
__

High Availability Seamless Ring Protocol

Implementation in FPGA

Xiaozhuo Jiang

Master Thesis

2009, February 13

Advisor ABB: Prof. Dr. Hubert Kirrmann

Co-Advisor ABB: Dr. Jean-Charles Tournier

Supervisor ETH: Prof. Dr. Lothar Thiele

Computer Engineering and Networks Laboratory, ETH Zurich

2

Abstract

The IEC committee SC65 WG15 “Highly Available Automation Networks” published the
IEC standard 62439 in 2008 to provide several redundancy methods to overcome the
lack of a commonly accepted redundancy solution in Industrial Ethernet. As one of these
methods, the Parallel Redundancy Protocol (PRP) IEC62439 Clause 6 relies on the
parallel operation of two local area networks, and provides completely seamless
switchover in case of failure of links or switches, thus fulfilling all the hard real-time
requirements of substation automation. The High Availability Seamless Ring (HSR) which
is proposed in IEC 62439-3 applies the PRP principle to build a simple seamless ring by
treating each direction as a separate network.

One main application of the HSR is the process bus in the substation automation network
as specified in the IEC 61850 standard. This application is characterized by heavy traffic,
real-time communication and requirement of bumpless switchover in case of fault.

One challenging issue in HSR is to reject the duplicated frames coming from the both
ports of a node and the frames circulating in the ring. The algorithm applied in PRP
cannot be wholly transplanted into HSR because of HSR’s ring topology. In this thesis
three algorithms are proposed to solve the duplicated and circular frame discarding. The
proposed algorithms are compared with the help of the software network model. One
algorithm is chosen. By designing a switch structure with the integration of the chosen
algorithm, the HSR protocol is implemented in FPGA.

3

CONTENTS
1 Introduction ... 7

1.1 Context ... 7

1.2 Motivation ... 8

1.3 Tasks .. 9

1.4 Contributions .. 9

1.5 Overview .. 10

2 The High Availability Seamless Ring .. 11

2.1 The Topology of HSR .. 11

2.2 The Network Management ... 12

2.3 The Communication Rules of the Switch End Node in HSR 12

2.3.1 Sending .. 12

2.3.2 Receiving ... 13

2.3.3 Forwarding ... 13

2.3.4 Cut-through .. 13

2.3.5 Bad Frame Handling .. 14

2.4 Frame Format for HSR .. 14

2.5 The Node Structure and Operation in HSR ... 15

2.6 Duplicate Handling ... 16

2.1 The Problem with the Drop Window Algorithm in HSR 17

3 The Proposed Solutions for Rejecting the Duplicated and Circular Frames 18

3.1 General Principle ... 18

3.2 Algorithm 1: Circular Buffer .. 19

3.3 Algorithm 2: Hash Table with Open Addressing and Aging 21

3.3.1 Why Open Addressing ... 21

3.3.2 Open Addressing Algorithm and its Constraints .. 21

3.3.3 Open Addressing With Aging .. 22

3.3.4 Choose the Random Probe Sequence .. 26

3.3.5 Randomization of the Un-uniform Distributed Keys 27

3.3.6 The Randomness of Double Hashing.. 28

3.3.7 Memory Access Serialization .. 28

3.4 Algorithm 3: Hashing Combined with Circular Buffer 30

3.5 Comparison of the Proposed Solutions ... 32

4

3.6 Conclusion to the Proposed Solutions ... 33

4 The Software Simulation of the Proposed Solutions .. 34

4.1 The Setup of the Simulation Environment ... 34

4.1.1 The Node Class ... 34

4.1.2 The Frame Structure ... 35

4.1.3 Generating Nodes in the Ring ... 35

4.1.4 The Frame Generator .. 36

4.1.5 The Queue ... 36

4.1.6 The Lookup Tables .. 37

4.1.7 The Receiving Processing ... 41

4.1.8 Send Coordinator and Sending Port Use Count Down 41

4.1.9 The Sending Port ... 43

4.1.10 The Receiving Port .. 43

4.1.11 Operation Parallelization and Simulation Process 43

4.2 Simulation Configuration .. 46

4.2.1 Parameters Configuration .. 46

4.2.2 Time Unit of the Simulation ... 49

4.2.3 Simulation Methodology and Contents .. 49

4.3 Simulation Results and Discussion .. 51

4.3.1 The Simulation Results of Circular Buffer ... 52

4.3.2 The Simulation Results of Hash Table with Aging 54

4.3.3 Simulation Results of Hash Table Combined with Circular Buffer 59

4.3.4 Comparison of the Proposed Methods .. 60

4.3.5 Further Discussions ... 63

4.4 The Chosen Algorithm and Modification .. 67

4.4.1 Choosing an Algorithm for Implementation ... 67

4.4.2 Modification before Implementation... 67

5 FPGA Implementation ... 70

5.1 The Hardware Platform and Interface .. 70

5.2 Design Process and Methodology ... 70

5.3 Functional Design .. 71

5.3.1 An Overview of the Switch Element Structure ... 71

5.3.2 The Receiving Main Routine ... 74

5

5.3.3 The Receiving Processing ... 76

5.3.4 Hash Table .. 78

5.3.5 Forwarding FIFO.. 79

5.3.6 RX_FIFO .. 80

5.3.7 TX_FIFO .. 81

5.3.8 Send Coordinator... 82

5.3.9 Receive Coordinator .. 83

5.3.10 Receiving Flow .. 83

5.3.11 Sending Flow ... 83

5.4 Functional Design Considerations ... 85

5.4.1 Cut-through Implementation .. 85

5.4.2 DA, SA, SEQ Comparison Window ... 85

5.5 Design Considerations about Timing ... 86

5.5.1 Clock Cooperation between Lock Link Interface and MII Interfaces 86

5.5.2 The Critical Clock Path .. 87

5.5.3 Synchronization between Clock Domains ... 88

5.6 Synthesis and Evaluation of the Implemented Switch Element 91

5.6.1 Synthesis ... 91

5.7 Evaluation .. 92

5.7.1 Simulation Environment ... 92

5.7.2 Tested Functionalities .. 92

5.7.3 Simulation Results ... 93

5.8 Conclusion of the FPGA Implementation ... 105

6 Conclusions and Future Work ... 106

6.1 Conclusions.. 106

6.2 Future Work ... 107

Appendix A Abbreviations Used in the Thesis .. 108

Bibliography .. 109

6

7

1 Introduction

1.1 Context
In April 2008 the IEC committee SC65 WG15 “Highly Available Automation Networks”
published six industrial communication network protocols dedicated to provide the
redundancy of the network. Among these 6 protocols, the Parallel Redundancy Protocol
(PRP) has been selected for the IEC 61850 communication network within substations.

PRP applied the “redundancy in the nodes” method to offer the redundancy. Each PRP
node (called a DANP or Doubly Attached Node with PRP) is attached to two independent
LANs which may exhibit different topologies. The networks are completely separated and
are assumed to be fail-independent. Figure 1.1 shows the topology of PRP.

Figure 1.1 An illustration of the PRP topology [1]

Compared to other protocols released in standard IEC62439, PRP provides completely
seamless switchover in case of failure of links or switches, thus fulfilling all the hard real-
time requirements of substation automation. Whereas other protocols like RSTP and
MPR (Media Redundancy Protocol) need a recovery time [2].

Since PRP requires doubling the network infrastructure, it overkills in some relative
simple application scenarios. The High Availability Seamless Ring is proposed based on
the PRP protocol (Figure 1.2). It allows a significant reduction of the hardware costs,
since no switch is used, instead each end node must be equipped with a switch element
to implement the ring protocol. Although the network layer and the algorithms in PRP and
HSR are nearly the same, HSR cannot apply all the algorithms in PRP because of its ring
topology and the application scenario of the HSR, which is characterized by high network
traffic. Therefore additional features and modifications must be made to guarantee the
performance of HSR. This becomes the motivation of this Thesis, which will be explained
further in the next section.

8

Figure 1.2 An illustration of the HSR topology

1.2 Motivation
In PRP, an additional layer, the “Link Redundancy Entity” (LRE) (Figure 1.3) is placed
under the link layer.

A
B

send

Tx RxTx Tx RxTx Rx

receive

network layer
transport layer

send

Rx

receive

Ethernet
controllers

link redundancy
entity (LRE)

transceivers

A B A B

publisher/
subscriber

upper layers

LAN A
LAN B

applications

network layer
transport layerpublisher/

subscriber

applications

link layer

node X node Y

Figure 1.3 Location of the LRE in the network layer stack of PRP [3]

The LRE connects the upper layer and the two Ethernet controllers and behaves towards
the upper layer like a single Ethernet interface. When transmitting, it appends the
Redundancy Check Tag (RCT) in the outgoing frame, duplicates the frame and sends
both frames over the two sending ports of the node. These two frames travel through the
network and arrive at the receiving node with certain time difference. If the receiving node
works in the duplicates accept mode, the LRE receives both frames of a pair and
forwards them to the upper layer. The rejection of one duplicate should occur at the
higher layer in principle. In this case, the designed application should be able to handle
duplicates. For example, the TCP is designed to handle duplicate. Applications using
UDP must be able to treat duplicates since UDP is a connection-less protocol. If the
receiving node works in the duplicate discard mode, the LRE should pass the first frame
of a pair to the upper layer and reject the second.

The duplicates rejection function of the LRE can be realized in software in PRP. But In
the application scenario of HSR, the communication is often very heavy. If the function of

9

rejecting the duplicates of the LRE is executed in software, the processor will be heavily
loaded.

Besides, unlike in PRP that nodes only send and receive frames, nodes in HSR must
also be able to forward frames based on the forwarding rules. The routing of the frame is
executed by the switch logic in HSR nodes. Again, if the switch logic is implemented in
software, the processor is heavily loaded due to the heavy traffic in HSR.

To offload the processor, the duplicates rejection function of the LRE and the switch logic
are preferably implemented in hardware. The performance of the implemented duplicates
rejecting function should apply the “best effort principle”.

One challenging issue in the implementation is to find an algorithm to reject the
duplicated frames and circular frames (the generating of the circular frame will be
explained in the next chapter), because the algorithm used in PPR is not resource
efficient and not designed for handling the circular frames. Therefore, the motivation of
this Thesis is to find an effective algorithm to reject the duplicated and circular frames
and implement the HSR protocol (the switch logic and the LRE) together with the
selected algorithm in hardware.

1.3 Tasks
The Tasks of this thesis are divided into 4 parts:

First, different algorithms are proposed to reject the duplicated and circular frames.

Second, a software simulation environment is set up to test the proposed algorithms.

Third, the hardware structure of the switch is designed and programmed in VHDL
language, the functionality is simulated with the ModelSim of Menthor Graphics.

Fourth, the VHDL code is synthesized with Quartus of Altera and the function of the
design is evaluated by the pos-Synthesis simulation.

1.4 Contributions
In respect to the work of rejecting the duplicated frames in HSR, the University Zurich of
Applied Science has done an architecture study of the Redundancy Box in year 2007 [8].
In 2008 they implemented the RedBox in FPGA [7]. The algorithm they applied for
rejecting the duplicated frames is “circular buffer”. In this method, a frame is declared as
not in the table only after the entire table is searched, which introduces a long delay. The
work by Christoph Klarenbach introduced a method of integrating the real-time Ethernet
in the FPGA[26], which gives an example for the FPGA implementation in this Thesis.

In this Thesis, 3 algorithms are proposed to reject the duplicated and circular frames in
the ring. A software test environment has been set up to simulate the communication in
the ring. The performance of the 3 algorithms is simulated and compared with the help
software simulation environment. The advantages and disadvantages of the algorithms
and their different configurations are also explained in respect of the performance and the
hardware complexities. The structure of the switch has been designed to implement the
HSR protocol including the selected algorithm.

The selected algorithm for rejecting the duplicated and circular frames has reached
almost 100% rejection ratio under the network configuration given in IEC61850-9-2
standard and in a network scale less than 64 nodes in a ring. The searching time is
significantly reduced compared with the algorithm proposed by the University Zurich of
Applied Science. The limitation of the proposed algorithm in respect to the scale of the
network is further discussed. Finally, the designed switch executes all the functionalities
successfully according to the pos-Synthesis simulation.

10

1.5 Overview
In chapter 2, the High Availability Seamless Ring is introduced. The introduction includes
its topology, the communication rules, and the challenging issues by now.

In chapter 3, the three proposed algorithms are explained. The advantages and
disadvantages are discussed in respect to the searching time and the complexity of the
hardware implementation.

In chapter 4, the software simulation model is introduced. The performance of the three
proposed algorithms with different configurations is compared. A short insight into the
limitation of the proposed algorithms is given.

In chapter 5, the designed structure of the switch is explained; the way each component
works is described in detail, several issues in the FPGA design is introduced. The
programmed switch is synthesized in Quartus, a brief synthesis report is presented. After
the synthesis, the pos-Synthesis simulation is performed to verify the correctness of the
design

In chapter 6, a conclusion of this thesis and a view of possible future work are given.

11

2 The High Availability Seamless Ring
This chapter gives an overview of the High Availability Seamless Ring (HSR) protocol.
The topology and the communication rules of the HSR are first described, then the
network layer model and the structure of the switch unit is illustrated. The typical
application scenario is introduced and the problems existing in the communication by
now are explained.

2.1 The Topology of HSR
One topology of HSR is shown in Figure 2.1 and Figure 2.2 with unicast traffic and
multicast traffic respectively. Each end node has two ports connected to the ring. For
each frame to send, the node sends it duplicated over both ports (A-frame and B-frame).
One frame of the pair travels in the ring in the clockwise direction, the other frame travels
in counter-clockwise direction.

Nodes within the ring are restricted to be HSR-capable switching end nodes. General
purpose nodes (e.g. the singly attached node in Figure 2.1) cannot be attached directly to
the ring, but require a Redundancy Box (RedBox). A pair of such RedBox can be used to
connect hierarchically a HSR to a PRP network. All the frames in the ring must be a HSR
frame. A non-HSR frame must be appended with a HSR tag when it entries the ring (blue
arrows in Figure 2.2).

solid arrows: unicast traffic
void arrows: not received unicast
traffic
cross: remove from the ring

end
node

end
node

end
node

end
node

end
node

end
node

end
node

sender

receiver

„A“-frame „B“-frame

switch

RedBox

singly attached nodes

interlink

Figure 2.1 HSR with unicast traffic: the solid arrows stand for the unicast traffic,

the void arrows stand for not received unicast traffic, the cross stands for the
traffic removed from the ring [3].

12

end
node

end
node

end
node

end
node

end
node

end
node

end
node

sender

receivers

„A“-frame „B“-frame

switch

RedBox

singly attached nodes

interlink

red arrows: “A” frames
green arrows “B” frames
blue arrows: non-HSR frames
cross: removal from the ring

Figure 2.2 HSR with multicast traffic: the solid arrows stand for the multicast

traffic, the void arrows stand for not received multicast traffic, the cross stands for
the traffic removed from the ring [3].

2.2 The Network Management
A node has the same MAC address on both ports, and only one set of IP addresses
assigned to that address. This makes redundancy transparent to the upper layers and
therefore it is a layer 2 redundancy. This configuration allows the Address Resolution
Protocol (ARP) to work the same as with a Singly Attached Node (SAN). TCP/IP traffic is
not aware of the layer2 redundancy, but it is designed to deal with duplicates.

2.3 The Communication Rules of the Switch End Node in HSR
The communication rules are defined in the IEC 62439-3 standard [4].

2.3.1 Sending

For each frame to send on behalf of the higher protocol layers, a sending node (e.g.
“sender” in Figure 2.1) detects which kind of traffic (HSR or non-HSR) it generates. This
decision is application-dependent; it can for instance be based on the protocol type or a
priority field. By default, all traffic is HSR.

Based on that decision, the node shall:

1) for the HSR traffic (if the node is attached to the ring): send two frames tagged as
HSR, one over each ring port, called “pair”, otherwise

2) for a non-HSR traffic (if the node is not attached to the ring): send the frame
unmodified to the switching element, which will treat it according to its bridging
protocol (e.g. send only over the non-blocking port).

13

2.3.2 Receiving

A receiving node (e.g. “receiver” in Figure 2.1) detects the type of traffic of the received
frame based on the HSR tagging and shall:

1) for a non-HSR frame(if the node is not attached to the ring): pass it
unchanged to its higher protocol layers, otherwise

2) for an HSR frame(if the node is attached to the ring): remove the HSR
tagging and pass the modified frame to its higher protocol layer, if this is
the first frame of a pair, otherwise

3) discard the duplicate if this is the second frame of a pair.

2.3.3 Forwarding

A node that receives a valid frame over one ring port shall:

1) If it identifies this frame as a non-HSR frame, handle it according to the
rules of its bridging protocol, otherwise:

2) If it identifies the frame as HSR frame, it shall forward it without
modification over its associated ring port, except that it shall discard it:

a) if it identifies the frame as an HSR frame that it already sent in the
same direction, which is usually the case for multicast frames
(solid arrows in Figure 2.2) but also for unicast HSR-frames
without a receiver (void arrows in Figure 2.1);

b) if the node is the sender of this node, as shown in Figure 2.1; this
condition is enabled by default and can be disabled for debugging
purpose.

c) if the associated ring port of the node is not operating or its link not
active. If a previously connected port is not connected to the
network for a time longer than 1 s, a node shall purge the port’s
buffer so that it cannot send an obsolete frame, and only allow
buffering when the port is reconnected.

These rules remove circulating HSR frames and open the ring, in the same way as an
RSTP or similar protocol. It applies to frames originally sourced by the node and to
frames circulating in case a device is removed after having sent a frame, and the ring is
closed again, for instance by a mechanical bridging device or when a Singly Attached
Node (SAN) is removed.

