
Prof. Dr. L. Thiele

Fall term 2008

Author: Supervisors:

Christoph Walser Matthias Woehrle
Andreas Meier

MASTER THESIS

Wireless Sensor Network
Testbed 2.0: A New Service

Oriented Architecture





Zusammenfassung

Drahtlose Sensor Netzwerke (WSN) werden vielfach in schwer zugänglichen Ge-
bieten installiert was es schwierig macht, solche Netzwerke für Updates und zur
Fehlerbehebung zu erreichen. Es ist daher wichtig, dass ein WSN korrekt funktio-
niert bevor es installiert wird. Um möglichst grosse Korrektheit erreichen zu können
werden Validierungs-Werkzeuge benötigt. Prüfstände (Testbeds) haben dabei ihre
Nützlichkeit wiederholt bewiesen da mit ihrer Hilfe komplizierte Details von WSNs
und deren Interaktion mit der Umgebung aufgespürt werden können.

Ein bestehendes Testbed nutzt eingebettete Knoten welche mit den Sensor-Knoten
verbunden sind. Diese Observer sind in der Lage, die Sensor-Knoten zu überwachen
und zu steuern. Ein zweites, unterstützendes Netzwerk dient der Kommunikation
zwischen den Observern und einem Server. Einzelne Sensor-Knoten können mit
traditionellen Labormessgeräten für eingebettete Systeme, wie zum Beispiel Ener-
giemessgerät oder Logikanalysator, instrumentiert werden. Viele Details von WSN
können aber nur erfasst werden, wenn viele Knoten gleichzeitig überwacht werden.
Deshalb wurde ein neues Testbed konzipiert, in welchem jeder Observer-Knoten in
der Lage ist, Messungen ähnlich jenen mit Labormessgeräten vornehmen zu kön-
nen. Dies resultiert in verteilten Messmöglichkeiten über das gesamte Testbed.

In dieser Masterarbeit wird ein Service für das neue Testbed konzipiert, implemen-
tiert und evaluiert welcher es ermöglicht, Pins des Observer-Prozessors zeitgesteuert
zu setzen und diese Änderungen auf dem Sensor-Knoten zu detektieren. Anhand
dieses beispielhaften Services wird der neue Observer evaluiert.
Vorausetzung für das Funktionieren des Services auf dem Observer ist ein Spei-
chersystem für anfallende Messdaten sowie eine genaue Zeitbasis für die Abar-
beitung und Protokollierung der Pin-Änderungen. Zur Datenspeicherung wird ein
Datenbank-System ausgewählt und anhand eines entwickelten Datenbank-Modells
implementiert. Um eine Zeitbasis zwischen allen Observern zu schaffen, wird ein
Zeitsynchronisations-Protokoll implementiert und so konfiguriert, dass alle Obser-
ver synchronisiert werden.

Die Evaluation der Observer-Hardware und aller implementierter Software zeigt,
dass das System geeignet ist um im neuen Testbed benutzt zu werden. Dies wie-
derum rechtfertigt die weitere Entwicklung des neuen Testbeds.





Abstract

Wireless sensor network applications are often deployed in remote areas. It is diffi-
cult to access them for updates and debugging purposes, hence it is critical for them
to be correct at deployment time. In order to ensure correctness of the applications,
validation tools are needed. Testbeds have proven to be valuable for validating wire-
less sensor networks because test executions on testbeds capture intricate details of
device and environmental characteristics.

A current testbed uses embedded nodes, which are connected to the sensor nodes,
as observers. The observers are able to monitor and control the sensor nodes. A
backbone network is used for communication between the observers and a server.
In the current testbed, only dedicated nodes can be instrumented with traditional
embedded laboratory instruments, e.g. power profiling or logic analyzer that allow
for a detailed analysis. However, many details of wireless sensor network appli-
cations are only revealed when doing such measurements on several sensor nodes
simultaneously. Consequently, a new testbed has been designed. The idea is that
each observer node includes means for detailed control and analysis such as stimula-
tion and power analysis similar to embedded laboratory instruments thus allowing
for distributed measurement rather than having dedicated equipment for just a few
nodes.

In this master thesis, an exemplary testbed service is designed, implemented and
evaluated which allows for setting pins on the processor of an observer and detect-
ing the pin changes on a sensor node. Based on this service, the new observer is
evaluated. The prerequisites for fully working services on the observer are a sys-
tem to store measurement data and an accurate time base to be able to provide
high-precision timestamps. For storing data, a database system is chosen and set
up according to a developed database model. To provide a common time base on all
observers, a time synchronization protocol is set up and configured to synchronize
all observers.

The evaluation of the observer hardware and all implemented software shows that
the system is well suited to be used in the new testbed. This justifies the further
development of the testbed.





Preface

Many people contributed to the success of this master thesis. First, I want to thank
Anna-Laura who supported me whenever I did not see the wood for the trees.
Together with my two supervisors, Matthias and Andreas, I spent many hours dis-
cussing theoretical issues and problems of my thesis. They always had time for me
and I very much appreciate this. Mustafa and Roman supported me whenever I had
practical questions about the DSN, Linux, hardware components or lab equipment.
Last but not least I want to thank my proof-readers Anna-Laura, Ruth, and Mel
who did a great job when reading the report, looking for typos and grammatical
mistakes.

