
Thomas Other

Opportunistic Networks with ANA

Master Thesis
MA-2008-23

Department:
TIK – Computer Engineering and Networks Laboratory, ETH Zurich

Supervisor:
Prof. Dr. Bernhard Plattner, ETH Zurich

Advisors:
Dr. Franck Legendre, ETH Zurich

Theus Hossmann, ETH Zurich

Zurich, March 2009

Contents

1 Introduction 1
1.1 Opportunistic Networking . 2
1.2 Thesis Description . 3
1.3 Related Work . 4
1.4 Thesis Outline . 6

2 Fundamentals 7
2.1 Delay Tolerant Networking . 7

2.1.1 Routing - A Graph Theory 8
2.1.2 Routing with predictable contacts 9
2.1.3 Routing with opportunistic contacts 10
2.1.4 Routing Latency . 12
2.1.5 Predicting Future Encounters 13
2.1.6 Content Dissemination . 16
2.1.7 Resource Restrictions . 18

2.2 ANA Framework . 19
2.2.1 Concepts . 19
2.2.2 Terminology . 19
2.2.3 Functional Blocks . 20
2.2.4 Compartments . 21
2.2.5 Information Channel . 21
2.2.6 Information Dispatch Point 22
2.2.7 Information Dispatch Table 22
2.2.8 Key-Value Repository . 22
2.2.9 Minmex . 22
2.2.10 API . 23

2.3 PodNet . 24
2.3.1 Structure . 24
2.3.2 Discovery and Synchronization 25
2.3.3 Content Exchange . 25
2.3.4 Network Message Format . 26

2.4 Transmission Control Protocol . 27
2.4.1 Error Recovery . 28

ii Contents

2.4.2 Sliding Window Algorithm 28
2.4.3 Finite State Machine . 30
2.4.4 Other Features . 31

3 Integration 37
3.1 Preliminaries . 37
3.2 Implementation Approach . 38

3.2.1 Set Of Functional Blocks . 38
3.2.2 Monitoring Framework . 41
3.2.3 Addressing Scheme . 42
3.2.4 Reliable Transmission . 42

3.3 Platform Independence . 43
3.3.1 Embedded Hardware Overview 43
3.3.2 Compiling for Embedded Hardware 44
3.3.3 The OpenEmbedded Toolchain 45

4 Implementation and Results 47
4.1 Implementation . 47

4.1.1 Rudimentary ANA Example 47
4.1.2 Neighbor Discovery . 49
4.1.3 TCP . 51
4.1.4 Synchronization Service . 56
4.1.5 PodNet . 56

4.2 Results . 58
4.2.1 Methodology . 58
4.2.2 Measurements, Results and Discussion 59
4.2.3 TCP Measurements . 59
4.2.4 PodNet on ANA Tests . 64

5 Conclusion 67
5.1 Contributions . 67
5.2 Future Work . 68

A Implementation Details 73
A.1 Overview . 73
A.2 Descriptions . 75

A.2.1 ANA Environment . 75
A.2.2 PodNet . 75
A.2.3 TCP . 76
A.2.4 Synchronization Service . 78
A.2.5 Neighbor Discovery . 78
A.2.6 ANA Binaries . 79
A.2.7 Dynamically Loaded ANA Objects 79

Contents iii

B Platform Independence 80
B.1 Overview . 80
B.2 Descriptions . 81

B.2.1 Obtaining the OpenEmbedded Toolchain 81
B.2.2 Build Configuration . 82
B.2.3 Environment Setup . 85
B.2.4 Compilation Process . 85
B.2.5 Package Deployment . 85

List of Figures

2.1 Network Graphs: 1. Continuous end-to-end paths, 2. Disrupted end-
to-end paths . 8

2.2 Example of a DTN Graph . 9
2.3 Routing Latency modelled as Markov chain 13
2.4 Graph of a scale-free network . 16
2.5 Schematic view of an ANA Compartment 20
2.6 Schematic view of a PodNet entity 25
2.7 Typical network Protocol encapsulation of a PodNet message 27
2.8 Sliding-window - Circular data buffers in TCP 29
2.9 TCP modeled as a finite state machine 30
2.10 TCP - Three-Way Handshake . 31

3.1 Schematic view of the planned PodNet implementation in ANA . . . 39
3.2 Picture of a Nokia N810 running PodNet on ANA 41
3.3 Schematic view of the Monitoring Framework in ANA 42

4.1 Schematic View of the PodNet on ANA Implementation 57
4.2 TCP Cable-Measurement Results; 1. Cable Sequence Numbers, 2.

Cable Window Sizes . 60
4.3 TCP WiFi-Measurement Results; 1. WiFi Sequence Numbers, 2.

WiFi Window Sizes . 62
4.4 TCP Load/Throughput Diagram . 63
4.5 PodNet Measurement Results - Episodes Synchronization - Sending

Process; 1. Nokia N810, 2. Thinkpad T42 64
4.6 PodNet Measurement Results - File Transfer - Sending Process; 1.

Nokia N810, 2. Thinkpad T42 . 65

List of Tables

3.1 Hardware specifications for the Sharp SL-C860, Nokia N810, Nokia
N95 and Apple’s IPhone . 44

4.1 ANA Source Code Example . 48
4.2 Neighbor Discovery Characteristics 49
4.3 ANA Monitoring Framework - Message Format for Subscriptions . . 50
4.4 ANA Monitoring Framework - Message Format for Notifications . . 50
4.5 TCP State Variables . 52
4.6 TCP Socket Variables . 53
4.7 TCP Source Code Example . 55
4.8 Synchronization Service Characteristics 56
4.9 Message Format for Synchronizations 56

Abstract

Title: Opportunistic Networks with ANA

Keywords: Podcasting, Opportunistic Networking, Delay Tolerant Networking,
Autonomic Network Architecture, Embedded Device

With the advent of mobile computing, the Internet has not only become ubiqui-
tous, but also completely new ways of networking became possible. Modern hand-
held devices implement different networking technologies (such as WiFi and Blue-
tooth), which are independent of network infrastructure, and can connect as mobile
ad-hoc networks to other mobile devices. There is no permanent connectivity in
such a mobile scenario, due to the limited range of radio communication and the
individual mobility of each participant, therefore it is also termed an opportunistic
network.

To distribute information in mobile ad-hoc networks, todays services still rely
on protocols inherited from the early days of the Internet, but these protocols
might not be optimally suited for recent scenarios. For example the PodNet appli-
cation, designed to exchange podcast episodes opportunistically in mobile ad-hoc
networks, could profit from a more efficient networking approach, where protocols
are optimized to suit the mobile scenario. The ANA framework provides such a flex-
ible network stack, that seeks optimal solutions for different networking scenarios.
However, up to date, the ANA framework is mainly used for wired and connected
networks.

This thesis enables the ANA framework for disruptive tolerant network services,
providing a basis to opportunistic networking applications. As an example of such
an application we present the implementation of PodNet in the ANA framework,
running on handheld devices.

The resulting framework for delay tolerant networking (DTN) applications in
ANA is ready to serve as an experimental platform to gain further insight in in-
formation dissemination in opportunistic networks. The fact that the information
spreading is influenced by individual social behavior, as users carry their mobile
computers, will have a big influence on future work in this field.

Acknowledgments

I would like to thank Prof. Dr. Bernhard Plattner for allowing me to do this work
at the Communinucation Systems Laboratory at the ETH Zurich. Furthermore I
would like to thank Dr. Franck Legendre and Theus Hossmann, my advisors, for
their support and guidance and great assistance during the work.

Chapter 1

Introduction

During the last dozen of years the Internet enjoyed an ever growing number of users
from all over the world. It has, indeed, come a long way from a tool being mainly of
commercial and scientific interest, to a network with a permanently increasing pool
of ideas and non-commercial services available to its users. Prominent examples are
file sharing platforms, like e.g. BitTorrent 1, or online friendship communities as
Facebook 2.

With the advent of mobile computing in recent years, the Internet is on the
verge to yet another drastic change. In most cellular networks access to the Inter-
net has been readily available for some time now, but the capabilities of mobile
devices were too limited to provide a convincing alternative to the well established
personal computers. Only very recently mobile computing devices, like for example
Apple’s IPhone, successfully started to appear on the market, and with such devices
the Internet now truly becomes ubiquitous.
Apart from contributing to the Internet’s success story, the new generation of mo-
bile computers do also open the door to a different kind of networking itself. Modern
devices have in common that they unite different kinds of network technologies, such
as the cellular network, WiFi or bluetooth, which can be used to establish individual
contacts outside the realm of the global, connected Internet. A network resulting
from such individual contacts is often termed mobile ad hoc network (MANET),
and as its participants move independently, its topology is subject to permanent
change. Initially MANETs were assumed to be connected (i.e., there is an end-to-
end path between all nodes), but more recent studies in this field revealed, that
the assumption of permanent availability of end-to-end paths is not realistic. This
led to the paradigm of disruption-tolerant and opportunistic networks, where the
mobility of its users is used to disseminate data. To support opportunistic scenarios,
new models for routing and data forwarding need to be taken into account.

1http://www.bittorrent.com
2http://www.facebook.com

2 1 Introduction

The possible range for mobile applications that rely on such networking is large.
For example in public transportations, in order to connect all vehicles on route, or
more generally speaking in regions where no other network coverage is available.
In contrast to these rather sparsely populated scenarios, a city full of people, each
carrying a mobile computer, implies a whole new world. It is, indeed, this new world
that is about to promote the Internet in the near future, and lead into a truly mo-
bile era.
The major change to todays networks and its users will be, that it will not only
serve to form purely virtual communities, but also allow to integrate those virtual
communities into our physical presence. Prominent examples would be friendship
communities, where friends from Facebook would meet on the street, or partnership
platforms, where matches for possible candidates could be immediately inspected.
The aka aki [1] platform is a perfect example of such a mobile application, with
much resemblance to Facebook, but with the difference that online contacts get
promoted to the street, with handheld devices informing their users if friends are
within reach. And as the popularity and variety of Internet services suggest, with
its number of applications ever growing, such a new kind of mobile netwok would
have substantial influence on social patterns in modern society.

As has been explained, the potential for new mobile services is huge, and there-
fore a framework that supports such applications, but without the burden of the
Internet protocols legacy, is the goal of this thesis. The capabilities of this framework
are then demonstrated by implementing the opportunistic podcasting application
PodNet [2].

1.1 Opportunistic Networking

The mobile networks known as MANETs are only part of the current research in
the field of delay tolerant networking (DTN). Rather DTN addresses all those net-
works, that have in common, that they may lack continuous network connectivity,
in contrast to the assumptions valid in the Internet.
Although a mobile network, that is driven by people, might on a first impression
look purely random, DTN identifies common patterns, and helps towards under-
standing underlying procedures.

Opportunistic networking refers to a DTN scheme, where it’s impossible to
predict future encounters, and where any participant may vanish instantaneously.
This does exactly describe the kind of mobile network found in the introduction,
and is the basic assumption of PodNet. To support such an environment an ap-
plication must be able to autonomically identify new contacts, check them for po-
tentially available information, and finally retrieve that information. The way this
information is distributed in these networks is of primary interest. The simplest
version of this scheme is the one-hop opportunistic networking. It describes a non-

1.2 Thesis Description 3

participatory dissemination scheme, where information is exchanged on a direct
basis with available contacts, and no assumptions are made about the reachability
of other, currently absent, contacts.

1.2 Thesis Description

Amongst Internet services, podcasting has become a very popular and successful
service in a short time, as it offers information in a way similar to a subscription
to a periodical newspaper. This success illustrates the interest for participatory
broadcasting, and motivates the pursuit of further research in this field.
Podcasting, in its earlier form however, was only available with fixed infrastructure
support to retrieve publicized episodes. The PodNet project [2] released this limi-
tation by offering a podcasting system based on opportunistic wireless networking,
that extends podcasting to ad hoc domains. Consequentally the platform was to be
mobile computers, to take advantage of their mobility, and observe the results to
support research in the field of mobile networking.

The original PodNet version [2], however, is still tightly bound to the network
protocol stack inherited from the Internet version of the service. But these mech-
anisms might not be optimally suited for a mobile scenario, as mechanisms that
connected the global Internet are designed for many more participants than in a
DTN scenario, resulting in a big overhead and suboptimal protocol usage, therefore
a more flexible use of different network technologies and protocols is required. The
autonomic network architecture (ANA) project [9] offers such a flexible network
stack, and allows the use of different kinds of networking technologies to be op-
erated in parallel. ANA achieves this flexibility by using functional blocks, rather
than a fixed protocol stack, that are dynamically arranged to obtain optimal results
for different kinds of networking scenarios. Yet, PodNet is only one kind of appli-
cation that can benefit from opportunistic communications. Therefore this thesis
is about the definition and implementation of new communication facilities that
enable the development of new opportunistic-based applications, and shall rely on
a implementation of PodNet in the ANA framework.

To give a glimpse of the contributions this thesis provides, the following list
shall summarize the items implemented in the ANA framework:

• Generic DTN Functions

– Neighbor Discovery: Explores the network neighborhood, by maintaining
a list of nodes within transmission-range (i.e. opportunistic contacts),
and provides the set of discovered contacts to the framework.

– Synchronization Service: Ensures that all peers are aware of content syn-
chronicity, and points opportunistic network applications to potential
updates.

4 1 Introduction

• Podcasting Function for Embedded Devices

– PodNet on ANA: The core podcasting service is mainly composed of
elements originally devised in [2], but adapted to the ANA framework.
This constitutes the exemplary application for the DTN framework.

– Transmission Control Protocol: Offers reliable network transmission, and
since ANA was not ready to provide such a service, it needed to be
implemented.

– Cross-Compilation: The OpenEmbedded toolchain [3] is used to facili-
tate platform independence for the ANA framework, and was used to
demonstrate the PodNet on ANA application with handheld devices.
As a result the Nokia N810, and the Sharp SL-C860 devices were both
successfully running the application.

The implementation of a podcasting service, and the necessary communication
facilities, in a flexible network architecture like ANA provides several advantages.
The design of ANA is better suited for a one-hop opportunistic network application
like PodNet, than the Internet protocols, because it has the ability to dynamically
rearrange network functionality, and therefore adapt to different network types on
the fly. By different network types, not only technological differences are considered,
also the ANA framework seeks to adapt its protocol structure, to obtain optimal
performance for a given scenario.
Another motivation is the ANA framework itself, its main purpose being the re-
search resulting from a flexible network protocol stack. As the introduction pointed
out, the Internet in its present form, will not be able to support this new kind
of mobile networks, therefore the ANA framework provides a valuable platform to
investigate and to compare results against model predictions. And furthermore, it
may help answering a question closely related to such mobile networks, of how ex-
actly such a network of mobile devices, carried by individuals and therefore also a
social network, might look like.
To be able to study the behavior of the ANA framework, it needs to be popu-
lated with networking applications, that make use of its advantages, and provide
an evaluation method for the underlying theoretical concepts. Thefore the PodNet
application represents an attractive candidate, and the dissection of the monolithic
PodNet application, into smaller blocks, will provide a basis for further research in
this field.

1.3 Related Work

There exist several examples of scientific and commercial projects that are related
to the subject of this thesis. The “Click Modular Router” by Kohler et al. [4], for
example, is a software architecture for building flexible and configurable routers,
and bears many analogies to the ANA project. For instance, functions are bro-
ken down into smaller building blocks, which can then easily be used to flexibly

1.3 Related Work 5

compose a new set of network functionalities. Furthermore both projects seek the
ability to adapt to changes in the network, in order to maintain a resilient network-
ing service. In contrast to ANA, however, the Click project is limited to routing
and packet forwarding mechanisms, whereas ANA encompasses many more aspects
to networking.
Another interesting paper by Kawadia et al. [5] deals with “System Services for Ad-
Hoc Routing: Architecture, Implementation and Experiences”, this work explores
several systemic issues regarding the design and implementation of routing proto-
cols for ad-hoc wireless networks. It’s focus lies on a general modification of the
current IP routing architecture, and a specific implementation of this architecture
in Linux, where the key concept is to store packets until a route has been discov-
ered, and not to drop it just because no forward path is available, as done by most
IP implementations. More DTN routing literature will be discussed in chapter 2.
The Delay-Tolerant Network Research Group (DTNRG) [6], which is a part of the
Internet Research Task Force (IRFT), has been researching DTN since 2002, and
besides numerous publications also developed two protocols. The bundle protocol
is a general overlay network protocol, and is the focus of implementation efforts in
DTNRG. The Licklider transmission protocol (LTP - sometimes called the longhaul
transmission protocol), on the other hand, is a point-to-point protocol supporting
very high delay links, such as those used in deep space communications.
In comparison to the previously mentioned projects, the 7DS system [7] bears a
very strong resemblance to the subject of this thesis. Indeed, the software provides
information exchange applications, that support wireless ad-hoc networks, where
persistent end-to-end links may be absent. In comparison to this thesis, however,
the 7DS system focuses on the application layer in the network, or said in another
way, 7DS uses a top-down method, whereas ANA is trying to build a new network
from the bottom-up.
Another similar project to this thesis, the Haggle autonomic network architecture
[8], which like ANA breaks with the classical network stack approach, and provides
a set of novel mechanism to support intermittent network connectivity.

As an example of a commercial application, the aka aki service [1] shows the
available potential to create compelling mobile networking applications. Aka aki
offers software each user can download to his mobile phone, and that links to both,
the aka aki Internet service, and to other people that are within reach of each other.
Aka aki basically provides a friendship platform similar to Facebook, but this service
also allows to compare encounters made by the mobile phone with the users list of
friends in the Internet. If a match is found, both individuals are notified, that one
of their friends is in the vicinity.

6 1 Introduction

1.4 Thesis Outline

The thesis sets out by describing those theoretical aspects, that form the basis of the
implementation of PodNet on ANA. After a brief introduction to DTN, chapter 2
summarizes some results from the field of DTN routing and content dissemination.
Then it introduces the main concepts inherent in the ANA framework and explains
PodNet’s strategy of opportunistic content dissemination. Finally this chapter con-
cludes by a description of the transmission control protocol (TCP), that will form
the basis of reliable transmission in ANA.
To set the stage for the implementation, chapter 3 analyzes the problems that the
implementation must face, and proposes possible solutions. Besides the integration
aspects related to ANA, this chapter also gives a brief overview of mobile comput-
ing devices, and the question of how to run an application on different kinds of
hardware.
A detailed description of all contributions is given in chapter 4. First the functional
blocks, that were developed during this thesis, are described in detail. Then the
messages passed between these functional blocks are explained, and a description
of the relation between these blocks is given. In order to validate the work, the
chapter also includes the implementations results and measurements illustrating
the performance.
Finally chapter 5 formulates a conclusion, and by looking at possible extensions to
the framework, points to possibilities for future projects.

To take some load of the implementation description in chapter 4, the exhaustive
listing of function interfaces and internal processes has been moved to appendix A,
additionally the instructive details for compiling and installing the software for
mobile devices is given in appendix B.