The arriving time difference between two frames of a pair depends on the relative
position of the receiving node and the sending node. Assuming a worst case in which
each node in the ring is transmitting at the same time its own frame with the largest size
of 1536 octets, each node could introduce 125 us of delay at 100 Mbit/s. With 50 nodes,
in case of uncast traffic, the time skew may exceed 6 ms, so there is possibility that the
situation described above exists.

2.3.4 Cut-through

Nodes in HSR should work in the cut-through mode to reduce the forwarding delay. After
the destination address, source address and sequence number have been received and
the frame is confirmed as not received or not sent before, the node begins forwarding the
frame over the other line. The cut-through operation is not applied to the receiving port to
the host. The frame passed to the host is always completely received first. Only good
frames are passed to the host.

14

2.3.5 Bad Frame Handling

Special care is needed to handle the bad frames when nodes in the ring are operating in
the cut-through mode. If a frame is asserted as bad frame before the cut-though
operation is performed, it is simply dropped. If a frame is detected as a bad frame after
the cut-through operation is performed, a garbling sequence is appended at the end of
the frame and the source address of this frame will be registered by the node. If a frame
with the same source address is received again on the same line, no cut-through is
performed, the frame is sent only after it is completely received and verified to be a good
frame. If the frame is a good frame, the entry of this source address is cleared. Next time
a frame with the same source address is received, the frame is sent in cut-through mode
again.

A node in HSR should be able to detect the garbling sequence appended at the end of
the frame. A garbling sequence tells a node that the frame is already been registered by
another node as a bad frame, this node does not need to register this bad frame again.
By doing so, only the first node which received the bad frame performs store-forward on
the frames with same source address, other nodes still operate in cut-through when a
frame with the same source address is received. This can reduce the transmission time
in the ring of a good frame with the same source address as the bad fame. A bad frame
appended with a garbling sequence will be passed around the ring until it is discarded by
the node which sends it or is rejected as a circular frame.

2.4 Frame Format for HSR
A HSR frame is identified uniquely by their source MAC address, destination MAC
address and the HSR Tag. The frame format is shown in Figure 2.3.

The HSR tag is placed at the beginning of the frame to allow early identification of frames
for cut-through operation. After the destination address, the source address and the
sequence number are received, the frame is uniquely identified.

The HSR tag is announced by the dedicated Ethertype = 0x88FB, which is the same as
IEC 62439-3’s Ethertype. If the frame carries a tagging according to 802.1Q, it shall be
inserted before the HSR tagging.

The 4 most significant bits of the16-bits HSR tag distinguish a PRP management frame
from a HSR management frame or a HSR payload.

a) 4-bit path identifier which can be a ring identifier or indicate a PRP
supervision frame

b) 12 bit frame size (LSDU_size)

c) 16-bit sequence number (SequenceNr)

timedestination source LLC FCSpayloadpreamble size sequence
counterlin

e

standard Ethernet frame

PT

HSR Tag

0 6 12 14octet position

original LPDU

20
Figure 2.3 The frame format of HSR [4]

The sequence number is inherited from PRP, where they are used to discard the
duplicated frames when receiving. The concept of “Duplicate Discard” in PRP will be
explained later in section 3.1, and the reason why it cannot be wholly applied in HSR is
also given there.

15

Because of the insertion of the HSR tag, the length of the frame may exceed the
maximum length of 1522 octets allowed by the IEEE 802.1 D standard. But since the
traffic in the ring is private, the modification can be done in the switch element to adapt
the exceeded frame length and this will have no influence on the Ethernet traffic outside
the ring.

protocol type HSR protocol type HSR protocol type HSR

length <x0600

destination

source

DSAP
LLC

SSAP
protocol type >x0600

destination

source

destination

source

protocol type

ETPID = x8100
TCI, CFI = x8100

1518 octets 1518 octets 1522 octets

802.1D802.3/802.2Ethernet II

LPDU = 1492 octets
LPDU = 1496 octets

LPDU = 1492 octets

sequence

checksum

sequence

checksum

sequence

sizeline sizeline sizeline

checksum

HSR Tag
connectionconnectionconnection

Figure 2.4 Frame format in different Ethernet standard after insertion of the HSR
tag. The additional six bytes could generate oversize frames of more than 1522

octets [7]

2.5 The Node Structure and Operation in HSR
The structure of the node in HSR is shown in Figure 2.5.

When sending, the LRE duplicates each frame and send the pair of the frame over port A
and port B (1, 2).

When forwarding, the switching logic relay frames from one port over the other port (3, 4),
except it is the frame it already forwarded or it is the sender of this frame.

When receiving, the LRE receives both frames, keeps the first frame and discards the
duplicate (7).

16

A B

CW

network layer
transport layer

ports

link redundancy
entity (LRE)

transceivers

A B

publisher/
subscriber

upper layers

CCW

applications

network layer
transport layerpublisher/

subscriber

applications

link layer
interface

sender receiver

switching logic
(SL)

CW

send
duplicate

discard
duplicate

discard
duplicate

send
duplicate

CCW

4
1 2

3

56

7

Figure 2.5 The node structure in HSR [3]

2.6 Duplicate Handling
Duplicate Handling is an important issue in HSR. The duplicate handling can work in two
modes:

a) Duplicate Accept, in which the sender LRE uses the original frames and
the receiver LRE forwards both frames it receives to its upper protocol
layers.

b) Duplicate Discard, in which the sender LRE appends a Redundancy
Control Trailer to both frames it sends and the receiver LRE uses that
Redundancy Control Trailer to send only the first frame of a pair to its
upper layers and filter out duplicates.

It is advantageous to discard duplicates already at the link layer. It is because not
all the protocols in the upper layers can deal with duplicates. From the view of
costs, the processor has twice as many interrupt requests as when only one ring
exists. To offload the application processor, the LRE can perform “Duplicate
Discard”, which should be realized in hardware.

In PRP, the Sequence Number, which is located in the HSR frame format shown
in Figure 2.4.1, is used to drop the duplicates (recall that HSR is a modified
application of PRP). Each time an LRE sends a frame to a particular destination it
increases the sequence number corresponding to that destination and sends both
frames over both LANs.
The algorithm used for rejecting the duplicates is the “Drop Window” algorithm.
Briefly speaking, it builds a window at each line A, B. If the received frame at one
line falls into the window of the other line, the frame will be dropped. This is
shown in Figure 2.6.

17

StartSeqA

ExpectedSeqACurrentSeqA

c es

dropWindow

keepBdropBkeepB

„B is late“ „B is early“

LAN_A

LAN_B

Figure 2.6 The drop window algorithm [4]

2.1 The Problem with the Drop Window Algorithm in HSR
The drop window algorithm works well in PRP because each node in PRP only sends or
receives frames, it never relays a frame. In HSR, each node also forward frames except
receiving and sending. As stated before, the situation may happen that a multicast frame
losing the sender or a unicast frame losing both the receiver and the sender will circulate
in the ring. There must be a mechanism to remove such circular frame from the ring.
Since it is not possible to use the “Drop Window” algorithm for such purpose, it is
preferred to find another algorithm which can not only be able to reject the duplicated
frames but also the circular frames.

Another reason why the Drop Window algorithm is not used here is that the
implementation of the “Drop Window” algorithm in hardware is less efficient than the
lookup table method which will be introduced later in this Thesis [8]. For these reasons,
new solutions are found and proposed in the next chapter.

18

3 The Proposed Algorithms for Rejecting the Duplicated
and Circular Frames

In this chapter, three algorithms are proposed for finding an efficient way to reject the
duplicated and circular frames. Their operation principle is explained, the advantages and
disadvantages of each algorithm are discussed in respect to the collision possibilities, the
searching time and the hardware implementation complexity.

3.1 General Principle
Instead of the “Drop Window” algorithm applied in PRP, algorithms based on look-up
tables are applied. The basic idea is:

Each frame in HSR is uniquely identified by its destination address, source address and
the sequence number (recall that the sequence number for each destination address is
increased by one when a frame is sent to this destination address). Therefore the
destination address, the source address and the sequence number can be stored as an
entry in the table to show that this frame has already been received.

Figure 3.1 The searching and writing operation in the table for rejecting the

duplicated frames

The working principle is stated as below:

1. For rejecting the duplicated frames (the frames can be unicast or multicast
frames)

There is one table for each line to store the entry of frames which have been
successfully received on this line (means no error occur during receiving).

During receiving at one line, after the destination address, the source address
and the sequence number of the frame have been received, the frame is
searched first in the table of the other line. If it is found in the table of the other
line, it will be discarded and the receiving process is aborted otherwise

19

If the entry of this frame is not found in the table, the receiving process will
continue. If the frame turns out to be a good frame at the end of the receiving, the
entry of the frame will be stored in the table of the line at which it is received.

If frames of a pair are received on both lines when there is no entry of either
frame in the table (for example two frames are received on both lines at the same
time), the Window Function described in Section 5.4.3 is applied.

The case of rejecting the duplicated frames is illustrated in Figure 3.1.

2. For rejecting the circular frames (the frame can be any traffic type of frames)

To reject the circular frames, there is one table on each line to store the entry of
frames which have been successfully received on this line (means no error
occurs during receiving).

During receiving at one line, after the destination address, the source address
and the sequence number of the frame have been received, the frame is
searched first in the table of this line. If it is found in the table of the this line, it will
be discarded and the receiving process is aborted otherwise

If the entry of this frame is not found in the table, the receiving process will
continue. If the frame turns out to be a good frame at the end of the receiving, the
entry of the frame is stored in the table of the line at which it is received.

The case of rejecting the circular frames is similar with the case of rejecting the
duplicated frame except that the entry is searched and written in the same table of the
line on which the frame is received but not in the table of the other line.

The entry of a frame is written in the table only after the frame is completely received and
verified to be a good frame. If a frame turns out to be a bad frame it will not be registered
in the table, so when the other frame of this pair is received on the other line, the entry
will be not be found in the table and the frame is therefore received. The same reason
applies for the circular frames.

The operation of rejecting the duplicated frame stated above implies that the table can be
read and written at the same time. For this purpose, the Dual Port RAM should be used.

The general principle is clear by now, the issue left is to find an efficient data structure to
implement such table. There are several methods to lookup an item in table. The
conventional methods are like the binary search algorithm and hash table. Binary search
is based on the sorted table. But here the sorting is difficult to define (e.g. what criteria
should be used to sort the entries) and the hardware is difficult to implement. There are
different ways to implement a hash table, some methods are suitable in our situation,
some not. The discussion of the hash table will be conducted in later sections. In the
following sections, three algorithms are proposed to implement the lookup table
described above.

3.2 Algorithm 1: Circular Buffer
The Circular Buffer method is introduced by the Zurich University of Applied Sciences
(ZHAW, Winterthur) to implement the rejection of the duplicated frames in the
Redundancy Box [7].

In this method, the entries are simply registered in the table one after another. The write
pointer moves downwards by one after an entry has been registered. In this way, the
entry of higher position is older. After the write pointer reaches the end of the table, it will
go back to the beginning of the table and start over. This is shown in Figure 3.2. In this
way, the older entry is automatically replaced by the new entries.

20

In this algorithm, the length of the table has to be selected according to the receiving
delay of the frame of a pair between the two lines [8]. Take a ring with 6 nodes for
example (Figure 3.3). If node 1 send a unicast frame to node 2, one frame of the pair
goes the clockwise direction and arrives at node 2; the other frame of the pair travels the
counter-clockwise and must goes through 4 nodes until arrives at node 2. Assuming that
the length of all the frames in the ring is the same, node 1 could receive 4 other frames,
until the frame sent by node 1 arrives at node 2, which means that 4 more entries are
registered in the table during this time. Therefore the table should have places for at least
5 entries so that the entry of the first frame of a pair sent by node 1 is not overwritten by
other entries before the second frame of the pair arrives at node 2.

DA

.

.

.

.

.

SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

Write
Pointer

Figure 3.2 The operation principle of a circular buffer

3

6

2

1

4

5

3

Figure 3.3 The receiving delay of a pair unicast frame in a ring

This is just a simple example to illustrate that the length of the table is related to the
receiving delay between the two lines, the reality is more complex.

Because the entries are simply registered in the table one after another, the hardware
implementation is simple. If the table is large enough, frames’ entry can be found in the
table before their entries are overwritten. But one should go through all the entries to
verify that the received frame is not in the table. In a ring with more nodes, the search will
cost more time and therefore cause longer delay when forwarding. If cut-through
operation is required, this method is not suitable.

21

3.3 Algorithm 2: Hash Table with Open Addressing and Aging

3.3.1 Why Open Addressing

To increase the search efficiency, hash table is used. There are many algorithms to
implement a hash table and resolve the collisions. The conventional ones are like
chaining, open addressing and so on.

Chained hash tables have advantages over open addressed hash tables in that the
removal operation is simple and resizing the table can be postponed for a much longer
time because performance degrades more gracefully even when every slot is used.
Indeed, many chaining hash tables may not require resizing at all since performance
degradation is linear as the table fills. For example, a chaining hash table containing
twice its recommended capacity of data would only be about twice as slow on average as
the same table at its recommended capacity [9].

But chained hash tables need to allocate memory for adding elements to the linked list.
The overhead required by the operation of allocating new memory will cause more delay
and therefore is not preferred in real-time system. Furthermore, a memory allocator is
more difficult to implement than the open addressing.

Compared with chaining, open addressing is [9]:

More space-efficient since it doesn't need to store any pointers or allocate any additional
space outside the hash table, this makes it more suitable to be implemented in memory
constrained devices like FPGA.

The Insertion of elements avoid the time overhead of memory allocation, and can even
be implemented in the absence of a memory allocator.

Because it uses internal storage, open addressing avoids the extra indirection of the
external storage required by chaining. It also has better locality of reference, particularly
with linear probing. With small record sizes, these factors can yield better performance
than chaining, particularly for lookups.

At last, they can be easier to serialize, because they don't use pointers.

3.3.2 Open Addressing Algorithm and its Constraints

The open addressing algorithm can be briefly explained as follows [10]:

 A hash table T is an array T[0,….m-1], m is a positive integer called the size of
the table.

If we have a sequence of hash functions >< −1,210,,, mhhhh , such that for

any item x, the probe sequence >< −)()......,(),(),(1,210 xhxhxhxh m is a

permutation of >−< 1......,2,1,0 m . In other words, different hash functions in
the sequence always map x to different locations in the table.

 x is searched by using the following algorithm, which returns the array index i if
T[i] = x, “absent” if x is not in the table but there is an empty slot[11], and “full” if
x is not in the table and there no empty slots. This is shown in figure below.

22

Under the strong uniformity assumption, that is for any key Uk∈

)1(
1)},())(),(Pr{(
−

==
mm

jikhkh ji (3.1)

the expected lookup time is calculated as

)1/(1)),((α−≤nmTE (3.2)

Here mn /=α is called the load factor of the table and n is the number of
current element in the hash table.

Here we can see, with the increasing of the load factor α, the expected lookup time
increases dramatically, if the table is almost full, the lookup will take increased to certain
degree that one has to go through the entire table to found out whether an element is in
the table or not.

Deleting an element in the table is also not simple. We cannot simply clear out the slot in
the table, because we may need to know that T[h(x)] is occupied in order to find other
items. Instead simply deleting a slot, we should mark it as a wasted slot. But a sufficiently
long operation of insertions and deletions could eventually fill the table with marks,
leaving little room for any real data and causing searches to take linear time. Therefore
the size of the table should be increased when the load factor reaches a threshold value.
The time costs of such operation can be very expensive. This can be shown by the
amortized analysis but not an issue in this thesis.

On the other hand, the implementation of a hash table in real-time system cannot afford
the time cost of enlarging the hash table all at once, because it may interrupt time-critical
operations. And the device like FPGA with a constrained memory may not allow the
increasing of the table size [9].

Because it is not desirable to go through the entire table until to find out whether the
element is in the table and it may not possible to resize the table, we have to find another
way to implement the table. A commonly used technique “Aging” is applied here.

3.3.3 Open Addressing With Aging

Figure 3.4 shows the entry structure in open addressing with aging. A one-byte “Aging
Tag” (AT) is added at the beginning of each entry [12]. The meaning of the AT is:

x“00” An empty bin

x”FF” The maximum bin

for 1=i to 1−m

 if [] xxhT i =)(

 return)(xhi

 else if [] φ=)(xhT i

 return Absent

return Full

23

At the beginning, the value of the AT is x”00”. Every time an entry is written to a bin, the
AT of this bin is assigned to the value of x“FF”. An aging process runs in the background
with certain time distance, which is determined by the scale of the network. The value of
the AT is subtracted by one until the AT becomes x”00” again. Therefore, the smaller the
value of the AT is older the entry.

DA SA SEQ00

DA SA SEQFF

The Aging Tag

Empty bin

Maxim bin

Figure 3.4 The entry format with "Aging Tag"

The searching algorithm is described as following

This algorithm states if an entry is found in the table, the corresponding place will be
cleared by writing AT of the bin with x”00”. The max_bin defines the maximum probe
time, after the max_bin is reached, the searching stops and return Absent to indicate
that the entry is not found in the table.

The writing entry algorithm is a little more complicated, which is described as follows

for 1=i to binmax_

if [] xxhT i =)(

 [] "00".)(xATxhT i =

 return)(xhi

return Absent

24

The figure above states, when writing an entry in the table:

If an empty bin is found, the entry will be written at this bin. If the bin is not empty, the AT
of this bin will be stored in the variable Oldest, and the position of this pin is stored in the
variable Oldest_Pos.

Every time when the bin is not empty, if the AT of this bin is older than the Oldest, the
Oldest will be replaced by the AT of this bin and the Oldest_Pos is replaced by the
position of this bin.