Zürich, 7. April 2009

Christoph Walser





Contents

1 Introduction 1
1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Validation of Wireless Sensor Networks . . . . . . . . . . . . . . . . 2
1.3 Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Deployment Support Network . . . . . . . . . . . . . . . . . . 4
1.3.2 MoteLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.3 TWIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Problem Statement and Scope of this Thesis . . . . . . . . . . . . . . 7
1.5 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Conceptual Design 9
2.1 Time Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Network Time Protocol . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 NTP Network Layout . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 GPIO Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 GPIO Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 Logging Service . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.5 Power Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.6 Further Services . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Database Architecture . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Database Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Implementation 23
3.1 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Database Software . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Server Implementation . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Observer Implementation . . . . . . . . . . . . . . . . . . . . 28



viii Contents

3.2 GPIO Setting Service . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Kernel Module . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.4 Database Daemon . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Service Evaluation 33
4.1 Pin Setting Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Target Node Variance . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Observer Variance . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Pin Setting Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Time Synchronization Effects . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Synchronicity of Observers . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4.1 Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusion and Future Work 45

A Database Schematics 51

B Task Description 53

C Work Schedule 59



List of Figures

1.1 Schematics of a wireless sensor network . . . . . . . . . . . . . . . . 1
1.2 Development steps of a wireless sensor application . . . . . . . . . . 2
1.3 Categorization of testing tools . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Layout of the DSN testbed . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Target-observer model . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Implementation of target-observer model . . . . . . . . . . . . . . . . 10
2.3 Overview of target-observer interface . . . . . . . . . . . . . . . . . . 11
2.4 Clock model of observer . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Time synchronization network layout . . . . . . . . . . . . . . . . . . 14
2.6 Overview of services . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.7 Typical wakeup time for a radio chip . . . . . . . . . . . . . . . . . . 17
2.8 Database model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Overview of GPIO setting service . . . . . . . . . . . . . . . . . . . . 29
3.2 Program flow of kernel module . . . . . . . . . . . . . . . . . . . . . 30
3.3 Steps to setup an OS timer . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Instrumentation of testcase . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Drift of signals with different frequencies . . . . . . . . . . . . . . . . 35
4.3 Offset of pin setting on observer . . . . . . . . . . . . . . . . . . . . . 38
4.4 Effects of time synchronization . . . . . . . . . . . . . . . . . . . . . 40
4.5 Time synchronization of chrony at system startup . . . . . . . . . . 41





List of Tables

1.1 Differences between simulations and testbeds . . . . . . . . . . . . . 3
1.2 Overview of testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Runtime of n insert statements on the database . . . . . . . . . . . . 25
3.2 Runtime for insertion of 5000 samples . . . . . . . . . . . . . . . . . 25
3.3 Time to insert one sample . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Memory requirements for database . . . . . . . . . . . . . . . . . . . 26

4.1 Mean error of target node when detecting pin changes. . . . . . . . . 35
4.2 Mean error of observer at 0.5Hz . . . . . . . . . . . . . . . . . . . . . 36
4.3 Mean error of observer at 50Hz . . . . . . . . . . . . . . . . . . . . . 36
4.4 Time difference between two observers when setting pins at synchro-

nized time intervals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Time difference between two observers when monitoring pins . . . . 42
4.6 Worst case variance of GPIO setting service . . . . . . . . . . . . . . 43





Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor nodes are embedded systems typically equipped with a micro con-
troller, memory, radio, energy supply and one or several sensors. The purpose of
these nodes can be among others to do measurements related to environmental con-
ditions in high-alpine regions. The nodes are therefor deployed in a sector of interest
on a mountain. As not all sensor nodes have a direct connection to the sink node,
which acts as a base station, the measurement data is forwarded through an ad-hoc
multi-hop network from node to node until it eventually reaches the sink. This can
be seen in Figure 1.1 where sensor node x does not have a direct connection to the
base station but forwards its data to the sink over sensor node y. The base station
forwards the data from all nodes to an external location for further processing.

As the nodes are normally powered with a battery, energy efficiency is of utmost
importance. Software running on sensor nodes needs to be optimized, e.g. the net-
work stack needs to be adapted as was done in [2].
Further constraints for sensor nodes, besides limited energy supply, are communi-
cation range, processing power, and memory size.

Figure 1.1: Schematics of a wireless sensor network[1]. The sensor nodes form an ad-hoc
multi-hop network and forward messages to the base station.



2 1 Introduction

������ ��	
��������
� ��
�����
� ��	

�����
������� �


�

Figure 1.2: Phases in the development of a wireless sensor network application. For the
validation phase, tools are needed for testing the WSN.

Wireless sensor networks (WSN) are an emerging field in information technology
research. Since the first (wired) sensor networks in the 1950s (e.g. SOSUS[3]) with
a military background, sensor networks have become an important field of studies
with many application areas. Examples of areas and typical applications are:

� Environment:

– Bird habitat monitoring: Great Duck Island (2002) [4]

– Permafrost research: PermaSense (2006) [5]

– Microclimate monitoring: Redwood Tree (2005) [6]

– Precision agriculture: LOFAR-agro (2005) [7]

– Volcanology: Monitoring of volcanic activity (2005) [8]

� Other:

– Health monitoring: Medical Body-Sensor Networks (∼2003) [9]

– Intrusion detection: A line in the sand (2003) [10]

– Oil pipeline infrastructure monitoring: Pipenet (2004) [11]

A good overview of applications of WSNs is given by Römer et al. [12].