Chapter 2

Fundamentals

The theoretical aspects of delay-tolerant networking are introduced in chapter 2.1,
including the analysis of different scenarios. Although the mathematical formulas
presented in this chapter are not dominant in the implementation of an opportunis-
tic networking application, these concepts help to establish a basic terminology, and
provide rough estimates for different scenarios.
The second section 2.2 covers the basic concepts applied in the autonomic network
architecture (ANA) [9], and provides a brief overview of the frameworks functional
capabilities. Chapter 2.3 describes the application for the ’Wireless Ad Hoc Podcast-
ing Network’, abbreviated PodNet [2], and takes a look at its content-dissemination
strategy. Finally chapter 2.4 describes the widely used transmission control protocol
(TCP) [10] in some detail, as an example of a reliable transmission protocol, and
as the basis for its implementation in the ANA framework.

2.1 Delay Tolerant Networking

Delay-tolerant networking (DTN) is an approach to computer network architecture
that seeks to address the technical issues in heterogeneous networks that may lack
continuous network connectivity. Examples of such networks are those operating in
mobile or extreme terrestrial environments, or for example over long interplanetary
distances in space, where the propagation delay is much larger than transmission
times. In general, DTN connections can be categorized into scheduled or predictable
contacts and intermittent or opportunistic contacts.

Depending on the mobility of the networks members, the lack of continuity in
a network connection does not only show in the absence of persistent end-to-end
paths, but often also in a segregation of large parts of the network into smaller
disconnected subnetworks, as shown in figure 2.1. A delay-tolerant network must
thus be able to carry data even if its destination is currently not reachable, further-
more the network must decide which path will be the quickest, in terms of delay,
or the most reliable, in terms if delivery ratio, for the data to reach its destination.

8 2 Fundamentals

Additionally to these challenges many nodes in the network may also have limited
resources, be it bandwidth, storage space or energy constraints.

1. 2.

Figure 2.1: Network Graphs: 1. Continuous end-to-end paths, 2. Disrupted
end-to-end paths

2.1.1 Routing - A Graph Theory

While there are many characteristics to routing protocols, a convenient way to cre-
ate a taxonomy especially for DTN routing is based on whether or not the protocol
creates replicas of messages. Routing protocols that never replicate a message are
considered forwarding-based, whereas protocols that do replicate messages are con-
sidered replication-based. This simple, yet popular, taxonomy was recently used by
Balasubramanian et al. to classify a large number of DTN routing protocols [11].
Additionally the use of graph theory reveals basic network properties and offers a
consistent way to establish estimates on network parameters for different scenarios.

A DTN graph G is disconnected and/or time-varying, it contains a set of nodes
V that represent network entities and a set of edges E connecting these entities, as
shown in figure 2.2. Alternatively, the edges may also be characterized as connec-
tions C,

G(t) = {V,E(t)} , E(t) = set of edges ei at time t

G(t) = {V,C(t)} , C(t) = set of connections ci at time t (2.1)
ci = {vi, vj , tstart, tfinish, bandwidth, propagation delay, etc.} . (2.2)

2.1 Delay Tolerant Networking 9

A connection ci is an extension to an edge ei as it does not only describe the edges
end points and the edge weight, but adds network related information to it, as
shown in equation 2.2. Therefore a connection ci may contain detailed information
on scheduled or probabilistic contacts, as with e.g. a satellite link or a bus on its
route.
Graph theory thus facilitates to solve routing problems, and provides an analytic
way to find optimal routes for data packets in deterministic scenarios. There exist
several metrics than can be applied to the graph, as for instance delay optimization
or troughput optimization.

Figure 2.2: Example of a DTN Graph

2.1.2 Routing with predictable contacts

Many ideas from graph theory and network flow problems can be applied to routing
in DTN [12], in general the goal is to optimize some metric (e.g. average path cost)
while abiding to given constraints (e.g. link/buffer capacities).
The minimum cost metric, for example, assigns to each edge in E a link weight
w(ei, t), assessing the messages arrival time t1 = t0 + w(ei, t0) at the other end
of an edge ei, given the time t0 the message is scheduled for delivery. The delay
∆t = t1 − t0 = w(ei, t0) arises from a combination of transmission-, propagation-
and queuing-delays (where queuing-delays include waiting times for both local- as
well as remote-queues to drain).

The minimum expected delay (MED) [12] algorithm seeks to minimize the av-
erage path delay in end-to-end links, with the downsides of ignoring good net-
work links and a completely blind eye towards network congestion. A modification
of the Dijkstra algorithm, as proposed in [12], addresses these drawbacks by us-
ing time-varying link weights. The time variation influences the edges capacity
ci(t) = C(ei, t), its propagation delay di(t) = D(ei, t) and takes into account the
queue backlog qi(t) = Q(ei, t) for edge ei - i.e. the number of messages that are wait-
ing to be sent. So for a message of size m, and assuming a nonzero link capacity

10 2 Fundamentals

C(ei, t) = ci(t) > 0, the link weight is

w(ei, t) =
Q(ei, t)
C(ei, t)

+D(ei, t) =
qi(t)
ci(t)

+ di(t) (2.3)

The minimum estimated expected delay (MEED) [12] refines the scheme further
by keeping a history of past contacts in order to maintain running averages on the
time varying values in equation 2.3. Whenever a contact changes significantly in
comparison to its running average, the network is flooded with update packets to
discover the new topology. The threshold for a flooding and the number of history
records used to average, determine the networks ability to react in time on topology
changes. A balance between slow reaction time on the one hand, and oscillations
due to too many updates on the other hand, must be found to make the network
resilient.

2.1.3 Routing with opportunistic contacts

Dynamic network flows in mobile scenarios present rather difficult problems in
general. Different degrees in mobility govern these scenarios, these degrees can be
categorized as follow:

1. No mobile entities - Contacts appear or disappear solely based on the quality
of a communication channel between them. This is the class of intermittent
connectivity networks.

2. A minority of mobile entities - The few mobile nodes are exploited for their
mobility. Since they are the primary source of transitive communication be-
tween two non-neighboring nodes in the network, an important routing ques-
tion is how to properly distribute data among these nodes.

3. A majority of mobile entities - In this case, a routing protocol will most likely
have several options available to relay a message, and may choose on how
aggressively it tries to forward packets.

In the case of few mobile network entities, these are sometimes referred to as data
MULES[13][14] or message ferries, a routing protocol must make use of the mules
ability to carry traffic between segregated parts of the network.
Assuming that all nodes are static, have unlimited resources, and there is only one
ferry available that travels on a certain path L of length |L|, with speed v between
the segregated nodes i and j, the ferry’s cycle is T = |L|

v . In one cycle the mule is
able to relay data worth the size of bij with a delay of dLji, therefore the average
delay for the scenario is

dL =

∑
i,j bijd

L
ij∑

i,j bij
. (2.4)

2.1 Delay Tolerant Networking 11

Any appropriate solution to the mules trajectory L needs to find an optimal tradeoff
between the average delay dL, the resulting bandwidths bLij and a path that leads
past as many nodes as possible.

The traveling salesman problem (TSP), which belongs to the class of NP-
complete problems, addresses this process in detail. Given a (connected) weighted
graph it tries to find a path that visits all nodes exactly once and has a minimum
cost. As an alternative to a brute force solution, which would try all permutations
and has complexity O(n!), the cutting-plane method [15] offers a more efficient
way to solve the set of equations by using linear programming with relaxed crite-
ria. The relaxation transforms integer constraints into real number constraints, e.g.
x ∈ {0, 1} becomes 0 ≤ x ≤ 1, and allows the algorithm to find an optimal solution
to the set of inequalities. In iterative steps the algorithm then seeks a closest match
between an integer valued solution and the optimal one, by comparing different
integer values that are close to the optimal solution. There are several approaches
to designing ferry trajectories with multiple ferries, among these are:

• Single-Route Algorithm (SIRA) [16]

• Multiple-Route Algorithm (MURA) [17]

• Node Relay Algorithm (NRA) [17]

• Ferry Relay Algorithm (FRA) [17]

In many cases, however, the path of a mule will be nondeterministic, therefore
a message has to be replicated to several mules to increase the chance of a delivery.
This kind of method is referred to as epidemic routing, the number of copies simul-
taneously stored in the network determines the level of aggressiveness the protocol
uses.
For example a node may choose to give a copy to every other node it encounters,
basically flooding the network, to maximize the chance of delivery and to lower the
delivery time. Too much redundancy is in the best case just wasteful but it may
have disastrous impact on the networks performance, congesting both the physical
link and the storage capacity of network nodes.
The simplest approach to limit the number of messages simultaneously available in
the network is to use randomized flooding. A message is given to a neighbor with
a probability of p ≤ 1, where p = 1 relates to epidemic routing and p = 0 to using
a direct transmission with no replication involved. Alternatively a scheme could be
employed where the total number of copies of a message is limited, either by a fixed
value or some kind of self-limiting mechanism, as in self-limiting epidemic (SLEF)
[18].
Assuming that the network uses a epidemic 2-hop method to deliver messages, which
means that the source node is the only replicator of the message, and all other nodes
must either directly deliver the message to the destination, or eventually discard
it. If there are N nodes, and if these nodes follow paths that are independent and

12 2 Fundamentals

identically-distributed (i.i.d.), the expected number of transmissions per message is
E = (N − 1)/2.
The spray-and-wait protocol [19] enforces that the maximum allowable number of
messages does not exceed L copies, and that a message is replicated, or ’sprayed’,
to L distinct relays. In the vanilla version of the protocol the source transmits the
message to the first L nodes it encounters, whereas the binary version first dis-
tributes floor(L/2) to the first node it encounters, and each node then transfers
half of the total number of copies it has in store to any encountered node, that has
no copy of the message, until there is only one message remaining in the store. The
protocol then enters the wait phase, where a ferrying node will only transmit the
message directly to the recipient.

2.1.4 Routing Latency

The theoretical analysis of the routing latency provides a rough estimate on a mod-
els expected performance. The routing latency Ti of a DTN node i is defined as the
time delay between the moment a packet is generated at the sending node, and the
moment it is detected in a nearby receiving node.
The meeting (contact) time is defined as the time until two nodes, starting form a
stationary distribution, come into communication range, whereas the inter-meeting
(inter-contact) time describes the time until two nodes, that are about to leave
communication range, come into communication range once again.

The average expected delay for epidemic routing for a network with N nodes,
a communication range of K and i.i.d. mobility is

ED =
1

N − 1

N∑
K=1

K∑
i=1

Ti. (2.5)

To be able to estimate the latency Ti of a certain node, the random variable Mi,j

helps by modelling the meeting time between nodes i and j, thus

Ti = min
j
{Mi,j} , and (2.6)

P (Ti < t) = P (Mi,1 < t or Mi,2 < t... or Mi,N−1 < t) (2.7)

A possible assumption, motivated by considerations in chapter 2.1.5, is that the
random variable Mi,j is exponentially distributed, then the expected meeting time
between i and j is

E[Mi,j] =
1
λi,j

, and (2.8)

P (Mi,j > t) = e−λi,jt. (2.9)

2.1 Delay Tolerant Networking 13

If all nodes N behave in the same way, i.e. λ = λi,j ∀i, j, then Ti is also exponentially
distributed and the expected latency becomes

E[Ti] =
E[Mi,j]
N − 1

= E[T] ∀i, j and (2.10)

ED = E[T]
HN−1

N − 1
, where (2.11)

HN−1 =
N−1∑
i=1

1
i

(2.12)

is the harmonic sum.

Alternatively the meeting probabilities could be modeled as Markov chains, as
depicted in figure 2.3, where the probability to replicate the message or to deliver
it directly to its destination are both taking into account the number of messages
already replicated. The node vd is the destination node, and the nodes v1 to vN
represent the mules, that carry the message until they encounter the destination
vD. The more nodes carry the message the higher is the probability of a direct
delivery ED and the less likely is a further replication ER.

i→ i+ 1 : ER[Ti] = λ(N − i) ∗ i, and (2.13)
ED[Ti] = λ ∗ i (2.14)

Figure 2.3: Routing Latency modelled as Markov chain

2.1.5 Predicting Future Encounters

So far all routing schemes were random, they made no assumptions what so ever
about any particular network nodes - i.e. all relays are equally fast, equally capable
and have similar mobility. In real life, nodes do have different capabilities (e.g. sen-
sor, PDA, laptop) and they also show differences in movement patterns. Therefore
a routing protocol may improve, if it learns to read and use these patterns to its

14 2 Fundamentals

advantage.

Statistics Based Prediction

One way of predicting future encounters is based on past encounter statistics. The
probabilistic routing protocol using history of encounters and transitivity (PRoPHET)
[20] uses an algorithm that attempts to exploit the non-randomness of real-world
encounters by maintaining a set of probabilities for successful delivery to known
destinations in the delay-tolerant network (delivery predictabilities), and by repli-
cating messages during opportunistic encounters, but only if the mule that does
not have the message, appears to have a better chance of delivering it. Every mule
M stores delivery predictabilities P (M,D) for each known destination D, if a pre-
dictability value is unknown its assumed to be zero. The delivery predictabilities
used by each mule are recalculated at each opportunistic encounter according to
three rules:

1. When the mule M encounters another mule E, the predictability for E is
increased using the initialization constant Lencounter,

P (M,E)new = P (M,E)old + (1− P (M,E)old) ∗ Lencounter. (2.15)

2. The predictabilities for all destinations D other than E are ’aged’ by γK ,
where γ is the aging constant and K is the number of time units that has
elapsed since the last aging:

P (M,D)new = P (M,D)old ∗ γK (2.16)

3. Predictabilities for other nodes in the network are exchanged between M
and E, and the ’transitive’ property of predictability is used to update the
predictability for a destination D, for which E has a P (E,D) value, on the
assumption that M is likely to meet E again, using a constant scaling factor
β:

P (M,D)new = P (M,D)old + (1− P (M,D)old) ∗ P (M,E) ∗ P (E,D) ∗ β
(2.17)

Mobility Profile Based Prediction

Another approach is to use model based prediction, as proposed by Becker et al.
[21], where an abstract mobility model serves as basis and past encounters trim the
models parameters to predict future encounters. A mobility-profile based prediction
scheme separates the network into K locations, and represents each network node as
a K-dimensional vector ~Mn containing the sojourning probabilities for all locations.
By using e.g. Euclidean distance between two nodes m and n as the metric

| ~Mn − ~Mm| =
√ ∑
i=1...K

(Mn(i)−Mm(i))2 (2.18)

2.1 Delay Tolerant Networking 15

It is then possible to use this metric as a basis to predict the encounter probabil-
ity P (m,n) = f(| ~Mn − ~Mm|) for two nodes. The model must carefully chose the
parameter K to avoid either too little overlap or too crude resolution, and each
node must be able to learn the sojourning probabilities for its vector ~Mn, either
by using wireless network access points (APs) locations or the global positioning
system (GPS) or a combination thereof to obtain

Mn(i) =
Time at location i

T imewindow
. (2.19)

The Timewindow variable in equation 2.19 represents the total time, i.e. the sum
of the times for every location i.

Social Profile Based Prediction

To relate social networks to DTN, one has to be aware that in a mobile scenario
nodes are driven by humans, which have social relations that govern their mobility
patterns. Instead of having a routing scheme that operates on set of link weights
defined by technical parameters, the link weights could model social relations be-
tween nodes and furthermore be able to identify node communities. SimBet [22] is
an example of such a protocol.

Research in the field of social networks dates back to the early last century,
where scientists sought an answer to the shape and the basic properties of social
networks. A fascinating experiment, called the small world experiment, and devised
by Milgram et al. [23], took place in the USA in 1967 and revealed astonishing re-
sults.
The experiment selected arbitrary ”starting persons” who where asked to forward
a letter to another randomly selected person living in a town separated by a large
geographical distance. Each participant was asked to exploit his social network to
deliver the letter, furthermore each person forwarding the letter was requested to
send a postcard to the researchers, providing them with a means to track a letters
route on its way to the destination. A majority of the letters did not make it to the
destination, but those who did showed, that the average path length was around
six persons, therefore the term ’six degrees of separation’ was coined.
Later studies examined other networks, like the internet topology or cellular net-
works in biology, where interactions between the cell’s numerous constituents, such
as proteins, DNA, RNA and small molecules are modelled as a network. These newer
studies confirmed the results of Milgram’s experiment, and showed that there are
several common characteristics that apply to these kinds of networks.

Social networks belong to the type of small-world networks, these networks have
in common that its nodes form clusters, or groups, and that certain nodes provide
links to other clusters or groups, interconnecting these subnetworks. The major
properties of social networks are, that they are Scalefree [24] and that they possess

16 2 Fundamentals

a high clustering coefficient ci and a small path length [25]. Actually there are three
classes of scale-free networks: (a) real scale-free networks, characterized by a vertex
connectivity distribution that decays as a power law; (b) broad-scale networks,
characterized by a connectivity distribution that has a power law regime followed
by a sharp cutoff; and (c) single-scale networks, characterized by a connectivity
distribution with a fast decaying tail, according to Amaral et al [26]. In general this
means that there are few nodes having many connections to other nodes, these nodes
are called hubs, and the vast majority of remaining nodes have few connections to
other nodes. An example of such a network is shown in figure 2.4. Besides the already
addressed average path length there are other properties that help classifying these
networks.

• Path length, number of hops between two nodes on the average,

l =
1

n(n− 1)/2

∑
i>j

dij . (2.20)

• Degree distribution, the probability p(k) of a node having k neighbors,

p(k) ∝ k−γ (2.21)

• Clustering coefficient Ci quantifies how close the vertex and its neighbors are
to being a clique (complete graph). If links A-B and B-C exist, the clustering
coefficient predicts the probability that A-C exists.

Figure 2.4: Graph of a scale-free network

2.1.6 Content Dissemination

In contrast to the routing schemes described so far in this chapter, where a message
or packet was given the primary focus, it may be interesting to investigate the

2.1 Delay Tolerant Networking 17

dissemination of content as a whole. The general assumption is, that there might
be information that is valuable to more than one network entity, which is also the
basic assumption of the PodNet application.
Each network node has to be aware of available content and eventually synchronize
with elected nodes, if content interests match. Markov chains were already addressed
in chapter 2.1.4, and can also be used to model content dissemination as in [5], the
expected delay if no cooperation strategy is employed is

ED =
N−1∑
i=1

1
λi

λ=const.−−−−−→ ED =
1
λ

N−1∑
i=1

1
N − i

=
1
λ

N−1∑
j=1

1
j

=
1
λ
HN−1.

(2.22)

HN−1 =
N−1∑
i=1

1
i

If however the cooperation is unlimited, or put another way, the mutual interests
in content are absolutely identical, the expected delay becomes

ED =
2
λN

HN−1 (2.23)

Fluid models (Deterministic) take an approach inspired by biology, it is assumed
that the number of nodes N → ∞ is infinite, and that there is a rate of infected
nodes I(t), furthermore the change in the rate of infected nodes d

dtI(t) adheres to
the differential equation

d

dt
I(t) = λ(N − I(t)) I(t). (2.24)

The probability of a message being delivered in time t is P (t), and the probability
that the destination meets one of the I(t) infected nodes is M(t), therefore

P (t) = P (t > TD) = 1− P (t ≤ TD), and (2.25)
d

dt
P (t) ∝ d

dt
M(t) ∗ P (t ≤ TD) ∝ λ ∗ I(t) ∗ (1− P (t)) (2.26)

The system of ordinary differential equations (ODEs) can then be solved,

I(t) =
1

1 + (N − 1)e−λNt
(2.27)

P (t) =
N

(N − 1) + e−λNt
. (2.28)

And the resulting expected delay is

ED =
∫ ∞

0
(1− P (t))dt =

ln(N)
λ(N − 1)

. (2.29)

18 2 Fundamentals

2.1.7 Resource Restrictions

An important consideration in DTN is the availability of network resources. Many
nodes, such as mobile phones, are limited in terms of storage space, transmission
rate, and battery life. Others, such as buses on the road, may not be as limited.
Routing protocols can utilize this information to best determine how messages
should be transmitted and stored, to not over-burden limited resources. Only re-
cently has the scientific community started taking resource management into con-
sideration, and it is still a very active area of research.

