
Master Thesis

Invasion of Privacy Using Fingerprinting
Attacks

David Sauter
<dave.sauter@gmail.com>

Advisors

Martin Burkhart
Dominik Schatzmann

Supervisor

Prof. Dr. Bernhard Plattner

Communication Systems Group (CSG)
Computer Engineering and Networks Laboratory (TIK)

Department of Information Technology and Electrical Engineering

16.09.2008 - 15.03.2009

1

Acknowledgments

I would like to thank Prof. Dr. Bernhard Plattner for giving me the opportunity to
write this thesis at the Communication Systems Group and for the supervision of my
work.
I would like to thank both my advisors Martin Burkhart and Dominik Schatzmann
for their continuous support and the productive meetings and discussions during the
progression of my thesis. I’m especially grateful for the many useful suggestions and
the constructive feedback that guided me through my work. It was a very enjoyable
cooperation with them.
Thanks go to my colleagues and lab mates for the interesting discussions and suggestions
during the last half year.
Special thanks go to my girlfriend and family for the unconditional support and patience.

2

Abstract

The Internet of today has grown to a large scale infrastructure for business op-
erations and different sorts of communities. Unfortunately attacks on web sites and
web services increase every year and the Internet security or the lack thereof has a
direct impact on business operations of many companies. The network security re-
search community still lacks network activity logs from independent sources to make
reliable estimates and forecasts about possible threats to the Internet or individual
companies.
Many companies are reluctant to share information because they want to protect
the users of the network on one hand and the network itself on the other hand.
Even anonymization of the logs could only solve this problem partially, since attacks
on particular anonymization schemes were discovered quickly. This makes most
companies feel uneasy about releasing network traces because the security of the
anonymization schemes remains unclear.
The goal of this thesis is to show that anonymization is not safe to apply in the
context of network activity logs by using an approach called active fingerprinting.
While traffic is captured, we inject packets with special attributes (the fingerprint)
into the monitored network. The fingerprints are only known to us and should make
those packets recognizable even through the following anonymization of the traffic.
We show that simple anonymization approaches fail to counter this attack technique
completely and even the most elaborate anonymization schemes have a hard time
ensuring the security of the captured data.
To this end we have developed a framework for injecting packets and comparing in-
jected with captured packets. We demonstrate the effectiveness of the framework on
live data by successfully deanonymizing individual hosts. Finally we provide some
recommendations for countermeasures against active fingerprinting and explain why
existing countermeasures don’t work in this setting.

Zusammenfassung

Das Internet ist zu einer grossflächig verteilten Infrastruktur für Unternehmen
und einer Plattform für diverse andere Gemeinschaften geworden. Leider mehren
sich die Angriffe auf Webseiten und Internet-Dienste von Jahr zu Jahr, und viele
Unternehmen spüren einen direkten Einfluss auf ihre Geschäfte. Was den Netzwerk-
Sicherheitforschern immer noch fehlt, sind Netzwerk-Daten von unabhängigen, un-
terschiedlichen Quellen, um Gefahren für das Internet und einzelne Firmen besser
und früher vorherzusagen oder abzuschätzen.
Viele Firmen zögern jedoch solche Daten bereitzustellen, weil sie einerseits die End-
nutzer des Netzwerkes und andererseits das Netzwerk an sich schützen wollen. Die
Daten zu anonymisieren half auch nur teilweise, weil man rasch Angriffe auf diese
jeweiligen Anonymisierungstechniken fand, und als Folge davon fühlten sich viele
Firmen immernoch unsicher, ob sie Netzwerk-Daten öffentlich zugänglich machen
sollten.

3

Das Ziel dieser Arbeit ist zu zeigen, dass das Konzept der Anonymisierung generell
nicht sicher ist im Bezug auf Netzwerk-Daten, anhand von einer Technik, die ”aktives
fingerprinting” genannt wird. Noch während die Netzwerk-Aktivität aufgezeichnet
wird, schicken wir speziell präparierte Pakete mit Eigenschaften, welche nur uns
bekannt sind (der Fingerprint), in das Netzwerk. Dies soll später ermöglichen, dass
die geschickten Pakete trotz einer Anonymisierung erkannt werden können. Unsere
Absicht ist zu zeigen, dass einfache Anonymisierungen kläglich scheitern, sich gegen
diese Technik zu verteidigen, und auch komplizierte Anonymisierungen keinen le-
ichten Stand haben, die Originaldaten zu schützen.
Um dies zu realisieren haben wir ein Framework geschrieben, um Pakete zu ver-
schicken und um verschickte Pakete mit aufgezeichneten Daten zu vergleichen. Wir
werden im Laufe der Arbeit aufzeigen, wie effektiv das Framework auf realen Daten
arbeitet und wieviele Rechner es erfolgreich deanonymisieren konnte. Zum Schluss
werden wir Empfehlungen für Gegenmassnahmen gegen das aktive fingerprinting
besprechen und aufzeigen, warum existierende Gegenmassnahmen in diesen Falle
versagen.

CONTENTS 4

Contents

1 Introduction 7

1.1 Goal of this Thesis . 8

1.2 Setup . 9

1.3 Assumptions . 9

1.4 Outline . 9

2 Literature Review and Related Work 11

2.1 Anonymization schemes . 11

2.1.1 Anonymization . 11

2.1.2 Pseudonymization . 12

2.2 Setup . 12

2.3 Passive fingerprinting . 13

2.3.1 Description . 13

2.3.2 Attacks . 13

2.4 Active fingerprinting . 15

2.4.1 Description and Motivation . 15

2.4.2 Attacks . 15

2.5 Countermeasures . 16

2.6 Conclusions . 19

3 Framework Architecture and Implementation 20

3.1 Framework Design Overview . 20

3.2 Libraries . 22

3.3 Patterns and Best Practices . 23

3.4 Packages . 25

CONTENTS 5

3.4.1 Packet Design . 25

3.4.2 Generator/Injector Design . 28

3.4.3 Analyzer Design . 35

3.5 Error Handling . 39

3.6 Limitations of the Framework . 40

3.7 Related Work . 41

4 Testing and Results 42

4.1 Testing Setup . 42

4.2 Methods of Testing . 43

4.3 Injection without Anonymization . 47

4.4 Injection with Anonymization . 48

4.5 Useful Injection Patterns and Universal Patterns 55

4.6 Further Considerations . 56

5 Conclusions and Outlook 60

5.1 Discussion . 60

5.1.1 Permutation . 60

5.1.2 Truncation . 62

5.1.3 Other Techniques . 62

5.1.4 Minimal Requirements . 63

5.2 Possible Countermeasures . 64

5.3 Future Work . 65

5.4 Conclusion . 66

A Original Task Description 69

B User Manual and Installation 73

CONTENTS 6

C Thesis Schedule 75

D EBNF for the Generator File 76

E Attack Scripts 77

1 INTRODUCTION 7

1 Introduction

The Internet has become a mass phenomenon today and is used by an estimated 6 billion
people [13] world wide. Most users are familiar with the World Wide Web (WWW), but
the Internet is much larger and more diverse than that. It has its own dynamics and
grows by the second. Although the concepts and techniques behind the Internet are hu-
man inventions and generally very well understood, the ongoing dynamics and complex
interactions between hosts are a constant topic of research nowadays.
Over the last years, the Internet has suffered an increasing amount of attacks on large in-
frastructures and companies. Since the Internet lacks an organization responsible for its
security and protection, each company and organization tries to defend against attacks
on its own. Methods to fend off attackers are publicly discussed and shared, and there
are even efforts to improve the overall security of the Internet through wide spread de-
tection mechanisms. Clearly missing are detailed network activity logs from distributed
and independent sources. Assuming each company would release logs of their captured
network traffic on a regular basis, researchers would be able to combine those records to
get an impression of most of the traffic on the Internet at any particular time. Those
records could help identify threats to a single company but also to the Internet in general
[24].
The reasons for such reports not being publicly available are obvious. Companies are
reluctant to share their private network activity records because they need to protect the
privacy of their users as well as the integrity of the network itself. Activity logs typically
include internal IP (Internet Protocol) addresses of a network allowing insights into the
network architecture, and possibly even application level information, which allows to
trace each user in the network and profile his activities in detail. Knowledge about the
internal structure of a network might simplify attacks and even provide completely new
ways of penetrating it. In the wrong hands, a full network trace of a company could
therefore prove disastrous. So we have companies unwilling to share internal network
activity logs due to anonymity and security constraints on one hand, and network secu-
rity researchers that would love to analyze such records to enhance general security on
the other hand.
A solution to this dilemma was proposed some years ago and involves anonymization of
the security logs. The idea is to anonymize the logs to a state where nobody would be
able to correctly correlate single users to their masked pseudonyms in the log. Several
unanswered questions are raised when anonymizing a record. Such as which fields should
be anonymized and which fields are better left untouched? Which anonymization tech-
nique is applied to which field? Are the applied techniques secure and to what degree or
in which circumstances do they leak information? While anonymization is still an active
topic of research, there are many techniques already available to us [23, 1]. Which fields

1 INTRODUCTION 8

one can or even should anonymize is still not clear today, apart from the obvious fields
like source- and destination IP.
One of the reasons for this is that we simply do not have concrete means to measure
the strength of an anonymization scheme and there is no theory about what anonymi-
zation can achieve exactly in terms of security. Another reason is that anonymization
is a trade-off between security and utility of the data. As a consequence, there are no
hard security proofs of anonymization schemes and every time someone comes up with
a new scheme, people try to break this particular approach and attacks on a scheme are
discovered rather quickly. Today we’re in a state where some anonymization schemes
look promising, but for most schemes we either already know or at least suspect possible
attacks.

1.1 Goal of this Thesis

This thesis is looking the opposite way than what has been discussed so far. We don’t
want to prove the security of any particular anonymization scheme, but rather display
the potential insecurity of most or all of the existing schemes known so far and of ano-
nymization in general in context of network activity logs. This is achieved by means of
a technique called fingerprinting.
There has been a great deal of research going on in the field of ”passive fingerprint-
ing” in the last years [20, 2, 14] with emphasis on breaking permutations [4, 21]. This
method assumes an attacker to observe the characteristics of the obscured data closely,
and then correlate it with known traffic patterns in the monitored network. This can be
achieved by consulting public information sources like search engines or DNS (Domain
Name System) records. The other approach, that has been discussed or at least men-
tioned in [1, 4, 2], is called ”active fingerprinting”. In contrast to passive fingerprinting,
this technique allows the attacker to manipulate the traffic that is being captured and
anonymized. The malicious user injects traffic while it is being captured, which changes
the resulting traffic patterns slightly. In this scenario, an attacker can actively influence
the distribution of the traffic and is therefore much more powerful than a passive at-
tacker.
The actual task is to develop a framework for active fingerprinting attacks and test its
effectiveness on live traces of network data. The framework should be tested against
various existing anonymization schemes and reveal how effective they are in countering
the fingerprinting. Our intention is then to demonstrate that the framework can deal
with even the most aggressive of anonymization methods, at the cost of revealing more
and more about the attackers identity. During the tests we will focus on deanonymizing
IP addresses e.g. those addresses that belong to the victims. To conclude we will present
and analyze new ways of defending against active attacks.

1 INTRODUCTION 9

1.2 Setup

The task of capturing the network traffic will be performed by the five border routers
of the Swiss Education and Research Network SWITCH [26]. In the tests we will inject
packets from outside into the SWITCH network, where the packets will be captured.
Everything inside the SWITCH network is referred to as the ”monitored segment” and
all traffic that passes through the border routers is captured and exported. The captured
data is stored in Cisco IOS NetFlow [6] format, so we will limit our research and analysis
to this format.
As a next step, the data is stored locally and then anonymized according to some policy.
With a detailed log of our injected packets in one hand, and the anonymized data from
the network in the other hand, we are ready to analyze the traffic. Now it is a matching
problem to find the fingerprinted flows withing the captured flows. The framework will
work on two different hosts, namely a host outside the SWITCH network which will
perform the injection, and a host inside1 the network which will analyze and compare
the two flow sets.

1.3 Assumptions

There are some crucial assumptions that we used in the implementation of the framework.
For once, the border routers are expected to work nearly flawlessly and capture packets
with a high reliability and accuracy down to single packets. We did not compensate for
possible router errors and for missing packets. We will also use standard cryptographic
assumptions that the attacker knows all public values of an anonymization scheme and
furthermore that he has access to meta data about the capturing, meaning he knows
time and place where the logging took place. The attacker is assumed to know the
anonymization beforehand and is therefore able to inject packets which will work best
with the current method of anonymization. We also make the assumption that packets
are captured in real time and no packet sampling is used.

1.4 Outline

In the upcoming Section 2 we will give a detailed overview about the current state of re-
search and give an introduction into anonymization and pseudonymization. This section
reviews state-of-the-art techniques and also gives a short summary about active finger-
printing attacks and possible countermeasures against fingerprinting in general. Section
3 will subsequently introduce the fingerprinting framework PIFF (Packet Injection and

1it does not need to be inside, but it is in our setup due to the flows being available there

1 INTRODUCTION 10

Fingerprinting Framework) and offer a quick primer into the code. Design methodologies
and practices as well as overall framework design and file structures will be discussed.
The following Chapter 4 presents the analysis of the tests that were performed with the
framework and shows the results in various plots, whereas the last section, Chapter 5,
will conclude with a discussion of the results and give an outlook for future work in this
direction of research. This chapter will discuss the effectiveness of active fingerprinting
in general and present working countermeasures against it.
In the Appendix is the original task description along with the schedule of the thesis.
There you will also find a user manual which explains the basic steps with the framework
and instructions on how to compile and run the framework on your machine. Further-
more the Appendix contains the original attack scripts used in the tests.

2 LITERATURE REVIEW AND RELATED WORK 11

2 Literature Review and Related Work

Ideally each network administrator would capture all the traffic he observes and then
release it for further study. Unfortunately such network activity logs contain confidential
information, such as IP addresses or payloads, which users as well as administrators
don’t want to become public. As a consequence such information is either stripped
from the logs or kept and obscured before publishing. We will give a short summary of
anonymization methods currently in use and briefly discuss their applications.

2.1 Anonymization schemes

When obscuring data, one can take two separate approaches: One can try to anonymize
a value, effectively trying to make it indistinguishable from other values in that field or
one can assign it a pseudonym by replacing the actual identity with an alternate one.
Both may be achieved in several manners and have separate applications and security
concerns.

2.1.1 Anonymization

A subject which is not identifiable within a set of subjects (”anonymity set”) is called
anonymous. Of course the larger the set, the better for the subjects anonymity. In our
case, a value in a field of exported data should not be identifiable from other values in
that particular field.
The first method is to remove the contents of a field or replace the value with a constant
(black marker approach), which is quick and simple to perform. This leaves absolutely
no information about that field and is equivalent to removing the field from the record
altogether. A very similar approach is to randomize sensitive data within a field, which
makes the anonymized contents also completely unlinkable to the original values.
Another idea is to generalize data in order to protect single individuals. Several entities
are grouped together and the entities’ identifiers are replaced by the group identifier.
This can prove problematic as soon as the grouping does not always produce equal sized
parts. In the cases where a single individual or a small group can be identified with a
group name, the anonymity of the users in question could be violated. As a special type
of generalization we will add truncation of values, since it has many applications and is
used often. A fixed-length prefix is normally left untouched, whereas the rest of the field
is discarded. This could for example be used to preserve the subnet structure of a net-
work while protecting the individual users by applying truncation to the IP address field.

2 LITERATURE REVIEW AND RELATED WORK 12

2.1.2 Pseudonymization

Pseudonymization replaces the actual identity of an individual by a pseudonym through
a bijection and is as such a reversible process by definition.
Often data is permuted, meaning original identities and pseudonyms are drawn from
the same set. Anyone who knows the permutation that was used can easily reverse the
mapping, since permutation is a bijection. A special form of permutation, which is used
frequently because of its convenient properties, is called prefix-preserving permutation.
This is often applied to IP addresses, because network topology is preserved in a way
that addresses that are next or close to each other initially are still next or close to each
other after the permutation, but all addresses have been remapped. More formally, two
plain text IP addresses which share a n-bit prefix will still share a n-bit prefix in their
anonymized form. The advantage of preserving the topology of a network is at the same
time a disadvantage: if someone managed to compute the mapping from an IP to its
anonymized form, he will also get information about the machines nearby.
There are a number of cryptographic methods that can be applied to record fields, like
hashing, encrypting or keyed hashing. Applications for hashing could be hash functions
which preserve some prefix information, e.g. topology information in the case of IP
addresses. Keyed hashing is used when the values for the hashing are too short and
as a consequence dictionary attacks on the hashing scheme are possible. This is impor-
tant since computing e.g. MD5 hashes for an entire IP address space is a matter of hours.