 If no empty bins are found in the end, the entry will be written at the place of the
Oldest_Pos bin.

The algorithm described above is illustrated in Figure 3.5.

The advantage of introducing the max_bin is that it constraints the searching and writing
time in the worst case to max_bin steps, so that the decision can be made in much
shorter time than going through the entire table, which is the case in the conventional
open addressing hash table.

The aging mechanism is necessary for deciding the bin to write when all the bins are
filled with entries. In other words, the resizing of the table is replaced by just writing at the
bin with the eldest AT. This takes place in the same store area, and do not require
additional memories. Another use of AT, although dose not likely to occur under heavy
traffic, is to time out the entries which are not received at the other line for a long time.

for 1=i to binmax_

if [] φ=ATxhT i .)(

 [] xxhT i =)(

 [] "".)(1 FFxATxhT =

 return

 else

 Oldest_Pos = [] PosOldestxhOldestATxhT ii _:)(?.)(≤

 Oldest = [] [] OldestATxhTOldestATxhT ii :.)(?.)(≤

return Oldest_Pos

 [] xPosOldestT =_

25

DA

.

.

.

.

.

SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

Read
Pointer

H(k)

DA

SA

SEQ

.

.

.

.

.

.A

DA

SA

SEQ

.

.

.

.

.

.B

Write
Pointer

H(k)
Stop searching
when max_bin
reached

AT

AT

AT

AT

AT

AT

AT

AT

AT

Write at the bin with
the eldest age if
there is no empty bin

Figure 3.5 The search and write operation in modified hash table with open

addressing

The time distance of subtracting the aging tag should consider the scale of the network.
Take a look at the simple example of unicast traffic again, shown in Figure 3.6.

3

6

2

1

4

5

3

Delay at each node: idelayt _

Figure 3.6 The receiving delay between the two lines of a unicast frame

In the ring having nodes of number n, the transmit delay (the time delay between
completely receiving a frame and completely sending it out) is delayt at each node.

When for example a unicast frame of a pair sent by node 1 arrives at node 2, its entry is
registered in the table. The time delay of the arriving of the second frame of this pair on
the other line is calculated as

∑
−

=

=
2

1
__

n

i
idelaytotaldelay tt (3.3)

 Therefore

26

256
_

int_
totaldelay

evalsubtract

t
t ≥ (3.4)

Recall that the maximum of AT is x”FF”.

Therefore the time distance of aging cannot be so frequent that the entry times out before
the totaldelayt _ is reached. In reality the traffic is more complex. One should configure the
time distance of subtracting the aging tag enough long to ensure that the case described
above does not happen.

3.3.4 Choose the Random Probe Sequence

In practice the truly random probe sequence >< −)()......,(),(),(1,210 xhxhxhxh m is
difficult to find, so one of the heuristics can be used

1) Linear probing

Using a single hash function h(x), and define

mixhxhi mod))(()(+= (3.5)

The operation in this equation is simple, but it suffers from a phenomenon known
as primary clustering, in which large chains of occupied positions begin to
develop as the table becomes more and more full. This results in excessive
probing

2) Quadratic probing

Also using a single hash function h(x), and define

mixhxhi mod))(()(2+= (3.6)

Unfortunately, for certain values of m, the sequence of hash values ><)(xhi
does not hit every possible slot in the table; we can avoid this problem by making
m a prime number. Although quadratic probing does not suffer from the same
clumping problems as linear probing, it does have a weaker clustering problem
known as secondary clustering: If two items have the same initial hash value,
their entire probe sequences will be the same.

3) Linear Double Probing

We use two hash functions h(x) and g(x), and define

mxigxhxhi mod))()(()(+= (3.7)

To guarantee that this can hit every slot in the table, the stride function g(x) and
the table size m must be relatively prime. This can be guaranteed by making m
prime. The key advantage of linear double hashing over linear probing is that it is
possible for both h(k) and g(k) to vary with k. Thus, in)(xhi the probe sequence
depends on k through both h(k) and g(k), and is linear in h(k) and g(k). A widely
used member hash function proposed by Knuth is [13]

)2mod()(
mod)(

−=
=

mkkg
mkkh

 (3.8)

27

3.3.5 Randomization of the Un-uniform Distributed Keys

The ordinary hash function h(x) used in equation (3.4) and equation (3.5) has a dramatic
impact on the performance of linear probing and quadratic probing. A common choice like:

mxxh mod)(= (3.9)

This performs only well when the key x is uniformly distributed, so that this ordinary
function can generate uniformly distributed sequences. When the key x diverges from the
uniform distribution, the performance of linear probing and quadratic probing degrades
dramatically[14].

This is unfortunately our case. Assume a ring has 10 nodes, the variation of the key
which is the concatenation of the destination address, source address and the sequence
number is limited. This is because:

 First, the first 3 bytes of the MAC address is the manufacturers Organizational
Unique Identifier (OUI). In a ring, the manufacturers are not likely to exceed 20.
So the variation of this part is very limited

 Second, if the traffic is multicast, the destination is always the multicast address.
The most traffic in the ring is multicast traffic.

 Third, although the sequence number varies most frequently (from 0 to 65535), it
varies only at the end of a key.

Therefore the key in our case is far from uniformly distributed.

Two approaches are commonly used to address this problem. First, one can apply a
randomizing transformation to the keys prior to supplying them to Equation 3.9. This is
actually a natural step to take in many applications. For example, consider compiler
symbol tables, where strings must be converted into numeric key values in order to
“hash” them into the table. One such popular algorithm, called hashPJW()[15], takes a
string as input, and output an integer in the range]12,0[32 − . The transformation
performed by hashPJW() tends to do a good job of producing numbers that appear
uniformly over certain interval, even when the strings being hashed are very similar.

A second approach involves using a more complicated ordinary hash function h(x) so that
the initial probe into the hash table is more random. In addition, by randomizing the
choice of h(x) itself we can guarantee good average-case performance (relative to any
fixed ordinary hash function) through the use of universal hashing[16].

A set H of hash function is universal if it satisfies the following property:

For all pairs of distinct keys yx ≠ , if a hash function h is chosen uniformly
random from the hash function family set H, then

Vyhxh /1)]()(Pr[≤= (3.10)

|V| denote size of V, the number of possible hashed values.

A good example of a universal hash function is

mpbakkh mod)mod)(()(+= (3.11)

Here pZba ∈∈ ,Z*
p , *

pZ denotes the set {1, 2, 3, ……, p - 1} and p is a prime number

large enough so that every possible Uk∈ is in]1,0[−p . Thus, for fixed p and m, there
are p(p – 1) different hash functions in this family.

28

Although the universal hash functions provide a good performance, the multiplication
operation in the FPGA is very expensive especially when the key k is more than 32 bits.
There are ways like addition tree can work around this problem, but again it sacrifices
time and causes longer delay. Besides, the mod operation of a prime is difficult to realize.
Only the mod operation of the order of 2 is able to be synthesized. Therefore, the
randomizing transformation method is chosen.

3.3.6 The Randomness of Double Hashing

If the goal is to minimize the total number of collisions and thus memory accesses, then
from a probabilistic perspective, the ideal case for open address hashing is uniform
hashing[17][18].

A uniform hash function always produces probe sequences of length m (in the table
space), with each of the !m possible probe sequences being equally likely. The obvious
way of implementing a uniform hash function involves the generation of independent
random permutations over the table space for each key Uk∈ . However, the
computational costs associated with this strategy make it completely impractical.

Through probabilistic analysis, the function described by Equation (3.7) offers a
reasonable approximation to uniform hashing[19][20]. This conclusion is based on the
strong uniformity assumption shown in Equation (3.1). Thus, these results only hold
under the assumption that the keys will produce hash value pairs that are jointly uniformly
distributed over the table space. This strong assumption has requirements both on the
initial data distribution and the choice of h(k), g(k). As the most data set are far from
uniform (which is indeed our case), and the popular candidate for h(k), g(k), which is
described previously, has to be considered poor choices to satisfy the Equation (3.1).

3.3.7 Memory Access Serialization

According the algorithm applied by the hash table with open addressing and aging. It can
be seen that there are three processes that need both read and write access to the table:

1) The aging process, which runs in the background. It needs read the aging
tag, and subtracts AT by one if it is not equal to zero.

2) The searching process, which read the entry in the table, and clear the
entry by writing AT to x”00” if it is found.

3) The writing process, which first reads AT in the table and register the entry
in the empty bin or the bin with the oldest AT if no bins are empty.

Since the table is located in the dual port memory, it is allowed that reading and writing
happens at the same time. But if two reading or writing operations are to be executed at
the same time, the two operations must be serialized. A collision between two writing
operation in the table for rejecting duplicated frames can be show in Figure 3.7

For the table used for rejecting the circular frames, because the searching and writing
process occurs at the same line and therefore naturally serialized (means the searching
operation always come previous to the writing process), the serialization only have to be
done between the aging process and the reading or writing process. Here the reading
and writing process always have the higher priority than the aging process, because we
want to make the decision as early as possible so that the cut-through can be performed
earlier.

For the table used for rejecting the duplicated frames, the searching and writing is
required by different lines, the sequence of their occurrence is not deterministic.
Therefore the searching, writing and aging process should be serialized respectively. The
searching process has the highest priority, the reason is same as stated above to enable

29

earlier cut-through. Writing process has the second priority because it is not time critical
like searching process. If during writing searching is required by other line, writing should
be suspended and give the memory access control to the searching process. Finally the
aging process has the least priority.

DA

.

.

.

.

.

SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

Entry found,
clear bin by
writing AT to
x”00”

DA

.

.

.

.

.

SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA

SA

SEQ

.

.

.

.

.

. A

DA

SA

SEQ

.

.

.

.

.

.B

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

AT

New entry
comes, write
bin

Two writing
operation
collide

Figure 3.7 Clearing bin operation collides with the writing entry operation

The time period from the sequence number to the end of the frame is plenty for the aging
process, because the subtracting of the AT is only executed in a pre-configured time
distance, but not at very instance. The memory access control transfer state machine is
shown in Figure 3.8.

30

Aging

Searching

writing

searching is required
by other line

writing is required by
this line
&&
no searching is
required by other line

searching is over
&&
no writing is
required

searching is required
by other line

Searching is over
&&
Writing is required

writing is over
&&
no searching is
required

Figure 3.8 The memory access control transfer state machine of the hash table for

rejecting the duplicated frames

3.4 Algorithm 3: Hashing Combined with Circular Buffer
In the previous section, the hash table with open addressing is modified by adding the
max_bin parameter and the aging functionality to fix the worst case searching time and
avoid resizing the whole table. But the aging functionality needs a process running on the
background, and the serialization of the memory access among the aging, searching and
writing process is also needed, these increase the complexity of the hardware
implementation. To reduce the complexity of the implementation and still maintain a
similar performance, the third algorithm is proposed.

The proposed hash table structure combined with circular buffer is illustrated in Figure
3.9. The table is divided into several regions, the hash value of the entry decided into
which region the entry falls. In each region there are number of max_bin bins. The entry
is written at the bin position.

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

31

32

33

34
.
.
.

.

.

.DA

SA

SEQ

.

.

.

.

.

.

H(k)

Figure 3.9 The structure of the hash table combined with circular buffer

The concept is similar to the chained hash table, except the element attached to each
bucket is limited to the number given by max_bin parameter. If all the bins are taken, the
entry is simply overwritten the eldest bin, and thus there is no need for memory allocator.

31

The operation principle is explained as follows:

 When searching an entry of a received frame:

When an entry is received, after the destination address, the source address and
the sequence number are read, the hash value is calculated. The calculated
value is mapped to certain area of the table. This mapping can be for example a
mod operation.

The position of the read pointer in this area is the position after last searching in
this area. If the entry is not found at the current position, the read pointer moves
downwards by one. If entry is found, the read pointer stays at the next position to
the position where the entry is found.

When searching steps has reached the max_bin, searching stops and the read
pointer go back to its last initial position.

 When writing an entry of a good frame

Write the entry at the position of the write pointer and move the write pointer
downwards by one.

If the write pointer has reached the end of the area, it goes back to the beginning
of this area

DA

.

.

.

.

.

SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

Read
Pointer

H(k)

DA

SA

SEQ

.

.

.

.

.

.A

DA

SA

SEQ

.

.

.

.

.

.B

Write
Pointer

H(k)

Figure 3.10 Read and write operation in the hash table combined with circular

buffer for rejecting the duplicated frames

In this algorithm, the maximum searching step is also limited to max_bin times, and there
is no aging mechanism being applied. Each area has its own read and write pointer. The
writing operation iterates through the area, the oldest entry is simply overwritten. The
writing entry process only does write operations, and the searching process only does
read operation. Therefore there is no more than one process reading or writing at the
same time and thus the memory access does not need to be serialized (Figure 3.10).

32

This simplifies the circuit dramatically compared with the hash table with open addressing
and aging.

The map of an entry to certain area is done by the hash function

mxxh mod)(= (3.10)

Again, the key x here is far from uniform distributed, so the function for randomization of
the un-uniform distributed Keys introduced in Section 3.3.5 should be used here before
the hash operation.

A drawback of this method is that it does not find an empty bin to write the new entry
which is done in the hash table with aging algorithm. Instead it just overwrite the oldest
entry in the area. So the probability that an unused entry is overwritten is higher than the
hash table with aging.

3.5 Comparison of the Proposed Algorithms
In Table 3.1 the proposed algorithms are compared in respect to their collision probability,
worst case searching time, implementation complexity.

Proposed
algorithms

Collision Probability Worst Case
Searching

time

Implementation Complexity

Circular Buffer

No collisions as long as the
length of the table longer
than frame arriving delay
between the two lines

must go
through the
entire table

simplest

Hash Table With
Open
Addressing and
Aging

Depending on the chosen
probe sequence

linear probe: primary
clustering

quadratic probe: secondary
clustering

double hashing: most
unlikely to collide compared
with two others

With the aging functionality,
the entry always search first
an empty bin to write and
then the oldest

limited by the
max_bin
parameter

Most complex because of
the aging functionality and
the memory access
serialization

Hash Table
Combined with
Circular Buffer

The oldest entry in each
area is simply overwritten,
but it is possible that the
overwritten entry is not used
yet

 limited by the
max_bin
parameter

Moderate

Table 3.1 Comparison of the proposed algorithms

33

3.6 Conclusion to the Proposed Solutions
In this chapter, three algorithms based on look up table are proposed to replace the drop
window algorithm to reject the duplicated and circular frames in HSR.

The circular buffer method has no collision as long as the length of the table is larger than
the frame arriving delay between the two lines, and it is simplest to implement. But to find
out whether the entry is in the table or not, one should go through the entire table which
causes long delay, this method is not suitable for realizing cut-through.

The hash table with opening address and aging functionality introduce the max_bin to
limit the maximum searching time. Aging kicks out the entries which already times out
and ensures to write the entry only in the empty bin or bin with the oldest age. This can
somehow reduce the collision probability and avoid resizing operation. But the need for
implementation of the aging function and serialization of the memory access makes the
circuit more complex compared with circular buffer and hash table combined with circular
buffer method.

The hash table combined with circular buffer is similar with the chained hash table except
that the oldest entry is simply overwritten if all the bins attached to the bucket are taken.
By doing so the memory allocator is saved. But one drawback of this method is that a not
yet used oldest entry may be overwritten.

A last it should be pointed out that the key of the hash function in our case is far from
uniform, the randomization of the key should be done previous to hashing.

In the next chapter, the simulation environment will be built. The performance of the
proposed algorithms will be simulated in respect to their rejecting ratio to the duplicated
and circular frames.

34

4 The Software Simulation of the Proposed Solutions
In this chapter, a simulation environment is set up to evaluate the proposed algorithms.
The basic unit in the simulation is a node. A node can accomplish all the tasks of a real
end node in HSR and simulate the timing behavior of sending or receiving process.
Because the program is written in C++, the operations of the nodes in the ring must be
parallelized to simulate the parallel process in real hardware. The configuration of the
simulation is explained and the simulation result is presented and discussed. Finally the
hash table combined with circular buffer is chosen as the algorithm to be implemented in
FPGA.

4.1 The Setup of the Simulation Environment
In this section, the structure of a node, which is the basic unit in the simulation
environment, is illustrated. The components in the node and their way of work are
explained in more details. The way of parallelizing the operations of a node is explained.

4.1.1 The Node Class

The node is the basic unit in the simulation environment. A node unit represents an end
node in the HSR network. The node class designed here can accomplish all the tasks of
the link layer of an end node. The tasks of a node in HSR have already been introduced
in chapter 2. The structure the node class is illustrated in Figure 4.1.

Frame
Generator

Sending
queue
A

DA SA SEQ

DA SA SEQ

AT

AT

Table of line A
for rejecting
duplicates

DA SA SEQ

DA SA SEQ

AT

AT

Send
Coordinator and
Frame length
count down

Send
Coordinator and
Frame length
count down

Receiving
Port B

Receiving
Port A

Sending
queue

B

Receiving
queue B

Receiving
queue A

DA SA SEQ

DA SA SEQ

AT

AT

Table of line B
for rejecting
duplicates

Table of line A
for rejecting
circular frame

DA SA SEQ

DA SA SEQ

AT

AT

Table of line B
for rejecting
circular frame

Sending
Port A

Sending
Port B

Receiving
Processing

Run Time Input

Figure 4.1 The structure of the node class

As illustrated in Figure 4.1 one node unit contains 8 member objects:

1) One frame generator,

2) Two sending queues on each line,

3) Two receiving queue on each line,

4) Two tables for rejecting duplicated frame one each line,

35

5) Two tables for rejecting the circular frames on each line.

6) The “send coordinator and frame length countdown”.

7) The “receiving processing” are two main control functions during sending
and receiving.