2.2 ANA Framework 19

2.2 ANA Framework

The Autonomic Network Architecture (ANA) is a network research project initiated
and supported by different universities in Europe [27].
The goal is to develop a novel network architecture, an alternative to the ubiquitous
TCP/IP Network Layer model, and populate it with the functionality needed to
demonstrate the feasibility of autonomic networking. To avoid the pitfalls of past
architectures, ANA obeys certain guiding principles, i.e. maximum flexibility and
functional scaling, by design.

2.2.1 Concepts

The ANA framework introduces fundamental changes to the well-established con-
cepts in internetworking, as it smashes the layered (stacked) approach and rather
operates on a flat hierarchy of functional blocks, called bricks in ANA terminology,
than a fixed set of stack elements.
This crucial difference introduces the possibility to dynamically arrange data flows
through individual functional blocks, even rearrange them at runtime. It is thus
the choice of different brick sequences that determines the functional abilities of a
certain ANA entity, therewith fullfilling the criteria for both maximum flexibility
and functional scaling.
The ANA framework can be roughly divided into its core process, called minmex,
and a set of attachable plugins called bricks. The minmex is the primary hub for
all interactions within an ANA node, it offers both a node local inter-process com-
munication (IPC) facility and access to the host systems network interface card
(NIC). Additionally the minmex receives loading instructions for bricks from the
minmex configuration tool mxconfig, a shell program that supports scripting. Fur-
thermore the ANA bricks make use of the frameworks application programming
interface (API) to link with other functional blocks, thereby obtaining a desired
functionality.

2.2.2 Terminology

To give a brief introduction, the most important concepts are addressed shortly,
and will later be described in detail in the following sections. The ANA frame-
work introduces its own terminology to describe the fundamental concepts of the
frameworks approach [9]. First and foremost ANA differentiates between the node
compartment and other compartments, e.g. an ethernet network compartment. An
ANA brick may introduce a new compartment to the system, by implementing a
compartment protocol, which defines a policed set of functional blocks and the data
flow therein. As already mentioned the functional block (FB) is the atomized rep-
resentation of a processing function in ANA, it generates, consumes and processes
information. Each functional block runs in a certain minmex instance, therefore the
node compartment encompasses all functional blocks that run in the same minmex

20 2 Fundamentals

instance. Network compartments are of a different nature, as its participants must
communicate over a physical link of some kind (e.g. Ethernet), and therefore de-
pend on certain hardware related functional blocks.
The minmex uses information dispatch points (IDPs) to relay informations between
bricks, the IDP serves as the key to a callback function table, called the informa-
tion dispatch table (IDT). Before a brick is able to receive information it needs to
publish an IDP together with a list of keywords to the key-value repository (KVR)
of its minmex instance, additionally it needs to register a callback function with
the IDT where it will receive data for the published IDP. The keywords published
in the KVR serve as service descriptors, so bricks may find each other. Figure 2.5
summarizes the addressed properties and their relations.

Figure 2.5: Schematic view of an ANA Compartment

2.2.3 Functional Blocks

The core building block of the ANA framework is the functional block (FB), and
as already stated, FBs are code instances that can process (send, receive, forward,
etc.) data. FBs can be composed of one, or a set of several FBs. The fact that a FB
can represent the whole range from an individual processing function (as an atomic
FB) to a whole compartment stack or even a network node (as a composed FB),
makes this abstraction very useful.

2.2 ANA Framework 21

2.2.4 Compartments

A compartment represents an abstraction that allows decomposition of communi-
cation systems and networks into smaller and more easily manageable units. Such
an atomization is motivated by recent research[28], which led to the conclusion,
that today’s networks have to deal with such a large diversity of commercial, social
and governmental interests, that a pragmatic way to resolve these tussles, is to
logically divide the network into different realms[29] or turfs[30]. Additionally to
the network partitioning, the compartment abstraction also serves as a basic unit
for the federation of compartments into global-scale communication systems and
networks.
As already mentioned compartments do implement the operational rules and ad-
ministrative policies for a given communication context, thereby also defining the
technological and/or administrative boundaries for a given context. It is worth not-
ing that compartments have full autonomy on how to handle the compartment’s
internal communication - i.e. there are no global invariants that have to be imple-
mented by all compartments or every communication element.
There are however requirements, that each compartment has to fullfill, in order to
integrate properly into the framework. Among these conditions are:

• Registration and Deregistration: Compartments require some kind of
registration or publish function that allows communication entities to become
a member of a compartment, if they wish so. Likewise a deregistration or
unpublish function is needed, to signal a leave to the compartment.

• Policy Enforcement: Compartments can police their members and resources,
e.g. a compartment may enforce that all its functional blocks require a proper
authentication and/or data encryption.

• Identifier Management: Most compartments will make use of some kind of
naming or addressing scheme to identify individuals or group members within
the compartment. Typically a (pseudo) unique, compartment-local identifier
will serve this purpose. Managing these identifiers, and their uniqueness, rests
with the compartment provider.

• Identifier Resolution: Of course the compartment provides a way to access
individual members or groups that already obtained an identifier for them-
selves. The result of this identifier resolution process depends on the type
of compartment and how communication within the compartment is handled,
but basically the result is another identifier that is required for communication
on a lower level.

2.2.5 Information Channel

Communication inside a compartment is mediated via information channels (ICs),
which can be of either physical or logical nature. Examples of physical ICs are a

22 2 Fundamentals

wired link, a wireless medium or the local memory, while logical (or virtual) ICs are
represented by a chain of packet processing elements and further ICs. The informa-
tion channel abstraction is able to capture various types of communication channels,
ranging from point-to-point links or connections, over multicast or broadcast trees
to special types of channels as anycast or concast trees.

2.2.6 Information Dispatch Point

In order to flexibly connect to a FB or IC, the ANA framework introduces informa-
tion dispatch points (IDPs), which can be dynamically bound and hence represent a
decoupled “entry point” or handle for each FB or IC. The fact that this decoupling
occurs in a transparent way for the involved entities, relieves these entities of being
aware of, or even being involved in, any (autonomic) re-binding procedure that can
take place during active communications. A clear distinction between IDPs and
FBs may be difficult sometimes, as it can be argued, that IDPs are just a special
type of FBs. In contrast to FBs however, IDPs are limited to perform only data
forwarding operations (based on their bindings).

2.2.7 Information Dispatch Table

Every IDP is bound to a certain FB or IC, in that way that every entity publishing
an IDP will associate an (internal) information retrieval function for that IDP.
Typically this is done by the means of a callback function associated to an IDP.
The minmex keeps track of every IDP and its callback function in its information
dispatch table (IDT).

2.2.8 Key-Value Repository

The compartment prerequisites state, that each compartment must take care of its
identifier space, naturally this also applies to the node compartment. The minmex
keeps track of published identifiers in its key-value repository (KVR), and answers
identifier resolution request by searching the KVR. An entry to the KVR basically
relates a keyword to an IDP.

2.2.9 Minmex

The minmex controller (MC) is a truly autonomic process, it runs dynamically
loadable bricks and performs a continuous assessment of the basic operation of an
ANA node, i.e. a sanity and health check of the components running inside the
node. The core objective of the MC is in fact to protect running elements from
faulty or misbehaving elements, in order to guarantee the performance of the ANA
subsystem. Among the tasks are:

• Periodical control of the data forwarding paths in the IDT, in particular
detection and removal of accidentally created loops.

2.2 ANA Framework 23

• Garbage collection of unused or expired IDPs, and IDPs that became an
orphan due to an entity malfunctioning or crashing.

• Deletion or re-instantiation of malfunctioning or crashed functional blocks
within the system.

• Support for several IDTs, including the management of access rights for IDTs.

2.2.10 API

The frameworks application programming interface (API), also referred to as ’com-
partment API’ in other documents, is the pivot for every functional block, as it
offers interfaces to communicate with both the minmex and other currently loaded
bricks. The API can roughly be divided into its core functionality and a set of aux-
iliary functions. The core itself comes in three layers, the differences in these layers
are best summarized as a tradeoff between flexibility versus comfort. The numerous
auxiliary functions in the API cover many subjects, among these are:

• Platform independent support for threads, timers and mutual exclusion mech-
anisms.

• Storage container support (e.g. simple linked lists, hashed tables, etc.).

• Inter-process communication support through a standardized message format
called XRP.

Besides the API itself the ANA framework also offers brick templates, these contain
necessary API inclusions and provide a basic brick-skeleton - i.e. the minimum set
of prerequisites each brick must meet.

Core API

As already mentioned there are three layers to the core API, each having different
features. At the lowest level there is the anaL0 API set, which encompasses the
functionality needed to meet the lowest common denominator for a basic system
operability. This level includes functions for sending data to an IDP, publishing
an IDP and associate a callback function for subsequent data retrieval. The anaL0
does not specify any particular pattern for messages passed through the system,
the support for XRP formatted messages is only made available by the anaL1 API
set. The new API level adds XRP message encoding- and decoding-functions, these
messages implement the compartment requirements imposed by the compartment
specifications. Having the properly formatted XRP messages and the service that
can relay them, the specifications are met, beyond this level the anaL2 API set
merely introduces comfort. Basically the anaL2 API level consist of wrapper func-
tions summarizing all the individual steps needed to set-up IDPs with associated
callback functions in order to implement a compartment protocol.

24 2 Fundamentals

2.3 PodNet

As an example of a DTN application, and also as the basis for this thesis, the
wireless ad-hoc podcasting network (PodNet) application is providing everything
necessary to operate in a mobile, delay-tolerant environment. PodNet [2] was de-
vised at the ETH Zurich in 2007 and is based on research, done in the field of mobile
networking, by the communication system group (CSG).

Podcasting has become a popular service lately, as it allows individuals to remain
up to date on recently published informations without their interaction needed. Pod-
casting describes the process where a content publisher offers a podcasting channel
to the public, by e.g. publishing it on the Internet, where individuals have the pos-
sibility to subscribe to the podcast. Later on, everytime the publisher adds a new
entry to his podcast, each subscriber will periodically check and eventually discover
the update and download the new content automatically.
PodNet enhances the classical podcasting service by extending the publish/sub-
scriber scheme to every node, this allows every individual to become both a pub-
lisher of and a subscriber to a podcasting channel. The application is designed to
be operated in a mobile scenario, it uses the ad-hoc mode for wireless 802.11a/b/g
networks as its physical link and TCP/IP for addressing and transmission control.
PodNet uses opportunistic contacts to propagate data from mobile to mobile. If
two devices are within transmission range, the common subscribed channels are
synchronized.

2.3.1 Structure

The PodNet application is written in object-oriented C++, as a collection of threads
that fullfill different tasks in parallel and communicate with each other by using
messages stored in a common memory region. The modules that make up the Pod-
Net application are depicted in figure 2.6, the graph shows the message flow between
individual tasks or modules and the separation into system threads.

A detailed analysis of [2] reveals, that the ’Router’ and ’Sync’ module together
provide the DTN scheme. By broadcasting discovery packets and keeping track of
the packets received from other peers, they enable the podcasting application to
identify and to contact potential candidates for content exchange. The ’Transfer
Server’ and ’Transfer Client’ modules do implement the podcasting protocol, that
is required for actual information exchange. Besides these modules the application
offers interfaces to podcasting data, event logging and live traffic analysis. The inter-
action between user and application is facilitated either by a textual or a graphical
user interface (UI), depending on the users choice.

2.3 PodNet 25

Figure 2.6: Schematic view of a PodNet entity

2.3.2 Discovery and Synchronization

Every network node sends a periodic message to all neighbors it can reach, inform-
ing them of its presence. By using the networks broadcast address it is able to
spread a discovery packet, containing vital information for potential candidates, to
a number of network nodes at once. As each node observes the broadcasted discov-
ery packets, it is not only able to build a network graph as introduced in chapter
2.1, but also to estimate a connections quality by keeping track of overdue packets.
Once the set of neighbors is known, it is a strategic question of how to start syn-
chronizing with every neighbor, e.g. immediately after its discovery or after some
delay to reduce runs on new peers. Further analysis in [2] also showed, that the
amount of the initially transferred data volume, between two nodes, affects the
fairness of the dissemination. Unlimited transfer volumes can stall the spreading
process considerably. So the protocol must restrain from large bulk transfers, and
rather seek to spread information evenly over all interested nodes.

2.3.3 Content Exchange

In allusion to popular podcasting protocols PodNet describes a podcast as a set
of channels. Every channel has a unique identifier and contains a variable number
of episodes, each episode is uniquely identifyable too and represents an atomic

26 2 Fundamentals

information unit. Usually an episode is made up of an authors name, an episodes
title, a date and a variable number of data blocks, e.g. file data. To improve the
performance when searching for mutual interests, expressed as subscriptions to a
unique channel identifier, PodNet makes use of bloom-filters [31] that reduce the
complexity of the searching problem from the exponential to the linear time domain.

2.3.4 Network Message Format

Both the discovery and the content exchange protocol in PodNet make use of the
FLEX [2] message format, a message encoding/decoding scheme derived from the
OBEX [32] format. Figure 2.7 shows the different protocol encapsulations for a
typical FLEX formated message on an Ethernet link. The FLEX format takes care
of platform dependent byte ordering and facilitates data splitting for messages larger
than a given maximum transmission unit (MTU) size.

2.4 Transmission Control Protocol 27

Figure 2.7: Typical network Protocol encapsulation of a PodNet message

2.4 Transmission Control Protocol

In a mobile network scenario the loss or corruption of packets during transit is
not uncommon, furthermore wireless links are more susceptible to congestion than
wired networks, as the wireless link, being a classical ethernet network, is a shared
medium. Therefore a link-level protocol that wants to deliver frames reliably must
somehow recover from these discarded or lost frames. The transmission control

28 2 Fundamentals

protocol (TCP) [10] is a well established and flexible protocol, it proved its reliable
transmission capabilities in a multitude of networking scenarios, and is considered
an excellent example of a solution to the problem of reliable transmission. Currently
the ANA framework does not offer a comparable service, therefore TCP is imple-
mented in the framework, as a part of thesis, following the concepts introduced in
this chapter.
This section is largely based on the explanations in “Computer Networks” written
by Larry Peterson and Bruce Davie [33].

2.4.1 Error Recovery

The recovery from a frame that was lost during transmission is usually accomplished
using a combination of two fundamental mechanism - acknowledgements (ACK) and
timeouts. An acknowledgement is a small control frame that the protocol sends back
to its peer informing it on the successful reception of an earlier frame. In the case
of TCP the control frame is a complete TCP header with no payload, the layout of
a TCP header has been introduced in figure 2.7. If the sender does not receive an
acknowledgement after a reasonable amount of time, i.e. after a timeout occurred,
it must assume that a frame got lost and therefore retransmit the original frame.
The general strategy of using acknowledgements and timeouts to implement reliable
delivery is sometimes called automatic repeat request (ARQ).
The simplest ARQ scheme is the stop-and-wait algorithm. The idea of stop-and-wait
is that after transmitting one frame, the sender has to wait for an acknowledgement
before it can transmit the next frame. If the acknowledgement does not arrive after
a certain period, the sender times out and retransmits the original frame. The main
shortcoming of the stop-and-wait algorithm is that it allows the sender to have only
one outstanding frame on the link at a time, and this may be far below the link’s
capacity. The following consideration illustrates this situation: A 1.5-Mbps link with
a 45-ms round-trip time (RTT) has link capacity of capacity = delay×bandwidth ≈
8kByte, since the sender can send only one frame per RTT, and assuming that a
frame has the size of 1kB, the link utilization is only 12.5%. To use the link fully,
then, the sender should be able to transmit up to eight frames before having to
wait for an acknowledgement.

2.4.2 Sliding Window Algorithm

At the heart of TCP lies the sliding-window algorithm, it ensures data continuity
and consistent memory space for packet processing. The algorithm models a circular
data buffer and maintains a set of pointers to items of special significance. TCP
actually use two such buffers, one for the receiving side and one for the sending
side. An illustration of the two circular buffers used in TCP is given in figure 2.8.

First, the sender assigns a sequence number (SeqNum) to each frame that is
scheduled for delivery. For now, the fact that the SeqNum will be implemented by
a finite-size variable shall be ignored, and instead it shall be assumed that SeqNum

2.4 Transmission Control Protocol 29

Figure 2.8: Sliding-window - Circular data buffers in TCP

can grow infinitely large.

The sliding window algorithm on the sending side works as follows. The sender
maintains three variables: The send window size (SWS), which gives the upper
bound on the number of outstanding (unacknowledged) frames that the sender is
allowed to transmit; LAR denotes the sequence number of the last acknowledgement
received ; and LFS denotes the sequence number of the last frame sent. The sender
enforces that LFS − LAR ≤ SWS in order to ensure data consistency. When an
acknowledgement arrives the sender is allowed to progress its LAR pointer, thereby
allowing a new frame to be sent. Also, the sender associates a timer with each frame
it transmits, and it retransmits the frame should the timer expire before an ACK is
received. Note that the sender has to be willing to buffer up to SWS frames since
it must be prepared to retransmit them until they are acknowledged.

The receiver side has to maintain the following three variables: The receive
window size (RWS), giving an upper bound on the number of out-of-order frames
that the receiver is willing to accept; LAF denotes the sequence number of the
largest acceptable frame; and LFR denotes the sequence number of the last frame
read by the receiving application. The receiver maintains the invariant LAF −
LFR ≤ RWS to maintain data consistency. When a frame with sequence number
SeqNum arrives, the receiver takes the following action. If SeqNum ≤ LFR or
SeqNum > LAF , the the frame is outside the receiver’s window and it is discarded.
If LFR < SeqNum ≤ LAF , then the frame is within the receiver’s window and
it is accepted. Now the receiver needs to decide whether or not to send an ACK.
Let SeqNumToAck denote the largest sequence number not yet acknowledged,
such that all frames with sequence numbers less than or equal to SeqNumToAck
have been received. The receiver acknowledges receipt of SeqNumToAck, even if
higher-numbered packets have been received, such an acknowledgement is said to
be cumulative. The receiver then sets LFR = SeqNumToAck and adjusts LAF =
LFR+RWS.

30 2 Fundamentals

2.4.3 Finite State Machine

The well-designed nature of TCP allows an elegant implementation of the protocol,
by using the model of a finite state machine (FSM). A FSM is a graph G with a
set of nodes V that are interconnected by a set of directed edges E. The nodes V
denote the different states of the state machine, whereas the edges E model a state
transition of one state into another

e12 : v1
c=1/a=2−−−−−→ v2, (2.30)

where the condition c = 1 must be met in order to follow an edge into a new state,
causing the action a = 2 to be executed.. The FSM diagram for TCP is shown in
figure 2.9, where the criteria for state transitions are based on the kind of packet
received, TCP uses flags in the packet header to differentiate different packet types.

Figure 2.9: TCP modeled as a finite state machine

2.4 Transmission Control Protocol 31

2.4.4 Other Features

There exist many implementations of the transmission control protocol, due to
proposed improvements being applied and different interpretation of the specifica-
tions. The following listing provides an overview of features inherent in most TCP
implementations.