2.2 Setup

In out scenario, there’s a network segment of arbitrary size, which is monitored through
some sort of packet capturing device. Captured data can be recorded as single packets,
flows or be sampled. Once captured, a trace of all the traffic is exported and anonymized
according to some predefined policy in order to protect sensitive user and network data
from malicious users. The only assumptions are that the payload of packets is unavailable
and certain header information, like IP addresses or port numbers, remain intact2. An
additional assumption is that TCP and UDP port numbers map to their according
services as stated by Coull et al. in [7]. After the trace has been anonymized, it is released
to the public for further research and analysis. Early detection of worm outbreaks,
network congestion or detection of distributed denial of service (DDoS) attacks are just
some of the motivations for inspecting large amounts of network data.
The motivation of an attacker in this setup is straightforward. As soon as he will be

2meaning they are included in the log, but could be anonymized

2 LITERATURE REVIEW AND RELATED WORK 13

able to deanonymize the final trace, he will have a complete log of activities for the
entire network. In order to deanonymize a trace, the adversary has to somehow mark
a machine with a (unique) signature he recognizes later in the anonymized trace. This
marking of a physical machine over the network is called fingerprinting. There exist two
different methods to fingerprint a host. In the first approach, the attacker only inspects
anonymized traces and can deduce information about the real IP addresses from them.
The other method involves the attacker being active by injecting packets that he can
identify later in the anonymized trace. The ultimate goal of the malicious user is to
reveal the binding between real and anonymized IP addresses of some or all hosts inside
the monitored network.

2.3 Passive fingerprinting

2.3.1 Description

As mentioned above, with passive fingerprinting the malicious user does not inject pack-
ets or influence the distribution of the trace in any way. He gains information about the
victims strictly by inspecting the anonymized trace and from public information sources
like search engines or web statistics.
The general approach with passive fingerprinting is to try some sort of matching algo-
rithm on the anonymized data set. Patterns that are either very similar to each other
or well-known can be observed and then compared. Mostly the attacks work by means
of behavioural profiling. Actions or attributes of hosts are analyzed and later used to
recognize them.

2.3.2 Attacks

As an example each web site has a unique structure (”signature”) and request/response-
pairs will look similar in terms of size and response time (the time the web server takes
to compute a dynamic script). Koukis et al. [14] obtained a signature for each web page
to be identified and created a database of signatures. Those signatures were matched
with information extracted from the trace and a similarity score for potential matches
was computed. As a consequence they were able to reconstruct about 8% of the requests,
which shows that matching can at least partially be successful. Once several web sites
are discovered that way, it is possible to profile the web browsing behaviour of users
through the anonymized logs.
The goal of an adversary could also be to identify the so called ”heavy-hitters”. These
are the servers (typically web servers, DNS servers), which are frequently visited and

2 LITERATURE REVIEW AND RELATED WORK 14

therefore appear more often in the log. Coull et al. [7] showed that they were able
to deanonymize from 66% up to 100% of the targeted SMTP servers and 28% to 50%
of the significant HTTP servers using only behavioural and public information. By
measuring the entropy of distinct IP addresses and taking the lowest values they could
correctly filter out the heavy-hitters and compare them to known heavy-load servers
in the network. Popularity-based search engines like http://www.alexa.com and other
public information sources like DNS records or Google search helped greatly to identify
the servers. They were also able to correctly deanonymize a /24 subnet by means of the
”Subnet Clustering” technique.
Each network has a special distribution of services. If a subnet, lets call it a.b.c, has
a server with File Transfer Protocol (FTP) port and Secure Shell (SSH) port open at
a.b.c.1, a heavy-load web server at a.b.c.2, another server with FTP and SSH port open
at a.b.c.3 and a machine with telnet, SSH, FTP and HTTP ports open at a.b.c.4 (and
no other servers), this subnet may well be the only one with these exact characteristics
(depending largely on the size of the monitored network). Assuming one wants to find
a particular server which interacts with other servers, one can draw a relationship map
with all the servers and the services they offer. While this takes a lot of manual matching,
there’s a chance of finding the server one wants to identify through neighbour-relations.
In their worst-case scenario, Ribeiro et al. [21] managed to identify up to 44% of the
hosts uniquely in a class B network with full prefix-preserving IP address permutation,
while only about 4% could be identified when a partial prefix-preserving scheme was
chosen.
Yet another idea could be to actually attack the anonymization scheme protecting the
data3. Data truncation for example reveals a certain amount of information, since the
prefix of the value remains intact. If truncation is applied to IP addresses, one has some
information depending subnet structure and matching the hosts becomes easier, but the
utility of data for anomaly detection is decreased [5]. Permutations as a second example
are often applied in the form of prefix-preserving permutations. Fan et al. [9] studied
different attacks on prefix-preserving permutations like frequency analysis, active attacks
and port scanning in depth and compared them to each other. In a related work Brekne
et al. [4] also suggested that existing permutation techniques are not completely free of
information leakage by finding attacks on two prefix-preserving anonymization schemes.
Another well-known approach of passive fingerprinting is to make use of port scanning
activities. Often port scans will sweep over a whole subnet, scanning one or several
ports in the process. Such sequential scans can be used to reconstruct the original host
portion and perhaps also the subnet-prefix, as the scan will hit the hosts in ascending
order. Exploiting the fact that port scans already exist in an anonymized log can thus
reveal the structure of whole /24 subnets [14]. Still this method probably requires some

3more precise: the IP address field of the anonymization scheme

2 LITERATURE REVIEW AND RELATED WORK 15

manual matching but can greatly reduce the number of possible combinations.

2.4 Active fingerprinting

2.4.1 Description and Motivation

A serious drawback of passive fingerprinting is that although heavy-hitters are accurately
identifiable, machines that ”stay below the radar” cannot reliably be uncovered in the
trace or there is at least no guarantee that one particular target host is identifiable. What
we would like to have is that an attacker can pick targets at will and extract these IP
addresses only. Since a possible victim has to somehow draw attention in the anonymized
log and because the activity of a host is nothing a passive attacker can change without
interfering directly, a stronger attacker model is needed. The adversary should now be
able to actively inject packets at will in order to recognize his packets in the final trace
without relying on the attacked machine in any way4. This change gives the adversary
much more power, since he is now able to profile the behaviour of any host he wants.
The attacker model for active fingerprinting is not restrictive and the assumptions are
reasonable for an attacker with moderate available bandwidth. The attacker is assumed
to know about the address space of the monitored network and can direct traffic there
at will [1]. It is also reasonable to assume that an adversary has one or several machines
outside the network under his control and could potentially compromise hosts inside. It
is imperative to mention that an attacker does not need to have excessive computing
power or a large data transfer rate.
The intentions of the adversary in this model are to attack a set of physical machines
by revealing their addresses in the anonymized data. Such an active malicious user can
potentially do anything to the network, but since he wants to profile selected hosts, it is
in his own interest not to raise too much suspicion (e.g. by flooding the network with lots
of traffic). On the other hand he must ensure that he’ll be able to recognize his traffic
later on. The attacked host will notice the attack with high probability if appropriate
intrusion detection mechanisms are in place, because the whole idea is to generate traffic
that is atypical for this host.

2.4.2 Attacks

An active probing attack could look like that: An attacker from outside sends specially
crafted packets to a potential victim, which may or may not reply, inside the moni-
tored network. Those packets have attributes that the attacker will recognize later in

4The machine could even be offline during the attack

2 LITERATURE REVIEW AND RELATED WORK 16

the anonymized trace, e.g. an unusual port number, seldom used Transmission Control
Protocol (TCP) flags or IP ToS, such that each attack will get its own unique signature
as explained by Foukarakis in [1]. As an example, a victim could receive ten packets
with a size of 77 Bytes, starting at port number 33’777 in ascending order and each
packet having all 8 TCP control bits set to ON. The combination of those values for one
particular victim is the fingerprint, and should be unique for every machine in the same
timeframe. The attacker restricts himself to those attributes that are not going to be
anonymized as suggested in [1]. They also suggested that in the unlikely event where
all attributes are anonymized, temporal patterns should be used. As a trivial way to
initiate recognizable flows they proposed a SYN scan on the target network, making it
detectable in the trace.
Brekne et al. propose in [4] to forge packet headers or traffic patterns such that they are
recognizable in their anonymized form. This way an attacker should be able to find an
exact match between plaintext and anonymized data.
In their work about prefix-preserving IP address anonymization Fan et al. [9] state the
possibility to encode the victim IP address into fields like port numbers or packet length.
They also remark that active attacks could span long periods of time and could thus be
made arbitrarily hard to detect.
In order to actively fingerprint a machine, one has to take advantage of a covert channel,
such as time or packet size [2]. What the malicious user effectively chooses as fingerprint
will largely depend on the format that the captured data is exported to and the anony-
mization technique used to obscure the fields, since only fields that are left intact can be
used [1]. Still there are certain attributes of a connection which are better suited than
others to build a fingerprint. The attacker in this model is assumed to know about the
anonymization scheme that is used and can therefore prepare his attack accordingly.

2.5 Countermeasures

How to defend against fingerprinting attacks is still an open debate, because with ano-
nymization there is always some kind of trade-off involved. The two major concerns
are privacy of the users versus information value. The key is to find a balance between
usefulness of the information to the researcher (”utility of an anonymization algorithm”
as introduced in [23]) and privacy of the users inside the monitored network as well as
security of the network itself (”strength of an anonymization algorithm” as introduced in
[23]). To anonymize only the IP addresses for example is perhaps beneficial to network
researchers, since all kind of studies can be made on the data, but may not be appropri-
ate from a network administrators point of view. As a result no perfect solution exists,
but only compromises between the two parties involved.
Also not all countermeasures are equally applicable against passive and active attacks.

2 LITERATURE REVIEW AND RELATED WORK 17

A countermeasure which will prevent passive attacks may not do much good when faced
with an active adversary and vice versa. We can divide the countermeasures into two
broad categories: one that is aiming at improving and reinforcing the anonymization
scheme and one that focuses on non-technical measures. The countermeasures are or-
dered by their ”utility”, starting with those that give the analysts the most information.

Reinforcement of the Anonymization Lets first have a look at a weak method
which tries to tamper with the available data as few as possible. Adding a small random
amount to all fields can help countering attacks which work with the similarity of web
server responses, which is called ”Random value shifting” by Foukarakis et al. in [1]. The
interval of the random number could be dependent on the original number n to jitter,
making it for example [n − n

100 , n + n
100] or it could be the smallest value s observed5,

e.g. [n − s
2 , n + s

2]. The success of the approach depends largely on the type of field.
Whereas this looks promising with timestamps and the like, this just doesn’t work at all
with port numbers or IP addresses.
A bit stronger an approach would be to remove ARP and port scan traffic entirely from
the log [7]. While this would in fact obfuscate some statistics, it is very effective against
the attacks mentioned, since routers and scanned subnets can no longer easily be identi-
fied. One could argue that port scans are rarely of importance and their removal would
not considerably warp any statistics, but on the other hand scans might be used to pre-
pare an attack and could contain valuable information regarding the attackers.
A very interesting way of countering an active attack could be to hide details about the
capturing of network packets itself. While security through obscurity is generally not
considered a good methodology, keeping date and time as well as the exact place of the
capturing hidden from attackers could be a good idea [9, 14]. The vision is that a large
amount of organizations release network data sporadically without saying who took the
trace and where it was taken. Timestamps would need to be excluded from the trace
and at least IP addresses should be anonymized. Behavioural profiling would still work
in this case, but active attacks would become very hard to execute, whereas this would
have no serious impact on the research value of the data.
Coull et al. [7] discussed the idea to remap the TCP and UDP port numbers to counter
the mapping of neighbouring relations. This would preserve certain metrics, like certain
ports are used heavily while others aren’t at all, but it would be hard to guess which
ports they are. But then again, this approach might destroy important information since
there’s often a corresponding service behind a port and without application data (which
could get filtered out by the capturing device) and ports, there is no way of determining
which service it was.
Another approach is to obscure bidirectional connections [1]. The idea is that whereas

5would require that the whole trace is traversed at least twice

2 LITERATURE REVIEW AND RELATED WORK 18

a connection from A to B (denoted A → B) is mapped to A′ → B′ during the ano-
nymization, the connection in the other direction B → A is mapped to C → D. This
mapping makes any attempt to match bidirectional connections in the anonymized data
to real connections very tricky, because initiating and receiving host both were randomly
remapped. Of course this is also information which would greatly interest researchers,
but all they see now are unidirectional connections without correlation, which renders
most analyses on the data useless.
In order to protect the data, one could also apply a combination of methods and use a
dedicated method for each field, like prefix-preserving pseudonymization for IP addresses
and remapping for TCP or UDP ports. The loss of research value would have to be an-
alyzed for each field separately and may vary with the method used. Still, as Coull et
al. [7] point out, an attacker might be able to bypass the protection by using an easily
detectable temporal pattern.
As a very strong countermeasure (in a sense that much of the contained information is
no longer accessible) I will add top-lists. Instead of publishing whole traces, only top-list
traces of selected fields are released, meaning only the top 10 of the most frequently used
ports for example. As most of the value of the information is clearly destroyed that way,
this approach isn’t meant to encourage extensive research, but only to give an overall
impression about the state of the network. This idea was discussed by Bethencourt at
al. in [2].

Non-technical measures The first idea here would be to impose legal requirements
on the published data [7]. This might not scare off many attackers, because law is tricky
to apply across countries and to proof that someone has broken the agreement could
mean a great deal of work.
Another approach might be to give only remote access to the data. This way the owner
of the data could control and restrict applications on his traces. The third and most ex-
treme non-technical solution is to restrict access to a group of trusted individuals, which
performs requested operations on behalf of the clients [7]. These solutions require the
publisher to have a good infrastructure and possibly to dedicate a considerable amount
of resources.
Most of the discussed non-technical solutions will in fact not work against active fin-
gerprinting. To restrict on remote analysis would not counter the attack, since requests
from an attacker which has performed an active fingerprinting attack can look legiti-
mate6, depending on the attack strategy. This is also the reason why it is very hard if
not impossible to filter out active attacks from the anonymized trace without damaging
ordinary traffic as well.

6as long as the packets are valid and reasonably sized there is no reason to suspect an active attack

2 LITERATURE REVIEW AND RELATED WORK 19

2.6 Conclusions

There certainly is a lot of research going on in the field of anonymization and pseudo-
nymization. Much of the research literature is about passive fingerprinting in a sense
that it concentrates on breaking an anonymization without direct interference. Many
clever ways have been suggested to use information that is already available in a trace or
which can be acquired through legitimate channels in order to break an anonymization
scheme. All these approaches have in common that they require some kind of context
information, which can link an IP address to its obscured counterpart.
Context can be public information which is freely available on the web, like DNS replies
or results from search engines. Also context could mean that information is extracted
from the obscured trace itself, like port scanning patterns or neighbour relationships.
This additional information is essential since it allows to draw a connection between
anonymized and original data.
Basically each server can influence his ”presence” on the Internet at will and could for
example decide not to interact with the environment, in which case the host would be
very hard to find by a passive adversary. In the end, what really makes a server linkable
and identifiable is the traffic he initiates or receives. So an active attacker does not
need to anticipate the behaviour of the victim, since he can direct traffic there and as
a consequence bias the victims traffic pattern. Active fingerprinting gives the malicious
user the ability to manufacture the context himself instead of blindly rely on it to be
there in a trace. The difference between passive and active fingerprinting is that while
the former relies on existing traffic patterns, the latter can generate context information
at will for any host in the network.
Not only can a malicious user in the active setting decide on its own which victims he
wants to profile but also how they appear in the anonymized log. This leaves the active
user with two distinct advantages over the passive guy: he can say exactly which hosts
he wants to target and he is able to control how much attention these victims should
attract in the log (to those who know the fingerprint).
Many research papers only hint in the direction of active attacks. The motivation for de-
veloping a framework for active fingerprinting attacks is to investigate and demonstrate
the capabilities of an active attacker directly on live data. Also it should show how effec-
tive existing countermeasures are against active fingerprinting and to what degree they
can still be applied. The expectations are that most countermeasures against passive
attacks will in fact not work against active injections and that a new set of countermea-
sures will have to be devised.

