 Comparison of the proposed algorithms 
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3.6 Conclusion to the Proposed Solutions  
In this chapter, three algorithms based on look up table are proposed to replace the drop 
window algorithm to reject the duplicated and circular frames in HSR.  

The circular buffer method has no collision as long as the length of the table is larger than 
the frame arriving delay between the two lines, and it is simplest to implement. But to find 
out whether the entry is in the table or not, one should go through the entire table which 
causes long delay, this method is not suitable for realizing cut-through. 

The hash table with opening address and aging functionality introduce the max_bin to 
limit the maximum searching time. Aging kicks out the entries which already times out 
and ensures to write the entry only in the empty bin or bin with the oldest age. This can 
somehow reduce the collision probability and avoid resizing operation. But the need for 
implementation of the aging function and serialization of the memory access makes the 
circuit more complex compared with circular buffer and hash table combined with circular 
buffer method. 

The hash table combined with circular buffer is similar with the chained hash table except 
that the oldest entry is simply overwritten if all the bins attached to the bucket are taken. 
By doing so the memory allocator is saved. But one drawback of this method is that a not 
yet used oldest entry may be overwritten. 

A last it should be pointed out that the key of the hash function in our case is far from 
uniform, the randomization of the key should be done previous to hashing. 

In the next chapter, the simulation environment will be built. The performance of the 
proposed algorithms will be simulated in respect to their rejecting ratio to the duplicated 
and circular frames. 
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4 The Software Simulation of the Proposed Solutions 
In this chapter, a simulation environment is set up to evaluate the proposed algorithms. 
The basic unit in the simulation is a node. A node can accomplish all the tasks of a real 
end node in HSR and simulate the timing behavior of sending or receiving process. 
Because the program is written in C++, the operations of the nodes in the ring must be 
parallelized to simulate the parallel process in real hardware. The configuration of the 
simulation is explained and the simulation result is presented and discussed. Finally the 
hash table combined with circular buffer is chosen as the algorithm to be implemented in 
FPGA. 

4.1 The Setup of the Simulation Environment  
In this section, the structure of a node, which is the basic unit in the simulation 
environment, is illustrated. The components in the node and their way of work are 
explained in more details. The way of parallelizing the operations of a node is explained.  

4.1.1 The Node Class 

The node is the basic unit in the simulation environment. A node unit represents an end 
node in the HSR network. The node class designed here can accomplish all the tasks of 
the link layer of an end node. The tasks of a node in HSR have already been introduced 
in chapter 2. The structure the node class is illustrated in Figure 4.1. 
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Figure 4.1 The structure of the node class 

As illustrated in Figure 4.1 one node unit contains 8 member objects: 

1) One frame generator,  

2) Two sending queues on each line,  

3) Two receiving queue on each line,  

4) Two tables for rejecting duplicated frame one each line, 
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5) Two tables for rejecting the circular frames on each line. 

6) The “send coordinator and frame length countdown”.  

7) The “receiving processing” are two main control functions during sending 
and receiving. 

8) The “sending port A, B” and “Receiving ports A, B” are a group of structure 
variable for storing the frame structure and status variables for labelling 
the sending and receiving status. This will be explained in next sections. 

4.1.2 The Frame Structure 

Before going to the detail of single components in the node unit, the frame structure used 
in this environment should be explained first. 

According to the HSR frame format, the frame here is a structure contains the destination 
address, the source address, the sequence number, the length of the frame, and a 
counter. The frame structure is shown in Figure 4.2. 

DA

SA

Seq

FrLen

CircCnt

Structure of Frame

 
Figure 4.2 The structure of the frame in the simulation 

The destination address, source address and the sequence number together compose 
the entry in the hash table. The length of the frame FrLen is used to simulate the time 
behavior of receiving or sending a frame. The counter CircCnt records the number of the 
nodes this frame has gone through before being accepted or rejected. This can be used 
to evaluate the performance of the table for rejecting the circular frames. 

4.1.3 Generating Nodes in the Ring 

A node is uniquely identified by its MAC address in the ring. To generate n nodes in the 
ring means to generate n different MAC addresses. According to the Ethernet protocol, 
the MAC address is divided into two parts: the first three octets of the MAC address is the 
Organizationally Unique Identifier (OUI) of the manufacturer, which is assigned by the 
IEEE Registration Authority; the last three Octets are assigned by the manufacturers. 

There are two parameters can be configured. One is the OUI_NUM, which determines 
how many manufacturers there is in the network. The second parameter is the number of 
nodes n in the network. If the OUI_NUM is smaller than the number of nodes in the 
network, it means that there are some devices with the same manufacturer. This often 
corresponds to the reality considering the switch element used by the devices in the ring 
are from limited number of manufacturers. 

When generating the nodes in the network, the OUIs are read out from the OUI tables at 
random locations, and assigned to the first three octets of the MAC address. Because the 
number of the nodes in the ring is larger than OUI, some OUIs are reused. The second 
three octets are generated randomly. Every time a MAC address is generated, it will be 
checked if it already exists in the network; if so, the second three octets should be 
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regenerated until this MAC address is not same with any MAC addresses generated 
before.  

After nodes generating is over, a table of n different MAC addresses is created 

4.1.4 The Frame Generator 

The frame generator is a member object in the Node class. As shown in Figure 4.3, it has 
a table (the destination address table) of the MAC addresses of all other nodes in the ring 
plus a multicast frame address. This table is created from the table of the generated 
nodes. For example, if this node is the Nr. 2 node in the ring, then the MAC address at 
the second position in the generated nodes table will be taken as the source address of 
this node, and other addresses are put into the destination address table. Besides the 
MAC address of the node itself, it also contains a MAC address which does not exist in 
the ring. This MAC address is used to simulate a unicast frame losing sender and 
receiver or a multicast frame losing sender. The reason why this may happen is 
explained in Section 2.3.  

Together with each address in the address table there is also a sequence number. Each 
time a frame with is generated, the sequence number of the corresponding destination 
address will be increased by one. 

DA SEQ
DA SEQ
DA SEQ
DA SEQ.

.

.

SA
Circ SA

gen_fr_to_send()

DA SA SEQ LEN CircCnt

SEQ + 1

frame_to_send
 

Figure 4.3 The structure of the frame generator and its 

The probability of generating a multicast or a circular frame can be configured. When 
generating a frame, the function gen_fr_to_send() randomly select a destination address 
from the destination address table and a source address from the source address table 
with the preconfigured probability and increase the corresponding sequence number by 
one. gen_fr_to_send() also generate randomly the length of the frame between 64 and 
1522. The chosen destination address，the source address, the sequence number, the 
generated frame length and the counter CircCnt are assigned to the variable 
frame_to_send. 

4.1.5 The Queue 

The two sending queues and the two receiving queues are normal queues defined with 
the Frame type using the queue template in the Standard Library of C++. It can execute 
normal operations for a queue structure like push, pop, and return the size of the queue. 



37  

4.1.6 The Lookup Tables 

The proposed lookup tables are circular buffer, hash table with open addressing and 
aging, hash table combined with circular buffer. Because the structures and operating 
principles of each kind of table are already introduced in the previous chapter, it will not 
be repeated here. But in order to show how the concepts of each table are implemented, 
three important functions, namely the hash function, the searching entry function and the 
writing entry function are explained in detail for each type of table.  

4.1.6.1 Circular Buffer 

The circular buffer method does not use any hash functions. The flow charts of search 
entry and writing entry functions are illustrated in Figure 4.4 and Figure 4.5 below. 

Searching Entry 

Entry 
found?

End of 
the 

Table?

Yes

Return TRUE

No

No

Yes

Return False

SrchEntry(Frame & fr)

 
Figure 4.4 The flow chart of the searching entry function in circular buffer 

 

 
Figure 4.5 The flow chart of the writting entry function in circular buffer 
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4.1.6.2 Hash Table with Open Addressing and Aging 

As stated in the chapter 3, the key which is the entry composed of the destination 
address, source address and the sequence number, is far from uniform, therefore the 
randomization should be performed before hashing.  

The randomization function is chosen as the Hashpjw(). It coerces a key into a permuted 
integer through a series of bit operations on each byte in the key.  

The code of Hashpjw() is shown in Figure 4.6 bellow: 

int hashpjw(const void *key) {
const char *ptr;
int val;
/*Hash the key by performing a 
number of bit operations on it. */

val = 0;
ptr = key;
while (*ptr != '\0') {
int tmp;
val = (val << 4) + (*ptr);
if (tmp = (val & 0xf0000000)) {
val = val ^ (tmp >> 24);
val = val ^ tmp;

}
ptr++;

}
}

 
Figure 4.6 The hashpjw() funtion 

This function is simple and proven to have a nice performance on randomizing the key. 
The bit operation is very suitable for implementing in the FPGA. 

There are 3 probing sequences used: the linear probing, the quadratic probing, and the 
double hashing. The hash functions of each probing sequence are listed as following: 

For linear probing and quadratic probing 

mxxh mod)( =  

For double hashing 

mxxh mod)( =   )1mod()( −= mxxg  

Note here m is not chosen as a prime number. The reason for doing this is that the mod 
operation of a prime number cannot be synthesized in FPGA, other reason is mod a 
number of power of 2 can simply be realized by only taking the m2log number of the 
least significant bits. The effect of such choice must be evaluated through the simulation. 

The flow charts of searching and writing entry function are shown respectively in Figure 
4.7 and Figure 4.8. 
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Figure 4.7 The flow chart of the searching entry function in hash table with open 

addressing and aging 

 
Figure 4.8 The flow chart of the writing entry function in hash table with open 

addressing and aging 
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4.1.6.3 Hash Table Combined with Circular Buffer 

For the hash table combined with circular buffer, the hash randomization function is still 
Hashpjw(). The hash function is: 

mxxh mod)( =  

The flow charts of the searching and writing entry function are shown in Figure 4.9 and 
Figure 4.10 respectively. 

 
Figure 4.9 The flow chart of the searching entry function in hash table combined 

with circular buffer 

 

 
Figure 4.10 The flow chart of the writing entry function in hash table combined with 

circular buffer 
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4.1.7 The Receiving Processing 

The receiving processing is a function which watches the receiving status on the two 
lines. Its tasks include searching and writing the entry of the received multicast frame and 
to the node dedicated unicast frame in the table for rejecting duplicated and circular 
frames, pushing the frame in the receiving queue if the frames are not found in either of 
the two tables. If frame comes at the same time, it should compare the two frames and 
make decisions. The way this function works is shown in Figure 4.11. 
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receiving queue, 
drop the frame at 
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For both frames received

 
Figure 4.11 The flow chart of the receiving processing 

 

4.1.8 Send Coordinator and Sending Port Use Count Down 

Because each node has only one send port on each line, the using of the sending port 
must be coordinated between sending and forwarding. The basic principle of coordination 
is: the forwarding always has the priority. The reason for doing that is to ensure the 
traffic in the ring is not delayed by the frames injected by the nodes.  