Three-Way Handshake

The idea is that two peers need to agree on a set of parameters, which, in the case of
opening a TCP connection, are the starting sequence numbers the two sides plan to
use for their respective data frames. First the client (the active participant) sends a
segment to the server (the passive participant) stating the initial sequence number
it plans to use (Flags = SYN, SeqNum = x, see the respective fields in figure 2.7).
The server then responds with a single segment that both acknowledges the client’s
sequence number (Flags = ACK, AckNum = x + 1) and states its own beginning
sequence number (Flags = SYN, SeqNum = y). That is, both the SYN and ACK bits
are set in the Flags field of this second message. Finally, the client responds with
a third segment that acknowledges the server’s sequence number (Flags = ACK,
AckNum = y+1). The reason that each side acknowledges a sequence number that
is one larger than the one sent is that the Acknowledgement field actually identifies
the ’next sequence number expected’, thereby implicitly acknowledging all earlier
sequence numbers. The three-way handshake is illustrated in figure 2.10.

Figure 2.10: TCP - Three-Way Handshake

Flow Control

In order to incorporate flow control between the sender and the receiver, TCP folds
the flow-control function into the sliding window algorithm. In particular, rather

32 2 Fundamentals

than having a fixed-size sliding window, the receiver advertises a window size to
the sender. This is done using the AdvertsiedWindow field in the TCP header
(see figure 2.7). The sender is then limited to having no more than a value of
AdvertisedWindow of unacknowledged data at any given time. The receiver selects
a suitable value for AdvertisedWindow based on the amount of memory allocated
to the connection for the purpose of buffering data. The idea is to keep the sender
from overrunning the receiver’s buffer. On the receiver side this introduces some
changes, additionally to keeping track of the next frame expected (NFE) it must
track the last frame read (LFR) by the application, receiving the data stream, and
finally adapt its constraint on the receiver side, that avoid overflowing its buffer

(NFE − 1)− LFR ≤ RWS. (2.31)

Therefore the peer advertises a window size of

AdvertisedWindow = RWS − ((NFE − 1)− LFR), (2.32)

which represents the amount of free space remaining in its buffer. As data arrives,
the receiver acknowledges it as long as all the preceding frames have also arrived.
In addition, NFE is increased, meaning that the advertised window potentially
shrinks. Whether or not it shrinks depends on how fast the local application process
is consuming data. If a AdvertisedWindow value should ever reach 0, TCP on the
send side must then adhere to the advertised window it gets from the receiver, and
stop sending data. This means that it must ensure that

LFS − LAR ≤ AdvertisedWindow. (2.33)

Said another way, the sender computes an effective window that limits how much
data it can send

EffectiveWindow = AdvertisedWindow − (LFS − LAR). (2.34)

An advertised window of 0 means that the sending side cannot transmit any data,
even though data it has previously sent has been successfully acknowledged. Finnally,
not being able to transmit any data means that the send buffer fills up, which ul-
timately causes TCP to block the sending process. As the receiver may eventually
start draining its buffer, the sender has no knowledge of this, because it is not per-
mitted to send any more data that could trigger an acknowledgement containing
the new AdvertisedWindow value. TCP on the receiver side does not spontaneously
send nondata segments, it only sends them in response to an arriving data segment.
TCP deals with this situation as follows. Whenever the other side advertises a win-
dow size of 0, the sending side persist in sending a segment with one byte of data
every so often. It knows that this data will probably not be accepted, but it tries
anyway, because each of these 1-byte segments will trigger a response that contains
the current advertised window. Eventually, one of these 1-byte probes triggers a
response that reports a nonzero advertised window.

2.4 Transmission Control Protocol 33

Adaptive Retransmission

Because TCP guarantees the reliable delivery of data, it retransmits each segment
if an ACK is not received in certain period of time. TCP sets this timeout as
a function of the round trip time (RTT) it expects between the two ends of the
connection. Unfortunately, given the range of possible RTTs between any pair of
hosts in a large inter-network, as well as the variation in RTT between the same
two hosts over time, choosing an appropriate timeout value is not that easy. To
address this problem, TCP uses an adaptive retransmission mechanism, that relies
on a running average of the RTT between two hosts. Specifically, every time TCP
sends a data segment, it records the time. When an ACK for that segment arrives,
TCP reads the time again and then takes the difference between these two times
as a SampleRTT . TCP then computes an EstimatedRTT as a weighted average
between the previous estimate and this new sample, that is,

EstimatedRTT = α× EstimatedRTT + (1− α)× SampleRTT. (2.35)

The parameter α is used to smooth the EstimatedRTT , the TCP specification
recommends a setting of α between 0.8 and 0.9. TCP then uses EstimatedRTT to
calculate the timeout in a rather conservative way:

Timeout = 2× EstimatedRTT (2.36)

An important note on the subject of sampling round trip times, which also remained
hidden for quite a long time after the protocol has been introduced, is, that the RTT
should only be sampled if the ACK was for a segment where no retransmissions
occurred. It showed that the inability to unambiguously attribute an ACK to a
certain (re-)transmission, falsified the EstimatedRTT to such an extent, that it
negatively influenced the performance.

Record Boundaries

Since TCP is a byte-stream protocol, the number of bytes written by the sender
are not necessarily the same as the number of bytes read by the receiver. For
example, the application might write 8 bytes, then 2 bytes, then 20 bytes to a TCP
connection, while on the receiving side, the application reads 5 bytes at a time
inside a loop that iterates periodically. TCP does not interject record boundaries
between the 8th and 9th bytes, nor between the 10th and the 11th bytes. This is in
contrast to a message-oriented protocol, such as the user datagram protocol (UDP),
in which the message that is sent is exactly the same length as the message that is
received.
Even tough TCP is a byte-stream protocol, it has two different features that can
be used by the sender to insert record boundaries into the byte-stream, thereby
informing the receiver how to break the stream of bytes into records.
The first mechanism is the urgent data feature, as implemented by the URG flag
and the UrgPtr field in the TCP header (see figure 2.7). Originally, the urgent data

34 2 Fundamentals

mechanism was designed to allow the sending application to send distinct data, i.e.
separate from the normal flow of data. This out-of-band data was identified in the
segment using the UrgPtr field and was to be delivered to the receiving process
as soon as it arrived, even if that meant delivering it before data with an earlier
sequence number. Over time, however, this feature has not been used, so instead of
signifying “urgent” data, it has come to be used to signify “special” data, such as a
record marker.
The second mechanism for inserting end-of-record markers into a byte-stream is
the push operation. Originally, this mechanism was designed to allow the sending
process to tell TCP that it should send (flush) whatever bytes it had collected to its
peer. The push operation can be used to implement record boundaries because the
specification says that TCP must send whatever data it has buffered at the source
when the application says push, and optionally, TCP at the destination notifies the
application whenever an incoming segment has the PUSH flag set. If the receiving
side supports this option, the push operation can be used to break the TCP stream
into records.

Congestion Control

The essential strategy of TCP to control congestion is to send packets into the
network and then to react to observable events that occur. The goal is to determine
for each source how much capacity is available in the network, so that it knows
how many packets it can safely have in transit. Once a given source has this many
packets in transit, it uses the arrival of an ACK, as a signal that one of its packets
has left the network, and that it is therefore safe to insert a new packet into the
network, without adding to the level of congestion. By using ACKs to pace the
transmission of packets, TCP is said to be self-clocking.
TCP maintains a new state variable for each connection, called CongestionWindow,
which is used by the source to limit how much data it is allowed to have in transit at
a given time. The CongestionWindow is in concurrency with the AdvertisedWindow,
introduced earlier in the section on flow control, as the smaller value of these
two becomes the basis for a computation of the effectively allowed window size
EffectiveWindow. Thus it is the EffectiveWindow size that dictates whether TCP
is allowed to insert another packet into the network,

MaxWindow = min(CongestionWindow,AdvertisedWindow) (2.37)
EffectiveWindow = MaxWindow − (LFS − LAR). (2.38)

A TCP source sets the value of CongestionWindow based on the level of congestion
it perceives to exist in the network. This involves decreasing the congestion window
when the level of congestion goes up and increasing the congestion window when
the level of congestion goes down. TCP uses an additive increase/multiplicative
decrease scheme to alter the congestion window’s value.
Based on the observation that the main reason packets are not delivered, and a time-
out results, is that a packet was dropped due to congestion. It is rare that a packet

2.4 Transmission Control Protocol 35

is dropped because of an error during transmission. Therefore, TCP interprets time-
outs as a sign of congestion and reduces the rate at which it is transmitting, it does
so by setting CongestionWindow to half of its previous value. CongestionWindow
is not allowed to fall below the size of a single packet, or in TCP terminology, the
maximum segment size (MSS).
A congestion-control strategy that only decreases the window size is obviously too
conservative. It also needs to be able to increase the congestion window to take ad-
vantage of newly available capacity in the network. This “additive increase” works
as follows, every time the source successfully sends a couple of packets, i.e., each
packet sent out during the last RTT has been ACKed, it adds the equivalent of one
packet to CongestionWindow.

The assumptions of the congestion control mechanism in TCP, that a packet
loss is due to congestion, must not necessarily be true for a wireless connection,
where losses occur also due to collision, interference and other wave propagation
phenomena.

36 2 Fundamentals

Chapter 3

Integration

This chapter details the design choices for the implementation in a rather abstract
way, whereas the more technical details are given in chapter 4. Extending the ANA
framework to find an optimal solution for the integration of PodNet is considered
in chapter 3.2. As the PodNet applications is aimed at mobile scenarios, where
individuals are carrying different kinds of mobile computers, chapter 3.3 analyzes
the problems inherent in platform independence.

3.1 Preliminaries

An integration of PodNet in ANA can be done in many ways. The chosen approach
abides by the guidelines for the ANA framework, described in chapter 2.2, and re-
sults from the PodNet thesis [2].
The goal is to break PodNet into smaller, more manageable units, as these can be
used by other applications and maintained independently of each other, essentially
providing basic functional set for one-hop opportunistic applications. An advantage
of the ANA framework is that it is able to adapt to different scenarios by loading
and unloading functional blocks, also referred to as bricks, at runtime. By dissect-
ing the monolithic PodNet application into a number of bricks, there may exists
several versions of a brick suited for different scenarios, making the framework more
robust, more flexible and more generic for the use by other applications.

A first consideration is that ANA is written in the C programming language,
whereas PodNet makes use of objects in the C++ programming language. Although
these languages are very close relatives, there are differences in the interpretation
of code sections inherent in the two compilers for C and C++ code, which translate
source code into executable programs. Therefore it may be impossible to directly
include parts of the ANA library in C++ source code, and vice versa.
Another consideration is the tight bounds between PodNet and the POSIX TCP/IP
socket it uses for network communication. The ANA framework does not have any
similarities to a sockets workings, therefore the discrepancies between the two net-

38 3 Integration

working approaches must be apprehended and taken into account for an implemen-
tation. As a major change the version running on the ANA framework shall no
longer make use of the internet protocol (IP) for network addressing, but instead
use Ethernet addressing together with ANAs internal addressing scheme. This is
because IP is intended four routing in a globally connected network, which is not
needed in the opportunistic network scenario. A suitable candidate for transmission
control was assumed to be found in the store-and-forward transmission (SAFT) pro-
tocol [35], that is already integrated in the ANA framework. But a detailed analysis
revealed a very tight bound to the IP implementation for ANA, and it therefore
no longer suited the demands. As an alternative to the adaptation of the SAFT
protocol, implementing the transmission control protocol (TCP) in ANA promised
to have several advantages.
The original application features both a command line version and a graphical user
interface (GUI) for user interaction, the GUI only running on Windows Mobile
devices, therefore a GUI for Linux based systems is considered. Additionally the
portability to different computer architectures running Linux operating systems is
heeded.

3.2 Implementation Approach

The implementation was preceded with basic C and C++ inter-operability tests,
done in parallel to a familiarization with the ANA framework and the PodNet appli-
cation. The message passing scheme used in PodNet, as introduced in chapter 2.3,
must be redesigned as functional blocks are broken of the main application, because
in ANA they do not share a common memory space for inter process communica-
tion (IPC), but rely on message passing methods provided by the framework. There
it would be advantageous to make use of the XRP message format, which is well
established in ANA, to obtain maximal compatibility.
As the PodNet application is based on older work, it contains some redundancy and
unfinished ideas (e.g. router) that will be removed for simplicities sake, additionally
any functionality that is already provided by the ANA framework will replace any
custom made implementation in PodNet.

3.2.1 Set Of Functional Blocks

As already pointed out, the PodNet application can be divided into a delay-tolerant
networking (DTN) part and a podcasting part. The decision on how the PodNet
functions should be dissected into ANA bricks, followed the idea of maximal re-
useability and flexibility. A systematically pleasing cut, adhering to the formulated
ideas, splits the PodNet application into three parts: Neighbor discovery, synchro-
nization service and the podcasting part. A graphical representation of the proposed
scheme is given in figure 3.1.

3.2 Implementation Approach 39

Figure 3.1: Schematic view of the planned PodNet implementation in ANA

Neighbor Discovery

The neighbor discovery module is responsible for collecting information on neigh-
boring nodes in the network. It does so by periodically (once in two seconds) sending
discovery packets to all nodes in the network, and keeping track of the packets re-
ceived from other nodes.
The module informs other bricks, that are interested in the state of neighboring
nodes, by sending them XRP formatted notification messages (for details see chap-
ter 4.1.2) on any of the following events:

• Add Neighbor - Upon the discovery of a new neighbor node this message is
sent, the new node is marked as unstable.

• Stable Neighbor - This message is sent, if a neighbor has been considered
unstable but managed to deliver three consecutive discovery packets, and
therefore gaining the stable attribute.

• Unstable Neighbor - A stable neighbor may become unstable, if it fails to
deliver three packets in a row, this message informs about a possible link
failure.

• Remove Neighbor - If a network node stops delivering discovery packets, it
is assumed that either the link has become weak, but may regain its strength,
or that the node has permanently left the network, be it because of a physical
relocation or a change in it’s power-state. Therefore every unstable peer is
marked for removal after a given timespan (e.g. 20 seconds), once the timer
expires and the neighbor is about to be deleted this message is sent.

Additionally the module maintains running totals on received packets per neighbor,
allowing it to estimate a link quality by comparing these to expected values. The
discovery packets can be crafted to deliver auxiliary information to the network,
like for example a description of supported protocols, or other meta data.
As the discovery packets are delivered to a networks broadcast address, each partic-
ipant listening to the link will read the message, but there are no assumptions made

40 3 Integration

on whether packets actually reach a neighbor or not. Such kind of reliability in mes-
sage delivery is called best-effort service, and reflects the most basic characteristic
of a delay-tolerant network.

Synchronization Service

So far an ANA node is up to date on its neighboring network nodes, the neighbor
discovery brick ensures this by sending notification messages, on the occurrence
of certain network events. As a nodes presence might be volatile, and some of its
packets might have been lost, due to a temporal link failure, there must be a way
of keeping track of a nodes state, i.e. whether it has changed since the last contact.
The synchronization service uses two mechanisms to ensure a correct state tracking,
the first being that every time the neighbor discovery brick reports a neighbor as
stable, i.e. the neighbor managed to deliver three consecutive packets, the neighbor
node is tagged as a potential candidate. It is of no importance if a node is new
or if it regained stability after an unstable phase, the node must be inspected for
its current state. The second mechanism ensuring correct state awareness, is the
notification of neighboring nodes if the application that provides content, in this
case the podcasting part in PodNet, reports a change in this content. This change
could have been triggered by some scheduled operation or by human interaction,
hence the network has no knowledge of it yet, and must be informed, either by
broadcasting the information, or by individual transmission to every known node.

In order to detect changes in a neighbors state, there must be some kind of
state token available for comparison, identifying individual states. The use of con-
tent timestamps as state tokens has the advantage, that it is human readable and a
good indication of a neighbors actuality. The implementation follows the RFC 3339
format proposed in [2] and [36]. The exchange of tokens uses an XRP message for-
mat and must be supported by a reliable transmission protocol to guarantee proper
operation. The synchronization services thus uses the the transmission control pro-
tocol (TCP) described in chapter 2.4 to reliably deliver synchronization messages.

PodNet On ANA

The podcasting protocol from the PodNet application, including storage manage-
ment and user interaction make up the PodNet on ANA brick. Most of the functions
are based on the original source code [2], actually the protocol itself remains unal-
tered. However, as the original relies on IP addresses for node identification, and
the ANA version has its own mechanism (as explained in chapter 2.2), the protocols
will be incompatible without the internet protocol available on both sides.
A registration with the synchronization service provides a set of neighbors also
running PodNet on ANA, a connection to each neighbor then uses the podcast-
ing protocol to exchange content. The podcasting protocol is also dependent on
a reliable transmission mechanism, and as already mentioned, the TCP protocol

3.2 Implementation Approach 41

described in 2.4 serves this purpose.
Additionally the PodNet on ANA module also includes a command line interface
(CLI) and a graphical user interface (GUI) for user interaction, where the CLI part
is identical to the original version. These allow a user to review available channels
and episodes on a network, and to manage these locally, including the issuing of
new channels and episodes.

Figure 3.2: Picture of a Nokia N810 running PodNet on ANA

3.2.2 Monitoring Framework

ANA offers its own monitoring services to functional blocks. The monitoring frame-
work aims at unifying common monitoring tasks, and to provide an adaptive and
cost optimized monitoring method. The neighbor discovery brick described in chap-
ter 3.2.1 is to be part of the group of monitoring methods related to connectivity,
therefore it has to adhere to the rules for monitoring bricks, as described in detail
in [39]. To give a quick overview of these basic concepts a schematic view of the
monitoring framework is given in figure 3.3.
Every monitoring request to the framework is orchestrated by the dispatcher brick,
it decides in witch category of monitoring tasks the current request belongs, and
forwards the request to an appropriate module. This module is then responsible
for a proper handling of the request, e.g. establishing a notification channel to a
client brick and periodically sending notifications, and may rely on other bricks
to perform the requested task. In most cases a selected monitoring category, also
called monitoring metric, will not be restricted to one specific task, but will offer
a variety of sub-metrics for different kinds of measurement methods and scenarios.
A set of sub-metrics is depicted in figure 3.3, the neighbor discovery brick is such a
sub-metric brick, it belongs to the group connectivity metrics.

42 3 Integration

Figure 3.3: Schematic view of the Monitoring Framework in ANA

3.2.3 Addressing Scheme

As has been laid out in chapter 2.2, ANA makes use of information dispatch points
(IDPs) to relay messages, together with a keyword published in the key-value repos-
itory (KVR) these two components make up an addressing scheme. The change in
the usage of network protocols, away from IP packets towards Ethernet frames, has
been mentioned. The ANA framework already provides an Ethernet compartment
implementation, and following the requirements from chapter 2.2 the compartment
implements a identifier namespace very similar to the previously mentioned KVR.

To address network nodes the employed scheme uses a pseudo unique identi-
fier, made up of a number of random characters, in our case 20 Bytes. The use
of characters reduces the possible address space, but allows human readability for
a network address, furthermore the number of characters used as a network iden-
tifier must be carefully decided upon. When a network service publishes itself to
the Ethernet compartment it prepends a service descriptor to the node identifier,
therefore a possible network address might for example be podnet_cLKJdsaBsdiA
or sync_cLKJdsaBsdiA. In the case of message broadcasting, as employed by the
neighbor discovery module, there is no need for a distinguished addressing of net-
work nodes, therefore it suffices to use a simple service descriptor, like for example
neighbors.