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 20

3 Framework Architecture and Implementation

PIFF (Packet Injection and Fingerprinting Framework) is written nearly entirely in
objective ANSI C++ and is tested under Linux 2.6.27 and Linux 2.6.20, but should
work fine on any other Linux system with the proper libraries installed (see Section 3.2
for more information on required libraries). Each class has a source and header file with
the extensions .cpp and .hpp that contains exactly one class definition and declaration
respectively. The framework produces two executables: InjectorStart is the binary
that handles the generation and injection, and AnalyzerStart is the program handling
the final matching. There are also additional shell scripts that handle minor work and
are to be understood as small helper programs. We also provided a small shell script to
ease the process of large scale injections.

3.1 Framework Design Overview

The framework is divided into four packages, while some depend on each other and oth-
ers are free of internal dependencies. See Figure 1 for a visual illustration of PIFF. There
are three main components which work independent of each other. In order to generate
and inject packages we use the package called Generator/Injector. This component
is actually a merge of two separate components, the Generator and the Injector, which
were bound together for simplicity because their invocation is sequential i.e. what the
Generator creates is fed into the Injector and injected into the network from there. The
second component is the Converter package which is a bridge between the Genera-
tor/Injector and the last component, called the Analyzer. A typical run of an injection
is Generator/Injector → Converter → Analyzer, while those three components normally
don’t run on the same machine.
The packages are logically separated and perform separate tasks. Whereas the Gener-

ator/Injector solely works on packet level and does not understand flows, the Analyzer
package processes NetFlow data exclusively. To bridge the gap between the two com-
ponents, the Converter creates flows out of packets, thus simulating the behaviour of a
capturing device exporting NetFlow data.
An attack is specified as input file to the Generator/Injector component and is called
generator file. Once the Generator has read and processed the file, it produces a list
of packets, which in turn are passed to the Injector, where they are injected into a raw
socket and into the network. This component writes a detailed protocol of the injection,
dumping the packets into one large XML (Extensible Markup Language) file, storing
meta data about each packet (e.g. timestamps) and packet data itself. Being a list of
stored packets, this file called injector file, is read and transformed by the Converter.
The purpose of the Converter is to emulate router behaviour by converting packets into

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 21

Figure 1: Framework Design

flows. We included active and passive flow timers, which are set to standard values as in
[6]. The timers are the only values that need to be adjusted in case the framework was
used on a network other than SWITCH.
The role of this program is crucial, since cleverly injected packets are worthless when
they’re incorrectly transformed into flows and the Analyzer is unable to recognize them
later on. As clearly visible in Figure 1, all components on the right side work on flow
level. On one hand, the border routers of the SWITCH network are creating NetFlow
records out of real traffic, on the other hand the Converter simulates this behaviour with
the injected packets from the injector file. The flows from the border routers are ex-
ported and stored in a NetFlow database, where they can be retrieved and anonymized
according to some predefined policy. Flows leaving the Converter are sent to the Ana-
lyzer, where they may also be anonymized to some degree to match the anonymization
of the captured real flows. The Analyzer is then provided with two sets of flow records:
anonymized flows that came over the border routers into the local NetFlow database,
and partly anonymized flows from the Converter, initially coming from the Genera-
tor/Injector component. There are processes that are common to both paths and the
ability to simulate injections without going over the network is also shown in figure 1.
The final component in the chain is the Analyzer. Its job is to compare the two received
flow sets with each other and recognize the injected flows within the captured flows.
This is done with a similarity score, that is calculated over the attributes of a flow. The
results are finally written to a file, called the analyzer file. This file lists the injected
flows one by one and assigns the best match from the captured flows to each of them.
As a result, we know the correlation between the two flow sets and how the flows we
have injected look like in the anonymized version. Reading out the destination IP of the

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 22

flows, we can undo the anonymization of those hosts we have fingerprinted and profile
their activities within the anonymized flow records. At the end of each analyzer file,
there is a short summary about the comparison, where the destination IP that occurred
most can be seen.

3.2 Libraries

In addition to the standard C++ library (STL), we used some public libraries and third
party tools to improve extendibility and compatibility.
In order to parse the generator file, we chose to make use of the Spirit parser framework
[15] in version 1.83. Spirit is object-oriented and part of Boost [3], which is a collection
of freely available, peer-reviewed and portable C++ libraries. The Spirit framework
has a unique approach to parsing grammars by allowing the user to approximate the
syntax of EBNF (Extended Backus Normal Form) with ordinary C++ syntax. As a
result, grammars can be written exclusively in C++ and mix freely with other code.
This framework was the logical choice to use because it supports everything we wanted
(and much more) in terms of expressiveness and simplicity. With very few lines of code
we were able to create a parser which recognizes an arbitrary arithmetic expression and
assigns semantic actions to the single elements. The Spirit Framework is also written
very modularly such that extending the EBNF for the generator file is very easy and
straightforward, in case someone wanted to improve or extend the syntax. For more
details about the structure of the generator file please refer to chapter 3.4.2.
For reading and writing the XML file (injector file) we have used the Xerces-C++ XML

Parser 2.8.0 [10] toolchain, which is a validating XML parser providing a reliable and
stable API (Application Programming Interface) for both W3C [30] standards SAX [29]
and DOM [28]. Since PIFF should provide an interface for single packet injections and
not for large scale packet generation, we decided that DOM suffices, although it is more
space and execution time consuming, but has an easier interface and requires less code
to be written. We chose the Xerces parser because it is a mature project, available for
Perl, C++ and Java, and is freely available under the Apache License in version 2.0.
Furthermore the design of the parser is very well structured and the whole project is
written with solid object-oriented concepts. The Xerces parser is used in the packages
Injector and Converter to read and write the injector file. For a detailed description of
the injector file syntax please consult chapter 3.4.2.
To process flows we used the TIK internal library called ProcessingNG to read, write
and modify NetFlow data. The library has a modular design and provides a hook with a
base module. Custom modules can be written as derived classes from the base module,
implementing a public method to process flows and send them to the next module of the
chain. Unfortunately the library contains few documentation, but is well structured and

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 23

Figure 2: Design of the Packet Package

intuitive to use. All flow input and output as well as anonymization is performed with
this library.

3.3 Patterns and Best Practices

Before we started the implementation, we made UML (Unified Modelling Language)
diagrams of the packages and modules. The UML diagrams were adapted continually
and changed slightly to reflect the current state of the code. The final version of those
diagrams can be viewed in Figures 2 to 5. Attribute names and methods have been
simplified, but the data flow and relationships between classes are modelled accurately.

The code of the framework is nearly entirely written in C++ with object-oriented
concepts. We tried to keep classes short and clear, and split large procedures to make
them manageable. The source code is documented in a style similar to javadoc and
follows the sun recommendations for writing code comments [25]. This way the code can
be exported into HTML or PDF (Portable Document Format) such that the interfaces
for all classes are displayed nicely using tools like Doxygen [27] or DoxyS [11].
We particularly wanted to make the code look nice and easily understandable. In order
to avoid bugs, we employed some C++ best practices, such as the rule of three. The
rule demands that if one of

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 24

Figure 3: Design of the Generator/Initiator Package

(i) Copy assignment operator

(ii) Destructor

(iii) Copy constructor

is explicitly written in a class, the others probably should be written as well. This avoids
that an object is somehow incorrectly copied while containing non-trivial members as
references or lists. We enforced this rule on all our classes since object of type Packet
are copied a lot inside the Generator, for example.
We did not want to give the Generator a static list of packets that it can process, instead
we made the Generator have modules that understand their own section in the generator
file. This eases extendibility of the Generator a lot, since all that is needed to allow the
Generator to understand an additional packet header is to write a module where the
abstract method of the base module is implemented.
Since the design of the whole framework is not overly complex, we did not want to
blow up the code with unnecessary patterns, as the code is very manageable like this.
With the Injector however we felt that a singleton pattern is needed, since the Injector
is accessing the network device directly on a very low level7 through raw sockets. The
class has a static private member INSTANCE_ that is set once on calling getInstance()

7The Injector basically provides everything for a packet, down to the link layer

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 25

Figure 4: Design of the Generator Modules

the first time, and is just returned on subsequent calls. The class itself does not have
a (public) constructor and an instance can only be obtained through getInstance().
The instance is destroyed with a call to destroyInstance() which frees the allocated
memory again.

3.4 Packages

As mentioned the main packages are the Generator, the Injector, the Converter and
the Analyzer. There is also a package which does not represent a part of the framework,
but rather is an internal library or shared package which is used by most of the other
packages. The library is called Packet, since it is all about network packets.
We present the most important classes of PIFF now, explaining how they go together
and what their role is in the framework. Methods will only be mentioned, but not their
full signature given.

3.4.1 Packet Design

There are 8 classes in this package, 3 of them deal with XML processing. All classes
with their respective files are summarized in Table 1 and the design details can be seen

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 26

Figure 5: Design of the Analyzer Package

in Figure 2. The whole Packet library has no executable class, but only provides the
Packet class as the most important storage class. Most components using this library
will only include this one class and work with it.
The most basic storage unit is the class HeaderElement. A HeaderElement consists of
only three values: a name, a value and a size for that value. What is generally stored in
such an object is for example one single value of a arbitrary header. This class is derived
from Element to allow other types than integers as values, which could happen when tak-
ing a completely different set of protocols other than the standard IP/TCP/UDP/ICMP
that are supported by default.
Taking several of these HeaderElements and aligning them sequentially, we can model an
arbitrary header. The programming representation of a header is the class PacketHeader.
This class has an ordered list of HeaderElements and appropriate query and manipula-
tion methods. The most interesting methods from this class are toNetworkByteOrder()
and getHalfWordChunks(), which help in converting an object of this class into a net-
work packet. While the former converts the entire header into a representation suitable
for piping into a raw socket8, the latter splits the header elements in 16 bit chunks, which
is needed for checksum calculations.

8An array of type char, where all integers are in network byte order

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 27

Class Description

Packet Represents a network packet
PacketHeader Represents a header in a packet
HeaderElement Represents an element in a header
Element Represents an element with a value and a length
XMLPacketWriter Writes the injector file, serializes Packet objects
XMLPacketReader Reads the injector file, unserializes Packet objects
XMLPacketConstants Constant needed to parse the injector file
PacketConverter Converts from Packets to NetFlow

Table 1: Package Packet

The programming representation of a whole network packet is the previously mentioned

Figure 6: Schema of a Packet

class Packet. Very much like a PacketHeader has an ordered list of HeaderElements, a
Packet contains a list of PacketHeaders. Please see Figure 6 for a visual illustration of
the packet concept. As an example, a packet might contain an IP header, a TCP header
and some application layer protocol. One would build up these headers by means of the
HeaderElement class, and then add the headers in order to a Packet object with the
available setter methods.
A Packet also provides the method toNetworkByteOrder(). Another special function
this class has is setChecksums(), which calculates the checksum value of several headers,
namely TCP, UDP and IP. We’re not extremely happy with the procedure being there,
because a Packet should be independent of the PacketHeaders it contains. But due to
the way checksums are calculated in the TCP/IP model, we were forced to include this
method directly into the Packet class. Checksums are calculated over multiple headers
and operate on the network byte order representation, so there are dependencies between

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 28

single PacketHeaders by design.
The class XMLPacketWriter is used in the Injector to write the injector file. Next to
several setter and getter methods, the class provides two public functions. The first one
is called buildDocument() and is used to build up the DOM document. Using the inter-
nal list of Packet objects, this procedure populates the internal DOMDocument, which is
a representation of an XML document. The Packet objects are processed one by one by
appending child elements to the document root element. Once the build up is complete,
the DOM document can be serialized into a file with a call to serialize().
The Converter uses an XMLPacketReader to read the document serialized by the Injec-
tor. Since the Generator/Injector and finally the Analyzer component run at different
times and probably on different hosts, the use of persistent storage, in this case an XML
document, is needed. The reader just reverses the process of the writer, thus reading
from an XML document, building up the internal DOM tree and then create Packet
objects out of it. The invocation of methods is also very similar: after having called
parseDocument() to read a file and represent the contents as a tree, a subsequent call
to unserialize() creates a list of Packet objects, that can then be retrieved via the
query methods of the class.
The class PacketConverter is in fact the only class in the Converter component, and
even a relatively small one. This class could have been put in a separate package, but
since it will likely stay the only class providing the conversion feature, it has been put
into this package. The only method it currently supports is the static toNetflow(),
which converts from the packet library class to a flow class made available by the Pro-
cessingNG library. This class could easily be extended with further static methods that
convert between packets and anything else that comes to mind. In case the final analysis
is about to be made on packet level, the Converter would even fall away completely.

3.4.2 Generator/Injector Design

This package contains 5 classes, including one executable. All classes of the package are
summarized in Table 2. The main task of the package is parsing and interpreting the
generator file, which is the starting point of an attack. The file contains a description of
a sequence of attacks on one or multiple hosts with all kinds of specially crafted packets.
After writing an attack script, the user has to register modules with the Generator, that
parses and understands what has been written to the generator file. There are only few
things in the generator file that are fixed and have to be there, much of it is modular
and could be extended to support protocols other than TCP/IP, UDP/IP or ICMP.
Processing begins with the configuration file for an attack, called the generator file,
whose exact structure is explained below. The file has a one-to-one mapping to a class,
the ConfigFile. This class represents the generator file as a whole, since structure and

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 29

Class Description

ConfigFile Represents a generator file
ConfigFileSection Represents a section in a config file
ExpressionParser Parses evolutions in the config file
PacketGenerator Parses the config file altogether, defines structure of file
PacketGeneratorHelper Helper functions to parse the config file
PacketInjector Injects packets, writes injector file
InjectorStart Starting class that launches the injections

Table 2: Package Generator/Injector

semantics of the file are somewhat complex. ConfigFile is a list of ConfigFileSection
objects and declares several constants needed for parsing. It also offers some typical
file parsing functions, like methods to strip comments, trim values or tokenize a string.
The generator file is organized like a normal configuration file with sections and key-
value pairs belonging to those sections. The class handling the actual parsing is the
ExpressionParser, whereas the two classes mentioned before store the contents of the
generator file.
While the ExpressionParser deals with the syntactical correctness of the expressions

in the key-value pairs, both the PacketGenerator and PacketGeneratorHelper classes
define the overall structure of the file. Unlike the contents of a section, the series of
sections is well defined and induced by those two classes. We will subsequently discuss
the structure of the generator file and state which parts are fixed and which of them are
modular in design.

Generator File To describe an attack, at least 5 sections have to be specified. Those
sections are mandatory and are present in every generator file. The sections include ”se-
quence”, ”packet” followed by three times a ”header” section. The ”sequence” section
describes attributes common to all injected packets, normally this is only the amount
of packets assigned to this sequence. In the section ”packet” we’ve put metadata about
each of the packets, like their size or their injection time.
The three header sections represent the application-, transport- and network layer head-
ers common to most packet protocols. We realize that it is not possible to simulate
arbitrary packets due to this restriction, but to allow an arbitrary set of headers would
blow up the design of the file massively and make parsing cumbersome. Each header
section has mandatory entries for type and type name, and additionally the optional
and mandatory entries from the respective module. Each module is responsible for one

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 30

Program 1 Example Configuration File

[section]
key = initial value / evolution
key = initial value

[section]
key = initial value
key = initial value / evolution
key = initial value / evolution

Keyword Meaning

rand(x, y) Random value between x and y inclusive.
rands(x1, x2, ..., xn) Random value from the set (x1, x2, ..., xn).
@ Value from the last iteration.

Table 3: Generator File Keywords

header section and understands the key-value pairs it specifies. Modules are explained
in detail in the following paragraph.

An example structure is given in Program 1. Each ConfigFileSection represents a
section in the configuration file, with a name and a list of key-value pairs. To enhance to
expressiveness of the generator file, the notion of evolutions was added such that there
were no longer key-value pairs, but key-value-evolution triples (separated with ”=” and
”/” respectively). Evolutions describe the shift of a value over iterations. As an example
the entry

TCP_Destination_Port=80 / @ + 10

describes a series of values like

80 -> 90 -> 100 -> 110 -> 120 -> ...

for the destination port of TCP. This syntax is quite powerful and parsed with the Spirit
library of Boost, as noted in section 3.2.
A generator file can list an arbitrary number of those 5-tuples mentioned above, which
are processed in order of appearance. How a working generator file describing TCP
packets to random ports using the TCP- and the IPv4 modules might look like, is shown
in Program Listing 2.
As stated already, each key-value pair can additionally specify an evolution, which is

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 31

Program 2 Example of a Working Generator File

[sequence]

Packets=10

[packet]
Size=128 / @ + rands(0,8)
Time=0 / @ + rand(150,450)

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=rand(1,65535) / rand(1,65535)
TCP_Destination_Port=rand(1,65535) / rand(1,65535)
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP=155.155.155.155 / @
IPv4_Source_IP=144.144.144.144 / @
IPv4_Protocol=6 / @

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 32

Class Description

SectionModule Module that defines a general section in the config file
IPModule Module that understands IPv4 syntax
ICMPModule Module that understands ICMP syntax
TCPModule Module that understands TCP syntax
UDPModule Module that understands UDP syntax
NullModule Module that is invoked when a section is left empty

Table 4: Package Generator/Injector (Modules)

applied to the value in each iteration for as long as there are more packets to be generated.
Keywords that can be used are summarized in Table 3. It is up to the modules to specify
when a key-value pair needs an evolution and when it doesn’t.