8) The “sending port A, B” and “Receiving ports A, B” are a group of structure
variable for storing the frame structure and status variables for labelling
the sending and receiving status. This will be explained in next sections.

4.1.2 The Frame Structure

Before going to the detail of single components in the node unit, the frame structure used
in this environment should be explained first.

According to the HSR frame format, the frame here is a structure contains the destination
address, the source address, the sequence number, the length of the frame, and a
counter. The frame structure is shown in Figure 4.2.

DA

SA

Seq

FrLen

CircCnt

Structure of Frame

Figure 4.2 The structure of the frame in the simulation

The destination address, source address and the sequence number together compose
the entry in the hash table. The length of the frame FrLen is used to simulate the time
behavior of receiving or sending a frame. The counter CircCnt records the number of the
nodes this frame has gone through before being accepted or rejected. This can be used
to evaluate the performance of the table for rejecting the circular frames.

4.1.3 Generating Nodes in the Ring

A node is uniquely identified by its MAC address in the ring. To generate n nodes in the
ring means to generate n different MAC addresses. According to the Ethernet protocol,
the MAC address is divided into two parts: the first three octets of the MAC address is the
Organizationally Unique Identifier (OUI) of the manufacturer, which is assigned by the
IEEE Registration Authority; the last three Octets are assigned by the manufacturers.

There are two parameters can be configured. One is the OUI_NUM, which determines
how many manufacturers there is in the network. The second parameter is the number of
nodes n in the network. If the OUI_NUM is smaller than the number of nodes in the
network, it means that there are some devices with the same manufacturer. This often
corresponds to the reality considering the switch element used by the devices in the ring
are from limited number of manufacturers.

When generating the nodes in the network, the OUIs are read out from the OUI tables at
random locations, and assigned to the first three octets of the MAC address. Because the
number of the nodes in the ring is larger than OUI, some OUIs are reused. The second
three octets are generated randomly. Every time a MAC address is generated, it will be
checked if it already exists in the network; if so, the second three octets should be

36

regenerated until this MAC address is not same with any MAC addresses generated
before.

After nodes generating is over, a table of n different MAC addresses is created

4.1.4 The Frame Generator

The frame generator is a member object in the Node class. As shown in Figure 4.3, it has
a table (the destination address table) of the MAC addresses of all other nodes in the ring
plus a multicast frame address. This table is created from the table of the generated
nodes. For example, if this node is the Nr. 2 node in the ring, then the MAC address at
the second position in the generated nodes table will be taken as the source address of
this node, and other addresses are put into the destination address table. Besides the
MAC address of the node itself, it also contains a MAC address which does not exist in
the ring. This MAC address is used to simulate a unicast frame losing sender and
receiver or a multicast frame losing sender. The reason why this may happen is
explained in Section 2.3.

Together with each address in the address table there is also a sequence number. Each
time a frame with is generated, the sequence number of the corresponding destination
address will be increased by one.

DA SEQ
DA SEQ
DA SEQ
DA SEQ.

.

.

SA
Circ SA

gen_fr_to_send()

DA SA SEQ LEN CircCnt

SEQ + 1

frame_to_send

Figure 4.3 The structure of the frame generator and its

The probability of generating a multicast or a circular frame can be configured. When
generating a frame, the function gen_fr_to_send() randomly select a destination address
from the destination address table and a source address from the source address table
with the preconfigured probability and increase the corresponding sequence number by
one. gen_fr_to_send() also generate randomly the length of the frame between 64 and
1522. The chosen destination address，the source address, the sequence number, the
generated frame length and the counter CircCnt are assigned to the variable
frame_to_send.

4.1.5 The Queue

The two sending queues and the two receiving queues are normal queues defined with
the Frame type using the queue template in the Standard Library of C++. It can execute
normal operations for a queue structure like push, pop, and return the size of the queue.

37

4.1.6 The Lookup Tables

The proposed lookup tables are circular buffer, hash table with open addressing and
aging, hash table combined with circular buffer. Because the structures and operating
principles of each kind of table are already introduced in the previous chapter, it will not
be repeated here. But in order to show how the concepts of each table are implemented,
three important functions, namely the hash function, the searching entry function and the
writing entry function are explained in detail for each type of table.

4.1.6.1 Circular Buffer

The circular buffer method does not use any hash functions. The flow charts of search
entry and writing entry functions are illustrated in Figure 4.4 and Figure 4.5 below.

Searching Entry

Entry
found?

End of
the

Table?

Yes

Return TRUE

No

No

Yes

Return False

SrchEntry(Frame & fr)

Figure 4.4 The flow chart of the searching entry function in circular buffer

Figure 4.5 The flow chart of the writting entry function in circular buffer

38

4.1.6.2 Hash Table with Open Addressing and Aging

As stated in the chapter 3, the key which is the entry composed of the destination
address, source address and the sequence number, is far from uniform, therefore the
randomization should be performed before hashing.

The randomization function is chosen as the Hashpjw(). It coerces a key into a permuted
integer through a series of bit operations on each byte in the key.

The code of Hashpjw() is shown in Figure 4.6 bellow:

int hashpjw(const void *key) {
const char *ptr;
int val;
/*Hash the key by performing a
number of bit operations on it. */

val = 0;
ptr = key;
while (*ptr != '\0') {
int tmp;
val = (val << 4) + (*ptr);
if (tmp = (val & 0xf0000000)) {
val = val ^ (tmp >> 24);
val = val ^ tmp;

}
ptr++;

}
}

Figure 4.6 The hashpjw() funtion

This function is simple and proven to have a nice performance on randomizing the key.
The bit operation is very suitable for implementing in the FPGA.

There are 3 probing sequences used: the linear probing, the quadratic probing, and the
double hashing. The hash functions of each probing sequence are listed as following:

For linear probing and quadratic probing

mxxh mod)(=

For double hashing

mxxh mod)(=)1mod()(−= mxxg

Note here m is not chosen as a prime number. The reason for doing this is that the mod
operation of a prime number cannot be synthesized in FPGA, other reason is mod a
number of power of 2 can simply be realized by only taking the m2log number of the
least significant bits. The effect of such choice must be evaluated through the simulation.

The flow charts of searching and writing entry function are shown respectively in Figure
4.7 and Figure 4.8.

39

Figure 4.7 The flow chart of the searching entry function in hash table with open

addressing and aging

Figure 4.8 The flow chart of the writing entry function in hash table with open

addressing and aging

40

4.1.6.3 Hash Table Combined with Circular Buffer

For the hash table combined with circular buffer, the hash randomization function is still
Hashpjw(). The hash function is:

mxxh mod)(=

The flow charts of the searching and writing entry function are shown in Figure 4.9 and
Figure 4.10 respectively.

Figure 4.9 The flow chart of the searching entry function in hash table combined

with circular buffer

Figure 4.10 The flow chart of the writing entry function in hash table combined with

circular buffer

41

4.1.7 The Receiving Processing

The receiving processing is a function which watches the receiving status on the two
lines. Its tasks include searching and writing the entry of the received multicast frame and
to the node dedicated unicast frame in the table for rejecting duplicated and circular
frames, pushing the frame in the receiving queue if the frames are not found in either of
the two tables. If frame comes at the same time, it should compare the two frames and
make decisions. The way this function works is shown in Figure 4.11.

Frames received
at the same
time over two

lines？

Two frames are
with same DA，

SA, SEQ？

Search the entry of the frame both in
table for rejecting the duplicated

frames and in table for rejecting the
circular frames

Entry found in
either table

Drop the frame

Yes

No
For the frame received

No

Push the frame in
the receiving

queue

Yes Yes

Push the frame at
A line into the
receiving queue,
drop the frame at

B line

No
For both frames received

Figure 4.11 The flow chart of the receiving processing

4.1.8 Send Coordinator and Sending Port Use Count Down

Because each node has only one send port on each line, the using of the sending port
must be coordinated between sending and forwarding. The basic principle of coordination
is: the forwarding always has the priority. The reason for doing that is to ensure the
traffic in the ring is not delayed by the frames injected by the nodes.

The functionality of send coordinator and frame length counting down is realized by two
functions: CntFrLen() and IsSending().

The CntFrLen() implement the count-down functionality and thus simulates the time
behavior of the network. For example, if the receiving queue is not empty, the length of
the frame on top of the queue will be loaded to the counter and the counter is counted
down by one at each simulation time. During counting down, no new loading is allowed.

42

This stands for the time of using the sending port by this frame. After the counter reaches
zero, the frame will be popped from the queue, and assigned to the sending port waiting
to be received by the node next to it.

For the node next to this node, the receiving port should also be used when count-down
is ongoing at the sending porting of this node. The node next to this node should sense
that it is sending a frame. This IsSending() function tells the neighbor node that it is
sending. If a frame requires to be sent a frame to the ring, but it sense the neighbor node
is sending a frame towards it, the sending to the ring should not be allowed, because the
receiving frame will probably be forwarded later. This operation principle is shown in
Figure 4.12.

Not empty

Sending
queue A

Not empty

Receiving
queue B

Sending
Port A Counter

Not empty

Sending
queue A

Empty

Receiving
queue B

Sending
Port A Counter

Receiving a frame
from neighbor node

Is
Se
nd

in
g(
)

CntFrLen()CntFrLen()

Is
Se
nd

in
g(
)

Figure 4.12 The sending coordination principle and frame length counting down

With such principle, the number of the frames in the receiving queue will never exceed 1
on the precondition that all frame are of the same length. Let us consider the following
scenario:

Frame1 begins to
be sent to node1
just before node1
sends it own
frame

Node1Node0 Node3

t

Frame0
Frame1

Frame2

Frame3

Frame1 is pushed
into the receiving
queue of Node1
just after Frame 0
completely sent

Frame2 begins to
be sent to node1

Frame2 is received
completely at the
same time Frame1
is sent completely

From now on there
is only one frame in
the receiving queue
of Node1

t t

Figure 4.13 The number of frames in the receiving queue will never exceed 1

43

In Figure 4.13 there are always frames in the sending queue of Node1, and the neighbor
node sends frames without breaking. Assuming just short before the node0 begin to send
frame to node1, node1 begin to send its own frame (frame1). After node1 finishes
sending its own frame1, other frames in its sending queue cannot be sent because
Node1 has sensed that Node0 is sending a frame to him. Frame0 is pushed into the
receiving queue shortly after Fame0 is completely sent and should be sent next. During
sending the frame0, the node1 still continues receiving frame (frame2) from node0. When
frame1 is completely sent, frame2 is pushed into the receiving queue. From now on, the
number of frames in receiving queue stays constant at 1 and does not increase any more.

4.1.9 The Sending Port

The sending port is implemented by two functions, a variable of Frame type and a
variable of type bool.

For line A, the function SendForwardFrToPortA() pop the frame from the receiving queue
when the counter has reached zero, then assign the frame to the variable m_OutPortA of
type Frame and set the variable FrPortA TRUE.

The function SendPortA() should be called by the receiving function of the neighbor node.

It returns the value of m_OutPortA and set the FrPortA back to FALSE.

The same applies for line B.

4.1.10 The Receiving Port

The receiving port is implemented by one function, a variable of type Frame and variable
of type bool .

For line A, the function ReceiveFrA() calls the SendPortA() function of its neighbor node,
assign the variable of type Frame returned by SendPortA() to the variable
ReceivedFrameA and set the status variable FinishReceivingFromPortA TRUE.

The ReceivedFrameA and FinishReceivingFromPortA are used by the receiving
processing functionality. After the processing, FinishReceivingFromPortA is set back to
FALSE.

The same applies for line B.

4.1.11 Operation Parallelization and Simulation Process

Operation Parallelization

Because the simulation program is written in C++, in order to simulate the behavior of the
hardware, the operations of nodes must be parallelized. The parallelization is realized by
the method shown in Figure 4.14.

By doing this way, all operations of a node can be executed at the same run time and the
sequence that one node executes an operation before or after the other node does not
play a role. However, the sequence that one operation should be executed before the or
after the other operation is still to be considered.

The operation of assigning a frame to the sending port should be executed before the
reception of a frame from the neighbor node otherwise the reception of a frame is
delayed to the next runtime. The receiving processing operation should executed after
the receiving from neighbor node operation, so that it can deal with the situation where
two frames is received on both line at the same time. The send coordination and send
port use counting down is executed last because it needs the information of the sending

44

queue and of the receiving queue. Only after the receiving from neighbor node operation
and processing of received frames operation are finished, the information in the receiving
queue is ready.

Aging if the node
contains hash table

with aging

Frame Generating

Send Coordination
and Send Port Use
Counting Down

Assign Frame to Send
Port If Counting
Down Over

Receiving from
Neighbor Nodes

Processing Received
Frames

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From runtime 0 to Max_Runtime

Figure 4.14 The paraellization of the node operations

Simulation Process

The simulation process is performed in following steps:

MAC address table generation: the MAC address of each node is generated in the way
described in the section 4.1.3. If there are n nodes in the network, n MAC addresses are
generated. Some MAC addresses can have the same OUI.

An array of n nodes is created: Each element in the array is assigned by one MAC
address from the created MAC address table.

An array of n time points is generated: the element in the array indicates at what time the
corresponding node should generate a frame.

45

The main iteration: the simulation begins here. In each iteration, each node should
perform 5 or 4 operations, depends on if the node contains the hash table with aging:

1) (Aging, if the node contains the hash table with aging).

2) Generates frame if its frame generating time is reached.

3) Assign the frame to the send port if counting down for this frame is over.

4) Receiving frames from the neighbor nodes at both lines if there are frames
presented at the SentPort of the neighbor nodes.

5) Process the received frames.

6) If there are frames in the sending queue or the forwarding queue, load the
frame according to the sending coordination principle introduced in section
4.1.8 to the counter and begin counting down.

The remaining traffic iteration: after the main iteration is over, there are still frames stays
in the network. In this iteration, the nodes perform the same actions listed in main
iteration, except no node generates new frames. The iteration will stop until no frame is
left in the ring.

During the main iteration and the remaining traffic iteration, statistics are performed.
When the simulation is over, the statistic result is generated.

The flow of the simulation is illustrated in Figure 4.15.

46

MAC Address
Generation

Node Array
Initialization

Frame
Generating Time
Array Generation

OUI Table

Aging if the node
contains hash table

with aging

Frame Generating

Send Coordination
and Send Port Use
Counting Down

Assign Frame to Send
Port If Counting
Down Over

Receiving from
Neighbor Nodes

Processing Received
Frames

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From runtime 0 to Max_Runtime

Aging if the node
contains hash table

with aging

Send Coordination
and Send Port Use
Counting Down

Assign Frame to Send
Port If Counting
Down Over

Receiving from
Neighbor Nodes

Processing Received
Frames

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

From node 0 to node n ‐ 1

Remaining traffic iteration

Statistic
Generation

Figure 4.15 The simulation process

4.2 Simulation Configuration
In this section, the meaning and configuration of the parameter used in the simulation are
explained. The time unit used in the simulation is explained, the methodology applied in
the simulation and the contents of the simulation are introduced.

4.2.1 Parameters Configuration

In the Simulation, there are several parameters should be considered.

 For the network configuration:

NODE_QTY : The number of the node in the network

MAX_FRAME_LEN : The maximum frame length

GEN_FRAME_INTV : The time interval with which a node should generate a
frame

MULTI_CAST_PERCENTAGE : the percentage of the multicast frames in the
generated frames

CIRC_PERCENTAGE : the percentage of the circular frames in the
generated frames

47

 For the configuration of the circular buffer:

HASHTB_CIRC1_UNIMULTI_DEPTH : The size of the circular buffer for
rejecting the duplicated frames

HASHTB_CIRC1_CIRC_DEPTH : The size of the circular buffer for rejecting
the circular frames

 For the configuration of the hash table with open addressing and aging

HASHAGEMAX: the maximum age of each bin

HASHTB_AGE_UNIMULTI_DEPTH : The size of the table for rejecting the
duplicated frames

HASHTB_AGE_UNIMULTI_BIN_DEPTH : The max_bin of the table for
rejecting the duplicated frames, introduced in the previous chapter

HASHTB_AGE_CIRC_DEPTH : The size of the table for rejecting the circular
frames

HASHTB_AGE_CIRC_BIN_DEPTH : The max_bin of the table for rejecting
the circular frames

 For the configuration of the hash table combined with circular buffer

HASHTB_CIRC0_UNIMULTI_DEPTH : The size of the table for rejecting the
duplicated frames

HASHTB_CIRC0_UNIMULTI_BIN_DEPTH : The max_bin of the table for
rejecting the duplicated frames

HASHTB_CIRC0_CIRC_DEPTH : The size of the table for rejecting the
circular frames

HASHTB_CIRC0_CIRC_BIN_DEPTH : The max_bin of the table for rejecting
the circular frames

The consideration to each parameter is discussed as bellow.

For the network configuration

 NODE_QTY:

As discussed in section 3.2, the number of the node in the network has an
influence on the size of circular buffer. If a network has n nodes, then for the
unicast traffic, the size of the circular buffer should be at least n – 2.

For multicast frames, the requirement is released. As shown in Figure 4.16,
node1 send a multicast frame. If there is no delay during the traffic, the two
frames will reach node4 at the same time. Therefore the delay between the two
lines is zero in this case.

However, because the table is used both for the multicast and unicast frames,
the minimum table size should be n - 2.

48

3

6

2

1

4

5

3

Sender of the
multicast frame

Should be
rejected here

Figure 4.16 The multicast traffic in the ring, a multicast frame is sent in two
directions and reaches the destination with zero delay

3

6

2

1

4

5

3

Sender of the
circular frame

Should be
rejected here

Figure 4.17 The circular frame should be rejected after it goes through the ring one

round

For the circular frames, it should be rejected after it goes through the ring one
round. Therefore the minimum size of the circular buffer for rejecting the circular
frame should be at least n. This is shown in Figure 4.17.