3.2.4 Reliable Transmission

The availability of a reliable transmission protocol is considered as one of the key
elements in the implementation of a networking application. The ANA framework

3.3 Platform Independence 43

implements a transmission protocol of it’s own kind, the store-and-forward trans-
mission (SAFT) protocol. SAFT ensures a reliable transmission for hop-by-hop
connections, and additionally on a end-to-end basis. The protocol relies on the in-
ternet protocol (IP) for node addressing and packet routing, actually the bounds
are so tight, that the SAFT protocol would require major changes to become inde-
pendent of IP.
It is for these reasons, that the implementation of the tansmission control protocol
(TCP), as described in chapter 2.4, was given the preference as the reliable trans-
mission in PodNet on ANA. The implementation should provide a byte-stream
oriented protocol, similar to POSIX sockets, to simplify integration into existing
projects.

3.3 Platform Independence

The network scenario for an application like PodNet is one of random mobile con-
tacts, where people carrying mobile computers meet in the course of time, and are
potentially interested in exchanging information with other available computers.
Now the times, where a person carrying a mobile computer could easily be told,
are over, even though wide range of today’s mobile computers have only lately
pervaded modern society. Today’s mobile computers come in many shapes, but in
general one thinks of cellular phones or personal digital assistants (PDAs) when
speaking of popular mobile computing.
Because the energy inherent in a battery of a mobile device is very limited in com-
parison to a power grid’s capacity, mobile computers are bound to use less capable
hardware than used in personal computers (PCs). Often there are advantages, from
an energetic perspective, when different hardware elements are united into one sin-
gle chip. Also, these chips are put together with a fixed set of peripherals attached
to them on a single circuit board. For it’s lack of exchangeable parts and the often
very specific tasks such a mobile computer is dedicated to, it is called an embedded
device.
The differences in the hardware architectures of embedded devices result in the
inability of using exactly the same machine code for both computers, rather each
hardware platform needs a special compilation meeting its architectural parame-
ters. From the engineering side this implies, that differences in hardware platforms
must also be taken into account, when a program is designed, should the program
be operable on several computers with different hardware architectures.

3.3.1 Embedded Hardware Overview

Given the number of embedded devices currently available, a mobile networking
application must seek to address as many platforms as possible. Luckily for cellular
phones and PDAs the number of different hardware architectures is manageable,
one of most common platforms employed is the ARM [34] architecture.

44 3 Integration

The ARM architecture is an embedded 32-bit RISC CPU, most processors run
around 500MHz and often support several clock speeds, to flexibly adapt perfor-
mance needs versus power consumption. At its peak performance level such a pro-
cessor is capable of computing 740 million instructions per second (MIPS). As al-
ready mentioned the CPU is hard-wired to other hardware components, for example
to memory banks and other co-processing units that control access to peripheral
devices. Table 3.1 shows typical examples of hardware in embedded devices, the
mobile devices are the Nokia N810, a Nokia N95, the Sharp SL-C860 and Apple’s
IPhone.

Sharp SL-C860 Nokia N810
CPU ARMv5TE (400 MHz) ARMv6 (400 MHz)
SDRAM 64 MB 128 MB
NAND 128MB 256 MB
Internal Flash - 2 GB
External Flash SDCard, CompactFlash MiniSDHC
Display (Pixels) 640x480 800x480
Network 802.11b/g (CF Card) IEEE 802.11b/g

Nokia N95 Apple IPhone
CPU ARMv6 (600 MHz) ARMv6KZ (667 MHz)
SDRAM 128 MB 128 MB
NAND 147 MB -
Internal Flash 8 GB 8GB / 16GB
External Flash MicroSD, MicroSDHC -
Display (Pixels) 240x320 320 x 480
Network 802.11b/g 802.11b/g

Table 3.1: Hardware specifications for the Sharp SL-C860, Nokia N810, Nokia N95
and Apple’s IPhone

3.3.2 Compiling for Embedded Hardware

Often embedded devices lack the computing performance and the storage space
needed for a compilation of source code. Also, they often provide a less sophisti-
cated interface to users than operating system on the PCs. Therefore the common
approach, called cross-compiling, is to make use of the knowledge about a specific
target architecture, and provide a specialized cross-compilation program for PCs,
which is able to generate machine executable code for that specific architecture.
A cross-compiler works just like an ordinary compiler, the only difference lies in the
mapping of the set of programming instructions to the set of instructions supported
by the CPU. Also the compiler may apply several architecture specific optimization
steps to the code.

A variety of commercial and non-commercial operating systems is available for
embedded devices, they range from time-critical, and therefore real-time capable,
special purpose systems to general computing systems similar to the ones used in

3.3 Platform Independence 45

personal computing. The two most widely spread general purpose operating sys-
tems for embedded devices are Windows Mobile, a reduced version of the Windows
OS, and those systems that are based on the Linux operating system.
The original PodNet application was primary designed for devices running Win-
dows Mobile, but it was also able to run on other platforms, by design. To achieve
operating system independence the authors of the application needed to identify
those software components that needed different interfaces on different operating
systems, like for example file access or access to system timers. PodNet comes with
its own platform independence library that offers an abstract interface to the sys-
tem specific operations, and takes care of platform specific details, like the possibly
different size of variable types in different hardware architectures.

3.3.3 The OpenEmbedded Toolchain

Modern programs are often composed of a complex set of functions that together
constitute the programs overall functionality. Some of these functions are common
to each computer program, and may appear in a similar form in different programs.
Other functions, however, are very task specific, and depending on the programs
purpose may make use of knowledge from certain fields of expertise. Therefore
a set of functions, which are related by serving the purpose of solving a certain
task, are combined into independent libraries. These libraries are then bound to
an executable program during the compilation process, contributing the specialized
functions needed by the application.
Since every library is subject to revisions, improving the functionality and eliminat-
ing flaws, the number of libraries available on a system, and the variety of possible
combinations of different versions, has become confusing. A tool that pays respect
to library dependencies and allows the use of different versions of the same library
on the same system would drastically ease the cross-compilation process.

The OpenEmbedded toolchain [3], is a set of tools, that address these problems
in cross-compilation. They take care of the issues already addressed and even allow
to build complete Linux distributions, including individually selected applications
besides the basic operating system. The toolchain offers numerous architectural
templates, describing platform specific parameters, and some predefined distribu-
tions, that describe the operating systems software components. The wide range of
supported architectures and the ability to provide distributions, as well as individual
software packages for these distributions, is one of the strengths of OpenEmbed-
ded.
As already mentioned OpenEmbedded consists of a number of tools, which are
needed for cross-compilation. Strictly speaking, OpenEmbedded is composed out
of two main parts, a set of rules that describe different compilation processes, and
a program that interprets these rules and executes the compilation process accord-
ingly.
This orchestrator program, called BitBake [37], is a set of scripts written in the

46 3 Integration

Python programming language. BitBake has been inspired by Portage, the software
installation system for the gentoo Linux distribution. BitBake reads the platform
specific configuration to instruct the cross-compiler on the target architecture, fur-
thermore it analyzes the software packages assigned for compilation, resolves packet
dependencies and includes all necessary packets in the compilation process.
A detailed description on the OpenEmbedded toolchain is given in appendix B,
providing examples of different configurations.

Chapter 4

Implementation and Results

Details on the implementation of PodNet in the ANA framework are the focus of this
chapter. Chapter 4.1 describes all elements that contribute to the implementation
of PodNet in ANA. Chapter 4.2 presents the results of the implementation, and
describes measurements in order to support the validation of the implementation.

4.1 Implementation

Chapter 3.2.1 introduced the layout of the implementations approach, and pro-
posed a possible logical separation into separate functional blocks. Even though the
concept of a functional block has already been laid out in chapter 2.2, it has only
been treated theoretically, and has therefore remained somewhat obfuscated. To
put things right, an example of a rudimentary ANA brick implementation is given
in chapter 4.1.1, and will serve to summarize common ANA components, found in
all of the brick implementations, furthermore it shows a basic network connection
establishment and data sending functions.
Once the stage is set, a detailed description of implemented bricks is to follow, ex-
plaining data structures and function interfaces of every individual brick. Finnally,
the resulting data flows, be it within a single functional block, or between two
functional blocks on a node local level, or through a network connection, are given
consideration.

As a change in comparison to previous chapters, the reference implementation
of PodNet [2] will henceforth be referred to as original PodNet, whereas the imple-
mentation of PodNet on ANA will be referred to as PodNet.

4.1.1 Rudimentary ANA Example

This example makes use of the ANA API introduced in chapter 2.2.10, also de-
scribed in detail in [38], and contains a description of all elements necessary to
achieve basic functionality. The provided source code implements a functional block

48 4 Implementation and Results

(also called a brick) for ANA, that is able to communicate with the minmex and
other loaded bricks, and establishes a network connection. It is able to send and
receive data in the node compartment, as well as in the Ethernet networking com-
partment. The source code for the example is shown in table 4.1.

1 #include ”br i ck t emp la t e . h”
2
3 char ∗myName = ”BasicBrickExample ” ;
4 stat ic anaLabel t nodeIDP , netIDP , recvIDP , sendIDP ;
5
6 /∗ Receive Node l o c a l messages and process them ∗/
7 void recvLoca l (struct anaL2 message ∗msg) {
8 // when a messages arr i ve s , i t i s o f the form :
9 // char∗ msg−>data

10 // in t msg−>dataLen
11 . . .
12 }
13 /∗ Receive Network compartment messages and process them ∗/
14 void recvNetwork (struct anaL2 message ∗msg) {
15 // when a messages arr i ve s , i t i s o f the form :
16 // char∗ msg−>data
17 // in t msg−>dataLen
18 . . .
19 }
20 /∗ The b r i c k s t a r t func t ion i s the main func t ion o f each b r i c k ∗/
21 int b r i c k s t a r t () {
22 . . .
23 /∗ we pub l i s h ou r s e l v e s in the node compartement ∗/
24 nodeIDP = anaL2 publ i sh (NODE LABEL, ’ . ’ , myName, &recvLoca l) ;
25
26 /∗ ge t access to the networking compartemenet (e . g . e th) ∗/
27 netIDP = anaL2 reso lve (NODE LABEL, ’ . ’ , ’ eth01 ’ , ’ u ’ , myName) ;
28
29 /∗ we pub l i s h ou r s e l v e s in the network compartement ∗/
30 recvIDP = anaL2 publ i sh (networkIDP , ’ ∗ ’ , myName, &recvNetwork) ;
31
32 /∗ ge t access to the network broadcas t channel ∗/
33 sendIDP = anaL2 reso lve (networkIDP , ’ ∗ ’ , myName, ’b ’ , myName) ;
34
35 /∗ send a message to the network broadcas t ing address ∗/
36 char ∗msg = ’ He l lo World ! ’ ;
37 anaL0 send (sendIDP , msg , s t r l e n (msg)) ;
38 . . .
39 }
40 /∗ The b r i c k e x i t f unc t i on i s c a l l e d be f o r e a b r i c k i s removed ∗/
41 void b r i c k e x i t () {
42 . . .
43 }

Table 4.1: ANA Source Code Example

A detailed inspection of the source code in table 4.1 reveals the following. On
line one all necessary libraries and definitions are included, lines three and four
define all the variables needed to operate in the proposed scenario. On lines six to
nineteen the code defines the callback functions that will later be associated to a
specific IDP, and where incoming messages will be received.

4.1 Implementation 49

The remaining lines of code, 21 to 43, deal with the setup of variables needed
for the basic operability, and by defining the two functions that every brick must
implement, they are able to integrate the brick into the ANA framework. The
brick_start() function is called upon a successfull load of a plugin by the min-
mex, and needs to setup a functional blocks working environment. Similarly the
brick_exit() function needs to free the resources a brick acquired during opera-
tion, in order to be properly unloaded from the minmex.
In many cases the brick_start() function will be responsible for the creation of
links to information channels (ICs) and IDPs, to provide a basic set of interfaces
and associations of IDPs to callback functions. Furthermore the function may start
a number of independent threads, that represent the applications main modular
blocks, and is thereby able to process messages in parallel. In the case of the ex-
ample presented, the code in lines 24 to 33 establishes a set of IDPs, and possibly
assigns a callback function (24 and 30). Note that in line 24 the keywork myName gets
published to the key-value repository (KVR) of the node compartment, and in line
30 the same keyword is published within the network compartment’s namespace. Fi-
nally in the lines 36 to 37 a message is sent to all members of the network. Any node
already present in the network receives this message through the recvNetwork()
function, and may react in the way it deems appropriate.
Actually this basic example represents the core of the neighbor discovery brick
described in chapter 4.1.2.

4.1.2 Neighbor Discovery

The neighbor-discovery brick’s tasks have been introduced in chapter 3.2.1, addi-
tionally chapter 4.1.1 described the basic code needed for the bricks proper oper-
ability. To complete the image of the discovery process, table 4.2 shows the set of
variables associated with a neighbor. The brick maintains a list of all neighbors at
all times, and updates the fields related to a link’s state periodically.

// Neighbor p r o p e r t i e s
typedef struct ne ighborEntry t {

char ne ighbor id [NEIGHBOR ID SIZE] ;
UInt32 f i r s t s e e n ;
UInt32 l a s t s e e n ;
UInt32 num packets ;
UInt32 l i n k q u a l i t y ;
UInt32 l i nk bucke t ;

UInt8 s t a t e ;
UInt8 o l d s t a t e ;

} neighborEntry ;

Table 4.2: Neighbor Discovery Characteristics

50 4 Implementation and Results

In table 4.2 the variable neighbor_id identifies each neighbor unambiguously,
while the variables on the remaining lines allow determining the state of a link
to a neighbor, and also its quality. Additionally the last two variables are used to
indicate the current state, and to check for a possible change.

As already mentioned, the neighbor discovery was to be integrated into ANA’s
monitoring framework, where the message format used is XRP, which itself uses a
set of fields that are supported by every metric brick in the monitoring framework,
these fields are shown in table 4.3.

Field Description
nonce identifies the request and is used to map results to the correspond-

ing request
type either a notification, a query or a subscription
type parameters parameters like e.g. subscription age, notification thresholds, noti-

fication interval
metric the requested metric, e.g. latency
metric parameters predicates like e.g. requests for information on specific nodes
non-functional-
parameters

attribute that influences the quality of results like e.g. tolerated
error rate

replyIDP identifies the IDP where results should be sent to

Table 4.3: ANA Monitoring Framework - Message Format for Subscriptions

The most basic subscription to the neighbor discovery metric will have to set at
least the metric field to connectivity, and the metric parameters field to neigh-
bors to enlist for neighbor notification messages, which is done by subscribing to
the monitoring dispatcher. After evaluating the metric field of a monitoring sub-
scription, the dispatcher decides upon which brick should the message be forwarded
to, in this case it is the connectivity brick. And after the connectivity metric brick
received and evaluated the message, it adds valid subscriptions to the notification
list for the class of bricks related to the metric parameters field, and basically
forwards each notification message it receives from the neighbor discovery brick to
every enlisted IDP in the notification list. These notification messages are encoded
in the XRP format as well, and table 4.4 shows the fields used in this message.

Field Description
neighbor id identifies a neighbor
event a description for a neighbors current state like e.g. add, stable, etc.

Table 4.4: ANA Monitoring Framework - Message Format for Notifications

4.1 Implementation 51

4.1.3 TCP

The implementation of the transmission control protocol follows the ideas intro-
duced in chapter 2.4. One important difference to the specifications is, that all
buffer pointers used to point into the receiver and the sender window are using
the frame as a basic unit, whereas the specification proposes byte counts, therefore
the sequence numbers also represent frame numbers and not byte numbers. This
modification allows for a smaller range of sequence numbers used in a connection,
simplifies computations and, by immediately scheduling any data that is written by
the sending application, the scheduling algorithm as well. A consequence of this be-
havior is that the receiving application must, each time it reads data from the TCP
socket, be willing to read at least a full frame’s worth of bytes, i.e. the maximum
segment size (MSS), as the implementation is not able to track partially retrieved
frames.

The implementation splits TCP into two parts, the protocol related functions
that operate on a sockets state variables on one hand, and on the other hand the
part that models a socket API, operating on a set of sockets.

Protocol Core

The protocol’s core can be considered as the implementation of all elements men-
tioned in chapter 2.4, a detailed interface listing is provided in appendix A. TCP’s
core element is represented by an object called tcpState, it contains all necessary
variables to operate the protocol, its components are described in table 4.5. The
functions operating on the tcpState object can be divided into two groups, the
first encompasses all functions needed to facilitate the active state transitions in
figure 2.9 from chapter 2.4, and the second group of functions that process the
two message queues, i.e. the receiver buffer and the sender buffer. Upon creation of
a new socket, a thread called tcpTimedThread() is started, that will process the
send queue and react to timeouts. The tcpProcess() function is representing the
receiver side of TCP, it is here where the extended finite state machine (FSM) is
maintained, and where state transitions are initiated according to received packets
and protocol specifications.
The TCP socket, as described in table 4.6, contains the necessary information
needed to multiplex and demultiplex packets, in order to be able to maintain several
concurrent connections simultaneously. In contrast to the pseudo-headers used in
conjunction with TCP/IP packets, where the IP network addresses are of fixed size,
the ANA implementation does not enforce a particular length on network addresses.
Rather, a socket is told at initialization time, which length it shall use for network
addresses in the pseudo-header. The composition of the pseudo-header and the res-
olution of network addresses is left to each brick that implements TCP, by design.
This allows each brick to implement the kind of pseudo-header most appropriate
for its networking scenario, possibly extending the header to convey other informa-

52 4 Implementation and Results

tion, and allows the use of different addressing schemes. Any implementation of the
TCP protocol must therefore include the recvLink(struct anaL2_message *msg)
and the sendLink(tcpSocket *socket, UInt8 *data, UInt16 dataLen) func-
tions, containing the described multiplexing/demultiplexing processes. A pleasing
aspect to the described implementation is, that TCP is fully detached from the
network layer, and operates independently from the network addressing scheme.