The functionality of send coordinator and frame length counting down is realized by two 
functions: CntFrLen() and IsSending(). 

The CntFrLen() implement the count-down functionality and thus simulates the time 
behavior of the network. For example, if the receiving queue is not empty, the length of 
the frame on top of the queue will be loaded to the counter and the counter is counted 
down by one at each simulation time. During counting down, no new loading is allowed. 
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This stands for the time of using the sending port by this frame. After the counter reaches 
zero, the frame will be popped from the queue, and assigned to the sending port waiting 
to be received by the node next to it. 

For the node next to this node, the receiving port should also be used when count-down 
is ongoing at the sending porting of this node. The node next to this node should sense 
that it is sending a frame. This IsSending() function tells the neighbor node that it is 
sending. If a frame requires to be sent a frame to the ring, but it sense the neighbor node 
is sending a frame towards it, the sending to the ring should not be allowed, because the 
receiving frame will probably be forwarded later. This operation principle is shown in 
Figure 4.12. 
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Figure 4.12 The sending coordination principle and frame length counting down 

With such principle, the number of the frames in the receiving queue will never exceed 1 
on the precondition that all frame are of the same length. Let us consider the following 
scenario:  

Frame1 begins to 
be sent to node1 
just before node1 
sends it own 
frame

Node1Node0 Node3

t

Frame0
Frame1

Frame2

Frame3

Frame1 is pushed 
into the receiving 
queue of Node1 
just after Frame 0 
completely sent
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From now on there 
is only one frame in 
the receiving queue 
of Node1

t t
 

Figure 4.13 The number of frames in the receiving queue will never exceed 1 
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In Figure 4.13 there are always frames in the sending queue of Node1, and the neighbor 
node sends frames without breaking. Assuming just short before the node0 begin to send 
frame to node1, node1 begin to send its own frame (frame1). After node1 finishes 
sending its own frame1, other frames in its sending queue cannot be sent because 
Node1 has sensed that Node0 is sending a frame to him. Frame0 is pushed into the 
receiving queue shortly after Fame0 is completely sent and should be sent next. During 
sending the frame0, the node1 still continues receiving frame (frame2) from node0. When 
frame1 is completely sent, frame2 is pushed into the receiving queue. From now on, the 
number of frames in receiving queue stays constant at 1 and does not increase any more. 

4.1.9 The Sending Port 

The sending port is implemented by two functions, a variable of Frame type and a 
variable of type bool. 

For line A, the function SendForwardFrToPortA() pop the frame from the receiving queue 
when the counter has reached zero, then assign the frame to the variable m_OutPortA of 
type Frame and set the variable FrPortA TRUE.  

The function SendPortA() should be called by the receiving function of the neighbor node. 

It returns the value of m_OutPortA and set the FrPortA back to FALSE. 

The same applies for line B. 

4.1.10 The Receiving Port 

The receiving port is implemented by one function, a variable of type Frame and variable 
of type bool . 

For line A, the function ReceiveFrA() calls the SendPortA() function of its neighbor node, 
assign the variable of type Frame returned by SendPortA() to the variable 
ReceivedFrameA and set the status variable FinishReceivingFromPortA TRUE. 

The ReceivedFrameA and FinishReceivingFromPortA are used by the receiving 
processing functionality. After the processing, FinishReceivingFromPortA is set back to 
FALSE. 

The same applies for line B. 

4.1.11 Operation Parallelization and Simulation Process  

Operation Parallelization 

Because the simulation program is written in C++, in order to simulate the behavior of the 
hardware, the operations of nodes must be parallelized. The parallelization is realized by 
the method shown in Figure 4.14. 

By doing this way, all operations of a node can be executed at the same run time and the 
sequence that one node executes an operation before or after the other node does not 
play a role. However, the sequence that one operation should be executed before the or 
after the other operation is still to be considered. 

The operation of assigning a frame to the sending port should be executed before the 
reception of a frame from the neighbor node otherwise the reception of a frame is 
delayed to the next runtime. The receiving processing operation should executed after 
the receiving from neighbor node operation, so that it can deal with the situation where 
two frames is received on both line at the same time. The send coordination and send 
port use counting down is executed last because it needs the information of the sending 
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queue and of the receiving queue. Only after the receiving from neighbor node operation 
and processing of received frames operation are finished, the information in the receiving 
queue is ready. 

 

Aging if the node 
contains hash table 

with aging

Frame Generating

Send Coordination 
and Send Port Use 
Counting Down

Assign Frame to Send 
Port If Counting 
Down Over

Receiving from 
Neighbor Nodes

Processing Received 
Frames

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From runtime 0 to Max_Runtime

 
Figure 4.14 The paraellization of the node operations 

Simulation Process 

The simulation process is performed in following steps: 

MAC address table generation: the MAC address of each node is generated in the way 
described in the section 4.1.3. If there are n nodes in the network, n MAC addresses are 
generated. Some MAC addresses can have the same OUI. 

An array of n nodes is created: Each element in the array is assigned by one MAC 
address from the created MAC address table. 

An array of n time points is generated: the element in the array indicates at what time the 
corresponding node should generate a frame. 
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The main iteration: the simulation begins here. In each iteration, each node should 
perform 5 or 4 operations, depends on if the node contains the hash table with aging: 

1) (Aging, if the node contains the hash table with aging).  

2) Generates frame if its frame generating time is reached. 

3) Assign the frame to the send port if counting down for this frame is over. 

4) Receiving frames from the neighbor nodes at both lines if there are frames 
presented at the SentPort of the neighbor nodes. 

5) Process the received frames. 

6) If there are frames in the sending queue or the forwarding queue, load the 
frame according to the sending coordination principle introduced in section 
4.1.8 to the counter and begin counting down. 

The remaining traffic iteration: after the main iteration is over, there are still frames stays 
in the network. In this iteration, the nodes perform the same actions listed in main 
iteration, except no node generates new frames. The iteration will stop until no frame is 
left in the ring. 

During the main iteration and the remaining traffic iteration, statistics are performed. 
When the simulation is over, the statistic result is generated. 

The flow of the simulation is illustrated in Figure 4.15. 
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Figure 4.15 The simulation process 

4.2 Simulation Configuration 
In this section, the meaning and configuration of the parameter used in the simulation are 
explained. The time unit used in the simulation is explained, the methodology applied in 
the simulation and the contents of the simulation are introduced.  

4.2.1 Parameters Configuration 

In the Simulation, there are several parameters should be considered.  

 For the network configuration:  

NODE_QTY : The number of the node in the network 

MAX_FRAME_LEN : The maximum frame length 

GEN_FRAME_INTV : The time interval with which a node should generate a 
frame 

MULTI_CAST_PERCENTAGE : the percentage of the multicast frames in the 
generated frames 

CIRC_PERCENTAGE : the percentage of the circular frames in the 
generated frames 
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 For the configuration of the circular buffer: 

HASHTB_CIRC1_UNIMULTI_DEPTH : The size of the circular buffer for 
rejecting the duplicated frames 

HASHTB_CIRC1_CIRC_DEPTH :  The size of the circular buffer for rejecting 
the circular frames 

 For the configuration of the hash table with open addressing and aging 

HASHAGEMAX: the maximum age of each bin 

HASHTB_AGE_UNIMULTI_DEPTH : The size of the table for rejecting the 
duplicated frames 

HASHTB_AGE_UNIMULTI_BIN_DEPTH  : The max_bin of the table for 
rejecting the duplicated frames, introduced in the previous chapter 

HASHTB_AGE_CIRC_DEPTH : The size of the table for rejecting the circular 
frames 

HASHTB_AGE_CIRC_BIN_DEPTH : The max_bin of the table for rejecting 
the circular frames 

 For the configuration of the hash table combined with circular buffer 

HASHTB_CIRC0_UNIMULTI_DEPTH : The size of the table for rejecting the 
duplicated frames 

HASHTB_CIRC0_UNIMULTI_BIN_DEPTH : The max_bin of the table for 
rejecting the duplicated frames 

HASHTB_CIRC0_CIRC_DEPTH : The size of the table for rejecting the 
circular frames 

HASHTB_CIRC0_CIRC_BIN_DEPTH : The max_bin of the table for rejecting 
the circular frames 

The consideration to each parameter is discussed as bellow. 

For the network configuration 

 NODE_QTY:  

As discussed in section 3.2, the number of the node in the network has an 
influence on the size of circular buffer. If a network has n nodes, then for the 
unicast traffic, the size of the circular buffer should be at least n – 2. 

For multicast frames, the requirement is released. As shown in Figure 4.16, 
node1 send a multicast frame. If there is no delay during the traffic, the two 
frames will reach node4 at the same time. Therefore the delay between the two 
lines is zero in this case.  

However, because the table is used both for the multicast and unicast frames, 
the minimum table size should be n - 2. 
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Figure 4.16 The multicast traffic in the ring, a multicast frame is sent in two 
directions and reaches the destination with zero delay 
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Figure 4.17 The circular frame should be rejected after it goes through the ring one 

round 

For the circular frames, it should be rejected after it goes through the ring one 
round. Therefore the minimum size of the circular buffer for rejecting the circular 
frame should be at least n. This is shown in Figure 4.17. 

 

 MAX_FRAME_LEN and GEN_FRAME_INTV 

A typical application scenario of HSR is the process bus. It carries real-time data 
from the measuring units, which requires a deterministic mode of operation. This 
means the period of generation of a frame by the units is deterministic. The 
generation of the frame takes place at a fixed time in a period. Because the 
information gathered by the unit on the bus has a fix format, the length of all the 
frames is the same, which is given by the MAX_FRAME_LEN in the simulation 

 MULTI_CAST_PERCENTAGE, CIRC_PERCENTAGE 

On the process bus, most of the frames are mulicast frame. According to the 
application experience the MULTI_CAST_PERCENTAGE parameter is set to 0.9. 
The CIRC_PERCENTAGE is set to 0.0001. 

For circular buffer: 
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 HASHTB_CIRC1_UNIMULTI_DEPTH  

The size of the table should be at least n – 2, if n is the number of nodes in the 
network. Here it is chosen as n. 