1.2 Validation of Wireless Sensor Networks

The realization of a WSN from the first idea to the final deployment can be distin-
guished into phases according to Figure 1.2. The validation of the WSN is the final
step before deployment. According to Figure 1.3 there are basically two methods
for testing a WSN: simulation and testing on real devices.
Real device testing can be further distinguished into small scale testing with a few
nodes on the desktop of the WSN developer, and testbed testing with numerous
nodes in a realistic environment. As desktop testing allows only for testing of a very
limited number of nodes, testbeds are needed for extensive testing of networking



1.2 Validation of Wireless Sensor Networks 3

���������	


���

����	�

�����
�������

������� 
�������

Figure 1.3: Most available testing tools can be categorized into simulation and real device
testing tools.

Simulation Testbed

Pro

Hardware cost
Visibility Realistic environment
Controllability Data quality
Repeatability
Speed

Contra

Visibility
Intrusiveness/probing effect

Simplistic/inaccurate model Hardware cost
Data quality Controllability

Repeatability
Speed

Table 1.1: Differences between simulations and testbeds. Advantages of one tool are generally
disadvantages of the other and vice versa.

issues or the behavior of distributed algorithms.
Simulation tools and testbeds have different advantages and disadvantages and are
therefor commonly used complementary during the validation phase of a WSN. The
main differences between simulations and testbeds are listed in Table 1.1. Simula-
tion software such as ns-2 [13], GloMoSim[14] or TOSSIM [15] help testing program
flows. A large number of nodes can be simulated on a single computer, resulting
in very low hardware cost for this type of testing. Another important advantage
of simulation tools is their good visibility. The visibility defines how good the pro-
gram state of a node can be inspected. Simulations have a very good visibility as
almost every state of the node can be inspected at any time. However, the quality
of simulation data can be poor. One problem is that most simulation tools have
insufficient models for communication channels whereas testbeds use real devices
and real communication channels making them the weapon of choice e.g. for testing
communication issues. Testbeds provide less visibility but higher data quality. As a
simulation can be paused at any time and the state of simulated nodes can be set
or read easily, simulation tools provide a high controllability and make it easy to
repeat test scenarios multiple times by putting the nodes into a state of interest and



4 1 Introduction

Figure 1.4: Layout of DSN.

letting the simulation run. Testbeds on the other side do not provide this ability as
they run continuosly.
Summing up, it can be stated that the main advantage of simulations is the high
visibility at low cost which they provide. On the other hand, testbeds are a lot more
realistic and the test data is generally of better quality.

1.3 Testbeds

Commonly referred testbeds are DSN [16], MoteLab [17], TWIST [18], and Kan-
sei [19]. A list of the functionality provided by DSN, MoteLab and TWIST can be
found in Table 1.2. Kansei was not included in this survey as its design and purpose
differ significantly from the other testbeds.

1.3.1 Deployment Support Network

The deployment support network (DSN) [16] has a number of features that distin-
guish it from other testbeds [17, 18]. DSN can read and write data to the target
node over the serial interface. Most other testbeds can only read data from target
nodes and cannot pass commands to them.
DSN is built in a modular way as depicted in Figure 1.4. The target node under
test is connected over a short wire to a so called observer (see Chapter 2 for de-
tailed discussion) which runs the testing software, collects all measurement data
and forwards it to the testbed server. The observer nodes form a Bluetooth scatter
network within the DSN making the testbed mobile for outdoor testing or quick
change of density patterns as the nodes can be relocated without having to rewire
everything.
On the other hand, the Bluetooth scatternet, which builds the backbone network of
DSN, suffers from capacity problems when the testbed is running tests that involve
many nodes. The observer nodes [20] of the DSN suffer from three problems: first
the Bluetooth radio is not able to send more than 15 packets per second which is



1.3 Testbeds 5

Testbed DSN MoteLab TWIST
Services

Automation x x
Realtime data analysis x
Data logging x x x
Event logging x x x
Remote commands x x x
Remote programming x x x
Power measurement x x

Architecture
Flat x x x
Hierarchical x
Partitioning x x
Indoor use x x x
Outdoor use x

Target nodes
Telos family x x x
Mica family x x
TinyNode x
Others x x
Number of nodes 40 190 90

Backbone
Ethernet x x
Bluetooth x
USB x

Server services
Database x x x
Job scheduling x
User interface x x x

Specialties
Observer x
Remote power control x

Table 1.2: Overview of functionality of the most commonly referred testbeds.

not fast enough for transmitting measurement data at high rates. Second, they are
not fast enough to process data at high rates and third they do not have the capa-
bility to store data persistently on the node. Furthermore, the DSN power profiling
functionality turned out not to be satisfactory as the ADC sampling rate is too
low to be able to profile, for example, radio uptime (which is in the range of a few
milliseconds).