//an extended tcp f i n i t e s t a t e machine
typedef struct t cpS ta t e s {

/∗ sender s i d e s t a t e ∗/
tcpSeqNo LAR; // seqno o f l a s t ACK reve i c ed
tcpSeqNo LFS ; // l a s t frame sent
tcpSeqNo LFW; // l a s t frame wr i t t en by the app l i c a t i on
struct sendQ s lot {

UInt32 timestamp ; // the moment the message was sent
UInt8 r e t r i e s ; // how many times was t h i s segment

transmited ?
UInt8 va l i d ; // msg v a l i d ?
tcpMsg msg ;
UInt16 msgLen ;

} ;
struct sendQ s lot ∗sendQ ;
ana lock t sendQLock ; // mutex f o r the sendQ

/∗ r e c i e v e r s i d e s t a t e ∗/
tcpSeqNo NFE; // seqno o f next frame expec ted
tcpSeqNo LFR; // seqno o f the l a s t frame read by the

// app l i c a t i on
tcpSeqNo NFR; // seqno o f newest frame rece i v ed
tcpHeader rcvHdr ; // rece i v ed header
struct r e cvQ s lo t {

UInt8 va l i d ; // i s msg v a l i d ?
tcpMsg msg ;
UInt16 msgLen ;

} ;
struct r e cvQ s lo t ∗ recvQ ;
ana lock t recvQLock ; // mutex f o r the recvQ

/∗ common ∗/
UInt8 FSM; // the s t a t e o f the f i n i t e s t a t e machine

ana lock t sendWindowNotFullLock ; // the mutex f o r the
// sendWindowNotFull semaphore

UInt16 sendWindowNotFull ; // b l o c k the sender i f the sendQ i s f u l l

UInt16 localWindow ; // the l a s t known l o c a l window s i z e
UInt8 localWindowFlag ; // did we have to drop messages?
UInt16 remoteWindow ; // the l a s t known remote window s i z e
UInt16 congestionWindow ; // the l a s t known conges t ion window s i z e
UInt16 congest ionThresho ld ; // the number o f acks r ece i v ed
UInt16 sampleRTT ; // a round t r i p time sample
UInt16 estimatedRTT ; // the round t r i p time es t imate

} t cpState ;

Table 4.5: TCP State Variables

4.1 Implementation 53

Another detail to the TCP implementation, and a possible difference to other
implementations, is its behavior when one of the window sizes becomes zero. The
original specification proposes a semaphore to control the sender window, it blocks
the sending process by trapping it in a loop, should the window be full. But if, by
chance, both parties of a connection run into this situation, both are blocked and
there is a standoff, also called dead-lock, that requires both parties to reset their
connections and start over. Therefore the described implementation restrained from
using blocking functional calls, and rather informs a sending process that a queue is
full, without blocking it. Of course any brick implementing TCP must consider this
behavior and adapt its sending routine, by determining the status of each attempted
send request.

//a tcp socke t
typedef struct t cpSocke t t {

/∗ pesudo−header informat ion ∗/
UInt16 l o c a lPo r t ; // l o c a l TCP port
UInt8 ∗ l o ca lAddre s s ; // l o c a l network address
UInt16 remotePort ; // remote TCP port
UInt8 ∗ remoteAddress ; // remote network address

/∗ the soc k e t s extended f i n i t e s t a t e machine ∗/
t cpState s t a t e ; // the TCP s t a t e v a r i a b l e s

/∗ con t ro l v a r i a b l e s ∗/
int c l o s eF l ag ; // ind i c a t e wheter the tcpTimedThread has to

// qu i t
UInt32 closeTimeout ; // i f in the TIME WAIT s t a t e i n d i c a t e s the

// c l o s e timout
UInt16 r e t ryTota l ; // the number o f re t ransmiss ion t imeouts

// occured so f a r
t cpErro r e errNo ; // the error number o f the l a s t error t ha t

// occured
} tcpSocket ;

Table 4.6: TCP Socket Variables

Finally, it shall be mentioned, that the implementation supports variable sized
receiver windows and sender windows, these sizes can be stated at the sockets ini-
tialization time. To support message oriented applications, like the synchronization
service describer in chapter 4.1.4, the implementation supports the use of the PUSH
flag to insert record boundaries into the byte stream. Messages with the PUSH flag
set get delivered immediately on reception by the TCP socket, the application must
implement the callback function deliverPush() to be able to make use of PUSH
messages.

54 4 Implementation and Results

Socket API

To simplify the usage of the TCP service, the implementation offers a socket appli-
cation programing interface (API), which offers all the required socket interfacing
functions, and performs the tasks of maintaining the set of used sockets. The API’s
detailed interface listing is provided in appendix A. To illustrate the API’s integra-
tion into ANA, table 4.7 provides a modification of the initial example in table 4.1.
Note the changes in the name of the callback function published under recvIDP
on line 34, and also the change of the channel type used in the anaL2_resolve()
function, from ’b’ like broadcast to ’u’ like unicast.

In the TCP example shown in table 4.7 the first two lines establish the network
addresses of the peers, assuming that these are passed to the brick as arguments,
while the variable in the third line will represent the listening server. The function
deliverPush() on lines five to nine receives network messages sent by other peers,
processes them and then closes the TCP connection. The recvLink() function is
responsible for demultiplexing packets it receives to individual sockets, furthermore
it must accept new connections to valid listening ports. The message sending part
in the source code is found on the lines 43 to 46, it is being preceded by the
creation of a new listening server on line 40. As the program goes through these
lines the netOpen() command associates a valid handle to the connection, used by
netSend() to deliver the message, and finally the netClose() command detaches
the socket from the brick. Once all frames are sent, and the remote peer has closed
its side of the connection, the socket is scheduled for deletion by the API’s garbage
collector.

4.1 Implementation 55

1 #include ”tcpAPI . h”
2
3 char∗ l o ca lAddre s s = geAuxArg (0) ;
4 char∗ remoteAddress = getAuxArg (1) ;
5 tcpHandle l i s t e n S e r v e r ;
6
7 // process TCP messages with the PUSH f l a g s e t
8 extern int de l ive rPush (tcpHandle handle , UInt8 ∗data , UInt16 dataLen) {
9 . . .

10 netClose (handle) ;
11 }
12
13 // r e c e i v e a frame from the l i n k l a y e r
14 void recvLink (struct anaL2 message ∗msg) {
15 tcpHandle con ;
16 i f (! (con = net f ind demux (msg−>data , loca lAddres s , remoteAddress)) &&
17 n e t f i n d s o c k e t l i s t e n (msg−>data , l o ca lAddre s s))
18 {
19 con = net open (l oca lPor t , l oca lAddress , remotePort , remoteAddress ,

TCP CONNECTION PASSIVE) ;
20 }
21
22 i f (con) tcpProces s (con−>socket , msg−>data , msg−>dataLen) ;
23 }
24
25 // send a frame to the l i n k l a y e r
26 extern int sendLink (tcpSocket ∗ socket , UInt8 ∗data , UInt16 dataLen) {
27 anaL0 send (sendIDP , data , dataLen) ;
28 }
29
30 /∗ The b r i c k s t a r t func t ion i s the main func t ion o f each b r i c k ∗/
31 int b r i c k s t a r t () {
32 /∗ i n i t i a l i z e TCP with window s i z e=100 and networkAddressLen=4 ∗/
33 n e t I n i t (100 , 100 , 4 , 0) ;
34 . . .
35 /∗ we pub l i s h ou r s e l v e s in the network compartement ∗/
36 recvIDP = anaL2 publ i sh (networkIDP , ’ ∗ ’ , l oca lAddress , &recvLink) ;
37
38 /∗ ge t access to the remote network address ∗/
39 sendIDP = anaL2 reso lve (networkIDP , ’ ∗ ’ , remoteAddress , ’u ’ , myName) ;
40
41 /∗ l i s t e n on the l o c a l por t 10 fo r a g iven l o c a l address ∗/
42 l i s t e n S e r v e r = netL i s t en (10 , l o ca lAddre s s) ;
43
44 /∗ send a message to the remote peer us ing TCP ∗/
45 char ∗msg = ’ He l lo World ! ’ ;
46 tcpHandle con = netOpen (100 , loca lAddress , 10 , remoteAddress) ;
47 netPush (con , msg , s t r l e n (msg)) ;
48 netClose (con) ;
49 . . .
50 netFree () ;
51 }

Table 4.7: TCP Source Code Example

56 4 Implementation and Results

4.1.4 Synchronization Service

Like the neighbor discovery brick, the synchronization brick does also maintain a
list of neighbors, based on notifications received from the monitoring framework.
But unlike the monitoring brick it does not actively probe the network in any kind,
it’s contacts are solely based on the nodes discovered through the monitoring frame-
work. In contrast to the neighbor discovery brick, it also uses different parameters
to characterize it’s peers, as shown in table 4.8.

// Peer p r o p e r t i e s
typedef struct syncEntry t {

char ∗ ne ighbor id ;
UInt32 f i r s t s e e n ;
UInt32 l a s t s e e n ;
UInt32 content t imestamp ;
tcpHandle conn ;

} syncEntry ;

Table 4.8: Synchronization Service Characteristics

The synchronization service uses the addressing scheme proposed in chapter 3.2,
and a similar approach to the usage of the TCP API as explained in table 4.7.
Additionally to the list of neighbors, a list of potentially interested content dis-
semination bricks, like e.g. PodNet, is kept up to date, and every time a change
in a peer’s state occurs, these content dissemination bricks are sent a notification.
Accordingly the synchronization service is notified of local changes in the content
dissemination’s data containers. The message format used, is shown in table 4.9.

Field Description
neighbor id identifies a neighbor
timestamp the neighbors content timestamp

Table 4.9: Message Format for Synchronizations

4.1.5 PodNet

The PodNet implementation is a hybrid, the networking functionality provided by
ANA being a C libray, and the podcasting protocol and the main PodNet ap-
plication being implemented in C++. This setup requires some mutual interface
functions, as the ANA API can not be included in the C++ code, due to the strict-
ness of the compiler. A detailed listing of these interface functions and the modular
setup is described in appendix A.
To give an overview of the overall workings of all the bricks implemented so far,
and to illustrate their relation to each other, figure 4.1 shows a schematic view of
the implementation. It is worth mentioning that the schematic view simplifies the

4.1 Implementation 57

interactions with the ethernet compartment, specifically the different information
dispatch points (IDPs) established for inter-brick communication with the ethernet
brick. A comparison with the ethernet compartment, shown in more detail in figure
2.5, reveals the full picture.

The PodNet brick encompasses the user interfaces, i.e., the command line tool
and the graphical user interface, both are directly controlled by the brick. A detailed
description on the PodNet modules and protocol specifications is given in [2].

Figure 4.1: Schematic View of the PodNet on ANA Implementation

58 4 Implementation and Results

4.2 Results

In order to evaluate the implementation, and to get an idea about the performance
of PodNet on ANA, and ANA itself, different measurements shall be discussed
in this chapter. All of the following diagrams were generated by recording the
TCP state variables associated with a socket. Besides the pointers into the cir-
cular buffers, i.e. the sender and the receiver window, other variables of interest, as
for example the congestion level, or the estimated round trip time are followed as
well.

4.2.1 Methodology

The measurements were conducted on two IBM Thinkpads T42 (1.8 GHz Pen-
tiumM), in conjunction with a Nokia N810 (see table 3.1).
To inspect the TCP implementation, a first experiment transfers bulks of random
data between two IBM Thinkpads personal computers. There are three different
kinds of network connections that have been considered, these interfaces are:

• Loopback Interface: The virtual network device present in all TCP/IP op-
erating system implementations, which is fully integrated into the computer
system’s internal network stack. In most cases it emulates the network con-
nection by piping signals through local first-in-first-out (FIFO) buffers, on
the link layer.

• LAN (IEEE 802.3): Ethernet is the most widely used network technology on
wired networks (LANs) today, therefore the TCP protocol should be tested in
this setup, a twisted-pair cable was used to establish the connection between
the IBM Thinkpads. If the network connection passes through a network
switch, in contrast to a network hub, then a fast wired link is very much com-
parable to the loopback interface, in expected packet losses and performance
values.

• WLAN (IEEE 802.11b): This wireless network standard allows extending
wired Ethernet networks, by connecting a wireless access point (AP) to the
LAN, and thereby provides location freedom to network nodes. As an alter-
native, where no fixed infrastructure is available, network nodes may meet in
the ad-hoc network mode, and use ZeroConfiguration [40] to setup a network.
The wireless medium, as the wired scenario where nodes are connected by a
hub, is shared medium, i.e. data that is put on the link is perceived by every
participant in the network. But unlike wired scenarios, WLANs additionally
suffer from packet loss due to radio interference, and other wave propagation
phenomena.

The TCP test application makes use of the neighbor discovery brick to find its peer,
once found it launches a connection and a associated timer, then it periodically tries
to write a certain number of packets into the send buffer. The thread responsible

4.2 Results 59

for processing the TCP send buffer then produces measurements, by writing the
state variables representing the TCP circular buffers, as shown in figure 2.8, on each
periodic execution of the thread into a file using comma-separated values (CSVs).
The following state variables get tracked:

• Time: Recorded Timestamp

• LAR: Sequence number of the Last Acknowledgement (ACK) Received

• LFS: Sequence number of the Last Frame Sent

• NFE: Sequence number of the Next Frame Expected

• LFR: Sequence number of the Last Frame Read by the application

• Remote Window: Size of the Remote peer’s receiver Window

• Congestion Window: Size of the Congestion Window

• Retransmissions: Number of total Retransmission occurred so far

The diagrams shown in chapter 4.2.2 were obtained by evaluating the CSV files,
which were generated for each networking interface. The TCP connections used a
sender buffer of 100 packets, which is equal to 100×MSS (maximum segment size)
bytes, and a receiver buffer sized 1000 packets, worth 100×MSS bytes.

The second measurement performed is aimed at a comparison of the ANA ver-
sion of PodNet with the original implementation in [2], where Wacha et al. had a
testbed of 25 Compaq IPaqs at their disposal. The goal is to compare the results of
one single connection, and then by induction, make an estimate on a groups per-
formance. In analogy to the tests conducted in [2], the first scenario transfers ten
channels, with two to three episodes each. There are no file enclosures attached to
these episode. The file transmission capability is examined in the second scenario.
These experiments were run using the IBM Thinkpad and the Nokia N810.

4.2.2 Measurements, Results and Discussion

The data produced by the experiments, as explained in chapter 4.2.1, was refined
into significant diagrams. These diagrams are presented and discussed in the fol-
lowing.

4.2.3 TCP Measurements

The first diagrams, numbered one, in figure 4.2 and figure 4.3 show the development
of the sender side variables Last ACK Received (LAR) and Last Frame Sent (LFS).
Both plot sequence numbers against time, but use different network interfaces to
connect the peers, which explains the different slopes.
The second diagrams, numbered two in figures 4.2 and 4.3, show the window sizes

60 4 Implementation and Results

of the remote window and the congestion window, maintained in each TCP connec-
tion, and the number of retransmission that occurred during the elapsed interval.
Additionally the estimated RTT is shown to help visualizing the timing in the
transmission process.

1.

2.

Figure 4.2: TCP Cable-Measurement Results; 1. Cable Sequence Numbers,
2. Cable Window Sizes

Figure 4.2 shows the circular buffer results for the wired network connection. The

4.2 Results 61

evolution of the LAR and LFS variables are much more in phase than those in
figure 4.3. This is the direct consequence of the wired networks theoretical prop-
erty, that no packets are lost in transmission. Furthermore the slope of the graph
is representative for the transmission rate the TCP protocol achieves, the steeper
the rise, the faster the packets get delivered to their destination.
An interesting observation to the wired scenario in figure 4.2 is, that altough the
interface is lossless, a few packet retransmissions do occur during the transmission.
This is most likely attributed to the fact, that the minmex process runs in the
userland of the operating system, and is therefore not capable of processing data in
a near real-time manner, as opposed to kernel functions. It is the operating system
that distributes the CPU’s resources at its discretion, and according to the current
processor load. It is therefore possible, that although a network frame arrived in
perfect order, the ANA framework is not able to process it, and therefore a timeout
occurs.
The sequence of circular-buffer variables in 4.3 reveals the links susceptibility to
congestion. The difference between the LAR and LFS variables, the LFS variable
is always leading, illustrates the number of packets the TCP socket has currently
under way, or put another way, the usage of the sender window. The step pattern of
the LFS variable is induced by TCP congestion control mechanism, that regulates
the sending rate. In the beginning of the connection (before 400 ms) the link is not
yet congested, therefore the variables lie closer to each other. Then as the load on
the link increases, and packet losses occur, TCP has to wait until it receives enough
AKSs to reopen the congestion window.
In general, figure 4.2 presents the results of an optimal loaded link, whereas figure
4.3 shows the results of a congested or overloaded link.

The inner workings of the congestion control mechanism are best understood
when looking at the evolution of the congestionWindow variable in figure 4.2.
The initial value of 100 is slowly increased as ACKs arrive at the sender until the
maximum value of 1000, then at approximately 600 ms and 1100 ms packet losses
occur, causing the window to shrink all the way down to zero, effectively stalling
the sender. This is also visible in the circular-buffer plot in figure 4.2, where the
slope of the curves slightly decreases its steepness. Additionally the number of
retransmissions is increased each time a packet loss occurs.
The variables showing the estimatedRTT and the remoteWindow are providing
an informative value of the current network load (estimated RTT tends to increase
on loaded links) and the state of the remote peer, i.e., it’s rate of data retrieval.

62 4 Implementation and Results

1.

2.

Figure 4.3: TCP WiFi-Measurement Results; 1. WiFi Sequence Numbers, 2.
WiFi Window Sizes

4.2 Results 63

To illustrate the performance of the TCP implementation in the ANA frame-
work, several measurements with different data rates were conducted on a certain
link. The data throughput was recorded during the transmission, allowing to put
the load into relation with the throughput.

The results of these tests are summarized in figure 4.4. The axes show values
relative to the links theoretical maximum achievable throughput. For the 100Mbit/s
LAN connection, it is 12.5 MB/s, and for the wireless 11Mbit/s connection, this
amounts to 1.3 MB/s. The results show that for both links there is an increasing
discrepancy between the ideal line and actually measured throughput, as the load
increases.

As already mentioned, a minor deviation from the ideal line is explainable by
the way ANA is executed in the operating system, as a user process with no real-
time capabilities.
The massive drop in the performance of the wireless link, however, is not related
to this issue. The drop is partially due to the lossy nature of the link, but can not
solely be attributed to it, and therefore a detailed investigation of TCP’s behavior
in wireless networks should be considered as a next step for future work. We think
that it has something to do with packet timing, more precisely with the way the
TCP implementation puts packets on the link. Currently several packets are sent in
a row through the ANA framework, with no delays in between, therefore bursting
the link if we assume that there is no further delay introduced by the operating
system. Therefore a possible solution could be, to allow sending only a few packets
at once, and in the meanwhile, reducing the time interval for packet processing.

Figure 4.4: TCP Load/Throughput Diagram

64 4 Implementation and Results

4.2.4 PodNet on ANA Tests

To evaluate the PodNet implementation, and to put it into relation with the original
application in [2], several tests were performed. The measurement serve to illustrate
the implementations performance.

1.

2.

Figure 4.5: PodNet Measurement Results - Episodes Synchronization - Send-
ing Process; 1. Nokia N810, 2. Thinkpad T42

Both tests use the wireless network interface as the physical link, the first device
is the Nokia N810 and the second a Thinkpad T42.

The first test synchronizes two devices, the data that is exchanged is solely
composed of channel and episode data (10 channels, each having 3 episodes), with
no additional file attachments. The results, given in figure 4.5, show the throughput

4.2 Results 65

of each connection and the individual packet transmissions that contribute to the
average throughput.

The second test does not only synchronize two devices, but also transferres a
file enclosure of an episode (50 kBytes). The results of this process are shown in
figure 4.6. Again individual transmissions form the shape of the average throughput.

1.

2.

Figure 4.6: PodNet Measurement Results - File Transfer - Sending Process;
1. Nokia N810, 2. Thinkpad T42

Both test results motivate the assumption, that the bursty nature of the TCP
implementation is causing the poor link utilization. One can see, that the through-
put first rises very quickly, then congestion occurs, which causes the performance
drop. TCP counters this behavior by increasing the packet timeout, and thus per-
forms as expected. The most promising point, however, is that the effect is more

66 4 Implementation and Results

pronounced for the Thinkpad T42 than for the Nokia N810, which indicates, that it
is indeed related to how quick packets are put to the physical link, as the Thinkpad
operates at a much higher speed than the Nokia N810.