 HASHTB_CIRC1_CIRC_DEPTH 

The size of the table should be at least n, if n is the number of nodes in the 
network 

For hash table with open addressing and aging: 

 HASHAGEMAX 

The maximum age of each bin should be at least 
LENFRAMEMAXn __)2( ∗− , as stated in section 3.3.3. 

 HASHTB_AGE_UNIMULTI_DEPTH 

It should be at least n – 2, if n is the number of nodes in the network. Here it is 
chosen as n. 

 HASHTB_AGE_UNIMULTI_BIN_DEPTH 

Varies from 2 to 5 

 HASHTB_AGE_CIRC_DEPTH  

It should be at least n, if n is the number of nodes in the network 

 HASHTB_AGE_CIRC_BIN_DEPTH :  

 Varies from 2 to 5 

For hash table combined with circular buffer: 

 HASHTB_CIRC0_UNIMULTI_DEPTH 

It should be at least n – 2, if n is the number of nodes in the network. Here it is 
chosen as n. 

 HASHTB_CIRC0_UNIMULTI_BIN_DEPTH 

Varies from 2 to 5 

 HASHTB_CIRC0_CIRC_DEPTH:  

It should be at least n, if n is the number of nodes in the network 

 HASHTB_CIRC0_CIRC_BIN_DEPTH 

Varies from 2 to 5 

4.2.2 Time Unit of the Simulation 

The time unit of the simulation is defined by the time needed for transmitting an octet on 
the Ethernet line.  

If the line speed of the Ethernet is 100Mbits/s, then the one time unit in the simulation 
stands for nsns 8040*2 = ; if the line speed is 1Gbits/s, one time unit stands for 8ns. 

4.2.3 Simulation Methodology and Contents 
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This simulation is parameterized for the bus traffic according to the standard IEC 61850-
9-2 [5]. In this standard, the frame generating interval of each unit on the ring should be 
fixed to 250us. Which is 250us/80ns = 3125 after conversion to the simulation time unit. 
The frame length is defined as 138 Bytes. Therefore, the rejection ratio is measured with 
the node number as variable. 

There are five methods to be measured: 

1) The circular buffer 

2) The hash table with open addressing and aging with linear probing 

3) The hash table with open addressing and aging with quadratic probing 

4) The hash table with open addressing and aging with double hashing 

5) The hash table combined with circular buffer 

For each method, the rejecting ratio of the duplicated frames and circular frames are 
measured given the same node number. Each measurement will be repeated 5 times; 
the average rejecting ratio is calculated. For the hash table with aging, and hash table 
combined with circular buffer, measurements are performed for each bin number. 
Besides, the number of the frame in the sending queue and the frame discarding ratio are 
also measured. These two parameters are helpful in explaining the communication 
situation in the ring. 

The simulation will run 1000000 time units, which corresponds a time of 80ms in reality 
with the 100Mbits/s Ethernet. 

Table 4.1 shows the contents of the simulation. 

Note for the hash table with circular buffer method, some simulation cannot be performed. 
Because the size of the table is chosen as the number of nodes in the ring, the bin 
number should fully divide the table size. The shaded square in Table 4.1 indicated the 
simulation which cannot be performed. 

Some node numbers are deliberately chosen as power of 2, because the mod operation 
is then just choosing the corresponding least significant bits of the key. 

 

 

 

                                                                                                             Node Number    

   8  16  20  25  32  40  45  50  55  60  64  70  75  80 

Circular Buffer                                           

Hash 
table 
with 
Aging 

linear 
probing 

2 
bins 

Multicast 
Rejection 
Ratio 

                                         

  
Unicast 
Rejection 
Ratio 

                                         

  
Frame 
Discarded 
Ratio 

                                         

  
Num of 
Frame in 
the 
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Sending 
Queue 

3 
bins 

Same as 
above 

                                         

4 
bins 

Same as 
above 

                                         

5 
bins 

Same as 
above 

                                         

quadratic 
probing 

2 
bins 

Same as 
above 

                                         

3 
bins 

Same as 
above 

                                         

4 
bins 

Same as 
above 

                                         

5 
bins 

Same as 
above 

                                         

double 
hashing 

2 
bins 

Same as 
above 

                                         

3 
bins 

Same as 
above 

                                         

4 
bins 

Same as 
above 

                                         

5 
bins 

Same as 
above 

                                         

Hash 
table 
with 
circular 
buffer 

2 bins 
Same as 
above 

                                         

3 bins 
Same as 
above 

                                         

4 bins 
Same as 
above 

                                         

5 bins 
Same as 
above 

                                         

Table 4.1 The simulation contents 

 

4.3 Simulation Results and Discussion 
In this section, the simulation results are presented, compared and discussed. The 
relation between the frame rejection ratio and the number of nodes in the network is 
explained. 

The result of this simulation is statistics with the following contents: 

 The number of the unicast frames generated in the network during the runtime 
( genuniN _ ) 

 The number of the multicast frames generated in the network during the runtime 
( genmultiN _ ) 
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 The number of the circular frames generated in the network during the runtime  
( gencircN _ ) 

 The accepted unicast frames in the network  ( acptuniN _ ) 

 The rejected unicast frames in the network ( rejuniN _ ) 

 The accepted multicast frames in the network ( acptmultiN _ ) 

 The rejected multicast frames in the network ( rejmultiN _ ) 

 The number of nodes a circular buffer has gone through before being rejected 

The rejection ratio of the unicast frame is calculated as 

)(
)(

1
__

__

rejuniacptuni

rejuniacptuni
unicast NuniN

NN
R

+

−
−=     (4.1) 

For example, if the number of accepted unicast frame equal to the number of rejected 
unicast frame, the rejection ratio is 100%. 

The rejection ratio of the multicast frame is calculated as 

)1_(*
)]1_(*[

1
_

__

−

−−
−=

NumNodeN
NumNodeNN

R
genmulti

genmultiacptmulti
unicast      

                                      
)1_(*

2
_

_

−
−=

NumNodeN
N

genmulti

acptmulti     (4.2) 

 

For example, if there are 20 nodes in the network, 100 multicast frames is generated 
during the runtime, the accepted multicast frame should be 19*100 = 1900. If the number 
of accepted multicast frame is 2000, the rejection ratio of the multicast frame is 94.3%. 

A successful rejection of a circular frame is expressed by the number of nodes it has 
gone through before being rejected. If there are 20 nodes in the network, a successful 
rejection means that the circular frame is rejected just after it has gone through the ring 
for one round. 

4.3.1 The Simulation Results of Circular Buffer 

The simulation results of circular buffer are presented below.  

Figure 4.18 shows that the multicast frame rejection ratio stays at the level of 100 percent, 
but drops dramatically when the number of nodes in the ring reaches 80. Figure 4.19 
shows that the unicast rejection ratio stays at the level of 100 percent, but begins to drop 
dramatically after the number of nodes in the ring exceeds 60. 
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Figure 4.18 The multicast frame rejection ratio of circular buffer 
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Figure 4.19 The unicast frame rejection ratio of circular buffer 
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4.3.2 The Simulation Results of Hash Table with Aging 

Linear Probing 

Figure 4.20 and Figure 4.21 shows the multicast frame rejection ratio and unicast frame 
rejection ratio of a hash table with aging and linear probing respectively. The rejection 
ratios of different bin numbers are drawn on the same figure. 

The mulicast frame rejection ratio drops dramatically after the number of nodes in the ring 
exceeds 64, which is also observed in the circular buffer. The unicast frame ratio has the 
similar tendency, besides, the lower the bin number, the faster the rejection ratio 
degrades. The linear probing with 5 bins has the best performance. 
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Figure 4.20 The multicast frame rejection ratio of hash table with aging and linear 

probing 
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Figure 4.21 The unicast frame rejection ratio of hash table with aging and linear 

probing 

Quadratic Probing 

Figure 4.22 and Figure 4.23 shows the multicast frame rejection ratio and unicast frame 
rejection ratio of hash table with aging and quadratic probing respectively. The rejection 
ratios of different bin numbers are drawn on the same figure. The same tendency is 
repeated again as it is in the quadratic probing. 
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Figure 4.22 The multicast frame rejection ratio of hash table with aging and 

quadratic probing 
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Figure 4.23 The unicast frame rejection ratio of hash table with aging and quadratic 

probing 

Double Hashing 

Figure 4.24 and Figure 4.25 shows the multicast frame rejection ratio and unicast frame 
rejection ratio of hash table with aging and double hashing respectively. The rejection 
ratios of different bin numbers are drawn on the same figure. The same tendency is 
repeated again as it is in the linear probing. 
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Figure 4.24 The multicast frame rejection ratio of hash table with aging and double 

hashing
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Figure 4.25 The unicast frame rejection ratio of hash table with aging and double 

hashing 
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4.3.3 Simulation Results of Hash Table Combined with Circular Buffer 

Figure 4.26 and Figure 4.27 shows the multicast frame rejection ratio and unicast frame 
rejection ratio of hash table combined with circular buffer. For each node number, only 
the bin numbers which can divide it are simulated. 
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Figure 4.26 The multicast frame rejection ratio of hash table combined with circular 

buffer 
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Figure 4.27 The unicast frame rejection ratio of hash table combined with circular 

buffer 

4.3.4 Comparison of the Proposed Methods 

The simulation results of the hash table with aging and hash table combined with circular 
buffer shows that the greater the bin number, is the rejection ratio higher. Therefore, the 
following methods are compared: 

1) Circular buffer 

2) Hash table with aging and linear probing, 5 bins 

3) Hash table with aging and quadratic probing, 5bins 

4) Hash table with aging and double probing, 5 bins 

5) Hash table with aging and double probing. 5 bins 

Figure 4.28 shows the simulation results of the rejection ratio of the multicast frames. All 
the proposed methods have almost 100 percent rejection ratio when the node number is 
below 60. The performance of all the methods begins to degrade dramatically when the 
node number exceeds 60. When the node number reaches 80, the methods lose their 
functionality totally.  

Figure 4.29 shows the simulation results of the rejection ratio of the unicast frames. The 
performance of all the methods begin to degrade after the node number exceeds 45. The 
performance of the circular buffer drops slightly slower than other methods. The 
performance of the hash table combined with circular buffer drops slightly faster than 
other methods.  