Generator Modules There are five modules that are built-in into PIFF, because they
are used for our injection tests and they represent commonly used protocols. There are
four common modules which have a direct representation in the OSI model, and one
that is there for programming convenience. This module is called the NullModule and is
invoked when the user decides not to model a particular header. If there’s no application
header needed, the user won’t write anything in this section and the NullModule will
automatically handle this case. All the built-in modules are listed in Table 4 and their
names should be self-explanatory.
The module base class is called SectionModule and defines the entry point for additional
modules. A module typically inherits from the base module and is then forced by the base
class to implement the abstract method handleSectionImpl(). This method receives
one section from the configuration file which (hopefully) contains the key-value pairs that
this particular modules does understand. The module then manipulates a PacketHeader
based on the information gathered from the file, which is finally added to the list of other
headers. So each module that is called adds one header to the packet, resulting in three
headers (one for each of the layers in the OSI model). The base module provides several
methods to check the generator file section for mandatory entries and to retrieve the
values in the section comfortably.

It is the Generator class PacketGenerator that allows the user to register and unreg-
ister modules. A module is generally responsible for one section inside the configuration
file. Although there are built in modules, the concept allows for arbitrary modules to be
written and included into the framework, depending on what packets the user wants to

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 33

craft.
Once the generator file is parsed, found to be valid and the contents are stored in the
appropriate objects, the PacketGenerator creates a list of Packet objects by means of
the Packet library introduced above. At this point the part that actually ”generates”
anything is done, and the ”injection” starts. An instance of the PacketInjector is
created and initialized with needed information such as the injecting device and the list
of generated packets. After having sorted all the packets by ascending injection time,
the Injector instantiates a raw socket operating on the link layer level. First thing the
Injector does is to find out the MAC (Media Access Control) addresses of both the in-
jecting device and the router. Upon completion, it crafts a valid Ethernet frame with
the available information and prepends it to all packets that are to be injected. All that
is left now is to send the packets over the wire according to the timing information of
the packets. The Injector writes a detailed log file about the injection in XML.

Injector File The injector file is designed to be a machine readable9 log file of the
injection. The file is written in XML and the tags are chosen to be very similar to the
C++ classes. The whole file is a list of all the packets that were injected. Each packet is
given an injection time and a list of headers, much like in the implementation. A header
consists of a unique (for this file) identifier and a collection of header elements, which in
turn have a name, a value and a length in bits. To see a short example of such a file,
please have a look at Code Listing 3.
The PacketInjector appends to this file after each injected packet, thus making the
injection more error resilient. In case the injection aborts, the file is still correctly termi-
nated and contains the packets that were successfully injected. The PacketConverter
class reads this file and converts the contents to a list of Packet objects, thus reverting
the process of the Injector. The conversions are in fact just a serialization and deserial-
ization of the Packet class to an XML file and vice versa.

Finally, InjectorStart is the ”running” class that is called upon starting the frame-
work. Its job is to register all the modules with the Generator, launch the Generator
with a configuration file and then pass on the retrieved packets to the Injector. In or-
der to provide feedback for long injections, the launcher continually updates the screen
with information about injection times and whether errors occurred along the way. This
program has to be launched as root, since raw sockets require root privileges.

9The file should not have to be inspected or modified in any way, it is simply fed into the converter
afterwards

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 34

Program 3 Example Injector File

<?xml version="1.0" ?>
<packets>
<packet time="1234567890">

<header>
<headerName>IPv4</headerName>
<headerElement>

<name>IPv4_Version</name>
<value>4</value>
<bits>4</bits>

</headerElement>
<headerElement>

<name>IPv4_Header_Length</name>
<value>5</value>
<bits>4</bits>

</headerElement>
</header>

<header>
<headerName>TCP</headerName>
<headerElement>

<name>TCP_Source_Port</name>
<value>b084</value>
<bits>16</bits>

</headerElement>
<headerElement>

<name>TCP_Destination_Port</name>
<value>50</value>
<bits>16</bits>

</headerElement>
</header>

</packet>
</packets>

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 35

Class Description

FlowMatch Represents a flow and an associated score
M_Netflow_Analyzer Module that compares the two flow sets and writes the

analyzer file
PriorityVector List of N best FlowMatches
AnalyzerStart Starting class that launches the analysis

Table 5: Package Analyzer

3.4.3 Analyzer Design

This package contains 4 classes, including one executable. All classes of the package are
summarized in Table 5. The Analyzer is using the ProcessingNG library extensively. All
modules that belong to that library are prefixed with a capital letter and an underscore
(M_), and class names are separated by underscores, unlike other classes in PIFF that
are written in camel case.

The main part of the Analyzer is a class named M_Netflow_Analyzer. This module
receives two sets of flows: one that was captured over the network and one that the
converter read from the analyzer file. Also this module has one input and one output
file, which are called distance file and analyzer file respectively. As mentioned above, the
idea is to simulate the behaviour of the capturing device with the PacketConverter, but
similarly we also apply the same anonymization techniques to the injected flows as those
that were applied to the captured flows. What we initially have is two nearly identical
flow sets (or at least one is a subset of the other), then one of them is anonymized
according to some policy. The logical way to deal with this is to apply the same policy
also to the other set. The only problem is, that an attacker would not know the secret
values of a pseudo random generator, if some sort of random modification was utilized
in order to make fields unrecognizable. While deterministic functions like ”map all ports
below 1024 to 0 and all above to 1” are very easy to simulate this way, problems arise
when random elements are involved.
The real question here is what can an anonymizer do with a random generator? One must
keep in mind that if an anonymizer introduces its own random numbers, original values
are distorted inevitably by this, so we limited our analysis to a few basic algorithms that
a random generator could produce. What is frequently used for example is to give a
timestamp or a packet size a slightly distorted value, like randomly offset the value by
5% of his range. Another way random numbers might be introduced is to permute a
value or to generate a completely random number for a field.
There’s really nothing we can do about randomization of a value, the field is useless in

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 36

the anonymization afterwards. Similarly we don’t want to attack a permutation directly,
since our approach should work in any case. What we can counter is the random offset,
and that’s what the distance file is all about.

Distance File This file has a similar syntax to the generator file introduced above,
but it is way simpler in design. The file is a list of the attributes of a flow (destination
port, source port, packet count, ...). We assigned a number to each attribute, which
represents the maximal expected offset for this particular attribute. So the line

Packet_Count=10

means that the amount of packets was distorted and can differ by 10 from the original
value in each direction. Meaning if the original value was 17, numbers ranging from 7
to 27 could be observed.

Setting a value to 0 means exactly what it should, this field does not tolerate any

Program 4 Example Distance File

[Distance]

Destination_Port=0
Source_Port=0
#Destination_IP=0
#Source_IP=0
Bytes=10
Packets=0
Timestamp_Start=0
Timestamp_End=0
#TOS=0
#Protocol=0

deviations from the original value. If an attribute is not mentioned in this file, the
attribute should not be considered at all in the matching algorithm. This covers the
cases we mentioned above, where the anonymization includes randomization which we
cannot simulate properly and where we just have to ignore this field. As a guideline, if a
field was randomized, erased or permuted, you can safely omit this field in the distance
file and if no offset was used in the anonymization, this field is set to 0 in the distance
file10. An example of a distance file is given in Code Listing 4. In the example, the IP

10but needs to be present nevertheless

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 37

addresses, TOS flags and the protocol are not considered at all, whereas the byte count
can tolerate an offset of 10. This is a typical setting when recognizing a flow that had
only the IP addresses permuted and the byte count slightly modified , but everything
else was left unchanged.

The distance file is needed when calculating matching scores between two flows. For
each captured flow all injected flows are iterated over and a similarity score is calculated
for each pair.

Similarity Score Calculation The main task of the Analyzer is to compare sets of
flows. All possible combinations of injected and captured flows are compared and for
each of the injected flows a minimal score and the related flow are stored.
The score itself is calculated over all the flow attributes and by considering the distances
from the distance file as well. A value of a field (in a captured flow) V ∈ N is assumed
to be normally distributed with mean µ and variance σ2. In our case µ is the value of
he field in the injected flow and σ is the range that this field can assume, so we can
say V ∼ N (µ, σ2). To receive a distribution which has mean 0 and variance 1, we warp
the curve to a standard normal distribution by means of the z transformation. Once all
values are normalized in the range [0, 1], we can compare them safely. The overall score
computations looks like

Si,j =
k<K∑
k=0

wk ∗ sk

where Si,j is the computed score for flows i and j, K is the amount of attributes in a
flow, wk is the weight for a particular flow attribute and

sk =
xi − xj

rX

is the z transformed value where x is the value of a particular flow attribute and rx is
the range of this attribute. When the distance file is taken into consideration as well, the

6

-
xi xj x

6

-
xi xj x

Figure 7: Gauss Curve with (right) and without Distance (left).

score computation is slightly more complicated as the curve for a single attribute is no

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 38

longer a bell-shaped gauss curve, but a cut off version. A value V is no longer normally
distributed, but also features a uniformly distributed component. For a visual clarifica-
tion of the shape see Figure 7 with the two versions of gauss curves. As a consequence,
the calculation for sk is more elaborate as we cannot just take the difference between the
two values xi and xj anymore. Instead the calculation is depending on the distance and
is written in pseudo code in Program Listing 5. The M_Netflow_Analyzer class stores

Program 5 Score Computation for a Flow Attribute
if(xi + distance ≥ xj) then
sk = 0

else
sk = (xj − xi − distance) / rX

the N best flow matches for each of the injected flows, that is those flows from the set
of the captured flows that resemble the injected flows the most. In our case they store
the flows that have the minimal score11 with the flows from the injected packets. Those
N best matches are stored in a data structure that is similar to a priority queue, but is
in fact a list and allows to access any element currently stored.
To model this we wrote the class PriorityVector, which itself is a list of FlowMatch
objects. FlowMatch is a very simple storage class that stores a flow and a score associ-
ated to it. The PriorityVector on the other hand contains more complex code. This
class has an upper limit of elements it can store, called the capacity. It inserts elements
until the capacity is reached, and then overwrite those elements with the worst score
when inserting a new element. Whenever a new element is pushed into the vector, the
FlowMatch with the highest score is overwritten and lost. Just like a priority queue, our
PriorityVector has a top() method to retrieve the ”best” element.

The result at the end of the comparison of the flow sets is stored in the analyzer file,
which is the final product of the framework.

Analyzer File Once the N matches are stored for each injected flow, an algorithm
chooses the best match for each flow by taking the order of flows and the matching score
into consideration. If timing remains undistorted, the Analyzer tries to find a sequence
of matches such that the ordering of matches is consistent with the injected flows. The
result could be a sequence of matches where the match for the first flow has occurred
before the match for the second flow, which has occurred before the match for the third

11scores range from 0 to 100, where 0 is the best score possible

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 39

flow and so on. If several such sequences exist, the one with the lowest scores is taken12.
If timing is unavailable or only in modified form, the flows are matched one by one. The
Analyzer however has an option to specify how large the timestamp difference should be
at most for a flow to be considered in the matching.
The file lists all injected flows chronologically and displays the respective best match
next to them along with the computed similarity score. At the end of the file you can
see a short summary of the matching, indicating how many flows were probably guessed
correctly and how many could not be matched at all. The Analyzer presents you with
the destination IP that it thinks is the most likely target at the very bottom.

3.5 Error Handling

In general error handling was not seen as a major issue, since the programs are all batch
programs and will not run for very long, except the Analyzer which runs for 2 hours or
more on our machines for 1 hour of processing flow data. Also a failure means in many
cases that the framework cannot continue at all, so error recovery was treated not as
important as error detection.
The Generator/Injector part is very meticulous about errors. Both the generator file
and the injector file have a strict syntax and the validating parsers simply fails if the
syntax is incorrect. The internal classes in the Packet component have been thoroughly
tested and should not contain severe bugs. In this component, what can be handled and
thus is not a fatal error throws an STL exception and notify the user via the standard
error channel.
Errors in the Injector part are almost always fatal and simply causes the program to
exit with an error message. Exception messages from the included libraries are caught,
handled and should thus never reach the user.
In the Analyzer, the behaviour is somewhat different. Since most of the processing of
NetFlow data is handled by the ProcessingNG library, we don’t deal with reading or
writing errors ourselves. Large parts of the Analyzer include score computation and
reading or writing files, so there’s not much to do in terms of error handling on our part.
Clearly the most fragile part is the injection of packets, as this is very low level and
many things can go wrong. For example the Injector determines the MAC address of
the router by means of a shell script, which is not explicitly written to be compatible
with all UNIX derivates, so this part is likely to fail if the the Injector is tested in an
atypical environment and guaranteed to fail on anything else than a UNIX machine.
Many problems about the Injector have been addressed, however there may still arise
certain difficulties when trying to inject packets which we did not anticipate.

12the scores of the matches are summed to form an overall score

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 40

3.6 Limitations of the Framework

The Generator/Injector basically is a full-blown packet craft library which has a modular
input file and a detailed logfile that suits our purpose. The logfile is built in a way that
we can easily create flows out of the contents. With the built-in modules at the time,
the framework can craft just about any valid TCP, UDP or ICMP packet you can imag-
ine. Here PIFF could easily be extended by writing additional modules like an IPsec or
ICMPv6 module. Also writing modules for the application layer will be straight forward,
but would need some effort depending on the complexity of the protocol to implement.
Of course implementing application layer protocol based on TCP is not such a good
idea, since the framework is thought to be a packet injection machine. As a result, the
framework is non-interactive. Nevertheless, implementing a application layer protocol
can make sense, namely when the response is not important and injecting application
layer information helps to identify the trace later. Additionally it could help an attacker
to make his traffic look legitimate and to avoid being caught in a firewall or Intrusion
Detection System (IDS).
Also the framework, although written as an extendable piece of software, currently has
only limited functionality. As stated above, modules for the most common of protocols
exist, but more modules would make PIFF more complete and powerful. Another lim-
itation is the lack of additional converters and analyzers. The current converter offers
only one way conversion from packets to NetFlows and nothing else. The Analyzer is
purely based on NetFlow and does not currently support any other format. In order to
allow the framework to analyze other formats than NetFlow, one would have to write
the appropriate conversion between the class Packet and the available format, and write
yet another Analyzer module that can read and process this format. The whole read-
ing, writing and most of the processing functionality for the NetFlow format is wrapped
inside the ProcessingNG library, and therefore we chose not to make this extendable at
all, since it would have been too big an effort.
There were some simplifications and assumptions made in the packet generation process.
We chose to follow the Internet model and stick to the layer architecture in every case.
In fact we made it a requirement for a packet to have at most three layers. Those three
layers are the network layer, the transport layer and the application layer. The link layer
is handled by the Injector and cannot be interfered with. Due to this restriction, it might
be impossible to implement complex protocol stacks like they are needed when dealing
with IPv6 for example. Since IPv6 wraps parts of other protocols and adds additional
headers before and after the original header, this would most likely screw up the simple
three layer architecture of the generator file. However, the chosen simplifications work
very well with most common protocols nowadays.