Chapter 5

Conclusion

This chapter summarizes the contributions provided by this thesis in 5.1, and relates
them to the initial problem setting in chapter 1. The final section 5.2 analyzes
current shortcomings of the implementation, and gives an outlook to possible future
extensions.

5.1 Contributions

The implementation of the DTN facilities, found in the ’neighbor discovery’ and
the ’synchronization service’ brick and described in detail in chapters 3 and 4, en-
ables ANA [9] to be aware and make use of opportunistic networking contacts and
the state of synchronicity of data for these contacts. Furthermore, by integrating
these new bricks into the monitoring framework of ANA, they can be used in dif-
ferent networking scenarios, like a wired or wireless ethernet network (but also for
example Bluetooth), out of the box. It is even possible to seamlessly switch from
one technology to another at runtime, therefore enabling a mobile device to choose
the most promising out of the available alternatives. The evaluation of this thesis
showed, as described in chapter 4.2, the resilience of the implementation, even un-
der heavy network load. The scheme, proved as well designed, can therefore serve
as a platform for further opportunistic functionality in ANA.
The proof-of-concept implementation of PodNet in ANA makes use of the TCP
protocol implementation. Therefore it is also resilient to packet losses, and by pro-
viding POSIX socket-like interfaces for TCP, it relieves application developers of
taking care of the transmission process itself. The PodNet on ANA implementation
enhances the original PodNet application [2] with a graphical user interface for
Linux systems, and the ability to run on handheld Linux devices. The implemen-
tation was successfully tested on the Nokia N810 and the Sharp SL-C860, proving
platform independence for the ANA framework.

68 5 Conclusion

5.2 Future Work

As already described, the implementation proved its resilience in different network-
ing scenarios (LAN, WLAN), i.e., it is able to cope with suboptimal network links,
and guarantees reliable delivery. The evaluation tests showed, however, that the
applications performance on a wireless link is not yet optimal (as shown in figure
4.4 in chapter 4.2). The reason for this discrepancy is not very well understood, and
motivates future research in this topic.
The portability of the ANA framework on to handheld devices has been explored
with positive results, but the range of tested devices was rather small. Therefore
it would be interesting to explore different, and foremost more recent, devices like
e.g. the Apple IPhone, or Google’s Android mobile phone.

Additionally to the possibilities of exploring different mobile devices, and the
improvements of the frameworks foundation, there are numerous possibilities for a
possible functional expansion:

• Extensions to the framework

– User Notion: The notion of a user would allow to introduce content rating
schemes, and to relate network contacts to a person.

– Neighbor Groups: In the case of a high density in network neighbors,
a logical separation into different user groups could provide a way to
reflect different trust levels between individual users.

– Content groups: Different content merits different treatment, for example
a user could be interested in music only, and therefore a logical separation
of content would allow to filter for different types of informations.

• Applications for the framework

– Partner Search: Look for possible partners in the vicinity of the user,
and raise an alarm if a perfect match has been detected, possibly also
lowering the current divorce rate.

– Flea Market: Place advertisements for items that are no longer in use,
and find items of interest in the users vicinity, that could be worth in-
specting.

– File Sharing: Extend the classical file sharing applications to allow users
to exchange data of interest, as e.g. music files.

– Friendship Communities: As mentioned in the introduction, the online
communities could be enhanced, to allow the detection of friends in the
vicinity.

– Micro Blog: Additionally to friendship communities, these could be ex-
tended with micro blogs, where users can state in a short sentence, whats
on their mind.

5.2 Future Work 69

The applications proposed for future work in the field of opportunistic network-
ing all have in common, that they propose classical Internet concepts, for the mobile
scenario. In the current stage, such mobile applications are still in the minority, and
it is not quite clear in which direction they will evolve.
It can be taken for granted, however, that mobile applications will be closely inter-
weaved with modern society, reflecting and influencing the social behavior of the
present time.

Although modernization processes can not be halted, it is important to maintain
a critical perspective to these events also. Nowadays it is no challenge to locate
the position of a mobile phone, and to remotely inspect the data stored in it,
independent of its location. The more data these devices hold in store, be it personal
or business related, the more information about the individual carrying this data
can be obtained.
Besides all the positive influences, the exposure of critical data may also lead to
dire consequences for the individual. Society will have to find an optimal balance
between these two extremes, a challenging task for the near future.

Bibliography

[1] The aka aki network. Online: http://www.aka-aki.com/ and
http://www.iht.com/articles/2008/09/12/business/aka.php

[2] C. Wacha. Wireless Ad Hoc Podcasting with Handhelds. Master Thesis MA-
2007-05, TIK Communication System Group, ETH Zurich, April 2007.

[3] The OpenEmbedded project. Online: http://www.openembedded.org/

[4] E. Kohler, R. Morris, B. Chen, J. Jannotti and M.F. Kaashoek. The Click
Modular Router. ACM Transactions on Computer Systems (TOCS), Volume
18, Issue 3, August 2000, pp. 263-297.

[5] V. Lawadia, Y. Zhang, B. Gupta. System Services for Ad-Hoc Routing: Archi-
tecture, Implementation and Experiences. In Proc. of MobiSys 2003: The First
International Conference on Mobile Systems, Applications, and Services, San
Francisco, USA, May 2003, pp. 99-112.

[6] Delay Tolerant Network Research Group. Online: http://www.dtnrg.org/

[7] Seven Degrees of Separation. Columbia University, NewYork,
USA, 2002. Online: http://www1.cs.columbia.edu/ arezu/7DS/ and
http://www.cs.unc.edu/ maria/7ds/

[8] The Haggle project. Online: http://www.haggleproject.org/

[9] C. Tschudin et al. ANA Blueprint. Online: http://www.ana-project.org

[10] The TCP specifications. Online: http://tools.ietf.org/html/rfc675

[11] A. Balasubramanian, B.N. Levine, and Arun Venkataramani. DTN routing as
a resource allocation problem. In Proc. ACM SIGCOMM Applications, Tech-
nologies, Architectures, and Protocols for Computer Communication, Kyoto,
Japan, August 2007, pp. 373-384.

[12] S. Jain, K. Fall, R. Patra. Routing in a Delay Tolerant Network. ACM SIG-
COMM Computer Communication Review, Volume 34, Issue 4, 2004, pp. 145-
158.

Bibliography 71

[13] D. Jea, A. Somasundara, and M.B. Srivastava. Multiple Controlled Mobile
Elements (Data Mules) for Data Collection in Sensor Networks. In Proc. of
IEEE/ACM International Conference on Distributed Computing in Sensor Sys-
tems (DCOSS), June 2005.

[14] S.C. Rahul, R. Sumit, J. Sushant, and B. Waylon. Data MULEs: Modeling a
Three-tier Architecture for Sparse Sensor Networks. In Proc. of IEEE SNPA
Workshop, May 2003.

[15] Avriel, Mordecai (2003). Nonlinear Programming: Analysis and Methods.
Dover Publishing. ISBN 0-486-43227-0

[16] V.D. Park, M.S. Corson. A highly adaptive distributed routing algorithm
for mobile wirelessnetworks. In proc. of INFOCOM 97 - Sixteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, Kobe,
Japan, April 1997, pp. 1405-1413.

[17] M. Ammar, M.M. Bin Tariq, E. Zegura. Message ferry route design for sparse
ad hoc networks with mobile nodes. In Proc. of the 7th ACM international
symposium on Mobile ad hoc networking and computing, Florence, Italy, 2006,
pp. 37-48.

[18] A. El Fawal, J. Le Boudec, K. Salamatian. Self-Limiting Epidemic Forward-
ing. Technical Report LCA-REPORT-2006-126, EPFL, Lausanne, Switzerland,
2006.

[19] T. Spyropoulos, K. Psounis, and C.S. Raghavendra. Spray and wait: An effi-
cient routing scheme for intermittently connected mobile networks. In WDTN
05: Proceeding of the 2005 ACM SIGCOMM workshop on Delay-tolerant net-
working, Philadeplhia, USA, 2005, pp. 252-259.

[20] A. Lindgren, A. Doria, and O. Scheln. Probabilistic routing in intermittently
connected networks. In the SIGMOBILE Mobile Computing and Communica-
tions Review, Volume 7, Number 3, July 2003, pp 19-20.

[21] C. Becker and G. Schiele. New Mechanisms for Routing in Ad Hoc Networks.
In proc. of 4th Plenary Cabernet Workshop, Pisa, Italy, October 2001.

[22] E.M. Daly, M. Haahr. Social network analysis for routing in disconnected delay-
tolerant MANETs. In Proc. of ACM SIGMOBILE International Symposium
on Mobile Ad Hoc Networking & Computing, Montreal, Canada, 2007, pp. 32
- 40.

[23] Milgram. Small World Experiment. Online:
http://www.stanleymilgram.com/milgram.php

[24] A.L. Barabasi. Linked: How Everything Is Connected to Everything Else and
What It Means for Business, Science, and Everyday Life. Penguin Group USA,
New York NY, April 2003.

72 Bibliography

[25] J.D. Watts. Small Worlds: The Dynamics of Networks Between Order and
Randomness. Princeton University Press, 1999.

[26] L.A.N. Amaral, A. Scala,M. Barthélémy, and H. E. Stanley. Classes of small-
world networks. In proc. of the National Academy of Sciences, 2000.

[27] ANA Project - Autonomic Network Architecture. Online: http://www.ana-
project.org/

[28] D. Clark, J. Wroclawski, K. R. Sollins and R. Braden. Tussle in Cyber-space:
Defininf Tomorrow’s Internet. In Proc. of ACM SIGCOMM, Pittsburg, PA,
USA, August 19-23, 2002, pp. 347-356.

[29] D. Clark, R. Braden, A. Falk and V. Pingali. FARA: Reorganizing the Address-
ing Architecture. In Proc. of ACM SIGCOMM Workshop on Future Directions
in Network Architecture (FDNA), Karlsruhe, Germany, August 2003, pp. 313-
321.

[30] J. Pujol, S. Schmid, L. Eggert, M. Brunner and J. Quittek. Scalability Analysis
of the TurfNet Naming and Routing Architecture. In Proc. of ACM 1st ACM
Workshop on Dynamic Interconnection of Networks (DIN 2005), Cologne, Ger-
many, September 2, 2005, pp. 28-32.

[31] B.H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13 (7), 1970, pp. 422?426.

[32] The OBEX protocol specifications. Online: http://www.irda.org/

[33] L.L. Peterson, B.S. Davie. Computer Networks - A Systems Approach. Morgan
Kaufmann Publishers, San Francisco, United States of America, 2003, pp. 374
- 405.

[34] The ARM hardware architecture. Online: http://www.arm.com/

[35] The SAFT protocol specifications.
Online: http://people.ee.ethz.ch/˜simonh/research/saft/start

[36] The RFC3339 specification. Online: http://tools.ietf.org/html/rfc3339

[37] The BitBake software. Online: http://developer.berlios.de/projects/bitbake

[38] G. Bouabene, C. Jelger, A. Keller. ANA Core. Online: http://www.ana-
project.org

[39] C. Tschudin et al. ANA Monitoring. Online: http://www.ana-project.org

[40] ZereConf for MANETs. Online: http://de.wikipedia.org/wiki/Zeroconf

Appendix A

Implementation Details

A.1 Overview

The listing of all files related to the ANA framework serves as an index to this
appendix. All relevant files are highlighted and will be shortly discussed in the cor-
responding section.

Furthermore these dependencies must be satisfied, in order to be able to develop
the software:

• subversion

• kdevelop (the authors IDE)

• build-essential (e.g. from ubuntu)

• libncurses5-dev

• libgtk2.0-dev

74 A Implementation Details

ana-core/devel/

- ana_podnet_init.sh - A.2.1
- config.txt - A.2.1
+ C

+ bricks

+ API

+ dtn

- Makefile-user

+ podnet

- bloom_filter.h

- bloom_filter.cpp

- config.h - A.2.2
- datastore.h

- datastore.cpp

- debug.h

- flexpacket.h

- flexpacket.cpp

- Makefile

- message.h - A.2.2
- message.cpp

- podnet.c - A.2.2
- podnetGui.h - A.2.2
- podnetGui.cpp

- podnetMain.h - A.2.2
- podnetMain.cpp

- rc_commands.h

- rc_commands.cpp

- transfer.h - A.2.2
- transfer.cpp

- xrpMessage.h - A.2.2
- xrpMessage.cpp

+ tinyxml

- ... XML Library ...

+ PI

- ... Platform Indepen-

dence Library ...

+ shared

- Makefile

- tcpAPI.h - A.2.3
- tcpAPI.c

- tcp.h - A.2.3
- tcp.c

- testtcp.c - A.2.3
+ syncdiscovery

- Makefile

- syncdiscovery.c - A.2.4
- syncManager.h - A.2.4
- syncManager.c

- mcis

+ monitoring

- Makefile-user

+ connectivity

- connectivity.c

+ neighbors

- config.h - A.2.5
- neighbordiscovery.c - A.2.5
- neighborManager.h - A.2.5
- neighborManager.c

+ dispatcher

- dispatcher.c

+ C

+ bricks

- ...

- vivaldi

- cfinder

- eth-vl

- vlink

- chat

- ip

- saft

- tools

+ include

- anaCommon.h

- anaError.h

- anaLib0.h

- anaLib1.h

- anaLib2.h

- analock.h

- anaThread.h

- anatimer.h

- anaValidate.h

- ana_vlinkAPI.h

- brick_template.h

- listAPI.h

- minmex_decl.h

- quickRepository.h

- xrp.h

+ minmex

- ... Minmex

implementation ...

+ shared

- anaCommon.c

- anatimer.c

- xrp.c

- anaThread.c

+ bin

- minmex - A.2.6
- mxconfig - A.2.6
- vlconfig - A.2.6

+ so

- agnostic_chat.so

- cfinder.so

- connectivity.so - A.2.7
- dispatcher.so - A.2.7
- eth-vl.so

- neighbordiscovery.so - A.2.7
- podnet.so - A.2.7
- syncdiscovery.so - A.2.7
- testtcp.so - A.2.7
- vlink.so

A.2 Descriptions 75

A.2 Descriptions

A.2.1 ANA Environment

Files that are not mentioned in this chapter, are either provided by the ANA frame-
work itself, or were copied one-to-one from the original PodNet application [2].

ana podnet init.sh

A shell script that loads all the required bricks into the minmex, and binds the
desired network interface. The script requires 4 arguments, therefore the usage is

ana_podnet_init network-interface[eth0/wlan0] GUI[0/1] instances runsingle

The instances argument, defines how many local instances we want to start, and
the variable runsingle can either be set to all to start every instance or a number
less or equal to instances to start a specific instance.

config.txt

Configuration file for the ANA framework, describes which bricks should be com-
piled

A.2.2 PodNet

config.h

The PodNet configuration file, describes constants as directories and other running
parameters.

message.h

The original file was modified, local messages now make use of the XRP file format.
Network messages were adapted, IP addressing was replaced by ANA addressing,
as described in chapter 3.2.3.

podnet.c

The ANA framework brick-implementation, establishes all information dispatch
points (IDPs) relevant for communication, and takes care of the pseudo-header
multiplexing / demultiplexing process.

podnetGUI.h

The Gtk2 GUI for the Linux operating system. It is tightly bound to the rest of
the application.

76 A Implementation Details

podnetMain.h

The glue in the PodNet on ANA implementation, connects the original modules
from [2] with the parts that were newly designed during this thesis.

transfer.h

The original file was modified, IP addressing was replaced by ANA addressing, as
described in chapter 3.2.3.

xrpMessage.h

The implementation of the XRP message format offers object-oriented C++ inter-
faces, otherwise identical to the C version from ana-core/devel/C/include/xrp.h.

A.2.3 TCP

tcpAPI.h

The TCP application programming interface (API) offers following interface func-
tions:

1 //−−−−−−−−−−−−−−−−−−−
2 // Core API func t i ons
3 //−−−−−−−−−−−−−−−−−−−
4 tcpHandle netOpen (UInt16 loca lPor t , UInt8 ∗ l oca lAddress , UInt16 remotePort ,

UInt8 ∗ remoteAddress) ;
5 tcpHandle ne tL i s t en (UInt16 loca lPor t , UInt8 ∗ l o ca lAddre s s) ;
6 tcpHandle netAccept (tcpHandle handle) ;
7 int netClose (tcpHandle handle) ;
8
9 int netRece ive (tcpHandle handle , UInt8 ∗data , UInt32 dataLen) ;

10 int netSend (tcpHandle handle , UInt8 ∗data , UInt32 dataLen) ;
11 int netPush (tcpHandle handle , UInt8 ∗data , UInt32 dataLen) ;
12
13 int netIsOpen (tcpHandle handle) ;
14 int net I sC lo sed (tcpHandle handle) ;
15 int ne t I sEr ro r (tcpHandle handle) ;
16
17 //−−−−−−−−−−−−−−−−−−−−−−
18 // Environment func t i ons
19 //−−−−−−−−−−−−−−−−−−−−−−
20 int n e t I n i t (UInt16 recvWindowSize , UInt16 sendWindowSize , UInt8

networkAddressLen , UInt8 opt ions) ;
21 int netFree () ;
22
23 //−−−−−−−−−−−−−−−−−
24 // Helper func t i ons
25 //−−−−−−−−−−−−−−−−−
26 int ne t heade r po r t s (tcpMsg msg , UInt16 ∗ srcPort , UInt16 ∗dstPort) ;
27 tcpHandle net open (UInt16 loca lPor t , UInt8 ∗ l oca lAddress , UInt16 remotePort ,

UInt8 ∗ remoteAddress , UInt8 opt ions) ;
28 tcpConnection ∗ net f ind demux (tcpMsg msg , UInt8 ∗ l oca lAddress , UInt8 ∗

remoteAddress) ;
29 tcpConnection ∗ n e t f i n d s o c k e t l i s t e n (tcpMsg msg , UInt8∗ l o ca lAddre s s) ;
30 tcpConnection ∗ n e t f i n d s o c k e t (tcpSocket ∗ socket) ;
31 tcpConnection ∗ ne t f i nd hand l e (tcpHandle handle) ;

A.2 Descriptions 77

32
33 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 // EXTERNAL CALLBACK FUNCTIONS
35 // −−−−−−−−−−−−−−−−−−−−−−−−−−−
36 // c a l l b a c k func t i on fo r transmiss ion con t ro l when sending a frame to the l i n k

l a y e r
37 int sendLink (tcpSocket ∗ sock , UInt8 ∗data , UInt16 dataLen) ;
38 // c a l l b a c k func t i on fo r transmiss ion con t ro l when forwarding a PUSH message

to the higher−l e v e l−pro toco l
39 int de l ive rPush (tcpHandle handle , UInt8 ∗data , UInt16 dataLen) ;

The interface functions on lines 1-21 are self-explanatory, the helper functions on
lines 23-31 are used in conjunction with multiplexing / demultiplexing process,
located in the brick implementation file. The brick implementation also needs to
implement 2 mandatory functions, i.e. the sendLink() that puts data on the link
(including multiplexing) and the recvLink() function, demultiplexing the TCP
stream and forwarding it to the TCP packet processor.
Additionally the brick may choose to implement the deliverPush() function, if it
wants to make use of record boundaries, as described in detail in chapter 2.4.4.