Figure 4.30 and Figure 4.31 give a closer view of the multicast and unicast rejection ratio 
in the region between the node number of 0 to 50. 
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Figure 4.28 The multicast frame rejection ratio of proposed methods 
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Figure 4.29 The unicast frame rejection ratio of proposed methods 
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Figure 4.30 The multicast frame rejection ratio of proposed methods in the region 

of node number 0 to 50 
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Figure 4.31 The unicast frame rejection ratio of proposed methods in the region of 

node number 0 to 50 

For multicast frames, it can be observed from Figure 4.30 that the hash table with circular 
buffer has the best performance; the hash table with aging double hashing has the worst 
performance. The performance of the circular buffer, hash table with aging and quadratic 
probing, hash table with aging and linear probing and hash table combined with circular 
buffer maintains above 99 percent in this region. 

4.3.5 Further Discussions 

Why Rejection Ratio of Multicast Higher than Unicast 

In the simulation it is observed that the rejection ratio of multicast frames is higher than 
unicast frames. This is because the frame receiving delay of multicast frames between 
the two lines are smaller than unicast frames. The smaller the delay, the smaller the 
possibility with which the entry of a frame is overwritten. This point has already been 
explained in Section 4.2.1. 

The Reason for the Performance Degradation 

In the simulation it is observed that the rejection ratio of both multicast and unicast 
frames degrades dramatically after the nodes in the ring exceeds a certain number. To 
see the reason of this, the scenario illustrated below is first introduced. 

In Figure 4.32, all nodes generate multicast frames at the same time. After generation, 
each frame can be sent at once without any delay. After each frame has traveled half 
number of nodes in the ring, they are rejected at the same time. Now there are no frames 
in the ring. If at this time all the nodes generate frame again, the generated frames can 
be sent without any delay and the same happens as before. If the frame generation 
period is smaller than this time, the generated frames will accumulate the sending queue. 
And there is no such time that there is no frame in the ring.  
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The above situation is just a special case, if the nodes generate frames at different time 
in a period, the situation is more complex. 

Therefore, the period with which nodes generate multicast frame should satisfy the 
following conditions: 

nodeatdelay
numbernode

generationframe t
n

T __
_

_ *
2

≥     (4.3) 

For the unicast frame the condition should be 

nodeatdelaynumbernodegenerationframe tnT ____ *≥      (4.4) 

Here nodeatdelayt __  is the time needed by a node for transmitting a frame. It is determined 
by the length of a frame and plus some overhead time for processing the frame. 

In our situation the length of the frame is fixed in the IEC 61850-9-2 standard, the frame 
generation period is thus proportional to the number of nodes in the ring. 

numbernodegenerationframe nT __ ∝     (4.6) 

The period with which a node generates a frame is also fixed in the IEC 61850-9-2 
standard, which means generationframeT _  is fixed. Therefore, the following condition should 
be satisfied: 

fixedgenerationframe TT ≤_     （4.7） 

Therefore, the number of nodes in the ring cannot exceed a certain number. 
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Figure 4.32 All nodes generate a frame at the same time 
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Now let us consider the situation that the supposed frame generation period is greater 
than the fixed frame generation period, which means in turn that the number of nodes in 
the ring has exceeded a certain number. 

In Figure 4.33, some frames accumulate in the sending FIFO of each node. The traffic on 
both lines is heavy. According to the sending forwarding coordination principle introduced 
in Section 4.1.8, as long as there are frames needing to be forwarded, the frames in the 
sending FIFO should wait. Now a multicast frame in the sending queue of B line has its 
chance to send, this chance can be created by accepting a unicast frame or rejecting a 
duplicated frame. The sent frame begins to traveling in the ring. During this time, the 
frame in the sending queue of line A does not get its chance to send, this could happen if 
it always failed to reject multicast frames or there is no unicast frame dedicated to it. In 
both cases, the node has to forward the frame so that the frame in the sending queue A 
always does not have its chance to send. 

Because the frame on the A line is not sent, its entry does not exist in the table of all 
nodes, the frame sent on B line can thus go through the ring and come back to Node1 
and be discarded there. 
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Figure 4.33 The frame in sending queue B gets chance to send, whereas the frame 
in sending queue B has to wait for a long period such that the entry of frame sent 

at line B are all overwritten 

Now, the frame in the sending queue A has to wait for such a long time that the entries of 
the frame sent on line B is overwritten in the table of all nodes, until it is sent. The frame 
sent on line A thus also travels through the ring and discarded when it returns Node1.  

In such a way, the rejection ratio can dramatically degrade and the number of discarded 
frames, the number of frames in the sending queue increases dramatically. 
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In Figure 4.34 and Figure 4.35 the percentage of discarded frames and the number of 
frames in the sending queue are presented for the methods circular buffer, hash table 
with aging and linear probing, hash table with aging and quadratic probing, hash table 
with aging and double hashing and hash table combined with circular buffer. The results 
confirm the above considerations. 

It can be observed in Figure 4.29 that the discarded frame ratio begin to rise at the node 
number of 60. According to equation 4.1 the frame generation period is supposed to be 

ususnsT generationframe 2503312/60*80*138_ >==  

, which verifies the consideration stated before. 
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Figure 4.34 The discarded frame ratio 
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Figure 4.35 The max number of frames in the sending queue 

 

4.4 The Chosen Algorithm and Modification 
In this section, an algorithm is chosen for the implementation of the switch element. 
Some modification is done for the chosen algorithm to achieve better performance. 

4.4.1 Choosing an Algorithm for Implementation 

As shown in Figure 4.30, the multicast frame rejection ratio of the circular buffer, hash 
table with aging and quadratic probing, hash table with aging and linear probing and hash 
table combined with circular buffer are the same. Whereas the Figure 4.31 shows that the 
circular buffer has the highest unicast rejection ratio; hash table with aging and double 
hashing has the lowest rejection ratio; the rejection ratios of hash table with aging and 
quadratic probing, hash table with aging and linear probing and hash table combined with 
circular buffer are in between.  

Although the circular buffer has the best performance, one should go through the entire 
table to verify if an entry is in table or not. As stated in chapter 3, the searching time is too 
long. The hash table with aging requires complex circuit implementation because its 
aging mechanism and memory access serialization among the aging, searching and 
writing process. Hash table combined with circular buffer achieves almost the same good 
performance as the hash table with aging, but requires only much simpler circuit 
implementation, therefore, the hash table combined with circular buffer is chosen to 
implement. 

4.4.2 Modification before Implementation 

Figure 4.26 shows that unicast frame rejection ratio of hash table combined with circular 
buffer is slightly worse than the rejection ratio of hash table with aging and quadratic 
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probing, hash table with aging and linear probing. To improve the rejection ratio of the 
unicast frames, two hash tables are used for unicast and multicast frames separately 
instead of one. There are three advantages by doing this 

1) The entry of the unicast frame and multicast frame will not overwritten by 
each other. 

2) Only the source address and the sequence number of the incoming frame 
need to be hashed, because the destination address of the frame in the 
table for unicast frames must be the MAC address of this node and in the 
table for multicast frames the destination address must be the multicast 
address. 

3) The entry in both tables is reduced from DA, SA, SEQ to SA, SEQ, the 
reason is the same as above. More space in the memory can therefore be 
saved. 

Because the bin number of the hash table combined with circular buffer must divide the 
hash table size and the mod operation is much simpler if the table size is a number of 
power of 2, the bin number and the table size are both chosen to a number of power of 2.  

In the implementation, the size of the table for unicast is chosen to 64, the size of table 
for multicast is chosen to 32 and the size of table for circular frame is chosen to 64. The 
max_bin number is chosen to 4 for all tables.  

Simulation is performed again to verify the performance of the modified algorithm. The 
result of multicast frame rejection ratio is shown in Figure 4.36, the result of unicast frame 
rejection ratio is shown in Figure 4.37..  
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Figure 4.36 Comparison of the rejection ratio of the multicast frames between the 

chosen algorithm and the other proposed algorithms 
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Figure 4.37 Comparison of the rejection ratio of unicast frame between the chosen 

algorithm and the other proposed algorithms 

 

It is shown that both the rejection ratio of the multi- and unicast frame of the chosen 
algorithm have reached 100% in the node number range of 0 to 64. 
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5 FPGA Implementation 
In this chapter, the HSR protocol introduced in Chapter 2 together with the chosen 
algorithm for rejecting the duplicated and circular frames in Chapter 4 is implemented in 
FPGA. The hardware platform, the structure of the design and the pin designation are 
introduced. The functionality of each component is shortly described. The sending flow, 
receiving flow and forwarding flow are illustrated. Several important design issues are 
explained. The design is synthesized in the Quartus design environment. After synthesis, 
the post-synthesis simulation is performed in ModelSim to evaluate all the functionalities.  

5.1 The Hardware Platform and Interface 
A multi-channel Ethernet interface is being developed at ABB, which can implement the 
HSR protocol. One configuration of this interface is shown in Figure 5.1. 

 
Figure 5.1 One possible configuration of the Ethernet interface on [21] 

The CPU used here is the MPC8247 CPU from Freescale Semiconductor. It has two MII 
interfaces. The FPGA is configured to have 3 MII interfaces, one is connected to MII in 
the CPU and the other two are connected to two PHYs. With such a configuration, the 
switch element implemented in the FPGA can receive a frame from the CPU, duplicate it 
and send the two frames through the two MII interfaces to two PHYs which are 
connected to the ring. The switching of the frame received from Ethernet1 or Ethernet2 
are performed by the switch element in the FPGA. Only a received frame dedicated to 
the receiving node is passed to the CPU.  

5.2 Design Process and Methodology 
Figure 5.2 shows the FPGA design process and methodology. The entry of this process 
is a VHDL file which describes the functionality of the circuit.  

The Register Transfer Level (RTL) functional simulation verifies only the functionality, the 
timing information of the real components on the device is not included.  

The Synthesis maps the high level functional description of the VHDL file to the gate level 
structure which can be realized on the Device. The Synthesis tool can generate a netlist 
of the real components on the device and also the timing information of these 
components.  After synthesis, the Post-synthesis simulation is performed. The Post-
synthesis simulation simulates not only the functionality of the design but also its timing 
behavior. 

 In “place and route”, the layout is performed by the device layout tools. This process 
generates a netlist and the timing delay file in Standard Delay Format (SDF). This file 
contains not only the timing information of the components but also the timing information 
of the layout.  
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The simulation after “Place and Route” is thus closest to the actual hardware[22]. In this 
thesis the process has been gone through till the post-synthesis simulation, the 
simulation after “place and route” and the hardware implementation is not performed due 
to the time constraints of the thesis. 