6 1 Introduction

1.3.2 MoteLab

MoteLab [17] is a large testbed developed at Harvard University in 2005. It consists
of up to 190 nodes which are permanently deployed indoors - there is no possibility
for outdoor testing as with DSN. The target nodes of MoteLab are connected to
a central server over Ethernet interface boards which is another difference to DSN
- there is no observer involved. This results in a high intrusiveness on the device
under tests as all the instrumentation for the different measurements has to be
made on the target nodes themselves. Power profiling is done as on the DSN by
attaching a network-connected digital multimeter to a single node.
A server service that is not present on the other testbeds is the job scheduling
functionality. Test runs are defined as jobs and scheduled to run in a time window
assigned to the test. This allows for arbitration among the users of the testbed.
However, the disadvantage is that the users have no more control over the test run
once it is scheduled. They can therefore not access nodes or change parameters
during their time window.

1.3.3 TWIST

TWIST [18] is a testbed developed in 2006 at the Technical University of Berlin. It
is deployed indoors only, using a hierarchical architecture of the backbone network
consisting of USB hubs which connect to the target nodes and USB-to-Ethernet-
Interfaces which connect the USB hubs to an Ethernet network. The testbed is
controlled using a host computer as control station and an additional server for
collecting measurement data. This architecture makes the backbone design compli-
cated and injects problems due to incompatibilities of the different used technolo-
gies. Nevertheless, the architecture supports different hierarchical models for the
target nodes and it allows for partitioning of the testbed.
Disadvantages of TWIST are the few services that are offered and the high in-
trusiveness of the instrumentation on the target node due to the missing observer
(same as for MoteLab). A specialty of TWIST though is the ability to remotely
power the nodes on and off. This opens the possibility of simulating node failures.

1.3.4 Comparison

A disadvantage of all presented testbeds is that there is no possibility for distributed
measuring on all nodes concerning power measurements [21] and distributed logic
analysis. The presented testbeds have single nodes that can be connected to a
multimeter, logic analyzer or oscilloscope. The approach taken in the design of
the testbed evaluated in this thesis is different. The idea of this new testbed is to
provide power measuring and logic analysis on every node of the testbed opening
new possibilities for testing WSNs.



1.4 Problem Statement and Scope of this Thesis 7

1.4 Problem Statement and Scope of this Thesis

Based on the experiences made with the deployment support network DSN [16],
a new testbed design has already been developed incorporating a more powerful
observer. An observer platform was chosen and an interface hardware board was
built to interconnect the observer with the target node.
Based on this preliminary work, the task for this master thesis is to design the
services provided by the observer. Components needed for running the services are
evaluated and implemented. An exemplary service is implemented and evaluated.
Based on the results, the chosen observer hardware is evaluated regarding its suit-
ability for the testbed.

1.5 Chapter Overview

The remainder of this thesis is devided into four parts. In Chapter 2, the conceptual
design of the testbed and especially the observer, including all subcomponents of
the observer, is discussed. Details of all implementations put into practice are given
in Chapter 3. These implementations are evaluated and analyzed in Chapter 4. In
Chapter 5, the final conclusions are derived and directions for future work are given.





Chapter 2

Conceptual Design

The new testbed has to overcome the deficiencies of the DSN (see Section 1.3.1).
This is done by making the observer more powerful and changing the network tech-
nology from Bluetooth to Ethernet (both, wired and wireless ethernet are possible).

The new testbed makes extended use of the target-observer model (see Figure 2.1).
In this model, an observer is connected over a wired interface to the device under
test, the target node. The implementation of the target-observer model used for
this thesis can be seen in Figure 2.2. The target node used is a Shockfish Tiny-
Node 584 equipped with a TI MSP430 microcontroller. A Gumstix Verdex XL6P
motherboard, equipped with a Marvell PXA270 XScale processor, 128MB RAM
and 32MB flash memory plus an ethernet expansion board build the observer.
The connection interface provides connectivity and power supply for both target
node and observer. Connectivity consists of the serial universal asynchronous re-
ceiver/transmitter (UART) interface and dedicated general purpose input/output
(GPIO) lines which connect GPIOs of the observer processor (CPU) to GPIOs of
the target microcontroller (MCU). An overview of the full-blown interface can be
seen in Figure 2.3.
The testbed backbone network is based on wired ethernet, which is interference-

Figure 2.1: Target-observer model.



10 2 Conceptual Design

Figure 2.2: Implementation of target-observer model. The observer is accessed over a console
attached to the board and powered by a 9V external power supply.

free against the wireless sensor network under test. If desired, the observer can be
upgraded with a wireless ethernet expansion board to increase the mobility of the
testbed.

Several requirements make the design of the new testbed challenging. The net-
work which builds the backbone of the testbed has to be interference-free against
the wireless sensor network. Of utmost importance is the reliability and robustness
of the testbed. Reliability means that no data shall be lost due to system failure.
Robustness means that the testbed has to run as it is supposed to - system crashes
or otherwise unpredictable system behavior is undesired and is to be minimized.
The testbed has to be scalable from a few to a possibly large number of observers
running at the same time. The observer is the base for all services and produces
correlations between the different services (e.g. by providing consistent timestamps
for all services running on the observer). Furthermore, the observer has to be ex-
tendable with more services if needed in the future.
The observers need to have a common timebase among each other and thus need
to run on synchronized time. This makes timestamps comparable between all ob-
servers and allows for cross-analysis of target node behavior.