3 FRAMEWORK ARCHITECTURE AND IMPLEMENTATION 41

3.7 Related Work

The Generator/Injector component is basically a traffic generator. Traffic generators
are usually used to stress test routers or servers under extreme load. Often such tools
are stateful and interactive in a way that they can simulate client-server behaviour.
Popular tools include for example the ”Network Traffic Generator and Monitor” [17] or
the ”HttpTrafficGen” [16].
Our framework is more likely to be classified as a packet craft engine as it does not
generate regular and valid traffic containing some application layer protocol. It crafts
raw packets, operates mostly on the transport layer and above all is non-interactive.
This makes PIFF unsuitable for penetration testing or even stress testing, where legal
connections are desired.
A frequently used packet assembler and analyzer is ”Hping” [22], which supports a wide
range of protocols. Although initially intended as a security tool, Hping is nowadays
also used to test networks. Another very good packet injection utility is ”Nemesis”
[18]. Unfortunately this tool is no longer maintained since late 2003, but contains an
impressive list of features and runs on both UNIX and Windows systems. Last but not
least, Nmap [19] is a very popular tool to perform port scans and penetration testing.
The open source project is also available for many platforms, but is not on such a low
level as the other tools discussed.
One of the main reasons we chose to implement a completely new packet crafting engine,
is that we have special requirements for this project since the engine is only a part of
a bigger project. For once we need very precise logging of the packets we have injected
with exact timing information. Second we wanted an easy interface where the user is
not distracted with unneeded options, but where a very simple configuration file with a
powerful syntax is enough. This way the user does not have to learn any unnecessary
details about the framework itself, but a fundamental knowledge of the injected packets
suffices to craft complex sequences. This was particularly hard to find in the available
tools, as most of them are just not on the right abstraction level. It turns out we needed
a combination of things that are not yet available as a program. The strength of the
Generator/Injector is also, that it uses the same internal libraries as the Converter and
the Analyzer, which probably saved us some compatibility problems.
Another alternative would have been to wrap an existing project and provide an interface
that suits our needs, but then the Converter and Analyzer would have gotten more
complex. We finally decided to write the Generator/Injector without any existing code
and used existing libraries for file handling instead.

4 TESTING AND RESULTS 42

4 Testing and Results

In order to receive a meaningful sample set, we conducted our injection tests on several
machines with different amounts of traffic. Intuitively machines which produce a lot of
traffic seem harder to fingerprint than machines that have few or no traffic at all. In
addition, traffic can be more diverse or monotonous, depending on the amount and type
of services a machine provides. IP addresses are assumed to be anonymized always. The
primary goal of the test is to recover the original IP addresses of these hosts. Table
6 summarizes the three classes of hosts we used for our injections tests. We tested 10
machines of each class to make statements of some statistical relevance.

4.1 Testing Setup

In order to fingerprint machines with a large amount of traffic, we chose the most ac-
tive13 web servers in the SWITCH network, since web servers have interesting properties
with respect to packet size and count. Both HTTP (Hypertext Transfer Protocol) re-
quests and responses can vary considerably in size and the resulting flows can contain a
variable amount of packets (depending on the amount of items on a web page), which
makes recognizing injected patterns harder. We called hosts from this category ”class
A” machines and they represent those hosts in our test set that seem to be the hardest
to fingerprint. Despite this fact, heavy-load servers are easily identified with passive
fingerprinting already, so active injections might be superfluous.
To model hosts with medium traffic, we picked random student workstations at ETH
Zürich. The diversity of traffic patterns those hosts generate is bigger than the diversity
of web server traffic. A desktop computer is expected to use HTTP, SMTP (Simple Mail
Transfer Protocol) and maybe some instant messenger protocol and possibly FTP (File
Transfer Protocol) or SSH (Secure Shell). Note that desktop machines may actually be
inactive during the fingerprinting period which could oversimplify the recognition pro-
cess afterwards for this category of machines. Desktop computers belong to ”Class B”
according to our terminology.
The ”Class C” hosts are machines that do not generate any traffic at all on their own.

It is one of the major benefits of using active over passive fingerprinting to be able to
deanonymize hosts that are inactive during the capturing period. Such a host would not
even appear in the anonymized log if it wasn’t for us. We took dark space14 from the
SWITCH network to test fingerprinting on inactive machines. Intuitively, it should not

13with the most replies going out the SWITCH network during one hour of measurement
14addresses that are not assigned to hosts, but routed nevertheless

4 TESTING AND RESULTS 43

Class Description

A Heavy-Load Web Servers
B Average-Load Desktop Machines
C Inactive Addresses

Table 6: Test Set of Machines

be hard to make those IP addresses stand out in the anonymized log since we are the
only ones connecting to them (apart from random scans). Theoretically very few packets
should already suffice to deanonymize those IP addresses successfully.
While this reasoning might sound consistent, in fact all machines are equally hard to
fingerprint. It does not matter whether a host receives or generates traffic at all, but
rather what’s happening in the monitored network altogether. Say someone makes a
connection that results in the exact same flow15 as the one we’re currently injecting,
it does not matter what type of machine we are fingerprinting, this flow will interfere
with ours since IP addresses are anonymized afterwards anyway. Everything we will
see in the anonymized flow file is two connections with the same attributes to different
(anonymized) addresses.

4.2 Methods of Testing

An attacker may be interested not only in successfully deanonymizing a target host, but
also in masking his approach as good as possible. Why would an attacker risk detection
when he can also look like an ordinary host? Additionally, when fingerprinting traffic
becomes too easy to recognize, the straightforward thing to do will be to filter out this
traffic before anonymizing the trace. So an attackers actually cares whether his traffic
stands out or blends in well with other traffic on the Internet. He should inject traffic
that is distinct enough to all other traffic that it stands out and is easily recognized later,
but does not attract too much attention. An attackers strategy should also include the
type of host he is attacking, as certain servers have very monotonous traffic while others
allow for more diverse connections. We made several injections with different traffic
patterns that should cover all aspects discussed. All of our traffic was injected at times
of day with medium or high amounts of traffic (Table 7).

Parallel to the traffic patterns, we devised anonymization ”policies” that we want to
test against. Those policies span a wide range of possible anonymizations and ideally
should cover most of what can be observed and is likely to be used. We paired each

15to another IP address but at the same time

4 TESTING AND RESULTS 44

Class Date / Time

A 21.02.09 / 12:00 - 13:00
B 27.02.09 / 16:00 - 17:00
C 21.02.09 / 13:00 - 14:00

Table 7: Injection Times

policy with each pattern to find out which policy is effective against which pattern and
vice versa.

Patterns Patterns in our settings are denoted with upper case letters as Px. We
wanted to have very different injection patterns in a way that when injected, they could
be used to break various anonymization schemes simultaneously. It should particularly
be hard to counter or find those patterns in the trace in an effort to decrease the chance
of the injected traffic to be eliminated easily. The patterns we’ve used range from very
simple patterns with one packet on a well-known port to large-scale injections made up
of largely random attributes.
What makes a pattern successful? What makes it easily detectable by the defenders
and therefore useless? How large does a pattern need to be to prevail? If we only con-
sider NetFlow data, we deal with flows containing the following attributes: Source IP,
Destination IP, Source Port, Destination Port, Byte Count, Packet Count, Timestamps,
TCP Flags, Type of Service and the IP Protocol Field. Assuming we only consider those
attributes, this spans a vector space with ten dimensions. What we would like to do
is to find the vectors of the traffic we’ve injected and then project on the ”Destina-
tion IP” field. Since a couple of base values will be changed somehow or omitted by
an anonymization scheme, we can only hope that those bases that remain are unique
enough (in combination) for us to recover. For the sake of simplicity, we will focus on the
ports, the counters and the timing, assuming that IP addresses will never be available
in anonymized records.
Lets first discuss how it is possible to deanonymize a single server with as few traffic
as possible. If this is really an issue, one would analyze available traffic patterns from
the server through public information sources and try to find ports that are very rarely
used in combination with packet sizes that are very unusual for this particular server.
If all this succeeds, there is already a great deal of information available on this server
and deanonymizing the server won’t be a big deal anyways (via passive fingerprinting
for example). Sending one or a few packets to an unused port could already suffice in
this case, but the chance that it doesn’t is still high. If however one wants a more uni-

4 TESTING AND RESULTS 45

P Source Port Dest. Port Timing Packets Size

P1 Fixed Service Regular 1 160 / @
P2 Random Random Regular 5 256 / @
P3 Fixed Service Regular 10 480 / @+32
P4 Random Random Regular 10 832 / @+32
P5 Random Random Random 50 1208 / @+rand(0,8)

Table 8: Injection Patterns

versal approach, one could use the timing information in the packets to build sequences
of packets, which minimizes the chance of duplicates in the trace. Introducing packet
sequences with unique attributes increases the chance of recovery in the final trace expo-
nentially. When using such timing information, attributes don’t need to be that different
from normal traffic, the sequence alone will make the pattern recognizable. One could
even go further and spoof the source IP address with random addresses from widely used
services on the Internet such as Akamai [12] or Doubleclick [8] to mask the attempt to
fingerprint a machine.

We’ve now seen that there are two ways to deal with the deanonymization problem:
using unique attributes in packets that really stand out in contrast to all other traffic
and using sequences of traffic that look ordinary. Of course those two approaches can be
combined to make up for a really strong packet detection mechanism. As seen in Table
8, we begin with a single packet to a well-known port that only has (hopefully) unique
source port and packet size fields. While this single packet won’t do us much good when
it comes to deanonymizing heavy-load servers, pattern P2 already uses a small sequence
of packets with fixed size and random ports. P3 is thought as a not-so-offending method
to fingerprint servers as it connects on the service port of a server and thus looks legiti-
mate. Like with P1, this only relies on source ports and sizes, but additionally constitutes
a sequence of ten packets and will be merged into one flow, since all flow attributes are
fixed. This is the only multi packet flow we will generate, all other resulting flows will
only contain one packet in most cases16. The last two patterns P4 and P5 extend this
idea of sequences and random values even further. The last pattern should prove to be
an irresistible combination of unique random attributes and sequences of packets that
should give a hard time to even the most aggressive of anonymization schemes.
We chose to use random values over fixed ones that are known not to occur very often,
because we want the patterns to be unpredictable, hard to counter and universal.

16they could contain more than one due to chance when a random source port is several times the
same during a pattern

4 TESTING AND RESULTS 46

A IPs Ports Timing Packets Size

A0

A1 Permute
A2 Permute Offset (5) Offset (50)
A3 Permute Bucket (6) Offset (30)
A3A Permute Bucket (2) Offset (60)
A4 Permute Bucket (6) Offset (30) Offset (5) Offset (50)
A4A Permute Bucket (2) Offset (120) Offset (10) Offset (200)
A5 Truncate (08) Bucket (6) Offset (30)
A6 Truncate (12) Bucket (6) Offset (30) Offset (5) Offset (50)

Table 9: Anonymization Test Policies

Anonymization Policies Policies in our settings are denoted with upper case letters
as Ax. In a way our devised policies are closely related to the patterns we’ve injected.
Just like the patterns, they describe what we do to each of the flow attribute. The
patterns characterize what we do to flows before they are injected, the policies what’s
being done after the injection took place.
As stated above, when anonymizing there is always a trade-off involved. Too strong an
anonymization results in the data being unusable but a too weak anonymization policy
makes the data transparent and violates the privacy of the users. We tried to take this
into account by offering a wide range of anonymization policies. Our intent is to use
rather strong anonymization techniques and demonstrate that even when data is nearly
useless for researchers, our fingerprinting still works reliably.

The policies with which we came up are listed in Table 9. The first policy, A1, is
kind of standard nowadays and involves masking the IP addresses only. In our case it
does not matter what kind of masking is deployed, as long as it maintains a one-to-one
mapping17 between addresses. Our expectation is that this widely used anonymization
technique provides no or very little defense against an active fingerprinting attack. The
following policies A2 to A4 apply a technique to blur values by adding or subtracting
small values, which is called ”Offset” in the table. The number in parentheses denotes
the offset that is used, for example if an offset of 30 is used and the original value is µ,
then the anonymized value is uniformly distributed in the interval [µ− 30, µ+ 30].
Stronger policies also categorize values into buckets, which is a special form of general-
ization of data. The number in parentheses denotes the number of buckets. When using
2 buckets, we chose one bucket to contain all well-known ports and the other bucket

17unlike truncation used in later policies which creates a one-to-many mapping

4 TESTING AND RESULTS 47

Pattern Class A Class B Class C

P1 100.0 100.0 100.0
P2 100.0 100.0 92.0
P3 100.0 100.0 100.0
P4 100.0 100.0 99.0
P5 100.0 100.0 99.2
µ 100.0 100.0 98.04

Table 10: Recognition without Anonymization and Mean Recognition Values of Patterns
[%]

all remaining ports. When there are 6 buckets available, the first bucket contains the
well-known ports, the second the port numbers from 1′024 to 10′000, the third the ports
ranging from 10′001 to 20′000 and so on. Note that A4 is already a very strong mecha-
nism as no field is left untouched during the anonymization. All the fields have some sort
of modification, but yet the anonymization can be reversed due to the IP address field
being one-to-one mapped. The last two policies try to remove exactly this mapping from
the anonymized record. A5 and A6 truncate the IP addresses and as a consequence re-
move the one-to-one mapping between addresses. The number in parentheses represents
the number of bits to truncate. When using 8 bits of truncation, what we logically see is
the connections between subnets. What we expect here is not a complete IP address but
an IP with the last 8 bits truncated, meaning a subnet, as final result. The last policy,
A6, should prove to be very strong as it uses 12 bits of truncation and thus removes
nearly all important connection information completely. The ultimate result that we get
here is at best the remaining 20 bits of the destination IP.

4.3 Injection without Anonymization

First we tested the border router’s accuracy and our capability to recognize single-packet
flows with a total of 30 injections18 (10 for each class) using 76 packets per test, totalling
in 2280 injected packets. The patterns that we used are visualized in Table 8 and the
exact attack scripts used are available in Appendix E.

If the capturing device worked absolutely reliable, we would expect to recover all of
the injected traffic without exception. Since the SWITCH border routers work in best
effort mode, packet loss is expected especially at peak times. As a result some flows
will contain less packets or even vanish completely in case the packet count was low to

18targeting 30 different hosts altogether

4 TESTING AND RESULTS 48

begin with. From the 76 packets we used per test only 10 are expected to be merged
into a flow, the other 65 of them constitute single-packet flows and are therefore likely
to disappear completely in case of an error.
The results from the recovery are shown in the tables of Table 10. The results are very
promising indeed as 99.35% of packets were recovered successfully during the tests. As
detector we used the Analyzer like in the following tests, but the IP addresses were con-
sidered as well in addition to all other attributes. Whereas the results are perfect for
classes A and B, patterns P2, P4 and P5 of class C leaked 4, 1 and 4 flows respectively.
We suppose these packets were lost already during capturing and didn’t make it into the
exported NetFlow data. During the following anonymizations we did not compensate
for those losses, although we know exactly which packets were not found without ano-
nymization, because the capturing is an integral part of the whole chain and must be
considered a possible source of error as well. Also this step is unavailable to attackers
under normal circumstances since they do not have the clean version of a trace and are
therefore unable to estimate the capturing error.

4.4 Injection with Anonymization

We will present now the results for each anonymization method. The injections were
performed once and the resulting data was anonymized according to several different
policies and then tested against our the Analyzer of our framework.

Policy 1

The first policy, A1, involves only a permutation of the IP addresses and leaves all
other flow attributes untouched. This means the addresses are reordered with a bijective
function, but are still taken from the same set as before. As expected, we can observe
that the percentages of the recognition matches the ones from A0 (Table 10) exactly,
as there are an abundance of attributes we can use to find the perfect match for each
flow (Table 11). If we account for the capturing errors, we even have an overall match
of 100%. The row labeled Σ is the overall recognition of the IP addresses when all
patterns are taken into account. Combining the recognition of all patterns and making
a frequency analysis of the occurring destination IP addresses, we can form an overall
recognition that improves the detection process even further.
In the tests we did not actually permute the IP addresses, but we left them untouched,

but did not consider them in the matchings. It is clear that the anonymization function
does not need to be a permutation on the set of occurring addresses, it can be an arbitrary
bijection of the IPv4 address space. In fact an injective function is already sufficient in

4 TESTING AND RESULTS 49

Pattern Class A Class B Class C

P1 100.0 100.0 100.0
P2 100.0 100.0 92.0
P3 100.0 100.0 100.0
P4 100.0 100.0 99.0
P5 100.0 100.0 99.2
Σ 100.0 100.0 100.0

Table 11: Recognition of Anonymization Policy A1 [%]

Pattern Class A Class B Class C

P1 100.0 100.0 100.0
P2 100.0 100.0 92.0
P3 100.0 100.0 100.0
P4 100.0 100.0 99.0
P5 100.0 100.0 99.2
Σ 100.0 100.0 100.0

Table 12: Recognition of Anonymization Policy A2 [%]

our case. Every injective function that maps from the IP address space to some other
set is acceptable and will give the same results.