 MAX_FRAME_LEN and GEN_FRAME_INTV

A typical application scenario of HSR is the process bus. It carries real-time data
from the measuring units, which requires a deterministic mode of operation. This
means the period of generation of a frame by the units is deterministic. The
generation of the frame takes place at a fixed time in a period. Because the
information gathered by the unit on the bus has a fix format, the length of all the
frames is the same, which is given by the MAX_FRAME_LEN in the simulation

 MULTI_CAST_PERCENTAGE, CIRC_PERCENTAGE

On the process bus, most of the frames are mulicast frame. According to the
application experience the MULTI_CAST_PERCENTAGE parameter is set to 0.9.
The CIRC_PERCENTAGE is set to 0.0001.

For circular buffer:

49

 HASHTB_CIRC1_UNIMULTI_DEPTH

The size of the table should be at least n – 2, if n is the number of nodes in the
network. Here it is chosen as n.

 HASHTB_CIRC1_CIRC_DEPTH

The size of the table should be at least n, if n is the number of nodes in the
network

For hash table with open addressing and aging:

 HASHAGEMAX

The maximum age of each bin should be at least
LENFRAMEMAXn __)2(∗− , as stated in section 3.3.3.

 HASHTB_AGE_UNIMULTI_DEPTH

It should be at least n – 2, if n is the number of nodes in the network. Here it is
chosen as n.

 HASHTB_AGE_UNIMULTI_BIN_DEPTH

Varies from 2 to 5

 HASHTB_AGE_CIRC_DEPTH

It should be at least n, if n is the number of nodes in the network

 HASHTB_AGE_CIRC_BIN_DEPTH :

 Varies from 2 to 5

For hash table combined with circular buffer:

 HASHTB_CIRC0_UNIMULTI_DEPTH

It should be at least n – 2, if n is the number of nodes in the network. Here it is
chosen as n.

 HASHTB_CIRC0_UNIMULTI_BIN_DEPTH

Varies from 2 to 5

 HASHTB_CIRC0_CIRC_DEPTH:

It should be at least n, if n is the number of nodes in the network

 HASHTB_CIRC0_CIRC_BIN_DEPTH

Varies from 2 to 5

4.2.2 Time Unit of the Simulation

The time unit of the simulation is defined by the time needed for transmitting an octet on
the Ethernet line.

If the line speed of the Ethernet is 100Mbits/s, then the one time unit in the simulation
stands for nsns 8040*2 = ; if the line speed is 1Gbits/s, one time unit stands for 8ns.

4.2.3 Simulation Methodology and Contents

50

This simulation is parameterized for the bus traffic according to the standard IEC 61850-
9-2 [5]. In this standard, the frame generating interval of each unit on the ring should be
fixed to 250us. Which is 250us/80ns = 3125 after conversion to the simulation time unit.
The frame length is defined as 138 Bytes. Therefore, the rejection ratio is measured with
the node number as variable.

There are five methods to be measured:

1) The circular buffer

2) The hash table with open addressing and aging with linear probing

3) The hash table with open addressing and aging with quadratic probing

4) The hash table with open addressing and aging with double hashing

5) The hash table combined with circular buffer

For each method, the rejecting ratio of the duplicated frames and circular frames are
measured given the same node number. Each measurement will be repeated 5 times;
the average rejecting ratio is calculated. For the hash table with aging, and hash table
combined with circular buffer, measurements are performed for each bin number.
Besides, the number of the frame in the sending queue and the frame discarding ratio are
also measured. These two parameters are helpful in explaining the communication
situation in the ring.

The simulation will run 1000000 time units, which corresponds a time of 80ms in reality
with the 100Mbits/s Ethernet.

Table 4.1 shows the contents of the simulation.

Note for the hash table with circular buffer method, some simulation cannot be performed.
Because the size of the table is chosen as the number of nodes in the ring, the bin
number should fully divide the table size. The shaded square in Table 4.1 indicated the
simulation which cannot be performed.

Some node numbers are deliberately chosen as power of 2, because the mod operation
is then just choosing the corresponding least significant bits of the key.

 Node Number

 8 16 20 25 32 40 45 50 55 60 64 70 75 80

Circular Buffer

Hash
table
with
Aging

linear
probing

2
bins

Multicast
Rejection
Ratio

Unicast
Rejection
Ratio

Frame
Discarded
Ratio

Num of
Frame in
the

51

Sending
Queue

3
bins

Same as
above

4
bins

Same as
above

5
bins

Same as
above

quadratic
probing

2
bins

Same as
above

3
bins

Same as
above

4
bins

Same as
above

5
bins

Same as
above

double
hashing

2
bins

Same as
above

3
bins

Same as
above

4
bins

Same as
above

5
bins

Same as
above

Hash
table
with
circular
buffer

2 bins
Same as
above

3 bins
Same as
above

4 bins
Same as
above

5 bins
Same as
above

Table 4.1 The simulation contents

4.3 Simulation Results and Discussion
In this section, the simulation results are presented, compared and discussed. The
relation between the frame rejection ratio and the number of nodes in the network is
explained.

The result of this simulation is statistics with the following contents:

 The number of the unicast frames generated in the network during the runtime
(genuniN _)

 The number of the multicast frames generated in the network during the runtime
(genmultiN _)

52

 The number of the circular frames generated in the network during the runtime
(gencircN _)

 The accepted unicast frames in the network (acptuniN _)

 The rejected unicast frames in the network (rejuniN _)

 The accepted multicast frames in the network (acptmultiN _)

 The rejected multicast frames in the network (rejmultiN _)

 The number of nodes a circular buffer has gone through before being rejected

The rejection ratio of the unicast frame is calculated as

)(
)(

1
__

__

rejuniacptuni

rejuniacptuni
unicast NuniN

NN
R

+

−
−= (4.1)

For example, if the number of accepted unicast frame equal to the number of rejected
unicast frame, the rejection ratio is 100%.

The rejection ratio of the multicast frame is calculated as

)1_(*
)]1_(*[

1
_

__

−

−−
−=

NumNodeN
NumNodeNN

R
genmulti

genmultiacptmulti
unicast

)1_(*

2
_

_

−
−=

NumNodeN
N

genmulti

acptmulti (4.2)

For example, if there are 20 nodes in the network, 100 multicast frames is generated
during the runtime, the accepted multicast frame should be 19*100 = 1900. If the number
of accepted multicast frame is 2000, the rejection ratio of the multicast frame is 94.3%.

A successful rejection of a circular frame is expressed by the number of nodes it has
gone through before being rejected. If there are 20 nodes in the network, a successful
rejection means that the circular frame is rejected just after it has gone through the ring
for one round.

4.3.1 The Simulation Results of Circular Buffer

The simulation results of circular buffer are presented below.

Figure 4.18 shows that the multicast frame rejection ratio stays at the level of 100 percent,
but drops dramatically when the number of nodes in the ring reaches 80. Figure 4.19
shows that the unicast rejection ratio stays at the level of 100 percent, but begins to drop
dramatically after the number of nodes in the ring exceeds 60.

53

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

Figure 4.18 The multicast frame rejection ratio of circular buffer

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

Circular buffer

Figure 4.19 The unicast frame rejection ratio of circular buffer

54

4.3.2 The Simulation Results of Hash Table with Aging

Linear Probing

Figure 4.20 and Figure 4.21 shows the multicast frame rejection ratio and unicast frame
rejection ratio of a hash table with aging and linear probing respectively. The rejection
ratios of different bin numbers are drawn on the same figure.

The mulicast frame rejection ratio drops dramatically after the number of nodes in the ring
exceeds 64, which is also observed in the circular buffer. The unicast frame ratio has the
similar tendency, besides, the lower the bin number, the faster the rejection ratio
degrades. The linear probing with 5 bins has the best performance.

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.20 The multicast frame rejection ratio of hash table with aging and linear

probing

55

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.21 The unicast frame rejection ratio of hash table with aging and linear

probing

Quadratic Probing

Figure 4.22 and Figure 4.23 shows the multicast frame rejection ratio and unicast frame
rejection ratio of hash table with aging and quadratic probing respectively. The rejection
ratios of different bin numbers are drawn on the same figure. The same tendency is
repeated again as it is in the quadratic probing.

56

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.22 The multicast frame rejection ratio of hash table with aging and

quadratic probing

57

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.23 The unicast frame rejection ratio of hash table with aging and quadratic

probing

Double Hashing

Figure 4.24 and Figure 4.25 shows the multicast frame rejection ratio and unicast frame
rejection ratio of hash table with aging and double hashing respectively. The rejection
ratios of different bin numbers are drawn on the same figure. The same tendency is
repeated again as it is in the linear probing.

58

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.24 The multicast frame rejection ratio of hash table with aging and double

hashing

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.25 The unicast frame rejection ratio of hash table with aging and double

hashing

59

4.3.3 Simulation Results of Hash Table Combined with Circular Buffer

Figure 4.26 and Figure 4.27 shows the multicast frame rejection ratio and unicast frame
rejection ratio of hash table combined with circular buffer. For each node number, only
the bin numbers which can divide it are simulated.

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.26 The multicast frame rejection ratio of hash table combined with circular

buffer

60

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

2 bins
3 bins
4 bins
5 bins

Figure 4.27 The unicast frame rejection ratio of hash table combined with circular

buffer

4.3.4 Comparison of the Proposed Methods

The simulation results of the hash table with aging and hash table combined with circular
buffer shows that the greater the bin number, is the rejection ratio higher. Therefore, the
following methods are compared:

1) Circular buffer

2) Hash table with aging and linear probing, 5 bins

3) Hash table with aging and quadratic probing, 5bins

4) Hash table with aging and double probing, 5 bins

5) Hash table with aging and double probing. 5 bins

Figure 4.28 shows the simulation results of the rejection ratio of the multicast frames. All
the proposed methods have almost 100 percent rejection ratio when the node number is
below 60. The performance of all the methods begins to degrade dramatically when the
node number exceeds 60. When the node number reaches 80, the methods lose their
functionality totally.

Figure 4.29 shows the simulation results of the rejection ratio of the unicast frames. The
performance of all the methods begin to degrade after the node number exceeds 45. The
performance of the circular buffer drops slightly slower than other methods. The
performance of the hash table combined with circular buffer drops slightly faster than
other methods.

Figure 4.30 and Figure 4.31 give a closer view of the multicast and unicast rejection ratio
in the region between the node number of 0 to 50.

61

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.28 The multicast frame rejection ratio of proposed methods

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.29 The unicast frame rejection ratio of proposed methods

62

8 16 20 25 32 40 45 50
99.9

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.30 The multicast frame rejection ratio of proposed methods in the region

of node number 0 to 50

63

8 16 20 25 32 40 45 50
98.2
98.3
98.4
98.5
98.6
98.7
98.8
98.9

99
99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9
100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.31 The unicast frame rejection ratio of proposed methods in the region of

node number 0 to 50

For multicast frames, it can be observed from Figure 4.30 that the hash table with circular
buffer has the best performance; the hash table with aging double hashing has the worst
performance. The performance of the circular buffer, hash table with aging and quadratic
probing, hash table with aging and linear probing and hash table combined with circular
buffer maintains above 99 percent in this region.

4.3.5 Further Discussions

Why Rejection Ratio of Multicast Higher than Unicast

In the simulation it is observed that the rejection ratio of multicast frames is higher than
unicast frames. This is because the frame receiving delay of multicast frames between
the two lines are smaller than unicast frames. The smaller the delay, the smaller the
possibility with which the entry of a frame is overwritten. This point has already been
explained in Section 4.2.1.

The Reason for the Performance Degradation

In the simulation it is observed that the rejection ratio of both multicast and unicast
frames degrades dramatically after the nodes in the ring exceeds a certain number. To
see the reason of this, the scenario illustrated below is first introduced.

In Figure 4.32, all nodes generate multicast frames at the same time. After generation,
each frame can be sent at once without any delay. After each frame has traveled half
number of nodes in the ring, they are rejected at the same time. Now there are no frames
in the ring. If at this time all the nodes generate frame again, the generated frames can
be sent without any delay and the same happens as before. If the frame generation
period is smaller than this time, the generated frames will accumulate the sending queue.
And there is no such time that there is no frame in the ring.

64

The above situation is just a special case, if the nodes generate frames at different time
in a period, the situation is more complex.

Therefore, the period with which nodes generate multicast frame should satisfy the
following conditions:

nodeatdelay
numbernode

generationframe t
n

T __
_

_ *
2

≥ (4.3)

For the unicast frame the condition should be

nodeatdelaynumbernodegenerationframe tnT ____ *≥ (4.4)

Here nodeatdelayt __ is the time needed by a node for transmitting a frame. It is determined
by the length of a frame and plus some overhead time for processing the frame.

In our situation the length of the frame is fixed in the IEC 61850-9-2 standard, the frame
generation period is thus proportional to the number of nodes in the ring.

numbernodegenerationframe nT __ ∝ (4.6)

The period with which a node generates a frame is also fixed in the IEC 61850-9-2
standard, which means generationframeT _ is fixed. Therefore, the following condition should
be satisfied:

fixedgenerationframe TT ≤_ （4.7）

Therefore, the number of nodes in the ring cannot exceed a certain number.

3

6

2

1

4

5

3

All senders send
multicast frame
at the same

time

All frames
should be

rejected at the
same time

All senders send
multicast frame
at the same

time

All frames
should be

rejected at the
same time

All senders send
multicast frame
at the same

time

All frames
should be

rejected at the
same time

Figure 4.32 All nodes generate a frame at the same time

65

Now let us consider the situation that the supposed frame generation period is greater
than the fixed frame generation period, which means in turn that the number of nodes in
the ring has exceeded a certain number.

In Figure 4.33, some frames accumulate in the sending FIFO of each node. The traffic on
both lines is heavy. According to the sending forwarding coordination principle introduced
in Section 4.1.8, as long as there are frames needing to be forwarded, the frames in the
sending FIFO should wait. Now a multicast frame in the sending queue of B line has its
chance to send, this chance can be created by accepting a unicast frame or rejecting a
duplicated frame. The sent frame begins to traveling in the ring. During this time, the
frame in the sending queue of line A does not get its chance to send, this could happen if
it always failed to reject multicast frames or there is no unicast frame dedicated to it. In
both cases, the node has to forward the frame so that the frame in the sending queue A
always does not have its chance to send.

Because the frame on the A line is not sent, its entry does not exist in the table of all
nodes, the frame sent on B line can thus go through the ring and come back to Node1
and be discarded there.

3

6

2

1

4

5

3

A frame of a pair
gets its chance to

send

A
 B

A
 B

A frame of a pair
does not has chance

to send
The sent frame

comes back after a
round

Figure 4.33 The frame in sending queue B gets chance to send, whereas the frame
in sending queue B has to wait for a long period such that the entry of frame sent

at line B are all overwritten

Now, the frame in the sending queue A has to wait for such a long time that the entries of
the frame sent on line B is overwritten in the table of all nodes, until it is sent. The frame
sent on line A thus also travels through the ring and discarded when it returns Node1.

In such a way, the rejection ratio can dramatically degrade and the number of discarded
frames, the number of frames in the sending queue increases dramatically.

66

In Figure 4.34 and Figure 4.35 the percentage of discarded frames and the number of
frames in the sending queue are presented for the methods circular buffer, hash table
with aging and linear probing, hash table with aging and quadratic probing, hash table
with aging and double hashing and hash table combined with circular buffer. The results
confirm the above considerations.

It can be observed in Figure 4.29 that the discarded frame ratio begin to rise at the node
number of 60. According to equation 4.1 the frame generation period is supposed to be

ususnsT generationframe 2503312/60*80*138_ >==

, which verifies the consideration stated before.

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0

10

20

30

40

50

60

70

80

90

100

Number of nodes in the ring

Fr
am

e
di

sc
ar

d
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.34 The discarded frame ratio

67

8 16 20 25 32 40 45 50 55 60 64 70 75 80
0

50

100

150

200

250

300

Number of nodes in the ring

Th
e

m
ax

 n
um

be
r o

f f
ra

m
es

 in
 th

e
se

nd
in

g
qu

eu
e

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
Hash table combined with circular buffer, 5 bins

Figure 4.35 The max number of frames in the sending queue

4.4 The Chosen Algorithm and Modification
In this section, an algorithm is chosen for the implementation of the switch element.
Some modification is done for the chosen algorithm to achieve better performance.

4.4.1 Choosing an Algorithm for Implementation

As shown in Figure 4.30, the multicast frame rejection ratio of the circular buffer, hash
table with aging and quadratic probing, hash table with aging and linear probing and hash
table combined with circular buffer are the same. Whereas the Figure 4.31 shows that the
circular buffer has the highest unicast rejection ratio; hash table with aging and double
hashing has the lowest rejection ratio; the rejection ratios of hash table with aging and
quadratic probing, hash table with aging and linear probing and hash table combined with
circular buffer are in between.

Although the circular buffer has the best performance, one should go through the entire
table to verify if an entry is in table or not. As stated in chapter 3, the searching time is too
long. The hash table with aging requires complex circuit implementation because its
aging mechanism and memory access serialization among the aging, searching and
writing process. Hash table combined with circular buffer achieves almost the same good
performance as the hash table with aging, but requires only much simpler circuit
implementation, therefore, the hash table combined with circular buffer is chosen to
implement.

4.4.2 Modification before Implementation

Figure 4.26 shows that unicast frame rejection ratio of hash table combined with circular
buffer is slightly worse than the rejection ratio of hash table with aging and quadratic

68

probing, hash table with aging and linear probing. To improve the rejection ratio of the
unicast frames, two hash tables are used for unicast and multicast frames separately
instead of one. There are three advantages by doing this

1) The entry of the unicast frame and multicast frame will not overwritten by
each other.