2.1 Time Synchronization 11

Target
Target

Connections

Observer

3

3

4

4

2

Attenuator 
Control

IRQ Tracing/ 
GPIO

Dedicated 
Programming
UART w/ Flow 

Control
Regulated 

Voltage

Attenuator 
on board
GPIO / 

IRQ
Target 
Pins

Target 
Pins

Target 
Supply

Target 
Pins JTAG

UART 
Box

UART/
USB4/5

ADC Measurements:
-Voltage
-Current

2

Voltage Control:
-Voltage regulation
-Battery

2

Figure 2.3: Overview of target-observer interface.��������	���

�������
�� 	��������
���
��
� 	���
 ��
�

Figure 2.4: Clock model of observer.

2.1 Time Synchronization

Time synchronization serves two purposes in the testbed. First, it synchronizes all
observers to run on a common timebase. This is needed to be able to compare time-
stamps between observers to reconstruct for example network activity of the target
nodes. Second, time synchronization is needed on the observers to compensate for
their inaccurate clocks. Every observer is driven by a 13MHz oscillator which has
an inaccuracy of ±50ppm1 due to manufacturing tolerances, aging processes, and
operating temperature sensitivity [22]. The oscillator basically updates a hardware
clock which is implemented as a register in the observer. On top of the hardware
clock is a logical clock which represents the time in the desired local format. The
logical clock has thus an inaccuracy induced by the oscillator if not corrected. This
is the point where time synchronization protocols such as NTP hop in and adjust
the clock to run more precisely, see Figure 2.4.

1ppm = parts per million. +1ppm clock skew means that if the inexact clock runs for 1 second,
in real-time it only advanced by 0.999999 seconds.



12 2 Conceptual Design

Time synchronization can thus be used to improve the accuracy of the internal clock
of each observer and at the same time synchronize the time across all observers in
the testbed. The time synchronization of the testbed can be seen as a side effect
to the internal clock synchronization as it comes automatically when all observers
synchronize their internal clocks based on data from the same time synchronization
server.

2.1.1 Design Requirements

There are several requirements when using a time synchronization protocol:

� High precision. The time on each observer has to be as precise as possible,
ideally in the low microseconds. This requirement holds even if the observer
is not connected to the ethernet.

� High synchronicity. The observers need to have a common timebase. The dif-
ference of the internal clocks of all observers is to be in the low microseconds.

� Fast stabilization. The clock is to be synchronized as fast as possible after
booting the observer.

� Continuous strictly monotone increase. The logical clock shall never run back-
wards, stand still or perform step changes in order to prevent unpredictable
behavior of system components.

2.1.2 Network Time Protocol

The network time protocol (NTP) is a time synchronization tool which uses the
Internet to gain access to high-precise time sources. NTP has a built-in hierarchy:
a first level (the so called stratum 0) are atomic or radio clocks which provide the
most accurate time signals possible. A second level (stratum 1) is connected to
several of these servers and redistributes their time signals to the next level and
so on. This system lets a user define its own time server and redistribute the time
signal to a local network. With each additional stratum, the absolute accuracy of
the respective time server decreases. For the testbed, the stratum of the local time
synchronization server is not important as the local time of the observers does not
have to be as precise as possible compared to real time but rather as precise as
possible compared to the time of the local time server.
Each client synchronizes itself in configurable time intervals with a defined list of
time servers and selects the server with the most accurate data [23]. From this data,
the following values are calculated:

� Clock offset. The clock offset is the amount of time by which the local clock
runs late or early.

� Roundtrip delay. The roundtrip delay is a value that represents the network
delay to the chosen time server.



2.1 Time Synchronization 13

� Dispersion. Dispersion is the maximum error of the local clock relative to the
reference clock.

On each client, an internal database is kept which stores this data over time. The
clock synchronization becomes better the more data (that is the longer NTP is
online) is available. NTP can achieve accuracies in the range of microseconds after
a few hours runtime [23].

The logical clock of the clients can be adjusted in two different ways:

� Gradual phase adjustment. The frequency of the logical clock is adjusted to
let it run either faster or slower.

� Step-change. If the offset of the clock is too large to become synchronized
in useful time using gradual phase adjustment, a step-change is performed
instantly to reduce the offset to zero. This mode hurts the requirement of
a strictly monotonic increasing clock (see Section 2.1.1) and should thus be
used with great care.

Gradual phase adjustments are done by adding more or less phase increments to
the logical clock at periodic adjustment intervals.
Step-changes are performed by changing the register holding the value of the logical
clock directly without doing any gradual phase adjustments.

2.1.2.1 Chrony

Chrony is a tool available for Unix systems to synchronize the logical clock using
NTP. Chrony consists of two subprograms:

� Chronyd is a daemon that runs in the background of the system, communi-
cates with the time servers and the clients and adjusts the local clock.

� Chronyc is the user interface to chronyd and provides means to configure and
monitor the time synchronization.