Policy 2

Since permuting only the addresses is clearly insufficient to counter the fingerprinting, we
will now subsequently build up more and more elaborate anonymization schemes from
A2 to A4. The current policy, A2, also distorts the byte- and packet sizes slightly in
addition to the IP permutation. This reduces the flow attributes that can be perfectly
matched to only the ports and the timestamps. We used an offset of 50 for the byte
count and an offset of 5 for the packet count in our tests.
As we suspected it is more than enough to have two independent attributes that remain

unchanged. Table 12 demonstrates the overwhelming results when anonymizing with this
policy. As with the two policies already discussed, we have an overall match of 99.35%
and if we consider the capturing errors, even blatant 100% were recognized correctly.
Again it does not matter which pattern was utilized as all patterns were recognized

4 TESTING AND RESULTS 50

Pattern Class A Class B Class C

P1 100.0 80.0 100.0
P2 46.0 22.0 24.0
P3 100.0 100.0 100.0
P4 95.0 94.0 95.0
P5 97.0 91.2 97.0
Σ 100.0 100.0 100.0

Table 13: Recognition of Anonymization Policy A3 [%]

entirely.

Policy 3

As a next step, we chose to anonymize not the packet count and packet size, but the other
two remaining attributes (ports and timestamps) instead. This method should prove to
be more successful because packet size and packet count have somewhat limited variety.
Very many flows contain exactly one packet and the size of a packet can only range from
1 to 1500 bytes due to Ethernet having a standard MTU (Maximum Transmission Unit)
of 1500. Timestamps on the other hand are vital in recognizing flows and ports have
a wide range of acceptable values (1 to 65535). Ports were categorized into 6 buckets,
one for the well-known ports and then always one for the next 10′000 ports whereas
timestamps were given an offset of 30 seconds.

Still the injected flows were recognized very reliably during the tests. The results for
this policy are summarized in Table 13 and feature an overall recognition of 82.75%,
although pattern P2 was detected very poorly19. The other patterns all were recovered
very well with an average detection rate of over 90%, the most successful ones being P3

and P5. When considering all patterns P1 to P5 simultaneously, we can achieve a 100%
deanonymization of all targeted IP addresses. As in the previous cases, all 30 addresses
were guessed correctly by the Analyzer. Those stunning numbers seem to imply that
when repeating patterns or taking combinations of patterns we can increase the detection
rate step by step.

19without P2 the number raises to 95.77% of recognized flows

4 TESTING AND RESULTS 51

Pattern Class A Class B Class C

P1 0.0 20.0 0.0
P2 2.0 0.0 0.0
P3 90.0 90.0 100.0
P4 31.0 19.0 33.0
P5 59.0 50.0 68.6
Σ 90.0 100.0 100.0

Table 14: Recognition of Anonymization Policy A3A [%]

Policy 3A

Policy A3 was the first to show a tiny effect on our patterns, so we decided to make
a more aggressive form of this policy by reinforcing the existing anonymizations. We
only classified ports into two buckets: one for the well-known ports and one for the rest.
Additionally we gave the timestamps an even bigger offset from the original value with
60 seconds.

The results in Table 14 support our presumption that the anonymized fields were a
great help in the tests before nevertheless. The fact that a stronger anonymization lowers
the detection rate considerably raises the suspicion that a combination of attributes is
way stronger than the sum of the single attributes.
The overall recognition is still very good with nearly 100% of flows being detected. We
take this as a further hint that a combination of patterns is indeed very strong and
sequentially injecting patterns can boost the recognition extremely although the single
patterns are not recognized very well.

Policy 4

The policy A4 is actually a combination of the two previous ones, A2 and A3. To every
useful attribute in the flow we have applied some sort of anonymization, e.g. bucketizing
for the ports and offsets for all other fields. We would like to emphasize that this anony-
mization leaves very little information intact. What are you going to see as a researcher
when inspecting the data? ”I’ve seen a flow that started somewhere from 13:36 to 13:37
from one IP to another on some high port to a well-known port with about 3 packets and
a total size of about 230 bytes”. While maybe still useful for certain statistical analyses,
most studies on the data are just not possible anymore due to this extreme blurring.
Although this policy is very strong and gives us quite distorted data, the fingerprinting

4 TESTING AND RESULTS 52

Pattern Class A Class B Class C

P1 0.0 0.0 0.0
P2 0.0 0.0 0.0
P3 50.0 0.0 30.0
P4 10.0 3.0 5.0
P5 25.0 11.2 19.6
Σ 70.0 60.0 40.0

Table 15: Recognition of Anonymization Policy A4 [%]

is not that heavily impaired as one might expect (Table 15). While patterns P1, P2

and P4 achieve very low detection rates, the remaining ones are actually not that bad.
Ranging from 0.0% to 50.0%, those two pattern together have an average recognition
rate of 22.63%. Surprisingly high is the overall recognition rate which lies at over 56%
and even at 70% for the web servers.

Policy 4A

Since A4 seemed to work not so bad after all in ”countering” our fingerprinting, we
wanted to have an extreme case. The policy is ridiculously strong and would never be
employed like this on live data, as most flows will look exactly the same in this setting.
Ignoring the timestamps for once, you will see about 8 to 14 different flows depending
on the traffic you observe in your network. This does not allow for much of an analysis,
but we tested the policy nevertheless.
We classified the ports again into two buckets and chose an offset of 120 seconds for the
timestamps. This does not allow to determine the exact starting point of a flow exactly
with an uncertainty of 4 minutes. Additionally we chose an offset of 10 for the packet
count and 200 for the byte size. Combining all those facts, you will see at most about
250 different flows during one hour. It is clear that the more traffic is captured, the more
flows actually have the same attributes.
The outcome looks devastating at first sight (Table 16). There was no recognition at all,

most flows were matched with the wrong counterpart. What was the problem with our
fingerprinting? Does fingerprinting just not work anymore in this setup? If yes, where is
the boundary when it stops working? When posing the questions like that, it becomes
clear that the fingerprinting cannot just cease to work at some point when it worked
well until now, since detection did not stop at some point but went down gradually. A

4 TESTING AND RESULTS 53

Pattern Class A Class B Class C

P1 0.0 0.0 0.0
P2 0.0 0.0 0.0
P3 0.0 0.0 0.0
P4 0.0 0.0 0.0
P5 1.0 0.0 0.0
Σ 0.0 0.0 0.0

Table 16: Recognition of Anonymization Policy A4A [%]

more likely explanation is that it depends on the fingerprinting itself and the patterns
employed by it.
The obvious thing to state is that our 5 patterns were not sufficient for the magnitude
of blur this policy employs. Yet this anonymization scheme can be defeated, namely
with more injections and possibly also with differently structured patterns. You might
ask yourself why we didn’t do this as well. The problem is that there is always a more
aggressive policy. That is, until you reach the point where all flows have the same
attributes, except the IP addresses.
That the information is completely useless when all attributes are the same, is out of the
question, but still we can recognize our fingerprints in this extreme scenario by means
of a temporal pattern. This technique is discussed in depth in Section 5.1.4.

Policy 5

Before analyzing the results in depth, we want to pursue another approach. We are now
convinced that it is impossible to counter a fingerprinting when the IP addresses are
only permuted and thus identifiable one by one in theory. The method we’re using now
is called truncation and in essence cuts off bits from addresses. Policy A5 truncates the
last 8 bits from the IP addresses whereas the last policy will erase the 12 least significant
bits.
This is an entirely different way to make several flows look the same than we’ve used
until now. IP addresses are (unique) identifiers of hosts in a network, so messing with
addresses in this way is an irreversible modification to a network trace. Truncation is a
one way function in contrast to permutation which is reversible by definition20. When
anonymizing flow attributes such as size or ports, the uniqueness of the flows depend
on the other flows that can currently be observed in the network, but when truncating

20see Section 2.1 about anonymization versus pseudonymization

4 TESTING AND RESULTS 54

Pattern Class A Class B Class C

P1 100.0 80.0 100.0
P2 46.0 22.0 24.0
P3 100.0 100.0 100.0
P4 95.0 94.0 95.0
P5 97.0 91.2 97.0
Σ 100.0 100.0 100.0

Table 17: Recognition of Anonymization Policy A5 [%]

addresses you actively remove the uniqueness of flows.
Attributes are anonymized identically to A3, with the important exception of the IP
addresses, which are truncated. What can logically be observed now, is connections be-
tween subnets. In a real test these addresses would be permuted first and then truncated,
but since we simulate permutations only, we skipped this step.
The numbers obtained (Table 17) are identical to those of policy 3 (Table 13), but the

percentages have slightly different meaning here. We were able to correctly identify the
subnets only, not single IP addresses. The fact that the numbers are exactly the same
probably suggests that no other connections were captured between the two subnets21

during the measurement period, that could decrease or increase the recognition. So the
recognition worked as well as it could, but still we were unable to identify the target IP
directly, because that information was erased from the clean log by the truncation.

Policy 6

To have another sample of truncation we also duplicated policy A4 and employed trun-
cation instead of permutation. This time we’ve cut off the least significant 12 bits in an
attempt to reduce the remaining information from addresses even further.

As expected, the raw numbers (Table 18) are largely the same as when anonymizing
with policy A4 (Table 15). Instead of a target IP address xxx.2.229.7, we receive the
truncated version of the address: xxx.2.212.0. Technically we obtained an arbitrary
IP from the subnet xxx.2.212.0/20, which can be one of 212 = 4′096 possible target
addresses. When truncating more and more bits, we increase the size of the anonymity
set that contains the target address exponentially. The recognition of flows seems to be
largely unaffected by truncation, but the interpretation of the results changes consider-
ably.

21attacker subnet and victim subnet

4 TESTING AND RESULTS 55

Pattern Class A Class B Class C

P1 0.0 0.0 0.0
P2 0.0 0.0 0.0
P3 50.0 0.0 30.0
P4 10.0 3.0 5.0
P5 25.0 11.2 19.6
Σ 70.0 50.0 40.0

Table 18: Recognition of Anonymization Policy A6 [%]

4.5 Useful Injection Patterns and Universal Patterns

A pattern is successful when it does not occur at this time in the whole network. If
the pattern is sufficiently different from all other connections occurring at the time, it
has a good chance to be successfully detected. The more diverse an injected packet is
the more resilient it is against random blurring of values. An example for this is the
development of patterns P1 and P2, which are perfectly recognized up to some point and
after that the detection drops to 0%. Clearly those patterns were diverse enough as long
as no anonymization occurred, but as soon as two or more fields were blurred, they just
weren’t different enough anymore to be recognized.
From the results we have seen that certain patterns are better suited for fingerprinting
while others didn’t work so well. We realize we had a somewhat limited amount of
patterns to inject and we created them ”out of the blue”, but we can deduce certain
tendencies from them nevertheless. In order to get more successful patterns, a thorough
analysis of a trace should be conducted. For instance, perform a frequency analysis for
each of the flow fields, take the most rarely used values for each field and shape your
fingerprints accordingly. The fingerprints should even be crafted in a way that they emit
packet fields with the reverse frequency of the capturing device, i.e. the most rarely
occurring values are generated the most and vice versa. This analysis of the trace should
be conducted at different times and then the injection time should be chosen when the
probability distribution resembles a uniform distribution the most or when traffic is
generally very low.

We had no knowledge about the distribution of traffic in our network, so we decided
to create patterns that are generic in a way that they should perform well in most
environments. Most importantly we chose to use random attributes to make the pattern
unpredictable and more impervious to errors occurring due to chance. During the tests
we noticed that patterns P3 and P5 seem to be overly successful in comparison to other
patterns. This is particularly interesting since P3 used fixed values on nearly all fields

4 TESTING AND RESULTS 56

A0 A1 A2 A3 A3A A4 A5 A6

µA 100.0 100.0 100.0 87.6 36.4 17.0 87.6 17.0
σ2

A 0.0 0.0 0.0 436.2 1184.2 356.0 436.2 356.0
µB 100.0 100.0 100.0 77.4 35.8 2.8 77.4 2.8
σ2

B 0.0 0.0 0.0 810.5 990.6 18.8 810.6 18.8
µC 98.0 98.0 98.0 83.2 40.3 10.9 83.2 10.9
σ2

C 9.3 9.3 9.3 879.8 1533.3 142.6 879.8 142.6
µABC 99.4 99.4 99.4 82.7 37.6 10.3 82.7 10.3
σ2

ABC 3.9 3.9 3.9 726.2 1240.0 206.1 726.2 206.1
F 1.6 1.6 1.6 1.8 0.1 1.2 0.1 1.2

Table 19: Analysis of Variance and F-Test

whereas P5 chooses its values randomly. We suspect that the success of P3 is largely due
to the fact that the values used do not occur often in the SWITCH network, but they
could appear frequently in other networks.
Our policy P5 seems to be the closest one can get to a universal pattern, which is choosing
all values randomly. According to the analysis above, the distribution of the random
experiments should not be uniform as in our case, but match the reversed distribution
of the network.

4.6 Further Considerations

We now pursue our theory about the three classes being equally hard to fingerprint.
We fingerprinted web servers, workstations and dark space. This gave us three values
per pattern and policy. In order to demonstrate that those tables are in fact similarly
distributed, we conducted an Analysis of Variance (ANOVA) and an F-Test. Our null
hypothesis reads

µi,A = µi,B = µi,C

where i denotes the i-th policy. The variances and means are listed in Table 19 along
with the F-Test in the last column. According to the F-table22 the significance value for
our test is 3.83. Everything below this value is not significant and as a consequence we
keep the null hypothesis for all columns as the values are way below the threshold. Figure
8 also confirms the conjecture visually. We’ve only plotted the ”interesting” policies here,
as policies A0, A1, A2 are equal and A4A has nearly 0% recognition. The graph shows

22with degrees of freedom df1 = 12.0, df2 = 2.0

4 TESTING AND RESULTS 57

Figure 8: Class Comparison with Absolute Flows Values

policies A2 to A4 and the absolute amount of flows that was recognized when utilizing
a policy. The figure illustrates very well that the differences between the three classes is
minimal, considering the injections were performed at different times.
To visualize the results, we plotted them from several viewpoints and with various axes.

Since we have established that there is no significant difference between the three classes,
we took mean values over the classes in all the graphs. The following two histograms
basically plot the same data, but with different emphasis. The first histogram in Figure
9 emphasizes on the patterns P1 - P5. It shows by how many patterns each policy was
recognized. This figure is somewhat counterintuitive to read, as large bars denote weak
policies and vice versa. The rows are also stacked on each other which shows us which
patterns contributed decisively to the overall recognition and which didn’t. The second
histogram (Figure 10) shows the opposite direction. The main statement of the graph is
how many policies each pattern was able to deanonymize. On second sight the plot also
visualizes which policies were easily deanonymized via the stacked rows.
Combining those two plots we get a histogram that shows single bars for each pattern

(Figure 11), separated by policies. This graph contains all the information, but does not
get it to the point as well as the stacked ones. Also this is the only plot where relative
values are displayed, the other graphs show absolute recognition values.

4 TESTING AND RESULTS 58

Figure 9: Absolute Pattern Recognition Values per Anonymization Policy

Figure 10: Amount of Deanonymized Policies per Injection Pattern

4 TESTING AND RESULTS 59

Figure 11: Relative Recognition of Patterns per Policy

5 CONCLUSIONS AND OUTLOOK 60

5 Conclusions and Outlook

5.1 Discussion

In the last section we have stated that the three classes we fingerprinted are similarly
distributed and the F-Test we used could not find a significant difference between the
mean values of the table columns. All the columns had a value way below the significance
threshold, so the three tables seem to follow the same distribution and are likely to be
drawn from the same sample space. This seems to support our conjecture that in fact
all hosts in a network are equally hard to fingerprint, independent of the traffic a host
actively generates on its own. As suspected earlier, it does only depend on the traffic that
is generated in the entire network at any particular time, not on the traffic of individual
machines.