2) Only the source address and the sequence number of the incoming frame
need to be hashed, because the destination address of the frame in the
table for unicast frames must be the MAC address of this node and in the
table for multicast frames the destination address must be the multicast
address.

3) The entry in both tables is reduced from DA, SA, SEQ to SA, SEQ, the
reason is the same as above. More space in the memory can therefore be
saved.

Because the bin number of the hash table combined with circular buffer must divide the
hash table size and the mod operation is much simpler if the table size is a number of
power of 2, the bin number and the table size are both chosen to a number of power of 2.

In the implementation, the size of the table for unicast is chosen to 64, the size of table
for multicast is chosen to 32 and the size of table for circular frame is chosen to 64. The
max_bin number is chosen to 4 for all tables.

Simulation is performed again to verify the performance of the modified algorithm. The
result of multicast frame rejection ratio is shown in Figure 4.36, the result of unicast frame
rejection ratio is shown in Figure 4.37..

8 16 20 25 32 40 45 50 55 60 64 70
99.9

99.91

99.92

99.93

99.94

99.95

99.96

99.97

99.98

99.99

100

Number of nodes in the ring

M
ul

tic
as

t r
ej

ec
tio

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
The chosen algorithm

Figure 4.36 Comparison of the rejection ratio of the multicast frames between the

chosen algorithm and the other proposed algorithms

69

8 16 20 25 32 40 45 50 55 60 64 70
97.5
97.6
97.7
97.8
97.9

98
98.1
98.2
98.3
98.4
98.5
98.6
98.7
98.8
98.9

99
99.1
99.2
99.3
99.4
99.5
99.6
99.7
99.8
99.9
100

Number of nodes in the ring

U
ni

ca
st

 re
je

ct
io

n
ra

tio
 (%

)

Circular buffer
Hash table with aging, linear probing, 5 bins
Hash table with aging, quadratic probing, 5 bins
Hash table with aging, double hashing, 5 bins
The chosen algorithm

Figure 4.37 Comparison of the rejection ratio of unicast frame between the chosen

algorithm and the other proposed algorithms

It is shown that both the rejection ratio of the multi- and unicast frame of the chosen
algorithm have reached 100% in the node number range of 0 to 64.

70

5 FPGA Implementation
In this chapter, the HSR protocol introduced in Chapter 2 together with the chosen
algorithm for rejecting the duplicated and circular frames in Chapter 4 is implemented in
FPGA. The hardware platform, the structure of the design and the pin designation are
introduced. The functionality of each component is shortly described. The sending flow,
receiving flow and forwarding flow are illustrated. Several important design issues are
explained. The design is synthesized in the Quartus design environment. After synthesis,
the post-synthesis simulation is performed in ModelSim to evaluate all the functionalities.

5.1 The Hardware Platform and Interface
A multi-channel Ethernet interface is being developed at ABB, which can implement the
HSR protocol. One configuration of this interface is shown in Figure 5.1.

Figure 5.1 One possible configuration of the Ethernet interface on [21]

The CPU used here is the MPC8247 CPU from Freescale Semiconductor. It has two MII
interfaces. The FPGA is configured to have 3 MII interfaces, one is connected to MII in
the CPU and the other two are connected to two PHYs. With such a configuration, the
switch element implemented in the FPGA can receive a frame from the CPU, duplicate it
and send the two frames through the two MII interfaces to two PHYs which are
connected to the ring. The switching of the frame received from Ethernet1 or Ethernet2
are performed by the switch element in the FPGA. Only a received frame dedicated to
the receiving node is passed to the CPU.

5.2 Design Process and Methodology
Figure 5.2 shows the FPGA design process and methodology. The entry of this process
is a VHDL file which describes the functionality of the circuit.

The Register Transfer Level (RTL) functional simulation verifies only the functionality, the
timing information of the real components on the device is not included.

The Synthesis maps the high level functional description of the VHDL file to the gate level
structure which can be realized on the Device. The Synthesis tool can generate a netlist
of the real components on the device and also the timing information of these
components. After synthesis, the Post-synthesis simulation is performed. The Post-
synthesis simulation simulates not only the functionality of the design but also its timing
behavior.

 In “place and route”, the layout is performed by the device layout tools. This process
generates a netlist and the timing delay file in Standard Delay Format (SDF). This file
contains not only the timing information of the components but also the timing information
of the layout.

71

The simulation after “Place and Route” is thus closest to the actual hardware[22]. In this
thesis the process has been gone through till the post-synthesis simulation, the
simulation after “place and route” and the hardware implementation is not performed due
to the time constraints of the thesis.

Design Entry

RTL Functional Simulation

Synthesis

Output
Net‐list
File

Post‐Synthesis
Simulation

Output
Net‐list
File

Place and Route

Time
Delay
File

Gate Level Simulation

Gate Level
Simulation
Liberary
File

Post
Synthesis
Simulation
Liberary
File

Functional
Simulation
Library File

Test bench

Figure 5.2 The FPGA design process and methodology[23]

5.3 Functional Design
In this section, the functionality and the design considerations of the each component will
be explained in detail. The basic technique used in the design is the Finite State Machine
(FSM). Almost all the control blocks are implemented with FSM.

5.3.1 An Overview of the Switch Element Structure

Block Diagram of the Switch Element

Figure 5.3 shows the block diagram of the switch element. The three pairs of receiving
and sending ports (RX_HST, TX_HST, RX_A, TX_A, RX_B, TX_B) are all MII interface.
The Frame received from the host (CPU) is pushed into the sending FIFO waiting to be
sent. Frames received from the A line or B line is pushed into the Receiving FIFO by the
receiving main routine. The decision of discarding duplicate frames and the switch
decision (forward, accept or discard) is made by the receiving processing unit after
searching the hash tables. Frames to be forwarded are pushed into the forwarding FIFO,
frames to be accepted are pushed into the accepting FIFO. The forwarding and sending
are coordinated by the sending coordinator, the sending of the accepted frames to the
host is coordinated between the two accepting FIFO by the receiving coordinator.

72

Se
nd

in
g

FI
FO

A

Fo
rw

ar
di
ng

FI
FO

 B

Rx
FI
FO

A
Rx
FI
FO B

Re
ce
iv
e

Co
or
di
n

at
or

M
U
X

Re
ce
iv
in
g

M
ai
n

Ro
ut
in
e

Re
ce
iv
in
g
Pr
oc
es
si
ng

Ta
bl
e
fo
r

m
ul
tic
as
t

B

Ta
bl
e
fo
r

ci
rc
ul
ar

fr
am

es
 B

Ta
bl
e
fo
r

un
ic
as
t
B

M
U
X

Ta
bl
e
fo
r

ba
d
fr
am

es

B

Re
ce
iv
in
g

M
ai
n

Ro
ut
in
e

Re
ce
iv
in
g
Pr
oc
es
si
ng

Ta
bl
e
fo
r

m
ul
tic
as
t

A

Ta
bl
e
fo
r

ci
rc
ul
ar

fr
am

es
 A

Ta
bl
e
fo
r

un
ic
as
t
A

M
U
X

Ta
bl
e
fo
r

ba
d
fr
am

es
A

Se
nd

in
g

FI
FO

B
Fo
rw

ar
di
ng

FI
FO

 A

Se
nd

Co

or
di

na
to
r

A

M
U
X

M
U
XSe

nd

Co
or
di

na
to
r

B

TX
_A

RX
_A

TX
_B

RX
_B

TX
_H

ST
RX

_H
ST

Figure 5.3 The block diagram of the switch element

73

Pin Definition of the Switch Element

tx_clk_hst
tx_sreset_hst
tx_enable_hst
tx_data_hst[3:0]
tx_dv_hst
tx_er_hst

rx_clk_hst
rx_sreset_hst
rx_enable_hst
rx_data_hst[3:0]
rx_dv_hst
rx_er_hst

tx_clk_a
tx_sreset_a
tx_enable_a

tx_data_a[3:0]
tx_dv_a
tx_er_a

rx_clk_a
rx_sreset_a
rx_enable_a

rx_data_a[3:0]
rx_dv_a
rx_er_a

tx_clk_b
tx_sreset_b
tx_enable_b

tx_data_b[3:0]
tx_dv_b
tx_er_b

rx_clk_b
rx_sreset_b
rx_enable_b

rx_data_b[3:0]
rx_dv_b
rx_er_b

rx_crs_hst
rx_col_hst

rx_crs_a
rx_col_a

rx_crs_b
rx_col_b

Figure 5.4 The pin definition of the switch
element

The Pin Definition of the Switch Element

Interface to Host

Pin Name Description

tx_clk_hst TX clock provided by host

tx_data_hst[3:0] Transmit data to switch element

tx_dv_hst TX data valid

tx_sreset_hst TX reset provided by host

tx_enable_hst TX enable provided by host

tx_er_hst TX error

rx_clk_hst RX clock provided by host

rx_sreset_hst RX reset provided by host

rx_enable_hst RX enable provided by host

rx_data_hst[3:0] Receive data from switch element

rx_dv_hst RX data valid

rx_er_hst RX Error

rx_crs_hst Carrier sense

rx_col_hst Collision

Interface to Port A

tx_clk_a TX clock provided by host

tx_data_a[3:0] Transmit data to PHY at line A

tx_dv_a TX data valid

tx_sreset_a TX reset provided by host

tx_enable_a TX enable provided by host

tx_er_a TX error

rx_clk_a RX clock provided by PHY at line A

rx_sreset_a RX reset provided by host

rx_enable_a RX enable provided by host

rx_data_a[3:0] Receive data from PHY at line A

rx_dv_a RX data valid

rx_er_a RX Error

rx_crs_a Carrier sense

rx_col_a Collision

Interface to Port B

tx_clk_b TX clock provided by host

tx_data_b[3:0] Transmit data to PHY at line B

tx_dv_b TX data valid

tx_sreset_b TX reset provided by host

tx_enable_b TX enable provided by host

tx_er_b TX error

rx_clk_b RX clock provided by PHY at line B

rx_sreset_b RX reset provided by host

rx_enable_b RX enable provided by host

rx_data_b[3:0] Receive data from PHY at line B

rx_dv_b RX data valid

rx_er_b RX Error

rx_crs_b Carrier sense

rx_col_b Collision

Table 5.1 The pin description of the switch element

74

Figure 5.4 shows the pin definition of the switch element and Table 5.1 shows the pin
description. The switch element designed in this thesis works only in full duplex mode,
therefore the both the carrier sense pin and the collision pin from PHY are just connected
to the switch element but not used inside the switch element. The rx_er_hst, rx_crs_hst
and rx_col_hst signals are connected to the GND inside the switch element, which
means there is no connection error, collision on the channel between the host and the
switch element. The Management Data Input/Output (MDIO) interface is also not
implemented in this thesis.

5.3.2 The Receiving Main Routine

The main tasks of the receiving main routine are pushing the received frame into FIFO,
pass the received frame to the next unit through the local link interface, performing CRC
check on the received frame, dropping the frame if the frame is found in the table for
rejecting duplicated and circular frames, appending the garbling sequence when the
received frame is a bad frame. The block diagram of the receiving main routine is shown
in Figure 5.5. The functionality of each block is introduced shortly below.

Figure 5.5 The block diagram of the receiving main routine

75

MII Processing

The MII processing detects the rising edge of the rx_dv signal, informs the receive control
block the arrival of the frame. It also transforms the 4-bits wide MII data format to 8-bits
wide data format, this is used by the DPRAM block, the receive processing unit and the
CRC check block. Besides, it sends the rx_er signal to the error assertion.

Frame Counter

The frame counter block counts the number of bytes of the received frame. Besides, the
frame counter also tells the CRC check block when to begin the CRC check (the CRC
check begins after the preamble and the frame start delimiter.

Error Assertion

The error assertion block asserts an error if either the received frame count number is
smaller than 64 or greater than 1536, or the CRC check is not passed or the rx_er is set.
If error is asserted, the receiving process will be stopped and the frame is dropped. The
bad frame handling is introduced more in detail in the Section 2.3.5.

Overflow Functionality and FIFO Status

The overflow functionality tells if the FIFO is already full. The FIFO status tells how many
percent of the FIFO has been used.

Write and Read Domain Signal Communication

The write and read domain signal communication block is responsible to synchronize the
signal in one clock domain with another clock domain. For example, if bad frame is
asserted in the write clock domain, the bad frame signal should be sensed by the read
clock domain so that the local link read control can interrupt the reading process and
append the garbling sequence. The transferring of signals from one clock to another
clock domain will be explained in more detail in section synchronization between clock
domains.

Frame in FIFO Count

The frame in FIFO count block counts the number of frames in the FIFO. It can inform the
local link read control to begin the read process.

Read Address Control and Write Address Control

The read address control and the write address control manage the read address and the
write address of the DPRAM. They store also the read and write address of last time a
good frame received as the start address of this time. If a bad frame is received, the write
and read address are reseted to the start address of this time.

Garbling Sequence Appender

The garbling sequence appender appends the garbling sequence at the end of a bad
frame.

Local Link Interface

The frame stored in the FIFO is passed to the RX_FIFO or Forwarding FIFO through the
local link interface.

Forward Coordination

The forward coordination asserts the signal take_sending_port and sends it to the send
coordinator to inform that a frame is being received. The frame in the TX_FIFO on the
other line should wait if the frame being received is going to be forwarded to the sending

76

port of the other line. The take_sending_port signal can be deasserted by the Receiving
Processing if this frame is a unicast frame dedicated to this node or the entry of this
frame is found in the hash table for rejection duplicates or the frame should be discarded.

Interface to Receiving Processing

The interface to receiving processing informs the Receiving Processing unit when to
begin loading the source address, destination address, and sequence number. It also
provides the received data after the format transformation to the Receiving Processing
unit. One the other hand, it passes the control signal from the Receiving Processing. For
example, if the entry of a frame is found in the table for rejecting the duplicated frames,
the Receiving Processing unit will send a signal back to the Receiving Main Routine, so
that the receiving process is stopped and the frame is dropped.

Receive Control and Local Link Read Control

The receive control and the local link read control are two main control units which
coordinate between different blocks.

In this unit, the receive control, lock link read control, CRC check, Overflow functionality
are implemented with FSM.

5.3.3 The Receiving Processing

The tasks of the receiving processing are loading the source address, the destination
address, and sequence number of the received frame, making the switch decision
(forwarding, accepting and discarding), providing the entry for the hash tables,
randomizing the key for the hash function. Figure 5.6 shows the block diagram of the
Receiving Processing Unit. The functionality of each block is introduced shortly below.

Interface to the Write Domain of Receiving Main Routine

The source address, the destination address and the sequence number and the load
enable signal are passed from the receiving main routine through this interface. The drop
frame command is sent to the receiving main routine through this interface.

Hash Key Randomization Functionality

The hash key randomization function Hashpjw() is implemented here. The calculation of
the key is done byte by byte every clock. The calculation of the hash key for the circular
frame begins with destination address and ends with the sequence number. The
calculation of the hash key for the unicast and multicast frame begins with the source
address and ends with sequence number. After the calculation is done, the randomized
keys are registered to the “Interface to Hash Table for Multicast, Unicast, Circular, Bad
Frame”.

Interface to Hash Table for Multicast, Unicast, Circular, Bad Frame

The entry of the frame in the hash table for circular frame which consists of destination
address, source address and sequence number, the entry of the frame in the hash table
for unicast and multicast which consists of the source address and sequence number,
are registered to this interface. The randomized hash keys are also registered to this
Interface. The signal to start searching entry in the hash table is passed to the hash
tables through this interface. The entry_found and entry_not_found signals are sent back
by the hash table for unicast, multicast and circular frames respectively. If at least one
entry is found in the three tables, the receiving process is stopped, and frame is dropped.
Only when entry is not found in all the three tables, the receiving process continues.

77

Figure 5.6 The block diagram of the receiving processing

DA, SA, SEQ Compare Window

This block can handle the situation where two same frames are received at two lines at
the same time. The way how it works will be explained in more detail in section DA, SA,
SEQ compare window.

78

Switch Decision

The switch decision block makes the switch decision by comparing the received
destination address and source address.

a) Discard when the source address of the received frame = MAC address

b) Forward when the destination address of the received frame != MAC address

&& the source address of the received frame != MAC address

c) Accept when the destination address of the received frame = MAC address

&& the source address of the received frame != MAC address

d) Forward and Accept when the destination address of the received frame =
multicast address && the source address of the received frame != MAC address

e) No Frame if there is no frame, the switch decision is NULL, which does not allow
any operation on the local link interface.

If the unicast frame is dedicated to this node, the receiving processing will send a signal
to the forward coordination block in the receiving main routine to free the occupation of
the sending port on the other line.

Switch Decision Store Array

If there are more than one frame in the FIFO of the receiving main routine, the
corresponding switch decision should also be stored in the switch decision array, so that
when the frame is popped from the FIFO, its corresponding switch decision is also
popped. In the correct designed system there will be no more than one frame in the FIFO,
this function is preserved for possible future use.

Path Decision in Array Count

This block count the number of switch decisions stored in the array. If the number is not
equal to 0, the switch decision output processing should be started.

Read Operation on the Local Link Interface Finished

This signal is used to synchronize the local link read control in the receiving main routine
and the switch decision output processing. If the read operation on local link interface is
finished, this signal informs the switch decision output processing to register the new
switch decision.

Switch Decision Output

The switch decision in the switch decision array is registered to the switch decision output.
The decision is used to switch the MUX connected to the local link interface of the
receiving main routine.

The block write index control, read index control and the write read domain signal
communication is the same as in the receiving main routine and therefore not repeated
here.