Design Entry

RTL Functional Simulation

Synthesis

Output
Net‐list 
File

Post‐Synthesis
Simulation

Output
Net‐list 
File

Place and Route

Time 
Delay 
File

Gate Level Simulation

Gate Level 
Simulation 
Liberary
File

Post 
Synthesis 
Simulation 
Liberary
File

Functional 
Simulation 
Library File

Test bench

 
Figure 5.2 The FPGA design process and methodology[23] 

5.3 Functional Design 
In this section, the functionality and the design considerations of the each component will 
be explained in detail. The basic technique used in the design is the Finite State Machine 
(FSM). Almost all the control blocks are implemented with FSM.  

5.3.1 An Overview of the Switch Element Structure  

Block Diagram of the Switch Element 

Figure 5.3 shows the block diagram of the switch element. The three pairs of receiving 
and sending ports (RX_HST, TX_HST, RX_A, TX_A, RX_B, TX_B) are all MII interface. 
The Frame received from the host (CPU) is pushed into the sending FIFO waiting to be 
sent. Frames received from the A line or B line is pushed into the Receiving FIFO by the 
receiving main routine. The decision of discarding duplicate frames and the switch 
decision (forward, accept or discard) is made by the receiving processing unit after 
searching the hash tables. Frames to be forwarded are pushed into the forwarding FIFO, 
frames to be accepted are pushed into the accepting FIFO. The forwarding and sending 
are coordinated by the sending coordinator, the sending of the accepted frames to the 
host is coordinated between the two accepting FIFO by the receiving coordinator. 
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Figure 5.3 The block diagram of the switch element 
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Pin Definition of the Switch Element 

 

tx_clk_hst
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Figure 5.4 The pin definition of the switch 
element 

 

 

 

 

 

The Pin Definition of the Switch Element 

Interface to Host 

Pin Name  Description 

tx_clk_hst  TX clock provided by host 

tx_data_hst[3:0]  Transmit data to switch element 

tx_dv_hst  TX data valid 

tx_sreset_hst  TX reset provided by host 

tx_enable_hst  TX enable provided by host 

tx_er_hst  TX error 

rx_clk_hst  RX clock provided by host 

rx_sreset_hst  RX reset provided by host 

rx_enable_hst  RX enable provided by host 

rx_data_hst[3:0]  Receive data from switch element 

rx_dv_hst  RX data valid 

rx_er_hst  RX Error 

rx_crs_hst  Carrier sense 

rx_col_hst  Collision 

Interface to Port A 

tx_clk_a  TX clock provided by host 

tx_data_a[3:0]  Transmit data to PHY at line A 

tx_dv_a  TX data valid 

tx_sreset_a  TX reset provided by host 

tx_enable_a  TX enable provided by host 

tx_er_a  TX error 

rx_clk_a  RX clock provided by PHY at line A 

rx_sreset_a  RX reset provided by host 

rx_enable_a  RX enable provided by host 

rx_data_a[3:0]  Receive data from PHY at line A 

rx_dv_a  RX data valid 

rx_er_a  RX Error 

rx_crs_a  Carrier sense 

rx_col_a  Collision 

Interface to Port B 

tx_clk_b  TX clock provided by host 

tx_data_b[3:0]  Transmit data to PHY at line B 

tx_dv_b  TX data valid 

tx_sreset_b  TX reset provided by host 

tx_enable_b  TX enable provided by host 

tx_er_b  TX error 

rx_clk_b  RX clock provided by PHY at line B 

rx_sreset_b  RX reset provided by host 

rx_enable_b  RX enable provided by host 

rx_data_b[3:0]  Receive data from PHY at line B 

rx_dv_b  RX data valid 

rx_er_b  RX Error 

rx_crs_b  Carrier sense 

rx_col_b  Collision 

Table 5.1 The pin description of the switch element 
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Figure 5.4 shows the pin definition of the switch element and Table 5.1 shows the pin 
description. The switch element designed in this thesis works only in full duplex mode, 
therefore the both the carrier sense pin and the collision pin from PHY are just connected 
to the switch element but not used inside the switch element. The rx_er_hst, rx_crs_hst 
and rx_col_hst signals are connected to the GND inside the switch element, which 
means there is no connection error, collision on the channel between the host and the 
switch element. The Management Data Input/Output (MDIO) interface is also not 
implemented in this thesis. 

5.3.2 The Receiving Main Routine 

The main tasks of the receiving main routine are pushing the received frame into FIFO, 
pass the received frame to the next unit through the local link interface, performing CRC 
check on the received frame, dropping the frame if the frame is found in the table for 
rejecting duplicated and circular frames, appending the garbling sequence when the 
received frame is a bad frame. The block diagram of the receiving main routine is shown 
in Figure 5.5. The functionality of each block is introduced shortly below. 

 

 
Figure 5.5 The block diagram of the receiving main routine 
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MII Processing 

The MII processing detects the rising edge of the rx_dv signal, informs the receive control 
block the arrival of the frame. It also transforms the 4-bits wide MII data format to 8-bits 
wide data format, this is used by the DPRAM block, the receive processing unit and the 
CRC check block. Besides, it sends the rx_er signal to the error assertion. 

Frame Counter 

The frame counter block counts the number of bytes of the received frame. Besides, the 
frame counter also tells the CRC check block when to begin the CRC check (the CRC 
check begins after the preamble and the frame start delimiter. 

Error Assertion 

The error assertion block asserts an error if either the received frame count number is 
smaller than 64 or greater than 1536, or the CRC check is not passed or the rx_er is set. 
If error is asserted, the receiving process will be stopped and the frame is dropped. The 
bad frame handling is introduced more in detail in the Section 2.3.5. 

Overflow Functionality and FIFO Status 

The overflow functionality tells if the FIFO is already full. The FIFO status tells how many 
percent of the FIFO has been used.  

Write and Read Domain Signal Communication 

The write and read domain signal communication block is responsible to synchronize the 
signal in one clock domain with another clock domain. For example, if bad frame is 
asserted in the write clock domain, the bad frame signal should be sensed by the read 
clock domain so that the local link read control can interrupt the reading process and 
append the garbling sequence. The transferring of signals from one clock to another 
clock domain will be explained in more detail in section synchronization between clock 
domains. 

Frame in FIFO Count 

The frame in FIFO count block counts the number of frames in the FIFO. It can inform the 
local link read control to begin the read process. 

Read Address Control and Write Address Control 

The read address control and the write address control manage the read address and the 
write address of the DPRAM. They store also the read and write address of last time a 
good frame received as the start address of this time. If a bad frame is received, the write 
and read address are reseted to the start address of this time. 

Garbling Sequence Appender 

The garbling sequence appender appends the garbling sequence at the end of a bad 
frame.  

Local Link Interface 

The frame stored in the FIFO is passed to the RX_FIFO or Forwarding FIFO through the 
local link interface. 

Forward Coordination 

The forward coordination asserts the signal take_sending_port and sends it to the send 
coordinator to inform that a frame is being received. The frame in the TX_FIFO on the 
other line should wait if the frame being received is going to be forwarded to the sending 
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port of the other line. The take_sending_port signal can be deasserted by the Receiving 
Processing if this frame is a unicast frame dedicated to this node or the entry of this 
frame is found in the hash table for rejection duplicates or the frame should be discarded. 

Interface to Receiving Processing 

The interface to receiving processing informs the Receiving Processing unit when to 
begin loading the source address, destination address, and sequence number. It also 
provides the received data after the format transformation to the Receiving Processing 
unit. One the other hand, it passes the control signal from the Receiving Processing. For 
example, if the entry of a frame is found in the table for rejecting the duplicated frames, 
the Receiving Processing unit will send a signal back to the Receiving Main Routine, so 
that the receiving process is stopped and the frame is dropped. 

Receive Control and Local Link Read Control 

The receive control and the local link read control are two main control units which 
coordinate between different blocks. 

In this unit, the receive control, lock link read control, CRC check, Overflow functionality 
are implemented with FSM. 

5.3.3 The Receiving Processing 

The tasks of the receiving processing are loading the source address, the destination 
address, and sequence number of the received frame, making the switch decision 
(forwarding, accepting and discarding), providing the entry for the hash tables, 
randomizing the key for the hash function. Figure 5.6 shows the block diagram of the 
Receiving Processing Unit. The functionality of each block is introduced shortly below. 

Interface to the Write Domain of Receiving Main Routine 

The source address, the destination address and the sequence number and the load 
enable signal are passed from the receiving main routine through this interface. The drop 
frame command is sent to the receiving main routine through this interface. 

Hash Key Randomization Functionality 

The hash key randomization function Hashpjw() is implemented here. The calculation of 
the key is done byte by byte every clock. The calculation of the hash key for the circular 
frame begins with destination address and ends with the sequence number. The 
calculation of the hash key for the unicast and multicast frame begins with the source 
address and ends with sequence number. After the calculation is done, the randomized 
keys are registered to the “Interface to Hash Table for Multicast, Unicast, Circular, Bad 
Frame”. 

Interface to Hash Table for Multicast, Unicast, Circular, Bad Frame 

The entry of the frame in the hash table for circular frame which consists of destination 
address, source address and sequence number, the entry  of the frame in the hash table 
for unicast and multicast which consists of the source address and sequence number, 
are registered to this interface. The randomized hash keys are also registered to this 
Interface. The signal to start searching entry in the hash table is passed to the hash 
tables through this interface. The entry_found and entry_not_found signals are sent back 
by the hash table for unicast, multicast and circular frames respectively. If at least one 
entry is found in the three tables, the receiving process is stopped, and frame is dropped. 
Only when entry is not found in all the three tables, the receiving process continues. 
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Figure 5.6 The block diagram of the receiving processing 

 

 

DA, SA, SEQ Compare Window 

This block can handle the situation where two same frames are received at two lines at 
the same time. The way how it works will be explained in more detail in section DA, SA, 
SEQ compare window. 
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Switch Decision  

The switch decision block makes the switch decision by comparing the received 
destination address and source address.  

a) Discard when the source address of the received frame = MAC address 

b) Forward when the destination address of the received frame != MAC address 

&& the source address of the received frame != MAC address 

c) Accept when the destination address of the received frame = MAC address  

&& the source address of the received frame != MAC address 

d) Forward and Accept when the destination address of the received frame = 
multicast address && the source address of the received frame != MAC address 

e) No Frame if there is no frame, the switch decision is NULL, which does not allow 
any operation on the local link interface. 

If the unicast frame is dedicated to this node, the receiving processing will send a signal 
to the forward coordination block in the receiving main routine to free the occupation of 
the sending port on the other line.   

Switch Decision Store Array 

If there are more than one frame in the FIFO of the receiving main routine, the 
corresponding switch decision should also be stored in the switch decision array, so that 
when the frame is popped from the FIFO, its corresponding switch decision is also 
popped. In the correct designed system there will be no more than one frame in the FIFO, 
this function is preserved for possible future use. 