Chrony supports both modes of NTP - gradual phase adjustments and step-changes.
Chrony can be set manually to an offline-mode in which it continues to adjust the
clock based on the time synchronization data last received from an online time
server. It makes chrony thus an ideal tool for systems which are not guaranteed
to always be online. As the testbed needs to be robust, chrony is ideal for time
synchronization as in the case of a network failure it continues to operate.
With NTP and chrony it is possible to satisfy all requirements stated in Sec-
tion 2.1.1.



14 2 Conceptual Design

Figure 2.5: Time synchronization network layout.

2.1.3 NTP Network Layout

The time synchronization network layout chosen for the testbed can be seen in
Figure 2.5. The central element is a local time server which synchronizes itself over
the Internet with well-known time servers (such as for example swisstime.ethz.ch).
It is possible to integrate the time synchronization server into the server which
collects measurement data from the observers and holds the central database (see
Section 2.3.3). The time synchronization server itself will not be perfectly accurate
compared to real-time due to its low stratum but this is of no concern as it is not
crucial for the observers to have a minimal offset compared to real-time but rather
compared to each other.
In order to provide minimal path delay, all observers are connected through a
dedicated ethernet switch to the time synchronization server. The observers are
configured as client-only whereas the time synchronization server runs in master-
slave-mode (master to the observers, slave to the servers in the next higher stratum).
Chrony is configured to run in gradual phase adjustment mode only since a strictly
monotonic increase of the observer clock is required by the testbed. A step change
is performed however on system startup to bring the local clock to minimal offset
as fast as possible.



2.2 Services 15

2.2 Services

Service oriented architectures are characterized as systems which provide multiple
services that can be combined in several ways to perform a multitude of tasks.
Each component is a standalone implementation which fulfills a certain task. By
using several services jointly, one can research a WSN taking a lot of different mea-
surements into consideration and thereby discover correlations which would not be
visible when running different measurements independently.

On a flexible testbed, a variety of different target nodes and software applications
has to be tested. This leads to a number of different requirements for the testbed
as not every application and/or every target node needs every testing possibility
provided by the testbed. A way to provide the ability to use only a dedicated set
of testing possibilities is the usage of a service oriented architecture. This lets the
user choose what she wants to measure and which services should be turned off.

All services have a set of common features:

� Start and stop the service individually.

� When a service starts up, it shall indicate this to the server by setting an
appropriate field in the observer database.

� Upon stopping of a service, the above mentioned field shall be reset and the
service needs to be notified whether there is still data available on the observer
for synchronizing.

� All errors that occur during operation of the service shall be reported to the
database.

2.2.1 Design Requirements

Each service of the testbed allows for a specific measurement normally done with
dedicated laboratory equipment. The integration of these measurement capabilities
into the target and observer nodes leads to challenges regarding throughput, min-
imal intrusiveness and timing constraints. Services such as GPIO monitoring (see
Section 2.2.2) or power profiling (see Section 2.2.5) have the potential to produce
a lot of measurement data consuming CPU ressources for handling, memory space
for storing, and bandwith for transferring the data to the server.
When running multiple services at the same time, the above stated problems also
induce the challenge of timing constraints as the observer has to be fast enough to
handle all work coming from the different services, to do appropriate timestamping,
and not to loose data.
Two interfaces can be used for communication between the observer and the tar-
get as illustrated in Figure 2.6: the serial UART and dedicated GPIO lines. The
GPIO monitoring and setting service use GPIO lines as they are fast and minimal



16 2 Conceptual Design

��������	
��

������


	��

����	��

���
�����	�	��

�������� ���	�


��
����

����	��
	��

��
���

��
�

	

��
��


�


��
�	�




Figure 2.6: Overview of services and used communication lines between observer and target.

intrusive (it takes only a few cycles to read or write a GPIO in the target MCU).
The logging service transports its log messages over the UART. The powerprofiling
service hooks into the power supply of the target which is located on the observer
and thus needs no software instrumentation on the target node.

2.2.2 GPIO Monitor

The GPIO monitoring service allows for monitoring the state of dedicated GPIO
pins on the target node’s microcontroller. This can be done by connecting one
or multiple GPIO pins of the target node to GPIO pins of the observer node.
The UART could be used as well for such a service but using GPIO pins has
the advantage of minimal intrusiveness as setting a pin only needs a few cycles
on the target node MCU. It is advantageous to use interrupt enabled GPIOs on
the observer as this allows for accurate timestamping of the measured line state
changes.
GPIO monitoring can be used for a variety of purposes when testing a WSN. One
can be interested in state changes of the MCU’s power mode, or the radio or software
states to test a running application. State changes of the radio are perhaps the most
interesting to look at because the radio switches quite fast from one state to another
- a typical startup time for a radio (e.g. Chipcon CC2420) is around 3ms as can be
seen in Figure 2.7. The individual phases of the radio are in the range of one to a
few milliseconds. After the Nyquist-Shannon sampling theorem a sampling rate of
at least 500µs is needed in order to detect these phases.
With the GPIO monitoring service at hand, one can instrument an application to
set a particular pin combination for each state. By timestamping and logging this
information on the observer, one can, for example, identify networking issues such
as hidden terminal effects on the target nodes.