5.1.1 Permutation

We have seen that anonymizing only the IP addresses (A0) is very easy to circumvent via
active fingerprinting. As mentioned in Section 4.4 a very weak pattern already suffices
to break this anonymization reliably. An attacker would not choose to inject some large
pattern, as a single packet (P1) was enough to demask a host in all test cases. It would
be easy to fingerprint all machines in a network this way and reverse the permutation
completely. Everything that is needed is a detailed log of the injections with timestamps
and the important flow attributes. To summarize, this anonymization scheme cannot be
employed in any serious setting as it doesn’t offer the needed protection by far.
Basically the same considerations apply to policy A2, where choosing moderate offsets
for packet and byte count did not help at all against our attacks. The injected patterns
were all too strong for this policy and therefore A2 does not seem to be a viable option
either.
It does get more interesting with the introduction of A3. As we can see P2 suffers a mas-
sive drop and is detected very poorly. We suspect this is due to an unfortunate choice
of packet count and byte size on our part. The size was chosen to be 256 for all packets
in this pattern which is apparently a size occurring frequently in the network. To have
fixed size and fixed packet count is obviously a bad choice for this anonymization policy
so the result is more than comprehensible. Conversely with P1, we probably made a
rather lucky choice of packet size since the pattern is detected in almost all cases.
When inspecting policy A3A we are not very surprised. Noteworthy is the drop in de-
tection of P4, which was recognized very well before. Since the pattern is found when
anonymizing with policy A3, the bad detection rate seems to be correlated with the

5 CONCLUSIONS AND OUTLOOK 61

Figure 12: Recognition Curves for the Patterns

ports. This would however affect P5 the same way as the ports are chosen exactly the
same way and the bad percentage does not seem to be a coincidence as it affects all
three classes equally. When inspecting the attack scripts in Appendix E, we find the
only notable differences between the two patterns are the packet size and the timing. We
suspect that the random timing in combination with the large size prevents this problem
from occurring in the last pattern.
With A4, the individual success of the patterns is easily understandable, as the first two
are expected to fail in this setup whereas the last three perform quite well under those
circumstances. P4 is again lower than expected, the reasons being the same as in the
last policy.

The trends we have discussed so far can be very well visualized with a function plot
(Figure 12). We see that the more fixed attributes a pattern has the steeper the slope
and vice versa.

5 CONCLUSIONS AND OUTLOOK 62

5.1.2 Truncation

We were able to establish that truncation does not affect the recognition process as
addresses are not even considered in our score computation. Policies A5 and A6 have
identical results as A3 and A4, that employ the same methods but permutation instead
of truncation.
In contrast to permutation, the truncation used in those policies had a strong effect on
the results nevertheless. The bits that are truncated are in fact deleted and are not
recoverable with the fingerprinting. Truncation seems to be an good countermeasure as
it effectively prevents active fingerprinting of single hosts. However the consequences
are substantial because there is no way a researcher can associate IP addresses to single
hosts either, so objectively stated much of the information in the trace is destroyed by
this method. One could argue that it does not make a lot of sense to use additional
anonymization methods next to truncation, like employ port bucketizing or offsetting,
since the individual hosts are not identifiable anymore.
Truncation is effective, but unlike anonymization techniques like blurring or permutation,
this method deletes information, which makes it an irreversible modification to the trace.

5.1.3 Other Techniques

Having discussed permutation and truncation to addresses, we will now focus on the
techniques that are applicable to other flow attributes. We have demonstrated that
some anonymization policies are very easy to break and the blazing 100% recognition
rates look very promising. But what if you have an unknown anonymization scheme that
you do not know how successful your pattern will be with? How can you determine the
target IP through the anonymization with a high certainty nevertheless?
The overall detection rate in Figure 12 seems to be well above the other curves, which
might indicate that one can indeed increase identification of flows through sequential
application of patterns. If we utilize a pattern that is recognized in 40% of the cases
during Run 1, this pattern will also be recognized in about 40% during the following
run. When combining those two sample sets, we have one large set where we can identify
40% of the flows we have injected. The point is that this number does never decrease
if you combine more and more such samples, but the number of flows that didn’t match
is dropping from set to set. If you perform this test many times and determine the IP
occurring the most, you’re very likely to get the target IP you’re looking for. Starting
with only one sample set, what you will observe, when taking more and more samples
into consideration, that one IP will remain at the same percentage while all others will

5 CONCLUSIONS AND OUTLOOK 63

probably decrease very fast23.
In essence what you want is not 100% detectability of a pattern, it suffices if the IP
you’re looking for is the destination IP occurring the most in the trace. Detection rates
of 50% to 100% are thus guaranteed to give the correct IP, values below that are not.
But with the method discussed you can improve the rate over and over, until it is the one
occurring with the highest frequency. As soon as the relative detection rate of the target
IP is higher compared to the detection rate of the second best IP, we can retrieve the
correct address. When utilizing several sequential patterns, one should plot a frequency
diagram of the target addresses occurring the most after each step, that is each time a
pattern is added to the evaluation. While most target IP addresses will drop over time,
one will remain more or less constant and represents the one we are looking for.

5.1.4 Minimal Requirements

Lets assume all fields have been erased except the timestamps, which have been heavily
anonymized. Lets further assume for simplicity that all timestamps have been truncated
to 5 minutes, so we see a new block of flows every 5 minutes. The idea here is simple,
but deadly effective nevertheless. We make buckets of 5 minutes, since during this time
we see identical flows anyway. In the first bucket we inject some24 packets towards our
target host. In the next bucket we don’t inject at all. In the next we inject the same
amount of packets as in the first bucket to the same target host and so on. Now we try
to recognize this pattern through the extreme anonymization. After the first bucket we
have a huge list of connections that are potential candidates. The second bucket will
eliminate all connection that occurred during both buckets and each following bucket will
decrease the size of potential matches until we only have one connection pair that must
be the one we’re looking for. The size will decrease exponentially during this algorithm
and after a certain amount of iterations it should contain exactly one pair.
As stated earlier, the detection rate can in principle be increased arbitrarily. We would
like to extend this idea and show that completely anonymized records can be recognized
as well. As explained in the previous paragraph, when all flow attributes are anonymized,
there is still the possibility to work with temporal patterns. Making 5 minutes buckets
and injecting every 10 minutes25 gives us a temporal pattern which can be recognized
later on.
Speaking in terms of sets, we perform the relative complement (\) and then the inter-
section (∩) alternately. The former operation will filter out those connections that occur
too often while the latter will rule out connection pairs that communicate too rarely.

23they will decrease exponentially
24enough that we can be sure they won’t be lost due to an error in the capturing device
25resulting in two 5 minute buckets with one having an injection and one having none

5 CONCLUSIONS AND OUTLOOK 64

Having saved all connection pairs from the very first bucket in a set S1, we must eliminate
duplicate pairs which gives us the set U1. The set then develops as follows:

U1\U2 ∩ U3\U4 ∩ U5\U6... = U

As those two operations are commutative we can rewrite this to

U1 ∩ U3 ∩ U5 ∩ U7... = U∩

and finally
U∩\U2\U4\U6\U8... = U

and obtain the set U which contains all those connection pairs that satisfied the require-
ments. The size of this set will either stay the same or shrink during the set operations.
Assuming that connections are normally distributed, the matching follows a negative ex-
ponential curve. If we denote the number of unique connection pairs in the first bucket
with X1, the expected number of intervals N needed is

E[N] = log2X1

as the expected size of the set is 1 at this time. The value X1 can be estimated from
previous traces from the same network at the same capturing time, and from the mean
value E[N] we can estimate the injection time by multiplying it with the bucket size.
Note that the assumptions for temporal patterns are as low as it gets. Timestamps
must be available to some degree, that is they cannot be erased entirely, but everything
else offers an attack vector. All other flow attributes can be erased or anonymized at
will. Increasing the strength of the anonymization applied to the timestamps does not
compromise the technique, but only increases the injection time. The method works
best when the IP addresses are anonymized in some reversible way (e.g. permuted), but
works just as good if information was deleted from the addresses (e.g. truncated) to the
extent possible. As all fingerprinting attacks, temporal patterns use a covert channel [31]
when using the timing information to later identify the injected packets. In summary it
can be said that one bit of information is enough to execute a fingerprinting on a target
host successfully, as we do not consider any attributes at all, but we only use the fact
that a host shows up in the log at a certain time and doesn’t at some other time.

5.2 Possible Countermeasures

We have discussed general countermeasures in Section 2.5. Most non-technical measures
are not applicable to active attacks, as an active attack can look legitimate (e.g. Pat-
tern P1). For example, to only allow remote analysis of the data does not work for the

5 CONCLUSIONS AND OUTLOOK 65

reason stated above. For the same reasons it is also very hard to filter out active attacks
from a trace, as they can blend in with legal traffic very well. What would indeed work
is that every researcher who comes in contact with anonymized data needs to sign an
NDA (Non-Disclosure Agreement) explicitly prohibiting him from deanonymizing the
data. This approach would shift the problem to law enforcement, as the deanonymiza-
tion would probably not be difficult, but illegal.
A big difference between passive and active fingerprinting is that an active attacker can
break any reversible function that was applied to anonymize the data, whereas a passive
attacker can do this only to a limited degree. This forces to delete information from the
trace in order to effectively counter an active fingerprinting attack.
The first idea that comes to mind is to delete timestamps completely and release large
chunks of data, such that traffic is as diverse as possible. This however does not prevent
fingerprinting in general, as the effort on the attacker side would not increase consid-
erably. He might have to inject four identical fingerprinted packets instead of one, but
generating traffic that is recognizable is still not hard.
To remove any other flow attributes by deleting them would serve no purpose as we’ve
seen above. The goal of the anonymizer should be to remove the one-to-one mapping
of the IP addresses from the trace. As long as each host is identifiable on its own, the
trace is not secure from active attackers. Possible measures include truncation, remove
bidirectional connections as discussed in Section 2.5 or randomization of the addresses.
Basically this is the same trade-off as we encountered with passive fingerprinting, we
must weight the utility against the strength of the anonymization algorithm.
When removing information from the IP addresses in the trace one must also consider
whether it is save to leave all attributes clean or if they should be blurred to some degree.
Depending on the amount of information deleted it could make sense to leave the rest
of the trace unanonymized, as the linkability is removed by the previous step.

5.3 Future Work

We only had time to test a limited amount of injection patterns. We did not have enough
time to pursue the effects of different patterns in detail. Further test should be conducted
to make relevant statements about the universality and strengths of individual patterns
with reference to anonymization policies. Furthermore our conjecture about improving
the detection rate with sequential application of patterns should be verified in practice.
It would be interesting to test our theories about how one can boost the effectiveness of
random patterns when making detailed traffic statistics of a network before writing the
patterns. The patterns should be tailored to the traffic distribution of the network which
should improve the recognition considerably. This should also help greatly in making an
attacker undetectable to network administrators. It should be interesting by how much

5 CONCLUSIONS AND OUTLOOK 66

the detection rate can be improved with the methods mentioned in Section 4.5.
We made all our tests under the assumption that traffic is not being sampled in any
way. Tests should be made without this requirement and tested how much more traffic
is needed to achieve recognition rates comparable to ours.
It would also be interesting to test different anonymizations to IP addresses that destroy
the linkability between hosts as mentioned in Section 5.2.
Our theory about the application of temporal patterns should be tested on live traffic
data to verify the claims and test its effectiveness.
As future work the Analyzer part of our framework could be extended to allow also the
recognition of other formats than Cisco NetFlow and to improve detection with more
sophisticated algorithms.

5.4 Conclusion

In essence, we think that anonymization should not be applied to protect network activity
log files, at the very least not the way it is done today. We have demonstrated that strong
anonymization schemes can be broken successfully with less than 80 injected packets26

overall and we’ve given a step by step guide how to strengthen the application of patterns
in case the detection should prove insufficient. In the last chapter we have explained a
mechanism to deanonymize the ”ultimate” anonymization policy where nothing else than
timing information is available to a limited degree, and everything else is not available to
use in the fingerprint. The success of deanonymization depends therefore completely on
the anonymization technique used on the IP addresses. The more bits are deleted from
the addresses, the more inaccurate results are available to the attacker.
We have seen that, in most cases. permutation and offsets are useless against an active
attacker. We basically see three options for a network administrator when faced with
the question of releasing network activity logs. The first and safest option is not to
release any logs. The second option is to permute the IP addresses or apply a similar
pseudonymization, but anonymize everything else so heavily that the information is
practically useless. This is the path we have chosen with patterns P1 to P4A. The
problem here is that the IP addresses are recoverable in theory and single hosts can be
identified through the IP addresses, so everything else has to be blurred so heavily that
most flows will actually fall together. The third option is then to apply truncation or
a similar anonymization to the IP addresses, and optionally distort other attributes if
needed. This was covered in our tests with patterns P5 and P6. This approach does
not leave the single hosts identifiable one by one, but groups them together in a large
anonymity set. Pseudonymizing other attributes becomes less important now, as single

26for most schemes applied today even 1 packet was sufficient

5 CONCLUSIONS AND OUTLOOK 67

individuals can no longer be accurately identified.
When inspecting the three choices above, we see that the first two can actually be merged,
as releasing logs that are anonymized with an extremely strong policy are worthless and
give the researcher no additional value. This leaves us with exactly two options: either
don’t release network logs or release them while truncating the IP addresses in the trace.

5 CONCLUSIONS AND OUTLOOK 68

A ORIGINAL TASK DESCRIPTION 69

A Original Task Description

Institut für
Technische Informatik und
Kommunikationsnetze

Master Thesis
for

David Sauter

Supervisors: Martin Burkhart, Dominik Schatzmann

Issue Date: 16.09.2008
Submission Date: 15.03.2009

Invasion of Privacy Using Active Fingerprinting Attacks

1 Introduction

Over the last decade, the network security community has suffered from two fundamental and related
problems: (i) a lack of “real” network data for research studies and method validation, and (ii) reluctance
of organizations to share network data, which impedes cooperation in network defense; as attacks
typically cross organizational boundaries, effective prevention requires defenders to look beyond their
own perimeter in cooperation with other organizations.

Anonymization techniques are crucial for the safe sharing of network data. They are necessary
to obscure certain identifying information (e.g., IP addresses) in order to protect the privacy of end
users and the security of internal networks. While current network data anonymization techniques are
generally acknowledged to be useful, it is difficult to ensure they are free from information leakage.

Recent work has shown that many state-of-the-art techniques for IP address anonymization are
not as secure as expected [4, 6, 3, 8]. The reason for this weakness is rooted in the fact that random
permutation and (partial) prefix-preserving permutation [5, 7] are reversible. Permutations, in general,
are vulnerable to fingerprinting attacks and behavioral analysis, i.e., individual hosts can be profiled and
mapped back to original entities.

The weakness of permutation-based approaches is obvious even with the passive adversaries as-
sumed by previous work. Although the adversary is capable of probing the network in some cases, e.g.
by scanning for open ports [8], he is not able to manipulate the anonymized traffic data directly.

This thesis should make the next logical step and assume a more powerful active adversary capable
of injecting arbitrary traffic into the network at hands [2, 1]. This traffic is then captured, anonymized (e.g.
using FLAIM [9]), and published. If the adversary successfully recognizes his fingerprinted traffic, he can
step-by-step recover the secret mapping between original and anoynmized IP addresses. This attack
bears analogy to the chosen-plaintext attack in cryptography. The adversary picks an IP address, injects
a fingerprint to this address, recovers the fingerprint in anonymized data and learns the mapping for the
chosen IP address.

The task of this thesis is to develop a framework for active fingerprinting attacks. That is, several
methods of adding a fingerprint to a network packet or a sequence of packets (e.g. magic packet sizes,
port numbers, timing between different packets) have to be implemented. The injected fingerprints have

A ORIGINAL TASK DESCRIPTION 70

to be recognized in anonymized traces. The effectiveness of existing anonymization techniques to pro-
tect against fingerprinting attacks has to be studied and possible countermeasures need to be investi-
gated.

For the evaluation of the framework, the student has access to live network traffic traces (Cisco
NetFlow) from the five border routers of the Swiss Education and Research Network SWITCH.

2 The Task

The task of this thesis is to develop a framework for active fingerprinting attacks.

The task is split into four major subtasks: (i) literature study, (ii) design of a fingerprint injection frame-
work, (iii) implementation of the framework, and (iv) evaluation of anonymization techniques and possi-
ble countermeasures with real data.

2.1 Literature study

David should actively search for and study secondary literature. A short survey on passive and active
fingerprinting attacks on anonymization techniques should be written.

2.2 Design of the application

A framework for active fingerprint injection should be designed. The framework should meet the follow-
ing requirements:

• It provides an easy interface to configure and run different types of injection attacks with all the
necessary parameters.

• Attacks can be performed (i) online, by crafting and sending real network packets (ii) offline, by
injecting fingerprints into captured flow traces

• A log of performed attacks should be written that serves to later identify the injected traffic in
anonymized traces

• Given anonymized traces and a log file of an attack, the framework must try to identify as much of
the injected traffic as possible

Preferably, the complexity of the application is increased step by step. Once the basic functionality
is provided, more involved algorithms can be developed.

2.3 Implementation of the application

Implementation language is C++, the platform is Linux.