Path Decision in Array Count  

This block count the number of switch decisions stored in the array. If the number is not 
equal to 0, the switch decision output processing should be started. 

Read Operation on the Local Link Interface Finished 

This signal is used to synchronize the local link read control in the receiving main routine 
and the switch decision output processing. If the read operation on local link interface is 
finished, this signal informs the switch decision output processing to register the new 
switch decision. 

Switch Decision Output 

The switch decision in the switch decision array is registered to the switch decision output. 
The decision is used to switch the MUX connected to the local link interface of the 
receiving main routine. 

The block write index control, read index control and the write read domain signal 
communication is the same as in the receiving main routine and therefore not repeated 
here. 

5.3.4 Hash Table 

The block diagram of the hash table is shown in Figure 5.7. The entry, the randomized 
hash key and the signal to start searching are passed from the interface to receiving 
processing. The positions of the write bin and read bin in each bucket are stored in the 
bin store array. The content read from the DPRAM is compared with the entry input on 
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the interface to receiving processing. If they are equal, the entry_found signal is asserted 
and sent back to the interface to receiving process. If the max_bin is reach and the entry 
is still not been found, the entry_not_found signal is asserted and sent back to the 
interface to receiving g process. 

The write process is very simple. The entry to be written is presented on the interface to 
receiving processing of this line. If the write enable is set to “high”, the entry is written into 
RAM on the next rising edge of the clock at the position indicated by the write bin. 

 
Figure 5.7 The block diagram of the hash table 

5.3.5 Forwarding FIFO 

The forwarding FIFO receives the frame passed by the receiving main routine through 
the local link interface, and send it without any modification through the MII interface to 
the PHY. 

MII Processing  

The MII processing block here transfers the 8-bits width data to 4 bits width data.  

Forward Coordination 

The Forward Coordination block sends signal to inform the sending coordinator that the 
forwarding process wants to take control of the sending port. 

The functions of other blocks are the same as in the receiving main routine and will not 
be repeated here. Figure 5.8 shows the block diagram of the forwarding FIFO. 
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Figure 5.8 The block diagram of the forwarding FIFO 

 

5.3.6 RX_FIFO 

The RX_FIFO receives the frame sent by the receiving main routine and send it towards 
the MII interface to the host. The block diagram of the RX_FIFO is same as the It has a 
unit called garbling sequence detector which can detect the corrupt sequence. If a corrupt 
sequence has been detected, the frame is dropped. Figure 5.9 shows the block diagram 
of the forwarding FIFO. 

 



81  

Local Link Interface

Local Link Read 
Control

DPRAM

Write
Control

Read
Control

Garbling
Sequence 
Detector

MII Transmit 
Control

Write Read Domain 
Signal 

Communication

Frame 
In FIFO 
Count

Overflow 
Check
& FIFO 
Status

MII
Process

 
Figure 5.9 The block diagram of the RX_FIFO 

 

5.3.7 TX_FIFO 

The TX_FIFO receives frames from the MII Interface to the host, performs the CRC 
check and sends the frame over the MII interface to the PHY. Figure 5.10 shows the 
block diagram of the TX_FIFO.  
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Figure 5.10 The block diagram of the TX_FIFO 

 

5.3.8 Send Coordinator 

The send coordinator receives the take_port_control acquirement from the forwarding 
FIFO and the receiving main routine, and coordinates the sending FIFO and forwarding 
FIFO according the “forwarding always has priority principle”. Its state transfer is shown 
in Figure 5.11. 

 
Figure 5.11 The state transfer of the sending coordinator 
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5.3.9 Receive Coordinator 

Figure 5.12 shows the state transfer of the receiving coordinator. The receive coordinator 
coordinates the receiving of the frames between the RX_FIFO on line A and line B. The 
priority of frame on both lines is equal, except that at the start of the system the frame on 
A has higher priority if two frames are received at the same time 
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Figure 5.12 The state transfer of the receiving coordinator 

 

5.3.10 Receiving Flow 

Figure 5.13 shows the receiving flow of a frame. When a frame arrives, the receiving 
main routine pushes the frame into the FIFO, and performs CRC check and overflow 
check. The receive processing unit make the switch decision and start searching the 
entry of the frame in the hash table for duplicates frames (unicast and multicast) and 
circular frames. The hash tables return the result of the searching. The frame is dropped 
when it does not pass the CRC check, or overflow happens, or its entry is found in either 
of the hash tables. 

According to the switch decision, the frame is popped from the FIFO in the receiving main 
routine and pushed into the forwarding FIFO or RX_FIFO or both if the frame is a 
multicast frame. 

The frame in the RX_FIFO is then sent through the MII interface to the host, the frame in 
the forwarding FIFO is sent through the MII interface to the PHY. 

5.3.11 Sending Flow 

Figure 5.14 shows the sending flow of a frame. The sending is only allowed if there no 
frame in the forwarding FIFO or the frame being received by the receiving main routine is 
a unicast frame dedicated this node. 
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Figure 5.13 The receiving flow of a frame 

 

 
Figure 5.14 The sending flow of a frame 
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5.4 Functional Design Considerations 
In this section, several important design considerations are introduced. The way how they 
are implemented is explained. 

5.4.1 Cut-through Implementation 

When a frame arrives at the receiving port, its destination address, source address and 
the sequence number are loaded to the receiving processing component. The receiving 
processing component searches the entry of this frame. The switch decision is only 
registered out when the entry of this frame is not found in the hash tables. After the 
switch decision is registered out, the receiving processing will assert the switch_ready 
signal to the local link read process block in the receiving main routine. The local link 
read process begins to send the frame to the forwarding FIFO or RX_FIFO after it sees 
that the switch_ready signal is set “high”. After the sending is finished, the local link read 
process send a signal to tell the receiving processing that the sending is finished. After 
the receiving processing sees this signal, the switch_ready signal is deasserted. Figure 
5.15 show the time flow of this process. 

DA SA SEQ

Loading DA, SA, SEQ
Searching 
Entry

Registering 
out switch 
decision

DA SA SEQ

reading 
finished

switch_ready = ‘1’ switch _ready = ‘0’

local link 
read 

process 

Receive 
processing

t

t

 
Figure 5.15 An illustration of cut-through implementation 

In the forwarding FIFO, after the first byte of the frame passed by the receiving main 
routine is stored in the RAM, the frame_in_fifo asserted and transmitted to the MII 
transmit control. The MII transmit control begins transmitting the frame through the MII 
interface the PHY. After the transmitting is finished, the frame_in_fifo signal is deasserted. 

5.4.2 DA, SA, SEQ Comparison Window 

In order to find out whether the frame has been received once or forwarded once, the 
entry of the frame is searched in the hash table. It only works when one frame of a pair 
comes after the other, so that the frame coming first will be registered in the table. But if 
two frames come at the same time, there is still no entry in the table, so both frames are 
accepted. To overcome this problem, a window should be built. Figure 5.16 illustrates the 
way how it works. 

If the first frame of a pair arrives at Line A, the DA,SA,SEQ window is set up after the 
destination address, source address and sequence number is received. This window 
lasts until the destination address, the source address and the sequence number of the 
next frame are received. If the second frame of a pair comes later at Line B, its 
DA,SA,SEQ window is also build after its destination address, source address and 
sequence number are received. At this time the window on Line A finds that the window 
on Line B has the same value as it, because Line A is leading, it will keep the frame. Line 
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B also finds that the window on line A has the same value as it, but it is lagging, so it will 
drop the frame. If at the time when the window of Line B is built Line A is searching the 
entry in the hash table, the search is stopped, because there is no need to search 
anymore. The switch decision is then registered out. 

If the frame arrives at exactly the same time, the frame on Line A is kept, the frame on 
Line B is dropped. 
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Figure 5.16 The DA, SA, SEQ comparison window 

5.5 Design Considerations about Timing 
In this chapter, some design considerations about timing are discussed. The solutions to 
overcome some timing problems are presented. 

5.5.1 Clock Cooperation between Lock Link Interface and MII Interfaces 

The receiving main routine has two clocks operating at different frequencies. The data 
width of MII interface is 4-bits. The received data is transferred to 8-bits width and stored 
in the DPRAM. The data on the local link interface which is read from the DPRAM is also 
8-bits width. Therefore, the clock frequency of the local link interface rx_ll_clk must be 
half of the MII clock rx_clk. This illustrated in Figure 5.17. 

4‐bits 
width

8‐bits 
width

MII

Local Link 
Interface

rx_clk

rx_ll_clk

clkrxclkllrx ff ___ 2/1=
 

Figure 5.17 The clock relation between the MII and local link interfaces 
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5.5.2 The Critical Clock Path 

The propagation time of a signal along the clock path plays a very important role in the 
clock synchronized circuits. There are several basic concepts to be introduced here 
first[24]. 

 Tsu: setup time at pad, is defined as the length of time for which data that feeds a 
register via its data or enable input(s) must be present at an input pin before the 
clock signal that clocks the register is asserted at the clock pin.  

 Tco: clock to output delay, is defined as the maximum time required obtaining a 
valid output at an output pin that is fed by a register after a clock signal transition 
on an input pin that clocks the register. 

 Th: hold time, is defined as the minimum time required for the input signal stays 
stable after clock signal transition to obtain a valid output. 

 Clock skew: The arriving time difference of the clock signal at clock input of 
different registers due to different interconnect paths and clock buffers 

The above concepts are illustrated in Figure 5.18. 

If a clock transition happens at register1, the output signal will arrives at the input of 
register 2 after Tco + Delay. It must be ensured the signal at the input of register2 is 
stable to generate a valid output at register2. This is equal to satisfy the following 
equation: 

clkskewdelayco TTsuTT −++≥clkT     (5.1) 

clk

D QTsu

Tco

Combinatio
nal Logic

D Q

Clock 
slew

Delay

Tsu

Tco

1 2

 
Figure 5.18 The signal propagation delay along the clock path 

This equation thus also defines the maximum frequency allowed in the circuit. 

clkskewdelayco TTsuTT −++
=

1fmax     (5.2) 

Since it is difficult to calculate the Tco, Tdelay, Tsu and Tclkskew of all the component 
and paths by hand, this task is done by the synthesis tools. In this design, the slowest 
clock path which is called the critical clock path is twice as the MII clock frequency. This 
can be shown in the synthesis report below. 
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Figure 5.19 The timing analysis in Quartus synthesis tool 

For the tx_clk_b clock, the Tco = 0.041ns, Tdelay = 8.264ns, Tsu = 0.286ns,  

Tclkskew = 0.07 ns. Therefore the highest operating frequency of this path is 

MHz36.117
07.0286.0264.8041.0

1fmax =
−++

=  

The critical clock path is the path with the lowest fmax, in this circuit, the critical clock 
path is the path driven by the MII receive clock at port b, which has a fmax of 57.63 MHz 
(Figure 5.19, Figure 5.20).Since this frequency is twice as the MII clock frequency 
working at 100Mbits/s, which is 25MHz, the designed circuits operates without problem. 