2.2.3 GPIO Setting

The GPIO setting service can be defined as the counterpart of the GPIO monitoring
service which was presented in the previous section. The goal of this service is to
be able to control the behavior of the target node by issuing commands over the



2.2 Services 17

11.608 11.609 11.61 11.611 11.612 11.613 11.614 11.615 11.616 11.617 11.618
0

5

10

15

20

Cu
rre

nt
 (m

A)

Time (s)

Figure 2.7: Typical wakeup time for a Chipcon CC2420 radio chip. [24]

GPIO pin interface of the microprocessor. One GPIO line can be set or cleared
by the observer. The target starts some user defined action after receiving a signal
from the observer.
The GPIO setting service can be used to start a memory dump of the target node’s
RAM which can then be examined and analyzed offline. This can be useful for
debugging network issues. Another scenario imaginable with memory dumps is to
upload RAM states taken earlier to the target nodes and flash them at a given time
which can be used to preset the target nodes to a specific network state so one
can, for example, examine effects that happen regularly after a certain time span
without having to wait for this time to elapse.
One can also imagine to trigger a command to send data over the radio to multiple
nodes at the same time. Using the GPIO monitoring service at the same time,
collisions on the ether can be observed and thus the networking algorithms can be
tested for effects of unwanted collisions.

2.2.4 Logging Service

Using the GPIO monitoring service one can access very little information as each
monitored GPIO pin can only have two states - thus one can derive 1bit of infor-
mation from every GPIO monitored. Sometimes it is easier to derive information
form string-like messages as they can carry more information at the cost of lower
throughput.
This functionality was already implemented in the first version of the testbed and
proved to be a valuable tool for testing and debugging on the target node. As
this service communicates by sending string-like messages over the UART interface
to the observer, the service can never achieve the same low intrusiveness as the
GPIO monitoring service because sending messages over the UART needs a lot
more ressources on the target node than setting a GPIO pin. Nevertheless it is a
very valuable functionality of the testbed when it comes to simple testing issues
where one is not interested in complex relations between multiple nodes and their
states but human readable logmessage speed up the process of accessing the state
of a single target or test multiple targets in a simple correlation.



18 2 Conceptual Design

2.2.5 Power Profiling

For most embedded systems power consumption is of utmost importance - hence a
state of the art testbed should provide means for power profiling a system. As the
state of a target node can change quite fast, power profiling needs according to the
Nyquist-Shannon sampling theorem to be at least double as fast as the states to
be measured. This results in a sampling interval of 500µs which corresponds to a
sampling rate of 2000 samples per second for this service (see Section 2.2.2). The
power profiling is done entirely on the observer, no instrumentation is needed on
the target node.
The design challenge of this service is hence to handle all incoming data fast enough
and fill it into the database (see Section 2.3.3.1). Most of the time, one will not be
interested in having all target nodes of the testbed being power profiled during the
whole experiment period but rather having a subset of targets being profiled for
specific time periods.

2.2.6 Further Services

In a service oriented architecture, it is easy to enhance the testbed with new func-
tionality by adding services. A useful service would be to get dumps of the target
node thus allowing for a checkpointing service as presented in [25]. A service that
can, for example, write to the target parameters of a program which is then executed
on the target is another idea for a future service.

2.3 Data Storage

On the observer, a possibly huge amount of collected data needs to be temporarily
stored before it is synchronized with the test server which processes the data from
all observers. The storage of this data needs to be persistent against power and
network failures, reliable and flexible for structural changes. For this purpose, the
two solutions at hand are using files or a database system.
Even though database systems are based on an existing filesystem they provide a
broader set of functionality than a filesystem does. A database can store different
kinds of information in one or more files and build a meta level by linking correlated
information, whereas files can store information only in a line-by-line manner. We
will focus thus on database systems as they can meet our requirements better than
a filesystem can. Furthermore, the system used for storing data on the existing
server is already organized in a database which will simplify the synchronization
between the observers and the server.

A database has to be extendable, simple, and reliable. In order to provide reli-
ability, a database needs to be transactional. Transactional databases fulfill the
ACID properties; each operation on the database has to be Atomic, Consistent,
Isolated and Durable from the point of view of the database user. These properties



2.3 Data Storage 19

have to be applicable even if the database crashes due to malfunction, power failure
and such.

As embedded systems are limited in computing capacity and memory size the main
requirements for a database running on the observer are the memory used by the
application and the throughput. These factors are the main criteria when evaluating
different database systems.

2.3.1 Design Requirements

Serverless databases do not have a service which connects clients to the database
system. Each client wanting to operate on the database starts its own routine and
accesses the database directly, not through a service. This has the advantage that
the database needs less system resources but it requires the database system to
take care about read and write permissions. In a database with a server the system
service would do this. As our application needs to be fast and only the observers’
data gathering service and the central collecting server access the database on the
observer, it is advantageous to use a serverless database system.

The database is not stored at one place but distributed over the server and all ob-
servers. Thus, the local databases have to be accessible through different interfaces
and hardware architectures. This requires a flexible and easy to handle database
system that runs on different operating systems and can be accessed with the most
common programming languages such as C/C++, Java, Phyton and so forth.