tcp.h

The core of the TCP protocol implementation, may also be used without the
tcpAPI.h, if the developer wishes so. The core provides following functional in-
terface:

1 //−−−−−−−−−−−−−−−−−−
2 //TCP Core func t i ons
3 //−−−−−−−−−−−−−−−−−−
4
5 // i n i t i a l i z a t i o n
6 // −−−−−−−−−−−−−−
7 void tcpConf ig (UInt16 recvWindowSize , UInt16 sendWindowSize , UInt8 opt ions ,

UInt8 networkAddressLen) ;
8 void t c p I n i t (tcpSocket ∗ socket) ;
9

10 // process outgo ing packe t s on a TCP socke t
11 // −−
12 stat ic void tcpTimedThread (tcpSocket ∗ socket)
13
14 // process incoming packe t s on a TCP socke t
15 // −−
16 int tcpProces s (tcpSocket ∗ socket , tcpMsg msg , UInt16 msgLen) ;
17
18 // open , c l o s e and operate tcp soc k e t s
19 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 int tcpOpen (tcpSocket ∗ socket , UInt16 loca lPor t , UInt8 ∗ l oca lAddress , UInt16

remotePort , UInt8 ∗ remoteAddress) ;
21 int t cpL i s t en (tcpSocket ∗ socket , UInt16 loca lPor t , UInt8 ∗ l oca lAddress ,

UInt16 remotePort , UInt8 ∗ remoteAddress) ;
22 int tcpRece ive (tcpSocket ∗ socket , UInt8 ∗data , UInt32 maxDataLen) ;
23 int tcpSend (tcpSocket ∗ socket , t cpFlag e f l a g s , UInt8 ∗data , UInt32 dataLen) ;
24 int tcpClose (tcpSocket ∗ socket) ;
25 int tcpReset (tcpSocket ∗ socket) ;
26
27 // eva lua t i on func t i ons f o r tcp soc k e t s
28 // −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 extern int tcpIsOpen (tcpSocket ∗ socket) ;

78 A Implementation Details

30 extern int t cp I sC lo sed (tcpSocket ∗ socket) ;
31 extern int t cp I sSent (tcpSocket ∗ socket) ;
32 extern int t cp I sEr ro r (tcpSocket ∗ socket) ;
33
34 // header in spec t i on
35 // −−−−−−−−−−−−−−−−−
36 extern int tcpHeaderPorts (tcpMsg msg , UInt16 ∗ srcPort , UInt16 ∗dstPort) ;
37
38 // EXTERNAL CALLBACK FUNCTIONS
39 // −−−−−−−−−−−−−−−−−−−−−−−−−−−
40 extern int ne t d e l i v e r pu sh (tcpSocket ∗ socket , UInt8 ∗data , UInt16 dataLen) ;
41 extern int sendLink (tcpSocket ∗ sock , UInt8 ∗data , UInt16 dataLen) ;

Again the functional interface on lines 5-32 are self-explanatory, and the other
functions follow the scheme presented for the tcpAPI.h.

testtcp.c

The TCP evaluation brick, pushes random data on a TCP connection between to
ANA nodes. Allows performance recording for a TCP session, and writes these
records as comma-separated values (CSV) into a file.

A.2.4 Synchronization Service

syncdiscovery.c

The ANA brick implementation for the Sync service, establishing relevant IDPs
(Monitoring Framework, PodNet) and taking care of TCP multiplexing / demulti-
plexing in packet delivery.

syncManager.h

The synchronization manager, keeps a list of available neighbors, and attributes
content timestamp to these neighbors. On relevant state changes the all subscribed
content dissemination bricks are sent a notification.

A.2.5 Neighbor Discovery

config.h

Neighbor discovery parameters, such as the heartbeat interval and event timeouts
(stability, deletion).

neighbordiscovery.h

The ANA brick implementation for the neighbor discovery, establishing relevant
IDPs (Monitoring Framework, Network Broadcast).

A.2 Descriptions 79

neighborManager.h

The neighbor discovery functionality. Including the creation of network discovery
packets, the tracking of received discovery packets, and the notification of subscribed
bricks (connectivity) on relevant state changes, as described in chapter 3.2.1.

A.2.6 ANA Binaries

These binary files are used to run and configure the minmex program, mxconfig
allows loading and unloading plugins (bricks), and the vlconfig program is used
for configuring the minmex’s network interfaces.

A.2.7 Dynamically Loaded ANA Objects

The .so plugin files, representing the individual bricks of the ANA framework, can
be loaded at runtime by the minmex. The shell script ana_podnet_init.sh makes
use of this ability. All the listed modules are needed to operate the PodNet on ANA
application.

Appendix B

Platform Independence

B.1 Overview

The file listing provided for the OpenEmbedded toolchain is also serving as the
index to this appendix.

In order to cross-compile software, first the configuration files must be made
available, as explained in appendix B.2.2. Then the compilation environment must
be set up, as described in appendix B.2.3. Then the compilation process may be
started, launching the OpenEmbedded toolchain, this procedure is described in de-
tail in appendix B.2.4.

Furthermore these dependencies must be satisfied, in order to be able to cross-
compile software with OpenEmbedded toolchain:

• git-core

• bitbake

• help2man

• diffstat

• texi2html

• texinfo

• gawk

B.2 Descriptions 81

OpenEmbedded/

- source-me.txt - B.2.3
+ angstrom-stable

- checksums.ini

+ cache

+ cross

+ deploy

+ glibc

+ ipkg

+ armv5te

- ... - B.2.5
+ staging

+ stamps

+ work

+ build

- ...

+ conf

- local.conf - B.2.2
+ downloads

- ... - B.2.2
+ mamona-stable

- checksums.ini

+ cache

+ cross

+ deploy

+ deb

+ deb

- ... - B.2.5
+ staging

+ stamps

+ work

+ org.openembedded.stable

- ...

+ classes

- ...- B.2.2
+ conf

+ build

- ...

+ distro

- ...- B.2.2
+ machine

- ...- B.2.2
+ contrib

+ ...

+ files

- ...

+ packages

+ ...- B.2.2
+ ana

- ana_1.0.0.bb- B.2.2
+ files

+ Makefile- B.2.2
+ images

- ...- B.2.2
+ site

- ...

B.2 Descriptions

B.2.1 Obtaining the OpenEmbedded Toolchain

Before any configuration or compilation can start, the OpenEmbedded toolchain
must be obtained from the online repositories.

#c r e a t e the working d i r e c t o r y
user@nb−4957:/$ mkdir /path/ to /OpenEmbedded
user@nb−4957:/$ cd /path/ to /OpenEmbedded

#download OpenEmbedded
user@nb−4957:/ path/ to /OpenEmbedded$ g i t c l one g i t : // g i t . openembedded . net /

openembedded . g i t org . openembedded . s t a b l e
user@nb−4957:/ path/ to /OpenEmbedded$ cd org . openembedded . s t ab l e
user@nb−4957:/ path/ to /OpenEmbedded$ g i t checkout −b org . openembedded . s t ab l e

o r i g i n / org . openembedded . s t ab l e
user@nb−4957:/ path/ to /OpenEmbedded$ g i t pu l l
user@nb−4957:/ path/ to /OpenEmbedded$ cd /path/ to /OpenEmbedded
user@nb−4957:/ path/ to /OpenEmbedded$ wget http : //www. angstrom−d i s t r i b u t i o n . org

/ f i l e s / source−me. t x t
user@nb−4957:/ path/ to /OpenEmbedded$ mkdir bu i ld bu i ld / conf && cd bu i ld / conf

82 B Platform Independence

B.2.2 Build Configuration

The files that are mandatory for a compilation are the BitBake recipe for PodNet on
ANA, and the patches that the system must apply to the source code. Furthermore
the top-level compilation settings are located in the local.conf file.

local.conf

Describes the overall building process, i.e. the target architecture and the chosen
distribution. The file for the Angstrom compilation used for the Sharp SL-C860 is:

1 # Where to s t o r e sour c e s
2 DL DIR = ”/path/ to /OpenEmbedded/downloads ”
3
4 # Which f i l e s do we want to parse :
5 BBFILES := ”/path/ to /OpenEmbedded/ org . openembedded . s t ab l e / packages /∗/∗ . bb”
6 BBMASK = ””
7
8 # ccache always o v e r f i l l $HOME
9 CCACHE=””

10
11 # What kind o f images do we want?
12 IMAGE FSTYPES = ” j f f s 2 ta r . gz ”
13
14 # Set TMPDIR ins t ead o f d e f au l t i n g i t to $pwd/tmp
15 TMPDIR = ”/path/ to /OpenEmbedded/${DISTRO}− s t ab l e / ”
16
17 # Make use o f my SMP box
18 PARALLEL MAKE=”−j 4 ”
19 BB NUMBER THREADS = ”2 ”
20
21 # Set the Di s t ro
22 DISTRO = ”angstrom−2007.1 ”
23
24 # ’ u c l i b c ’ or ’ g l i b c ’ or ’ e g l i b c ’
25 #ANGSTROMMODE = ”g l i b c ”
26
27 MACHINE = ”c7x0 ”

Whereas the file to use with the Nokia N810 looks as follows:
1 # Where to s t o r e sour c e s
2 DL DIR = ”/path/ to /OpenEmbedded/downloads ”
3
4 # Which f i l e s do we want to parse :
5 BBFILES := ”/path/ to /OpenEmbedded// org . openembedded . s t ab l e / packages /∗/∗ . bb”
6 BBMASK = ””
7
8 # ccache always o v e r f i l l $HOME
9 CCACHE=””

10
11 # What kind o f images do we want?
12 IMAGE FSTYPES = ” j f f s 2 ta r . gz ”
13
14 # Set TMPDIR ins t ead o f d e f au l t i n g i t to $pwd/tmp
15 TMPDIR = ”/path/ to /OpenEmbedded//${DISTRO}− s t ab l e / ”
16
17 # Make use o f my SMP box
18 PARALLEL MAKE=”−j 4 ”
19 BB NUMBER THREADS = ”2 ”
20

B.2 Descriptions 83

21 # Set the Di s t ro
22 DISTRO = ”mamona”
23
24 # ’ u c l i b c ’ or ’ g l i b c ’ or ’ e g l i b c ’
25 #ANGSTROMMODE = ”g l i b c ”
26
27 MACHINE = ”nokia800 ”

OpenEmbedded ANA Recipe

The BitBake compilation recipe is written in the Python programming language.
1 DESCRIPTION = ”Autonomic network a r c h i t e c t u r e (ANA) . ”
2 LICENSE = ”GPL”
3 PR = ”r0 ”
4
5 DEPENDS=”ncurse s gtk+”
6
7 S = ”${WORKDIR}/${P} ”
8
9 do f e t ch () {

10 mkdir −p ${WORKDIR}/${P}
11 cd ${WORKDIR}/${P}
12 cp −r /path/ to /ana−core / deve l /∗ ${WORKDIR}/${P}/
13 }
14
15 do compi le () {
16 oe runmake
17 }
18
19 d o i n s t a l l () {
20 i n s t a l l −d ${D}${ b i nd i r }
21 i n s t a l l −m 0755 bin /minmex ${D}${ b ind i r }/
22 i n s t a l l −m 0755 bin /mxconfig ${D}${ b ind i r }/
23 i n s t a l l −m 0755 bin / v l c o n f i g ${D}${ b ind i r }/
24
25 i n s t a l l −m 0755 so/ v l i n k . so ${D}${ b i nd i r }/
26 i n s t a l l −m 0755 so/ c f i nde r . so ${D}${ b ind i r }/
27 i n s t a l l −m 0755 so/eth−v l . so ${D}${ b ind i r }/
28 i n s t a l l −m 0755 so/ d i spa t che r . so ${D}${ b i nd i r }/
29 i n s t a l l −m 0755 so/ connec t i v i t y . so ${D}${ b ind i r }/
30 i n s t a l l −m 0755 so/ ne i ghbord i s covery . so ${D}${ b i nd i r }/
31 i n s t a l l −m 0755 so/ t e s t t c p . so ${D}${ b ind i r }/
32 i n s t a l l −m 0755 so/ syncd i scovery . so ${D}${ b i nd i r }/
33 i n s t a l l −m 0755 so/podnet . so ${D}${ b i nd i r }/
34
35 # /bin / i n i t i s on purpose , i t i s t r i e d a f t e r / sb in / i n i t and / e t c / i n i t
36 i n s t a l l −d ${D}${ ba s e b i nd i r }
37 l n −s f ${ b ind i r }/minmex ${D}${ ba s e b i nd i r }/ i n i t
38 l n −s f ${ b ind i r }/mxconfig ${D}${ ba s e b i nd i r }/ i n i t
39 l n −s f ${ b ind i r }/ v l c o n f i g ${D}${ ba s e b i nd i r }/ i n i t
40
41 l n −s f ${ b ind i r }/ v l i n k . so ${D}${ ba s e b i nd i r }/ i n i t
42 l n −s f ${ b ind i r }/ c f i nde r . so ${D}${ ba s e b i nd i r }/ i n i t
43 l n −s f ${ b ind i r }/ eth−v l . so ${D}${ ba s e b i nd i r }/ i n i t
44 l n −s f ${ b ind i r }/ d i spa t che r . so ${D}${ ba s e b i nd i r }/ i n i t
45 l n −s f ${ b ind i r }/ connec t i v i t y . so ${D}${ ba s e b i nd i r }/ i n i t
46 l n −s f ${ b ind i r }/ ne i ghbord i s covery . so ${D}${ ba s e b i nd i r }/ i n i t
47 l n −s f ${ b ind i r }/ t e s t t c p . so ${D}${ ba s e b i nd i r }/ i n i t
48 l n −s f ${ b ind i r }/ syncd i scovery . so ${D}${ ba s e b i nd i r }/ i n i t
49 l n −s f ${ b ind i r }/ podnet . so ${D}${ ba s e b i nd i r }/ i n i t

84 B Platform Independence

50 }

OpenEmbedded ANA Patch

In order to reflect differences in Makefiles for different platforms, the original Make-
file is patched with following differences. In our case the standard compilers defined
in the Makefile are commented out, in order to allow OpenEmbedded to choose the
right compiler for the selected scenario.

1 −−− Makef i l e 2009−02−24 15 :04 :35 .000000000 +0100
2 +++ Makef i l e 2009−03−26 12 :30 :40 .000000000 +0100
3 @@ −1,9 +1,9 @@
4
5 # f ind out what ke rne l v e r s i on i s running
6
7 −CC := gcc
8 −CXX := g++
9 −LD := ld

10 +#CC := gcc
11 +#CXX := g++
12 +#LD := ld
13
14 # For cros s−compi lat ion , r ep l a c e CC and LD with your c r o s s compi ler and

l i n k e r
15 # CC := / di sk2 /kamikaze svn/ trunk/ s t a g i n g d i r / too l cha in−mipse l gcc4 . 2 . 4 / bin /

mipsel−l inux−uc l ibc−gcc

OpenEmbedded Distro

Contains the BitBake files that describe a software distribution, i.e., the set of
packages included in the operating system.

OpenEmbedded Machine

Contains BitBake files that describe the specific hardware architectures, that are
supported by OpenEmbedded

OpenEmbedded Packages

Contains all packages that are available for compilation in the OpenEmbedded
toolchain.

OpenEmbedded Downloads

Often package sources are directly downloaded from the internet (do_fetch() func-
tion in the BitBake recipe). The tarballs are placed in this directory, to avoid repet-
itive downloads of the same packages.

OpenEmbedded Classes

Defines different classes of BitBake recipes, as for example the cpan-class (used with
the PERL programming language).

B.2 Descriptions 85

OpenEmbedded Images

Defines the basic building blocks (package sets) for the distributions available in
B.2.2. For example a base-image or a x11-image.

B.2.3 Environment Setup

source-me.txt

In order to set up the compilation environment, OpenEmbedded provides an ex-
port file, that sets the operating system’s environment variables (as e.g. the PATH
variable).

B.2.4 Compilation Process

To compile a package, following steps need to be executed.
#change the working d i r e c t o r y
user@nb−4957:/$ cd /path/ to /OpenEmbedded

#setup the environment
root@nb−4957:/ path/ to /OpenEmbedded$ echo 0 > /proc / sys /vm/mmap min addr
user@nb−4957:/ path/ to /OpenEmbedded$ source source−me. txt
user@nb−4957:/ path/ to /OpenEmbedded/ bu i ld$ cd . . / org . openembedded . s t ab l e /

#update the l o c a l v e r s i on with the on l i n e r epo s i t o r y
user@nb−4957:/ path/ to /OpenEmbedded$ g i t pu l l −−rebase

#c l ean the working d i r e c t o r i e s
#(i f the re e x i s t s a prev ious compi lat ion , this s tep i s mandatory)
user@nb−4957:/ path/ to /OpenEmbedded$ bitbake −c c l ean ana

#s t a r t the compi la t ion proce s s
user@nb−4957:/ path/ to /OpenEmbedded$ bitbake ana

#i f we want to bu i ld complete d i s t r o s
#(use the f o l l ow i ng to bu i ld three d i f f e r e n t k inds o f images)
user@nb−4957:/ path/ to /OpenEmbedded$ bitbake base−image ; b i tbake conso le−

image ; b i tbake x11−image

B.2.5 Package Deployment

Angstrom Deploy

This directory will contain all the IPK software bundles compiled for the Angstrom
distribution, targeting the Sharp SL-C860.

Mamona Deploy

This directory will contain all the DEB software bundles compiled for the Mamona
distribution, targeting the Nokia N810. Unfortunately the Nokia does not seem able
to handle these kind of files, therefore the Nokia Distribution was repackaged as a
tarball.

	Introduction
	Opportunistic Networking
	Thesis Description
	Related Work
	Thesis Outline

	Fundamentals
	Delay Tolerant Networking
	Routing - A Graph Theory
	Routing with predictable contacts
	Routing with opportunistic contacts
	Routing Latency
	Predicting Future Encounters
	Content Dissemination
	Resource Restrictions

	ANA Framework
	Concepts
	Terminology
	Functional Blocks
	Compartments
	Information Channel
	Information Dispatch Point
	Information Dispatch Table
	Key-Value Repository
	Minmex
	API

	PodNet
	Structure
	Discovery and Synchronization
	Content Exchange
	Network Message Format

	Transmission Control Protocol
	Error Recovery
	Sliding Window Algorithm
	Finite State Machine
	Other Features

	Integration
	Preliminaries
	Implementation Approach
	Set Of Functional Blocks
	Monitoring Framework
	Addressing Scheme
	Reliable Transmission

	Platform Independence
	Embedded Hardware Overview
	Compiling for Embedded Hardware
	The OpenEmbedded Toolchain

	Implementation and Results
	Implementation
	Rudimentary ANA Example
	Neighbor Discovery
	TCP
	Synchronization Service
	PodNet

	Results
	Methodology
	Measurements, Results and Discussion
	TCP Measurements
	PodNet on ANA Tests

	Conclusion
	Contributions
	Future Work

	Implementation Details
	Overview
	Descriptions
	ANA Environment
	PodNet
	TCP
	Synchronization Service
	Neighbor Discovery
	ANA Binaries
	Dynamically Loaded ANA Objects

	Platform Independence
	Overview
	Descriptions
	Obtaining the OpenEmbedded Toolchain
	Build Configuration
	Environment Setup
	Compilation Process
	Package Deployment