 
Figure 5.20 The critical clock path (in red box) 

 

5.5.3 Synchronization between Clock Domains 

In digital designs, many variations of clocks are used. When clocks are not synchronous, 
signals that are used to communicate between two asynchronous clock domains require 
synchronization [25]. The synchronizations between clock domains are very important for 
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the finite state machine design (FSM). If the signal from other clock domain is used by 
the state machine in this clock domain without synchronization, undefined states may 
appear.  

Figure 5.21 shows a state machine operation. The asynchronous signal is from another 
clock domain; together with the signal “current state” the “next state” signal is determined. 
At the next rising edge of the clock signal, the “next state” signal is registered to the 
“current state” signal.  

Current 
State

Combinational 
Logic

Next state

Asynchronous 
Signal 

clk  
Figure 5.21 The state machine operation with asynchronous signal 

Because the signal is asynchronous to the clock, the situation may happen that it 
changes just shortly before the rising edge of the clock. Because the combinational circuit 
introduces a small delay, the decoded next state is not stable when the rising edge of the 
clock comes. At this time the next state can be an arbitrary code and an undefined state 
can be thus registered to the “current state” signal. This case is shown in Figure 5.22. 

undefined statedefined state

undefined statedefined state

clk

Asynchronous 
Signal 

Next state

Current state

 
Figure 5.22 an undefined state is registered 

To avoid this situation, the asynchronous signal must be first registered in this clock 
domain, so that decoded “next state” signal is always stable when the rising edge of the 
clock comes. The circuit is shown in Figure 5.22. 
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Figure 5.23 Sample the asynchronous signal 

The waveform of this circuit is shown in Figure 5.24. The asynchronous signal is 
changing when the rising edge of the clock comes at time t1. The signal “Q” is registered 
to an unknown level which could be either ‘0’ or ‘1’. Because there is a delay of the 
propagation from signal “Q” to signal “Next State”, the “Next State” has not had time to 
change when the rising edge of clock comes at t1. The “Current State” stays thus 
unchanged after the rising edge of the clock. After a clock period at time t2, the “Next 
State” signal is already stable, but the value can be unchanged if the Q sampled at last 
clock is unchanged. At time t2, the asynchronous signal is sampled correctly to the signal 
“Q”, the decoded signal “Next State” changes after the rising edge of the clock. The 
“Current State” signal is registered to the value of the “Next State” signal of last clock 
period, which may be unchanged. At time t3, the correctly decoded “Next State” signal is 
registered to the “Current State” signal.  

defined state

defined state

clk

Asynchronous 
Signal 

Next state

Current state

Q

State defined but may stay unchanged

Can be ‘0’ or ‘1’

t1 t2 t3
 

Figure 5.24 the state is always defined after registering the asynchronous signal 

This process shows although the signal “Q” may not be sampled correctly when the 
asynchronous signal is changing at the rising edge of the clock, state is never undefined, 
but the state transfer is delayed for a clock period. 
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5.6 Synthesis and Evaluation of the Implemented Switch Element 
In this chapter, the implemented switch element is synthesized in the QuartusII 
development environment. A short report of the synthesis is presented. After the 
Synthesis, evaluation is performed. The functionalities defined in the HSR protocol and 
the duplicated and circular frame rejection are tested. 

5.6.1 Synthesis 

After the functional design is free of error, the design is synthesized in Quartus design 
environment. In synthesis, the logic functionalities are mapped to the logic component of 
the goal device. The time requirement is examined. The resource on the device is 
allocated. After the synthesis, a netlist file (the .vho file) is generated which describes the 
interconnection of the components on the devices. A file (the .sdo file) contains the timing 
information is also generated, which can be used later in the Post-synthesis simulation. 

The resource usage summery is shown in Table Table 5.2 . The percentage of the logic 
elements usage is 26%. The memory block usage is 76%. The timing analysis summary 
is shown in Table 5.3. The critical clock path is 59.3 MHz which is twice more than MII 
clock frequency in the 100Mbit/s Ethernet mode. 

Total logic elements  4,794 / 18,752 ( 26 % ) 

Combinational with no register  2018 

register only  400 

Combinational with a register  2376 

Logic element usage by number of LUT inputs 

4 input functions  2276 

3 input functions  772 

2 input functions  1346 

register only  400 

Logic elements by mode 

normal mode  3768 

arithmetic mode  626 

Total registers  2,776 / 19,160 ( 14 % ) 

Dedicated logic registers  2,776 / 18,752 ( 15 % ) 

I/O registers  0 / 408 ( 0 % ) 

Total LABs:  partially or completely used  401 / 1,172 ( 34 % ) 

I/O pins  58 / 152 ( 38 % ) 

Clock pins  7 / 8 ( 88 % ) 

Global signals   8 

M4Ks  52 / 52 ( 100 % ) 

Total memory bits  165,888 / 239,616 ( 76 % ) 

Total RAM block bits  239,616 / 239,616 ( 100 % ) 

Embedded Multiplier 9‐bit elements  0 / 52 ( 0 % ) 

PLLs  0 / 4 ( 0 % ) 

Global clocks  8 / 16 ( 50 % ) 

Average interconnect usage  17% 

Peak interconnect usage  32% 

Maximum fan‐out node  rx_clk_a~clkctrl 

Maximum fan‐out  776 

Highest non‐global fan‐out signal  rx_sreset_b 

Highest non‐global fan‐out  438 

Total fan‐out  24387 

Average fan‐out  3.25 

Table 5.2 The resouce usage summery of the design 
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Type  Slack  Required time  Actual Time 

Worst‐case tsu  N/A  None  10.375 ns 

Worst‐case tco  N/A  None  11.923 ns 

Worst‐case th  N/A  None  ‐0.043 ns 

Clock Setup: 'rx_clk_a'  N/A  None  59.53 MHz ( period = 16.797 ns ) 

Clock Setup: 'rx_clk_b'  N/A  None  60.95 MHz ( period = 16.407 ns ) 

Clock Setup: 'rx_clk_ll_b'  N/A  None  95.57 MHz ( period = 10.464 ns ) 

Clock Setup: 'rx_clk_ll_a'  N/A  None  102.52 MHz ( period = 9.754 ns ) 

Clock Setup: 'tx_clk_b'  N/A  None  127.70 MHz ( period = 7.831 ns ) 

Clock Setup: 'rx_clk_hst'  N/A  None  129.70 MHz ( period = 7.710 ns ) 

Clock Setup: 'tx_clk_a'  N/A  None  131.54 MHz ( period = 7.602 ns ) 

Clock Setup: 'tx_clk_hst'  N/A  None  133.17 MHz ( period = 7.509 ns ) 

Total number of failed paths  0 

Table 5.3 The timing analysis summary 

5.7 Evaluation 

5.7.1 Simulation Environment 

The evaluation of the synthesized switch element is performed by simulation in Modelsim. 
For the post-synthesis simulation, the following files are needed. 

 The switch.vho file generated by the synthesis tool 
 The switch.sdo file which contains the timing information about the devices on 

the FPGA 
 The cycloneii library which contains the components of CycloneII series FPGA 
 The switch_TB.vhd file which is the testbench 

 

post‐synthesis 
Simulation

Switch.vho

Switch.sdo
cycloneii
library

switch_TB.vhd

 
 

Figure 5.25 the pos-synthesis simulation environment 

5.7.2 Tested Functionalities   

To verify if the designed switch element can realize the communication rules defined in 
HSR, the following tests should be performed. 

General Communication Rules 
1. Sending frames to the switch element, the frames should be duplicated and sent 

over both sending ports. 
2. Receiving unicast frames which is not dedicated to this node, the frames should 

be forwarded over the sending port of the other line with cut-through mode. 
3. Receiving unicast frames which is dedicated to this node, the frame should be 

accepted and passed to the receiving port to the host. 
4. Receiving multicast frames, the frame should be forwarded to the sending port of 

the other line and passed to the receiving port to the host. 
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Rejection of Duplicated Frames 

Unicast frames dedicated to this node and multicast frames received on one line should 
be rejected when received again on the other line. 

Rejection of Circular Frames 

Receiving unicast frames, multicast frames on one line, the unicast can be dedicated to 
this node or not. Receiving the same frames again on this line, all frames should be 
rejected 

Bad Frame Handling 

If frame is asserted as bad frame before the cut-though operation is performed, it is 
dropped. Otherwise a garbling sequence is appended at the end of the frame and the 
source address of this frame will be registered in the hash table for bad frames. If a frame 
the same source address is received again on the same line, no cut-through is performed, 
the frame is sent only after it is completely received and verified to be a good frame. If the 
frame is a good frame, the entry in the hash table for bad frames is cleared. Next time a 
frame with the same source address is received, the frame is sent in cut-through mode 
again. 

Send Coordination 

A frame in the sending FIFO can only be sent if no frame is receiving on the other line or 
the frame being received on the other line is a unicast frame dedicated to this node 
(which means no forwarding for this frame). 

5.7.3 Simulation Results 

In this section the simulation results of the switch element are presented. The names of 
the pins on the waveform are already introduced in Table 5.1. 

General Communication Rules 
1. Sending frame to the switch element:  

Frames are sent sequentially to the sending port of the switch element. The 
frames are duplicated and sent over both lines. The simulation waveforms are 
shown in Figure 5.26. 
 

2. Receiving unicast frames which is not dedicated to this node:  
In this test, eight different unicast frames which are not dedicated to are received 
from line A and line B. Each line receives 4 frames. The receiving on both lines is 
concurrent. All the eight frames are forwarded to the sending port of the other 
line. The simulation waveforms are shown in Figure 5.27. The delay between 
receiving a frame and forwarding it is 2720 ns. 
 

3. Receiving unicast frames which is dedicated to this node: 
In this test, 8 different unicast frames dedicated to this node are received on line 
A and line B concurrently. Each line receives 4 frames; all the 8 frames are 
passed to the receiving port to the host. The simulation waveforms are shown in 
Figure 5.28. 
 