5.3.4 Hash Table

The block diagram of the hash table is shown in Figure 5.7. The entry, the randomized
hash key and the signal to start searching are passed from the interface to receiving
processing. The positions of the write bin and read bin in each bucket are stored in the
bin store array. The content read from the DPRAM is compared with the entry input on

79

the interface to receiving processing. If they are equal, the entry_found signal is asserted
and sent back to the interface to receiving process. If the max_bin is reach and the entry
is still not been found, the entry_not_found signal is asserted and sent back to the
interface to receiving g process.

The write process is very simple. The entry to be written is presented on the interface to
receiving processing of this line. If the write enable is set to “high”, the entry is written into
RAM on the next rising edge of the clock at the position indicated by the write bin.

Figure 5.7 The block diagram of the hash table

5.3.5 Forwarding FIFO

The forwarding FIFO receives the frame passed by the receiving main routine through
the local link interface, and send it without any modification through the MII interface to
the PHY.

MII Processing

The MII processing block here transfers the 8-bits width data to 4 bits width data.

Forward Coordination

The Forward Coordination block sends signal to inform the sending coordinator that the
forwarding process wants to take control of the sending port.

The functions of other blocks are the same as in the receiving main routine and will not
be repeated here. Figure 5.8 shows the block diagram of the forwarding FIFO.

80

Local Link Interface

Local Link Read
Control

DPRAM

Write
Control

Read
Control

MII Transmit
Control

Write Read Domain
Signal

Communication

Frame
In FIFO
Count

Overflow
Check
& FIFO
Status

MII
Process
ing

Forward
Coordination

Figure 5.8 The block diagram of the forwarding FIFO

5.3.6 RX_FIFO

The RX_FIFO receives the frame sent by the receiving main routine and send it towards
the MII interface to the host. The block diagram of the RX_FIFO is same as the It has a
unit called garbling sequence detector which can detect the corrupt sequence. If a corrupt
sequence has been detected, the frame is dropped. Figure 5.9 shows the block diagram
of the forwarding FIFO.

81

Local Link Interface

Local Link Read
Control

DPRAM

Write
Control

Read
Control

Garbling
Sequence
Detector

MII Transmit
Control

Write Read Domain
Signal

Communication

Frame
In FIFO
Count

Overflow
Check
& FIFO
Status

MII
Process

Figure 5.9 The block diagram of the RX_FIFO

5.3.7 TX_FIFO

The TX_FIFO receives frames from the MII Interface to the host, performs the CRC
check and sends the frame over the MII interface to the PHY. Figure 5.10 shows the
block diagram of the TX_FIFO.

82

Figure 5.10 The block diagram of the TX_FIFO

5.3.8 Send Coordinator

The send coordinator receives the take_port_control acquirement from the forwarding
FIFO and the receiving main routine, and coordinates the sending FIFO and forwarding
FIFO according the “forwarding always has priority principle”. Its state transfer is shown
in Figure 5.11.

Figure 5.11 The state transfer of the sending coordinator

83

5.3.9 Receive Coordinator

Figure 5.12 shows the state transfer of the receiving coordinator. The receive coordinator
coordinates the receiving of the frames between the RX_FIFO on line A and line B. The
priority of frame on both lines is equal, except that at the start of the system the frame on
A has higher priority if two frames are received at the same time

Receiving
on line A

Receiving
on line B

Last time
Receiving
on line A

Last time
Receiving
on line B

IDLE
Frame on line A

Frame on line B &&
Frame not on line A

Receiving frame finished

Receiving frame finished

Frame on line B

Frame on line A &&
Frame not on line B

Frame on line B &&
Frame not on line A

Frame on line A

Figure 5.12 The state transfer of the receiving coordinator

5.3.10 Receiving Flow

Figure 5.13 shows the receiving flow of a frame. When a frame arrives, the receiving
main routine pushes the frame into the FIFO, and performs CRC check and overflow
check. The receive processing unit make the switch decision and start searching the
entry of the frame in the hash table for duplicates frames (unicast and multicast) and
circular frames. The hash tables return the result of the searching. The frame is dropped
when it does not pass the CRC check, or overflow happens, or its entry is found in either
of the hash tables.

According to the switch decision, the frame is popped from the FIFO in the receiving main
routine and pushed into the forwarding FIFO or RX_FIFO or both if the frame is a
multicast frame.

The frame in the RX_FIFO is then sent through the MII interface to the host, the frame in
the forwarding FIFO is sent through the MII interface to the PHY.

5.3.11 Sending Flow

Figure 5.14 shows the sending flow of a frame. The sending is only allowed if there no
frame in the forwarding FIFO or the frame being received by the receiving main routine is
a unicast frame dedicated this node.

84

CRC
Check

Over
flow

Drop
frame

Receiving
processing

Push frame
into FIFO

Switch
decision

Entry not
found
continue
receiving

Entry found
drop frame

Discard
drop frame

Hash table for
rejecting
duplicates

Uni/Multicast

Hash table for
rejecting circular

frames

Entry not
found

Entry not foundEntry found

Entry
found

Start
searching

RX_FIFO

Forward_
FIFO

Receive coordination

Figure 5.13 The receiving flow of a frame

Figure 5.14 The sending flow of a frame

85

5.4 Functional Design Considerations
In this section, several important design considerations are introduced. The way how they
are implemented is explained.

5.4.1 Cut-through Implementation

When a frame arrives at the receiving port, its destination address, source address and
the sequence number are loaded to the receiving processing component. The receiving
processing component searches the entry of this frame. The switch decision is only
registered out when the entry of this frame is not found in the hash tables. After the
switch decision is registered out, the receiving processing will assert the switch_ready
signal to the local link read process block in the receiving main routine. The local link
read process begins to send the frame to the forwarding FIFO or RX_FIFO after it sees
that the switch_ready signal is set “high”. After the sending is finished, the local link read
process send a signal to tell the receiving processing that the sending is finished. After
the receiving processing sees this signal, the switch_ready signal is deasserted. Figure
5.15 show the time flow of this process.

DA SA SEQ

Loading DA, SA, SEQ
Searching
Entry

Registering
out switch
decision

DA SA SEQ

reading
finished

switch_ready = ‘1’ switch _ready = ‘0’

local link
read

process

Receive
processing

t

t

Figure 5.15 An illustration of cut-through implementation

In the forwarding FIFO, after the first byte of the frame passed by the receiving main
routine is stored in the RAM, the frame_in_fifo asserted and transmitted to the MII
transmit control. The MII transmit control begins transmitting the frame through the MII
interface the PHY. After the transmitting is finished, the frame_in_fifo signal is deasserted.

5.4.2 DA, SA, SEQ Comparison Window

In order to find out whether the frame has been received once or forwarded once, the
entry of the frame is searched in the hash table. It only works when one frame of a pair
comes after the other, so that the frame coming first will be registered in the table. But if
two frames come at the same time, there is still no entry in the table, so both frames are
accepted. To overcome this problem, a window should be built. Figure 5.16 illustrates the
way how it works.

If the first frame of a pair arrives at Line A, the DA,SA,SEQ window is set up after the
destination address, source address and sequence number is received. This window
lasts until the destination address, the source address and the sequence number of the
next frame are received. If the second frame of a pair comes later at Line B, its
DA,SA,SEQ window is also build after its destination address, source address and
sequence number are received. At this time the window on Line A finds that the window
on Line B has the same value as it, because Line A is leading, it will keep the frame. Line

86

B also finds that the window on line A has the same value as it, but it is lagging, so it will
drop the frame. If at the time when the window of Line B is built Line A is searching the
entry in the hash table, the search is stopped, because there is no need to search
anymore. The switch decision is then registered out.

If the frame arrives at exactly the same time, the frame on Line A is kept, the frame on
Line B is dropped.

DA SA SEQ

Loading DA, SA, SEQ

Searching
Entry

Same DA, SA, SEQ
detected at both lines,
the leading frame is
kept, the lagging is
dropped

DA,SA,SEQ Window

t

DA SA SEQ

DA SA SEQ

DA SA SEQ

DA SA SEQ

Loading DA, SA, SEQ

No searching, drop the frame

DA SA SEQ

DA SA SEQ

DA SA SEQ

Stop searching and register out
the switch decision

t

Line A

Line B

Figure 5.16 The DA, SA, SEQ comparison window

5.5 Design Considerations about Timing
In this chapter, some design considerations about timing are discussed. The solutions to
overcome some timing problems are presented.

5.5.1 Clock Cooperation between Lock Link Interface and MII Interfaces

The receiving main routine has two clocks operating at different frequencies. The data
width of MII interface is 4-bits. The received data is transferred to 8-bits width and stored
in the DPRAM. The data on the local link interface which is read from the DPRAM is also
8-bits width. Therefore, the clock frequency of the local link interface rx_ll_clk must be
half of the MII clock rx_clk. This illustrated in Figure 5.17.

4‐bits
width

8‐bits
width

MII

Local Link
Interface

rx_clk

rx_ll_clk

clkrxclkllrx ff ___ 2/1=

Figure 5.17 The clock relation between the MII and local link interfaces

87

5.5.2 The Critical Clock Path

The propagation time of a signal along the clock path plays a very important role in the
clock synchronized circuits. There are several basic concepts to be introduced here
first[24].

 Tsu: setup time at pad, is defined as the length of time for which data that feeds a
register via its data or enable input(s) must be present at an input pin before the
clock signal that clocks the register is asserted at the clock pin.

 Tco: clock to output delay, is defined as the maximum time required obtaining a
valid output at an output pin that is fed by a register after a clock signal transition
on an input pin that clocks the register.

 Th: hold time, is defined as the minimum time required for the input signal stays
stable after clock signal transition to obtain a valid output.

 Clock skew: The arriving time difference of the clock signal at clock input of
different registers due to different interconnect paths and clock buffers

The above concepts are illustrated in Figure 5.18.

If a clock transition happens at register1, the output signal will arrives at the input of
register 2 after Tco + Delay. It must be ensured the signal at the input of register2 is
stable to generate a valid output at register2. This is equal to satisfy the following
equation:

clkskewdelayco TTsuTT −++≥clkT (5.1)

clk

D QTsu

Tco

Combinatio
nal Logic

D Q

Clock
slew

Delay

Tsu

Tco

1 2

Figure 5.18 The signal propagation delay along the clock path

This equation thus also defines the maximum frequency allowed in the circuit.

clkskewdelayco TTsuTT −++
=

1fmax (5.2)

Since it is difficult to calculate the Tco, Tdelay, Tsu and Tclkskew of all the component
and paths by hand, this task is done by the synthesis tools. In this design, the slowest
clock path which is called the critical clock path is twice as the MII clock frequency. This
can be shown in the synthesis report below.

88

Figure 5.19 The timing analysis in Quartus synthesis tool

For the tx_clk_b clock, the Tco = 0.041ns, Tdelay = 8.264ns, Tsu = 0.286ns,

Tclkskew = 0.07 ns. Therefore the highest operating frequency of this path is

MHz36.117
07.0286.0264.8041.0

1fmax =
−++

=

The critical clock path is the path with the lowest fmax, in this circuit, the critical clock
path is the path driven by the MII receive clock at port b, which has a fmax of 57.63 MHz
(Figure 5.19, Figure 5.20).Since this frequency is twice as the MII clock frequency
working at 100Mbits/s, which is 25MHz, the designed circuits operates without problem.

Figure 5.20 The critical clock path (in red box)

5.5.3 Synchronization between Clock Domains

In digital designs, many variations of clocks are used. When clocks are not synchronous,
signals that are used to communicate between two asynchronous clock domains require
synchronization [25]. The synchronizations between clock domains are very important for

89

the finite state machine design (FSM). If the signal from other clock domain is used by
the state machine in this clock domain without synchronization, undefined states may
appear.

Figure 5.21 shows a state machine operation. The asynchronous signal is from another
clock domain; together with the signal “current state” the “next state” signal is determined.
At the next rising edge of the clock signal, the “next state” signal is registered to the
“current state” signal.

Current
State

Combinational
Logic

Next state

Asynchronous
Signal

clk
Figure 5.21 The state machine operation with asynchronous signal

Because the signal is asynchronous to the clock, the situation may happen that it
changes just shortly before the rising edge of the clock. Because the combinational circuit
introduces a small delay, the decoded next state is not stable when the rising edge of the
clock comes. At this time the next state can be an arbitrary code and an undefined state
can be thus registered to the “current state” signal. This case is shown in Figure 5.22.

undefined statedefined state

undefined statedefined state

clk

Asynchronous
Signal

Next state

Current state

Figure 5.22 an undefined state is registered

To avoid this situation, the asynchronous signal must be first registered in this clock
domain, so that decoded “next state” signal is always stable when the rising edge of the
clock comes. The circuit is shown in Figure 5.22.

90

Current
State

Combinational
Logic

Next state

Asynchronous
Signal

clk

D Q

Figure 5.23 Sample the asynchronous signal

The waveform of this circuit is shown in Figure 5.24. The asynchronous signal is
changing when the rising edge of the clock comes at time t1. The signal “Q” is registered
to an unknown level which could be either ‘0’ or ‘1’. Because there is a delay of the
propagation from signal “Q” to signal “Next State”, the “Next State” has not had time to
change when the rising edge of clock comes at t1. The “Current State” stays thus
unchanged after the rising edge of the clock. After a clock period at time t2, the “Next
State” signal is already stable, but the value can be unchanged if the Q sampled at last
clock is unchanged. At time t2, the asynchronous signal is sampled correctly to the signal
“Q”, the decoded signal “Next State” changes after the rising edge of the clock. The
“Current State” signal is registered to the value of the “Next State” signal of last clock
period, which may be unchanged. At time t3, the correctly decoded “Next State” signal is
registered to the “Current State” signal.

defined state

defined state

clk

Asynchronous
Signal

Next state

Current state

Q

State defined but may stay unchanged

Can be ‘0’ or ‘1’

t1 t2 t3

Figure 5.24 the state is always defined after registering the asynchronous signal

This process shows although the signal “Q” may not be sampled correctly when the
asynchronous signal is changing at the rising edge of the clock, state is never undefined,
but the state transfer is delayed for a clock period.

91

5.6 Synthesis and Evaluation of the Implemented Switch Element
In this chapter, the implemented switch element is synthesized in the QuartusII
development environment. A short report of the synthesis is presented. After the
Synthesis, evaluation is performed. The functionalities defined in the HSR protocol and
the duplicated and circular frame rejection are tested.

5.6.1 Synthesis

After the functional design is free of error, the design is synthesized in Quartus design
environment. In synthesis, the logic functionalities are mapped to the logic component of
the goal device. The time requirement is examined. The resource on the device is
allocated. After the synthesis, a netlist file (the .vho file) is generated which describes the
interconnection of the components on the devices. A file (the .sdo file) contains the timing
information is also generated, which can be used later in the Post-synthesis simulation.

The resource usage summery is shown in Table Table 5.2 . The percentage of the logic
elements usage is 26%. The memory block usage is 76%. The timing analysis summary
is shown in Table 5.3. The critical clock path is 59.3 MHz which is twice more than MII
clock frequency in the 100Mbit/s Ethernet mode.

Total logic elements 4,794 / 18,752 (26 %)

Combinational with no register 2018

register only 400

Combinational with a register 2376

Logic element usage by number of LUT inputs

4 input functions 2276

3 input functions 772

2 input functions 1346

register only 400

Logic elements by mode

normal mode 3768

arithmetic mode 626

Total registers 2,776 / 19,160 (14 %)

Dedicated logic registers 2,776 / 18,752 (15 %)

I/O registers 0 / 408 (0 %)

Total LABs: partially or completely used 401 / 1,172 (34 %)

I/O pins 58 / 152 (38 %)

Clock pins 7 / 8 (88 %)

Global signals 8

M4Ks 52 / 52 (100 %)

Total memory bits 165,888 / 239,616 (76 %)

Total RAM block bits 239,616 / 239,616 (100 %)

Embedded Multiplier 9‐bit elements 0 / 52 (0 %)

PLLs 0 / 4 (0 %)

Global clocks 8 / 16 (50 %)

Average interconnect usage 17%

Peak interconnect usage 32%

Maximum fan‐out node rx_clk_a~clkctrl

Maximum fan‐out 776

Highest non‐global fan‐out signal rx_sreset_b

Highest non‐global fan‐out 438

Total fan‐out 24387

Average fan‐out 3.25

Table 5.2 The resouce usage summery of the design

92

Type Slack Required time Actual Time

Worst‐case tsu N/A None 10.375 ns

Worst‐case tco N/A None 11.923 ns

Worst‐case th N/A None ‐0.043 ns

Clock Setup: 'rx_clk_a' N/A None 59.53 MHz (period = 16.797 ns)

Clock Setup: 'rx_clk_b' N/A None 60.95 MHz (period = 16.407 ns)

Clock Setup: 'rx_clk_ll_b' N/A None 95.57 MHz (period = 10.464 ns)

Clock Setup: 'rx_clk_ll_a' N/A None 102.52 MHz (period = 9.754 ns)

Clock Setup: 'tx_clk_b' N/A None 127.70 MHz (period = 7.831 ns)

Clock Setup: 'rx_clk_hst' N/A None 129.70 MHz (period = 7.710 ns)

Clock Setup: 'tx_clk_a' N/A None 131.54 MHz (period = 7.602 ns)

Clock Setup: 'tx_clk_hst' N/A None 133.17 MHz (period = 7.509 ns)

Total number of failed paths 0

Table 5.3 The timing analysis summary

5.7 Evaluation

5.7.1 Simulation Environment

The evaluation of the synthesized switch element is performed by simulation in Modelsim.
For the post-synthesis simulation, the following files are needed.