2.4 Evaluation of the application

The effectiveness of existing anonymization techniques to protect against the implemented types of
active fingerprinting attacks has to be studied and possible countermeasures need to be evaluated
using the implemented framework. For this purpose, captured flow traces from the SWITCH network
can be used.

2

A ORIGINAL TASK DESCRIPTION 71

3 Deliverables

The following results are expected:

• Short survey on passive and active fingerprinting techniques

• The design of the fingerprinting framework

• The implementation of the framework

• Evaluation of existing anonymization techniques in the light of active fingerprinting. New counter-
measures should be devised and also evaluated.

• A final report, i.e., a concise description of the work conducted in this project (motivation, related
work, own approach, implementation, results and outlook). The abstract of the documentation
has to be written in both English and German. The original task description is to be put in the
appendix of the documentation. The documentation needs to be delivered at TIK electronically.
The whole documentation, as well as the source code, slides of the talk etc., needs to be archived
in a printable, respectively executable version on a CDROM.

4 Assessment Criteria

The work will be assessed along the following lines:

1. Knowledge and skills

2. Methodology and approach

3. Dedication

4. Quality of Results

5. Presentations

6. Report

5 Organizational Aspects

5.1 Documentation and presentation

A documentation that states the steps conducted, lessons learned, major results and an outlook on
future work and unsolved problems has to be written. The code should be documented well enough
such that it can be extended by another developer within reasonable time. At the end of the project, a
presentation will have to be given at TIK that states the core tasks and results of this project. If important
new research results are found, a paper might be written as an extract of the project and submitted to a
computer network and security conference.

5.2 Dates

This project starts on September 16th, 2008 and is finished on March 15th, 2009. It lasts 6 months in
total. At the end of the second week David has to provide a schedule for the theses. It will be discussed
with the supervisors.

Two intermediate presentations for Prof. Plattner and the supervisors will be scheduled 2 and 4
months into this project.

A final presentation at TIK will be scheduled close to the completion date of the project. The presen-
tation consists of a 20 minutes talk and reserves 5 minutes for questions. Informal meetings with the
supervisors will be announced and organized on demand.

3

A ORIGINAL TASK DESCRIPTION 72

5.3 Supervisors

Martin Burkhart, burkhart@tik.ee.ethz.ch, +41 44 632 56 63, ETZ G95
Dominik Schatzmann, schatzmann@tik.ee.ethz.ch, +41 44 632 54 47, ETZ G95

References

[1] S. Anotonatos, D. Antoniades, M. Foukarakis, and E. P. Markatos. On the anonymization and
deanonymization of netflow traffic. In FloCon 2008, 2008.

[2] J. Bethencourt, J. Franklin, and M. Vernon. Mapping internet sensors with probe response attacks.
In SSYM’05: Proceedings of the 14th conference on USENIX Security Symposium, pages 13–13,
Berkeley, CA, USA, 2005. USENIX Association.

[3] T. Brekne, A. Arnes, and A. Øslebø. Anonymization of IP traffic data: Attacks on two prefix-
preserving anonymization schemes and some proposed remedies. In Workshop on Privacy En-
hancing Technologies, pages 179–196, 2005.

[4] S. Coull, C. Wright, F. Monrose, M. Collins, and M.K.Reiter. Playing devil’s advocate: Inferring sen-
sitive information from anonymized network traces. In 14th Annual Network and Distributed System
Security Symposium, February 2007.

[5] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon. Prefix-preserving IP address anonymization. Comput.
Networks, 46(2):253–272, 2004.

[6] D. Koukis, S. Antonatos, and K. G. Anagnostakis. On the privacy risks of publishing anonymized
IP network traces. In Communications and Multimedia Security, volume 4237 of Lecture Notes in
Computer Science, pages 22–32. Springer, 2006.

[7] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet trace anonymization. SIGCOMM
Comput. Commun. Rev., 36(1):29–38, 2006.

[8] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley. Analyzing privacy in enterprise packet trace
anonymization. In 15th Annual Network and Distributed System Security Symposium (NDSS 08),
February 2008.

[9] A. Slagell, K. Lakkaraju, and K. Luo. Flaim: A multi-level anonymization framework for computer
and network logs. In 20th USENIX Large Installation System Administration Conference (LISA’06),
2006.

August 28, 2008

4

B USER MANUAL AND INSTALLATION 73

B User Manual and Installation

The framework is divided into two executable programs, namely the injection binary and
the Analyzer binary. In order to compile the Injector, you should have the Xerces library
installed (refer to Section 3.2 about libraries) and all the framework components in the
same base directory. You also need the libraries ProcessingNG and NetflowVxPlusPlus.
The directory listing will look something like

drwxr-xr-x 4 user user 4096 09-03-11 10:18 Packet/
drwxr-xr-x 7 user user 4096 09-02-27 18:51 Analyzer/
drwxr-xr-x 7 user user 4096 09-03-11 10:19 Injector/
drwxr-xr-x 9 user user 4096 09-01-12 15:03 ProcessingNG/
drwxr-xr-x 7 user user 4096 09-01-05 14:34 NetflowVxPlusPlus/
drwxr-xr-x 8 user user 4096 09-03-02 16:16 ../
drwxr-xr-x 12 user user 4096 09-03-10 22:34 ./

We will refer to the current directory as root directory. To create an executable for the
Injector, you should change the directory to the Injector/ directory and issue

user@host:/Injector$ make

which will create the binary InjectorStart by compiling the Packet library, the Gener-
ator modules and the Injector itself. This executable can only be launched as user root,
since raw sockets are utilized. Launching the binary will output

usage: ./InjectorStart if_device input_file

The input_file is the generator file describing the attack, which was discussed in Sec-
tion 3.4.2 about the Packet library. To see a sample generator file, have a look at
generatorFile.sample in the root directory. The device is your network device, most
commonly eth0 or wlan0. If you choose just to simulate the injection or want to test
the attack script, you can inject on the loopback device lo. When the executable has
finished injecting packets into the network, it will conclude with

Packet log written to "trace.xml"

which is the logfile for the injection and should be renamed and stored for the analysis
afterwards. If you have many sequences in a generator file, you should write the IP
sections without the actual addresses. A small script named fill.sh can include them
for you later. To use this script on you attack file issue

B USER MANUAL AND INSTALLATION 74

user@host:/Injector$./fill.sh attack.conf "12.12.12.12" "11.11.11.11" \
> attack.script

where attack.conf was the generator file without addresses, the next argument is the
source IP, followed by the destination IP. The output of the script is redirected into the
final attack script which can be used as input to the Injector.
To start the Analyzer, you should have the Xerces library, the ProcessingNG library as
well as the NetflowVxPlusPlus library installed. The latter should reside in the root
directory just like the framework itself. A listing should give something like

drwxr-xr-x 7 user user 4096 09-02-27 18:51 Analyzer/
drwxr-xr-x 4 user user 4096 09-03-11 10:18 Packet/
drwxr-xr-x 7 user user 4096 09-03-11 10:19 Injector/
drwxr-xr-x 9 user user 4096 09-01-12 15:03 ProcessingNG/
drwxr-xr-x 7 user user 4096 09-01-05 14:34 NetflowVxPlusPlus/
drwxr-xr-x 8 user user 4096 09-03-02 16:16 ../
drwxr-xr-x 12 user user 4096 09-03-10 22:34 ./

To create an executable for the Analyzer, you should change the directory to the Analyzer/
directory and issue

user@host:/Analyzer$ make

which will create the binary AnalyzerStart by compiling the Packet library and the
Analyzer. Starting the executable will output

usage: ./AnalyzerStart file1.dat.gz2 file2.dat.gz2 inputFile \
resultFile distFile

where the *.dat.bz files denote the files in NetFlow format, the inputFile is the log
file obtained from the injection before (was called trace.xml), the resultFile is the file
where the results will be written to and the distFile denotes a file with flow attributes
to consider. To view a sample file for the distance file have a look at distFile.sample
in the root directory. A detailed description of those files can be found in Section 3.4.3
about the Analyzer.

C THESIS SCHEDULE 75

C Thesis Schedule

Start End Description
16/09/08 03/10/08 Reading, Design Ideas, Literature Survey
06/10/08 07/11/08 Design (Class Diagrams, Flow Diagrams, ...), File

Formats, Libraries (XML-Parser, Socket-Library,
NetFlow-Library)

10/11/08 02/01/09 Implementation of Framework, Testing of Implemen-
tation, Code Documentation

05/01/09 13/02/09 Implementation changes, Testing, Evaluation of
Framework, Writing of Thesis

16/02/09 27/02/09 Further Evaluation, Writing
02/03/09 15/03/09 Additional Time

Table 20: Original Thesis Schedule

The thesis schedule was written at the beginning of the thesis and continually ad-
justed slightly (Table 20).

D EBNF FOR THE GENERATOR FILE 76

D EBNF for the Generator File

Here we give the original EBNF (Program 6) that was used in the program code, although
it was rewritten to fit C++ syntax there.

Program 6 EBNF
alpha = ”a” - ”Z”
digit = ”0” - ”9”;
integer = digit+;
ipatom = digit {digit} {digit};
ip = ipatom ”.” ipatom ”.” ipatom ”.” ipatom;
var = (alpha | ” ” | ”@”) {alpha | ” ”};
rand = ”rand(” integer ”,” integer ”)”;
rands = ”rands(” integer {”,” integer} ”)”;
packet = rand | rands | ip | var;
factor = packet | integer | (”(” expr ”)”) | (”-” factor) | (”+” factor);
term = factor {(”*” factor) | (”/” factor)};
expr = term (’+’ term) | (’-’ term);

E ATTACK SCRIPTS 77

E Attack Scripts

The first attack (Code 7) is a legitimate looking connection attempt on a service port
that should help to hide the attacker behind legal traffic. If this attack already succeeds,
there is no use in employing more elaborate measures.

Program 7 Attack Script for Pattern P1

[sequence]
Packets=1

[packet]
Size=160 / @
Time=0 / @+200

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=45188 / @
TCP_Destination_Port=80 / @
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP= / @
IPv4_Source_IP= / @
IPv4_Protocol=6 / @

The second program (Program 8) is also a pattern that focuses on undetectability
by injecting only 5 packets to random ports.

The third script (Program 9) describes 10 packets with fixed connection endpoints
and variable sizes.

E ATTACK SCRIPTS 78

Program 8 Attack Script for Pattern P2

[sequence]
Packets=5

[packet]
Size=256 / @
Time=5000 / @+200

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=rand(1,65535) / rand(1,65535)
TCP_Destination_Port=rand(1,65535) / rand(1,65535)
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP= / @
IPv4_Source_IP= / @
IPv4_Protocol=6 / @

The fourth attack script (Code 10) combines the last two patterns by varying end-
points and sizes at the same time to form a more recognizable pattern.

The last pattern (Code 11) is a more aggressive form of P4. It combines all the
methods and forms a highly random and variable pattern where sizes, times and ports
are randomized which makes it an unpredictable and rather obvious attack.

E ATTACK SCRIPTS 79

Program 9 Attack Script for Pattern P3

[sequence]

Packets=10

[packet]
Size=408 / @ + 32
Time=10800 / @+200

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=34119 / @
TCP_Destination_Port=80 / @
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP= / @
IPv4_Source_IP= / @
IPv4_Protocol=6 / @

E ATTACK SCRIPTS 80

Program 10 Attack Script for Pattern P4

[sequence]

Packets=10

[packet]
Size=832 / @ + 32
Time=17600 / @+200

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=rand(1,65535) / rand(1,65535)
TCP_Destination_Port=rand(1,65535) / rand(1,65535)
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP= / @
IPv4_Source_IP= / @
IPv4_Protocol=6 / @

E ATTACK SCRIPTS 81

Program 11 Attack Script for Pattern P5

[sequence]

Packets=50

[packet]
Size=rands(1208, 1224, 1232) / @ + rands(0,8)
Time=29400 / @+rand(150,450)

[header]
Type=Application
Type_Name=none

[header]
Type=Transport
Type_Name=TCP

TCP_Source_Port=rand(1,65535) / rand(1,65535)
TCP_Destination_Port=rand(1,65535) / rand(1,65535)
TCP_Flags=16 / @

[header]
Type=Network
Type_Name=IPv4

IPv4_Destination_IP= / @
IPv4_Source_IP= / @
IPv4_Protocol=6 / @

REFERENCES 82

References

[1] Spiros Anotonatos, Demetres Antoniades, Michalis Foukarakis, and Evangelos P.
Markatos. On the anonymization and deanonymization of netflow traffic. In FloCon,
2008.

[2] John Bethencourt, Jason Franklin, and Mary Vernon. Mapping internet sensors
with probe response attacks. In SSYM’05: Proceedings of the 14th conference on
USENIX Security Symposium, pages 13–13, Berkeley, CA, USA, 2005. USENIX
Association.

[3] Boost c++ libraries. http://www.boost.org/.

[4] T. Brekne, A. Arnes, and A. Øslebø. Anonymization of IP traffic data: Attacks
on two prefix-preserving anonymization schemes and some proposed remedies. In
Workshop on Privacy Enhancing Technologies, pages 179–196, 2005.

[5] Martin Burkhart, Daniela Brauckhoff, Martin May, and Elisa Boschi. The risk-
utility tradeoff for ip address truncation. In 1st ACM Workshop on Network Data
Anonymization (NDA), October 2008.

[6] Cisco Systems Inc. NetFlow Services and Applications - White paper.

[7] S.E. Coull, C.V. Wright, F. Monrose, M.P. Collins, and M.K.Reiter. Playing devil’s
advocate: Inferring sensitive information from anonymized network traces. In 14th
Annual Network and Distributed System Security Symposium, February 2007.

[8] DoubleClick. http://www.doubleclick.com/.

[9] Jinliang Fan, Jun Xu, Mostafa H. Ammar, and Sue B. Moon. Prefix-preserving IP
address anonymization. Comput. Networks, 46(2):253–272, 2004.

[10] Apache Foundation. Xercesc xml parser. http://xerces.apache.org/xerces-c.

[11] Martin Harring and Martin Lutken. Doxys. http://www.doxys.dk.

[12] Akamai Technologies Inc. Akamai. http://www.akamai.com.

[13] World internet usage statistics. http://www.internetworldstats.com/stats.htm, Feb
2009.

[14] D. Koukis, Spyros Antonatos, and Kostas G. Anagnostakis. On the privacy risks
of publishing anonymized IP network traces. In Communications and Multimedia
Security, volume 4237 of Lecture Notes in Computer Science, pages 22–32. Springer,
2006.

REFERENCES 83

[15] Boost Libraries. Spirit framework. http://spirit.sourceforge.net.

[16] Nsasoft LLC. Http traffic generator for testing web applications.
http://www.nsauditor.com/web tools utilities/http traffic generator.html.

[17] PB Software LLC. Network traffic generator and monitor.
http://www.pbsoftware.org/id17.html.

[18] Jeff Nathan. Nemesis. http://www.packetfactory.net/projects/nemesis/.

[19] Network mapper. http://nmap.org/.

[20] Ruoming Pang, Mark Allman, Vern Paxson, and Jason Lee. The devil and packet
trace anonymization. SIGCOMM Comput. Commun. Rev., 36(1):29–38, 2006.

[21] B. Ribeiro, W. Chen, G. Miklau, and D. Towsley. Analyzing privacy in enterprise
packet trace anonymization. In 15th Annual Network and Distributed System Secu-
rity Symposium (NDSS 08), February 2008.

[22] Salvatore Sanfilippo. Hping - active network security tool. http://www.hping.org/.

[23] Adam Slagell, Kiran Lakkaraju, and Katherine Luo. Flaim: A multi-level anonymi-
zation framework for computer and network logs. In 20th USENIX Large Installation
System Administration Conference (LISA’06), 2006.

[24] Adam J. Slagell and William Yurcik. Sharing computer network logs for secu-
rity and privacy: A motivation for new methodologies of anonymization. CoRR,
cs.CR/0409005, 2004.

[25] Sun. Javadoc reference. http://java.sun.com/j2se/javadoc/writingdoccomments.

[26] SWITCH. The swiss education and research network. http://www.switch.ch.

[27] Dimitri van Heesch. Doxygen. http://www.stack.nl/ dimitri/doxygen/.

[28] W3C. Document object model. http://www.w3.org/DOM.

[29] W3C. Simple api for xml. http://www.saxproject.org.

[30] W3C. World wide web consortium. http://www.w3.org.

[31] Wikipedia: Covert channels. http://en.wikipedia.org/wiki/Covert channel.