4. Receiving multicast frames: 
In this test, 8 multicast frames with different source address are received on line 
A and line B concurrently. Each line receives 4 frames; all the 8 frames should be 
passed to the receiving port to the host and forwarded to the other line. The 
waveforms are shown in Figure 5.29. 

 Rejection of Duplicated Frames 



94  

1. Receiving on both lines is not concurrent 
In this test, unicast frames dedicated to this node and multicast frames are 
received on one line. The order of receiving is multicast, unicast, multicast, 
unicast. The two unicast frames should be accepted and passed to the receiving 
port to the host. The two mulicast frames should be accepted, passed to the 
receiving port to the host and forwarded to the sending port of the other line. 
After the receiving of these 4 frames is finished, begin receiving the same 4 
frames from the other line, all the frames should be rejected and no frame is sent 
on the receiving port to the host and forwarded to the sending port of the other 
line. The simulation waveforms are shown in  

2. Receiving on both lines is concurrent, this test the DA,SA,SEQ window 
functionality. The procedure is same as above, except that the receiving on both 
lines proceeds at the same time.  

The simulation waveforms are shown in Figure 5.30 and Figure 5.31. 

Rejection of Circular Frames 

In this test, unicast frames dedicated to this node and multicast frames are received on 
one line. The order of receiving is multicast, unicast, multicast, unicast. The two unicast 
frames are accepted and passed to the receiving port to the host. The two mulicast 
frames are accepted, passed to the receiving port to the host and forwarded to the 
sending port of the other line. Then the same 4 frames are received again at the same 
line, all the frames should be rejected. The simulation waveforms are shown in Figure 
5.32. 

Bad Frame Handling 
1. Two multicast frames with the same source address but different sequence 

number are received on line A. 
The first frame received on line A is asserted to be a bad frame at the last nibble 
of the source address. Because the cut-through is not performed when the bad 
frame is asserted there, the frame will be dropped, nothing is forwarded to the 
sending port of line B, nothing is sent to the receiving port to the host and the 
source address is not registered in the table for bad frames. Then the second 
frame with the same source address is received again on line A, without bad 
frame assertion. The frame should be forwarded to the sending port of line B and 
received at the receiving port to the host with cut-through operation. 

2. Two multicast frames and a unicast frame not dedicated to the node received on 
line B, all the three frames have the same source address, and the two multicast 
frames do not have the same sequence number. 
The first multicast frame received on line B is asserted to be a bad frame at the 
middle of the frame (here is the 40 th byte of the frame). The cut-through 
operation is already performed if the bad frame is asserted at this position. 
Therefore the frame is truncated and appended a garbling sequence and its 
source address is stored in the table for bad frames. The second multicast frame 
is forwarded to the sending port of line A and the receiving port to host. Recall 
that the RX_FIFO to host has the ability to detect the garbling sequence. The 
frame is dropped in RX_FIFO and nothing is passed to the host. Then the 
second multicast frame with the same source address is received again on line B, 
without bad frame assertion. The frame should be completely received and 
forwarded to the sending port of line B and received at the receiving port to the 
host.  The entry in the hash table for bad frames should be cleared. Then the 
unicast frame with the same source address is received on line B. Because the 
entry in the hash table for bad frame is already cleaned, this frame should be 
forwarded with cut-through operation. 

The simulation waveform is shown in Figure 5.33. 
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Send Coordination 

 
1. Line A begins receiving a multicast just short before a frame is completely 

received from the host.  The frame in the sending FIFO on line B should wait until 
the received frame is completely sent on line B. 

2. Line B begins receiving a unicast frame dedicated to this node just short before a 
frame (the same frame as above) is completely received from the host. After the 
receiving main routine finds that this unicast frame is dedicated to this node 
(which means that no forwarding for this frame), the frame in the sending FIFO 
on line A is allowed to send the frame on line A 

The simulation waveform is shown in Figure 5.34 
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5.8 Conclusion of the FPGA Implementation 
 

In this chapter, the HSR protocol defined in Chapter 2 and the proposed algorithm for 
rejecting duplicated frames and circular frames are implemented in FPGA. Several 
design issues are discussed. The design is synthesized in Quartus and fulfills the timing 
requirement and has satisfied the resource constraints. The Post-synthesis simulations 
are performed for each communication rules in HSR protocol and the proposed 
algorithms. All the simulation results are successful. 
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6 Conclusions and Future Work 

6.1 Conclusions 
The High Availability Seamless Ring is a new industry automation communication 
network protocol standardized as IEC 62439. It applied the Parallel Redundancy Protocol 
(PRP) principle to provide in case of fault a bumpless switchover of the network, while 
maintaining a simple network topology and infrastructure. As a derivate of the PRP 
protocol, HSR needs to handle duplicate frames, and in addition must be capable to 
reject circular frames because of its ring topology. The drop window algorithm for 
rejecting duplicated frame applied in PRP cannot be transplanted to HSR because it is 
not designed for rejecting the circular frames. The challenge of this work was to find an 
algorithm which can handle both duplicate frames and circular frame. As recommended 
by IEC 62439, the rejection of the duplicated frames should be accomplished by 
hardware to offload the processor, which is indeed a necessity since HSR is used in 
applications such as substation which have a heavy traffic. This algorithm must be time-
efficient to allow cut-through operation of the switches and be implementable with low-
cost FPGAs. As an algorithm applied in hard real-time system, this algorithm must not 
disturb the deterministic delay times of the network.  

This master thesis proposed the algorithms based on lookup table are considered as a 
reasonable substitute of the drop window algorithm. Different algorithms based on the 
lookup table were discussed and three algorithms were chosen as candidates for the 
hardware implementation. The three algorithms are circular buffer, hash table combined 
with circular buffer, hash table with aging which is classified into three methods according 
to the probing sequence algorithm applied: linear probing, quadratic probing and double 
hashing.  

The evaluation of the proposed algorithms was based on three criteria: the rejection ratio 
of duplicated frames, the searching time efficiency and the hardware implementation 
complexity. Through the analysis of the operation principle of each algorithm, combined 
with the software simulation results, the following conclusions can be made for these 
three algorithms.  

• The circular buffer is proven to have the best performance of rejecting the 
duplicated frames, but it has to go through the entire table to make the decision if 
an entry is in or not in the table. The searching time is the longest among the 
proposed algorithms 

• The hash table with aging using quadratic probing, double hashing and the hash 
table combined with circular buffer, providing deterministic searching time. In the 
simulation they have the moderate performance among the proposed algorithms.  

• The performance of the hash table with aging using linear probing also has 
deterministic search time but its performance is the worst among the proposed 
algorithms. 

• The circular buffer has the lowest hardware implementation complexity among 
the proposed algorithms. The operation principle of the hash table with aging 
requires the highest hardware implementation complexity among the proposed 
algorithms. The hardware implementation complexity of the hash table combined 
with circular buffer is moderate. 

Through the software simulation, a phenomena is discovered that the performance of all 
three algorithms degrade dramatically when the number of the nodes in the network 
exceeds a certain value. This value is influenced by the length of the frame and the time 
interval a node in the ring generates a frame. The IEC 61850-9-2 standard fixed the 
length of the frame to 138 bytes and the time interval of generating a frame to 250us. 
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Under such condition, the simulation shows the performance of all algorithms begins to 
drop at the node number of 60. The dependency to the node number in the network is a 
limit of the proposed algorithms. 

After the simulation of the proposed algorithm and a discussion of the simulation results, 
the hash table combined with circular buffer was chosen as the algorithm to be 
implemented in FPGA. Before the implementation, two modifications were made to 
achieve higher rejection ratio of the duplicated frames and higher efficiency of memory 
usage. One is to separate the hash table for rejecting duplicated frames into a hash table 
for rejecting multicast frames and a hash table for rejecting the unicast frames. The other 
modification is reducing the entry in the two tables above to the source address and the 
sequence number. The collision between the unicast and multicast frames is therefore 
reduced and the memory usage can be configured differently for unicast and multicast 
frames, which is more flexible and efficient. At last the hash table for multicast frames of 
length of 32, max_bin number of 4, the hash table for unicast of length of 64, max_bin 
number of 4 and the hash table for circular frames of length of 64, max_bin number of 4 
are implemented in FPGA. This configuration is dedicated to handle the network which 
has nodes less than 64. 

The HSR protocol together with the hash table combined with circular buffer method was 
implemented in the Cyclone II, EP2C20 series FPGA. The maximum frequency of the 
critical clock path is more than twice of the MII frequency at the full speed of 100Mbits/s 
Ethernet. The resource consumption of the design is within the constraints of the device. 

Finally, the pos-synthesis simulation was performed after the design is synthesized in the 
Quartus II design environment. The simulation evaluates the functionalities of the design 
with timing delay of the components on the device. The design realized all the 
functionalities defined HSR protocol and the functionality of rejecting the duplicated and 
circular frames.  

6.2 Future Work 
Although the performance of the algorithm is forecast by the simulation, and the limitation 
of the algorithm was observed, there is still lack of theoretical analysis of the 
communication in the ring and its relation to the proposed algorithm. It is of interest to 
discover the mathematical mechanism behind and give a more precise model to help 
configure the algorithm and the ring scale.  

As the implementation of the design has done only down to the pos-synthesis simulation, 
the next step is to implement the design in the newly developed hardware platform. 
Software should be designed to simulate the behavior of the end node in the ring. The 
node can be connected together to a simple ring to test the implemented functionalities. 

Also, a suited test environment should be designed to monitor the operation and perform 
a conformance test.  

This Thesis also gives an inspiration to the design of the redundancy box (RedBox) which 
connects several singly attached nodes to HSR or couples the PRP network to HSR. The 
RedBox connected several singly attached node to HSR is shown in Figure 2.1. A 
RedBox should not only have a table of the received frames but also a table of all the 
nodes attached to it. To reject the duplicated frames, we can for example build tables for 
multicast and unicast frame at each line. The entry in the table for multicast still consists 
of source address and sequence number, but the entry in the table for unicast should 
consists of destination address, source address and sequence number because of the 
reason stated above. 
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Appendix A Abbreviations Used in the Thesis 
 

AT: Aging Tag 

DA: Destination Address 

DANP: Double Attached Node 

DPRAM: Dual Port RAM 

HSR: High Availability Seamless Ring 

IEC: International Electrotechnical Commission 

PRP: Parallel Redundancy Protocol 

RCT: Redundancy Check Tag 

RTL: Register Transfer Level  

SA: Source Address 

SAN: Singly Attached Node 

SEQ: Sequence Number 
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