 The switch.vho file generated by the synthesis tool
 The switch.sdo file which contains the timing information about the devices on

the FPGA
 The cycloneii library which contains the components of CycloneII series FPGA
 The switch_TB.vhd file which is the testbench

post‐synthesis
Simulation

Switch.vho

Switch.sdo
cycloneii
library

switch_TB.vhd

Figure 5.25 the pos-synthesis simulation environment

5.7.2 Tested Functionalities

To verify if the designed switch element can realize the communication rules defined in
HSR, the following tests should be performed.

General Communication Rules
1. Sending frames to the switch element, the frames should be duplicated and sent

over both sending ports.
2. Receiving unicast frames which is not dedicated to this node, the frames should

be forwarded over the sending port of the other line with cut-through mode.
3. Receiving unicast frames which is dedicated to this node, the frame should be

accepted and passed to the receiving port to the host.
4. Receiving multicast frames, the frame should be forwarded to the sending port of

the other line and passed to the receiving port to the host.

93

Rejection of Duplicated Frames

Unicast frames dedicated to this node and multicast frames received on one line should
be rejected when received again on the other line.

Rejection of Circular Frames

Receiving unicast frames, multicast frames on one line, the unicast can be dedicated to
this node or not. Receiving the same frames again on this line, all frames should be
rejected

Bad Frame Handling

If frame is asserted as bad frame before the cut-though operation is performed, it is
dropped. Otherwise a garbling sequence is appended at the end of the frame and the
source address of this frame will be registered in the hash table for bad frames. If a frame
the same source address is received again on the same line, no cut-through is performed,
the frame is sent only after it is completely received and verified to be a good frame. If the
frame is a good frame, the entry in the hash table for bad frames is cleared. Next time a
frame with the same source address is received, the frame is sent in cut-through mode
again.

Send Coordination

A frame in the sending FIFO can only be sent if no frame is receiving on the other line or
the frame being received on the other line is a unicast frame dedicated to this node
(which means no forwarding for this frame).

5.7.3 Simulation Results

In this section the simulation results of the switch element are presented. The names of
the pins on the waveform are already introduced in Table 5.1.

General Communication Rules
1. Sending frame to the switch element:

Frames are sent sequentially to the sending port of the switch element. The
frames are duplicated and sent over both lines. The simulation waveforms are
shown in Figure 5.26.

2. Receiving unicast frames which is not dedicated to this node:
In this test, eight different unicast frames which are not dedicated to are received
from line A and line B. Each line receives 4 frames. The receiving on both lines is
concurrent. All the eight frames are forwarded to the sending port of the other
line. The simulation waveforms are shown in Figure 5.27. The delay between
receiving a frame and forwarding it is 2720 ns.

3. Receiving unicast frames which is dedicated to this node:
In this test, 8 different unicast frames dedicated to this node are received on line
A and line B concurrently. Each line receives 4 frames; all the 8 frames are
passed to the receiving port to the host. The simulation waveforms are shown in
Figure 5.28.

4. Receiving multicast frames:
In this test, 8 multicast frames with different source address are received on line
A and line B concurrently. Each line receives 4 frames; all the 8 frames should be
passed to the receiving port to the host and forwarded to the other line. The
waveforms are shown in Figure 5.29.

 Rejection of Duplicated Frames

94

1. Receiving on both lines is not concurrent
In this test, unicast frames dedicated to this node and multicast frames are
received on one line. The order of receiving is multicast, unicast, multicast,
unicast. The two unicast frames should be accepted and passed to the receiving
port to the host. The two mulicast frames should be accepted, passed to the
receiving port to the host and forwarded to the sending port of the other line.
After the receiving of these 4 frames is finished, begin receiving the same 4
frames from the other line, all the frames should be rejected and no frame is sent
on the receiving port to the host and forwarded to the sending port of the other
line. The simulation waveforms are shown in

2. Receiving on both lines is concurrent, this test the DA,SA,SEQ window
functionality. The procedure is same as above, except that the receiving on both
lines proceeds at the same time.

The simulation waveforms are shown in Figure 5.30 and Figure 5.31.

Rejection of Circular Frames

In this test, unicast frames dedicated to this node and multicast frames are received on
one line. The order of receiving is multicast, unicast, multicast, unicast. The two unicast
frames are accepted and passed to the receiving port to the host. The two mulicast
frames are accepted, passed to the receiving port to the host and forwarded to the
sending port of the other line. Then the same 4 frames are received again at the same
line, all the frames should be rejected. The simulation waveforms are shown in Figure
5.32.

Bad Frame Handling
1. Two multicast frames with the same source address but different sequence

number are received on line A.
The first frame received on line A is asserted to be a bad frame at the last nibble
of the source address. Because the cut-through is not performed when the bad
frame is asserted there, the frame will be dropped, nothing is forwarded to the
sending port of line B, nothing is sent to the receiving port to the host and the
source address is not registered in the table for bad frames. Then the second
frame with the same source address is received again on line A, without bad
frame assertion. The frame should be forwarded to the sending port of line B and
received at the receiving port to the host with cut-through operation.

2. Two multicast frames and a unicast frame not dedicated to the node received on
line B, all the three frames have the same source address, and the two multicast
frames do not have the same sequence number.
The first multicast frame received on line B is asserted to be a bad frame at the
middle of the frame (here is the 40 th byte of the frame). The cut-through
operation is already performed if the bad frame is asserted at this position.
Therefore the frame is truncated and appended a garbling sequence and its
source address is stored in the table for bad frames. The second multicast frame
is forwarded to the sending port of line A and the receiving port to host. Recall
that the RX_FIFO to host has the ability to detect the garbling sequence. The
frame is dropped in RX_FIFO and nothing is passed to the host. Then the
second multicast frame with the same source address is received again on line B,
without bad frame assertion. The frame should be completely received and
forwarded to the sending port of line B and received at the receiving port to the
host. The entry in the hash table for bad frames should be cleared. Then the
unicast frame with the same source address is received on line B. Because the
entry in the hash table for bad frame is already cleaned, this frame should be
forwarded with cut-through operation.

The simulation waveform is shown in Figure 5.33.

95

Send Coordination

1. Line A begins receiving a multicast just short before a frame is completely

received from the host. The frame in the sending FIFO on line B should wait until
the received frame is completely sent on line B.

2. Line B begins receiving a unicast frame dedicated to this node just short before a
frame (the same frame as above) is completely received from the host. After the
receiving main routine finds that this unicast frame is dedicated to this node
(which means that no forwarding for this frame), the frame in the sending FIFO
on line A is allowed to send the frame on line A

The simulation waveform is shown in Figure 5.34

96

Figure 5.26 Sending fram
es to the sw

itch elem
ent

97

Figure 5.27 R
eceiving unicast fram

es not dedicated to the node on line A
 and line B

 concurrently

98

Figure 5.28 R
eceiving unicast fram

es dedicated to this node

99

Figure 5.29 R
eceiving m

ulticast fram
es from

 both lines

100

Figure 5.30 Sim
ulation w

aveform
 of rejecting duplicated fram

es. Fram
es are not received at the sam

e tim
e on both lines

101

Figure 5.31 Sim
ulation w

aveform
 of rejecting duplicated fram

es, fram
es are received on both lines at the sam

e tim
e

102

Figure 5.32 the sim
ulation result of rejecting cicular fram

e

103

Figure 5.33 The sim
ulation w

aveform
 of bad fram

e handling

104

Figure 5.34 The sim
ulation w

aveform
 of send coordination

105

5.8 Conclusion of the FPGA Implementation

In this chapter, the HSR protocol defined in Chapter 2 and the proposed algorithm for
rejecting duplicated frames and circular frames are implemented in FPGA. Several
design issues are discussed. The design is synthesized in Quartus and fulfills the timing
requirement and has satisfied the resource constraints. The Post-synthesis simulations
are performed for each communication rules in HSR protocol and the proposed
algorithms. All the simulation results are successful.

106

6 Conclusions and Future Work

6.1 Conclusions
The High Availability Seamless Ring is a new industry automation communication
network protocol standardized as IEC 62439. It applied the Parallel Redundancy Protocol
(PRP) principle to provide in case of fault a bumpless switchover of the network, while
maintaining a simple network topology and infrastructure. As a derivate of the PRP
protocol, HSR needs to handle duplicate frames, and in addition must be capable to
reject circular frames because of its ring topology. The drop window algorithm for
rejecting duplicated frame applied in PRP cannot be transplanted to HSR because it is
not designed for rejecting the circular frames. The challenge of this work was to find an
algorithm which can handle both duplicate frames and circular frame. As recommended
by IEC 62439, the rejection of the duplicated frames should be accomplished by
hardware to offload the processor, which is indeed a necessity since HSR is used in
applications such as substation which have a heavy traffic. This algorithm must be time-
efficient to allow cut-through operation of the switches and be implementable with low-
cost FPGAs. As an algorithm applied in hard real-time system, this algorithm must not
disturb the deterministic delay times of the network.

This master thesis proposed the algorithms based on lookup table are considered as a
reasonable substitute of the drop window algorithm. Different algorithms based on the
lookup table were discussed and three algorithms were chosen as candidates for the
hardware implementation. The three algorithms are circular buffer, hash table combined
with circular buffer, hash table with aging which is classified into three methods according
to the probing sequence algorithm applied: linear probing, quadratic probing and double
hashing.

The evaluation of the proposed algorithms was based on three criteria: the rejection ratio
of duplicated frames, the searching time efficiency and the hardware implementation
complexity. Through the analysis of the operation principle of each algorithm, combined
with the software simulation results, the following conclusions can be made for these
three algorithms.

• The circular buffer is proven to have the best performance of rejecting the
duplicated frames, but it has to go through the entire table to make the decision if
an entry is in or not in the table. The searching time is the longest among the
proposed algorithms

• The hash table with aging using quadratic probing, double hashing and the hash
table combined with circular buffer, providing deterministic searching time. In the
simulation they have the moderate performance among the proposed algorithms.

• The performance of the hash table with aging using linear probing also has
deterministic search time but its performance is the worst among the proposed
algorithms.

• The circular buffer has the lowest hardware implementation complexity among
the proposed algorithms. The operation principle of the hash table with aging
requires the highest hardware implementation complexity among the proposed
algorithms. The hardware implementation complexity of the hash table combined
with circular buffer is moderate.

Through the software simulation, a phenomena is discovered that the performance of all
three algorithms degrade dramatically when the number of the nodes in the network
exceeds a certain value. This value is influenced by the length of the frame and the time
interval a node in the ring generates a frame. The IEC 61850-9-2 standard fixed the
length of the frame to 138 bytes and the time interval of generating a frame to 250us.

107

Under such condition, the simulation shows the performance of all algorithms begins to
drop at the node number of 60. The dependency to the node number in the network is a
limit of the proposed algorithms.

After the simulation of the proposed algorithm and a discussion of the simulation results,
the hash table combined with circular buffer was chosen as the algorithm to be
implemented in FPGA. Before the implementation, two modifications were made to
achieve higher rejection ratio of the duplicated frames and higher efficiency of memory
usage. One is to separate the hash table for rejecting duplicated frames into a hash table
for rejecting multicast frames and a hash table for rejecting the unicast frames. The other
modification is reducing the entry in the two tables above to the source address and the
sequence number. The collision between the unicast and multicast frames is therefore
reduced and the memory usage can be configured differently for unicast and multicast
frames, which is more flexible and efficient. At last the hash table for multicast frames of
length of 32, max_bin number of 4, the hash table for unicast of length of 64, max_bin
number of 4 and the hash table for circular frames of length of 64, max_bin number of 4
are implemented in FPGA. This configuration is dedicated to handle the network which
has nodes less than 64.

The HSR protocol together with the hash table combined with circular buffer method was
implemented in the Cyclone II, EP2C20 series FPGA. The maximum frequency of the
critical clock path is more than twice of the MII frequency at the full speed of 100Mbits/s
Ethernet. The resource consumption of the design is within the constraints of the device.

Finally, the pos-synthesis simulation was performed after the design is synthesized in the
Quartus II design environment. The simulation evaluates the functionalities of the design
with timing delay of the components on the device. The design realized all the
functionalities defined HSR protocol and the functionality of rejecting the duplicated and
circular frames.

6.2 Future Work
Although the performance of the algorithm is forecast by the simulation, and the limitation
of the algorithm was observed, there is still lack of theoretical analysis of the
communication in the ring and its relation to the proposed algorithm. It is of interest to
discover the mathematical mechanism behind and give a more precise model to help
configure the algorithm and the ring scale.

As the implementation of the design has done only down to the pos-synthesis simulation,
the next step is to implement the design in the newly developed hardware platform.
Software should be designed to simulate the behavior of the end node in the ring. The
node can be connected together to a simple ring to test the implemented functionalities.

Also, a suited test environment should be designed to monitor the operation and perform
a conformance test.

This Thesis also gives an inspiration to the design of the redundancy box (RedBox) which
connects several singly attached nodes to HSR or couples the PRP network to HSR. The
RedBox connected several singly attached node to HSR is shown in Figure 2.1. A
RedBox should not only have a table of the received frames but also a table of all the
nodes attached to it. To reject the duplicated frames, we can for example build tables for
multicast and unicast frame at each line. The entry in the table for multicast still consists
of source address and sequence number, but the entry in the table for unicast should
consists of destination address, source address and sequence number because of the
reason stated above.

108

Appendix A Abbreviations Used in the Thesis

AT: Aging Tag

DA: Destination Address

DANP: Double Attached Node

DPRAM: Dual Port RAM

HSR: High Availability Seamless Ring

IEC: International Electrotechnical Commission

PRP: Parallel Redundancy Protocol

RCT: Redundancy Check Tag

RTL: Register Transfer Level

SA: Source Address

SAN: Singly Attached Node

SEQ: Sequence Number

109

Bibliography

[1] Hubert Kirrmann, Steven Kunsman and Peter Rietmann, ABB Network
Redundancy Using IEC 62439, Protection, Automation & Control World, Autum
2008

[2] Hubert Kirrmann, Requirements on redundancy, IEC Technical Committee 57
Work Group 10 Redundancy Requirements TF

[3] Hubert Kirrmann , Proposal for a seamless ring solution for IEC 61850, ABB
Switzerland Ltd, Technical Committee 57 Work Group 10, Buenos Aires,
November 2008

[4] IEC CDV 62439-3 International Electrotechnical Commission, Industrial Networks
– Highly Available Automation Networks, Parallel Redundancy Protocol and High
availability Seamless Ring.

[5] International Electrotechnical Commission, Communication Networks and
Systems in Substations Part 9-2: Specific Communication Service Mapping
(SCSM) –Sampled values over ISO/IEC 8802-3

[6] IEC 61850 International Electrotechnical Commission, Communication networks
and systems for power utility automation – Part 8-1: Specific Communication
Service Mapping (SCSM) – Mappings to MMS (ISO 9506-1 and ISO 9506-2) and
to ISO/IEC 8802-3

[7] Glattfelder, Ch, PRP Red Box FPGA Implementation, School of Engineering,
InES Institute of Embedded Systems, Zurich University of Applied Sciences,
October 2008

[8] Glattfelder, Ch, Architecture Study of the PRP Red Box, , School of Engineering,
InES Institute of Embedded Systems, Zurich University of Applied Sciences,
January 2007

[9] Hash Table, Wikipedia, http://en.wikipedia.org/wiki/Hash_table

[10] Jeff Erikson, Combinatorial Algorithm, Lecture 6, Hash Table, Department of
Computer Science at the University of Illinois at Urbana-Champaign

[11] Tennenbaum, Aaron M.; Langsam, Yedidyah; Augenstein, Moshe J. (1990), Data
Structures Using C, Prentice Hall, pp. 456–461, pp. 472

[12] Design Manual of Link Street 88E6063 Integrated 7-Port Qos, 802.1Q 10/100
Ethernet Switch, Address Management pp. 57-61, Marvell

[13] Donald Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching, Second Edition. Addison-Wesley, 1998. ISBN 0-201-89685-0. Section
6.4: Hashing, pp.513–558

[14] How Caching Affects Hashing, Gregory L. Heileman Department of Electrical
and Computer Engineering University of New Mexico, Albuquerque, NM, Wenbin
Luo, Engineering Department St. Mary's University, San Antonio, TX

110

[15] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman, Compilers: Principles,
Techniques, and Tools (Reading, MA: Addison-Wesley,1986)

[16] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18(2): pp 143-154, 1979.

[17] Jerey D. Ullman. A note on the efficiency of hash functions. Journal of the ACM,
pp. 569-575, 1972

[18] Andrew C. Yao. Uniform hashing is optimal. Journal of the ACM, pp.687-693,
1985

[19] L. Guibas and E. Szemeredi. The analysis of double hashing. Journal of
Computer and Systems Sciences, pp.226-274, 1978.

[20] G. Lueker and M. Molodowitch. More analysis of double hashing. In Proceedings
of the 20th Annual ACM Symposium on the Theory of Computing, pp.354-359,
1988.

[21] Heikki. Bjoerkman, Kari Lappalainen, Recommendation of Multi-Channel
Ethernet Interface for Tiger Platform, ABB Oy, Distribution Automation 2008

[22] Volnei A. Pedroni , Circuit Design with VHDL. Chapter 1, Design Flow pp. 3-6,
MIT Press, second edition.

[23] Design Flow with ModelSim-Altera or ModelSim Software, Mentor Graphics
ModelSim Support, October 2007 v7.2.0 , Altera.

[24] Clock Analysis, Quartus II Classic Timing Analyzer, November 2008 v8.1.0,
Altera.

[25] K.C Chang, Digital Systems Design with VHDL and Synthesis An Integrated
Approach, Chapter 8, Synchronization Between Clock Domains, pp 238-242
IEEE Computer Society

[26] Christoph.Klarenbach, FPGA basierte Echtzeit-Ethernet-Anschaltung, Elektronik,
Fachschrift fuer Industrielle Anwender und Entwickler, 9.December.2008