2.3.2 Database Architecture

From an architectural point of view, the database is split into two parts - one on
each observer and the other one on the server. From a practical point of view,
the databases on the observers and the server are standalone systems as they run
in physically different locations and are not connected to each other. Thus, all
constraints between these two systems, such as foreign keys, have to be checked
by the software accessing the databases and not by the databases themselves as
the database on the server cannot check the constraints on the observer database
and vice versa. The only difference between the databases on the observers and the
server is that the server database holds additional information about the test setup
whereas the observer databases do not need to store this information because the
observers are not aware of each other.

2.3.3 Database Model

The database model is independent of the database system used for implementing
it as this model defines only the structure of the tables and relations between the
tables. The database model can be seen in Figure 2.8.
The database structure on both the observers and the server are similar. Both



20 2 Conceptual Design

Figure 2.8: Database model, separated in observer (top) and server database (bottom). The
relations between the top and bottom models are only virtual as the devices are physically
and logically devided.

databases have tables with system information and one table for each testbed ser-
vice. The server database has additional tables for the organization of test runs
and attached observers. All tables have a primary key (TablenameWithoutTblPre-
fix key) and a timestamp (timestamp or last change). Tables on the observer carry
the prefixes tbl and obs to their name, tables on the server carry tbl and serv.

2.3.3.1 Observer

The observer has a table for general system information (tbl obs sysinfo). This
table holds an ID to identify the observer, information about the system version,
and system location. Due to its general specification (fields property and value) the
table can be used to store virtually any information needed for running tests.



2.3 Data Storage 21

The table tbl obs services holds two rows for each service - isActive to indicate
that the service is active and hasData to indicate that data is possibly available
in the table even though the service is not active anymore. This second flag is
needed to indicate that there is still uncollected data in the table after the service
has been shut down because the server collects data on the observers in intervals
and thus cannot check directly after a service shutdown whether there is still data
available. The flag isActive is set by the service when it starts up and reset when it
stops. The flag hasData is set by the service after resetting the isActive flag. This
approach with two flags is needed because it reduces the number of queries needed
on the observer. Alternatively a trigger could be set on the service table to set the
hasData flag after each insert operation but this would slow down insert operations
significantly.
Each testbed service has its own table structure to store the service specific data.
Except for the power profiling, each service stores one log value per row in its table.
As the power profiling service runs with a high sampling rate and the data size per
sample is low (16 Bit per sample), this service stores multiple samples per row. The
service stores the measured samples in intervals (e.g. 1 second) as blobs1 to the
database, increasing the performance of the database significantly. To extract the
samples from the blobs, the number of samples per blob (samples per blob) and the
timestamps of the blobs’ first and last sample (timestamp start and timestamp end)
are stored. From this data, the timestamps of each sample can be recovered and it
allows detection of missing samples.
Errors from a service, the kernel module or the database daemon are logged to the
table tbl obs errorlog.

2.3.3.2 Server

The tables for the testbed services are identical to the ones on the observer except
that the ID of the observer from where the data is originating is stored as a foreign
key in each row to associate collected data with the respective observer.
The system information table is equivalent to the one on the observer. Furthermore
there is a table with a list of all observers associated to the server (tbl serv ob-
server list) and their respective ethernet addresses. The field status opens up the
possibility of using only a subset of the attached observers for a given testcase and
to indicate broken observers.
In order to keep track of the used observers for a specific test, the table tbl test con-
figuration lets the user define tests and table tbl serv observer configuration opens
the possibility of defining subsets of observers to be used in a specific test. To keep
a history of the used observers in past test runs, a mapping table is defined to map
the observer subsets to the testcases: tbl serv test configuration observer list map.

1A binary large object (blob) is a special data type used in databases to store data without
formatting it.



22 2 Conceptual Design

2.3.3.3 Data Collection

The server periodically collects data from all attached observers. The collecting
service is managed over a cron job running on the server. The data collection routine
first accesses the table tbl serv observer list and gets a list of all active observers.
It then iterates through this list and gathers data from each observer.
To minimize the number of database operations on the observer, the data collector
looks up the testbed services on the observer which are active or have data not yet
collected (see Section 2.3.3.1). This is done by polling tbl obs services. The data
collector then accesses the tables of all active services and gets the respective table
key with the highest value. This value is then compared to the highest value stored
on the server database. If there is a difference, new data is available on the observer.
This data is fetched and inserted into the server database. Next, the data collector
deletes all but one row on the observer (this is needed to ensure that during the
next polling cycle, the data collector can get the value of the highest key) and resets
the hasData flag if necessary.
The data collector is implemented in a way that allows to extend the set of tables
which are synchronized.
If there is a need for additional tables to be synchronized this can easily be done
by following these steps:

� Create the new table on the observer. It has to have set its name as tbl obs table-
name and has to have a primary key defined as obs tablename key. Define
triggers for timestamping if needed.

� Create the new table on the server. It has to have set its name as tbl serv table-
name, has to have a primary key defined as serv tablename key, foreign key as
obs tablename key fk, and a field observer id. Define triggers for timestamping
if needed.

� Insert a row in tbl obs services. Set the tbl obs tablename as service.

2.3.3.4 Database Administration

The only database parts that need to be administrated by the user are the table
tbl obs sysinfo on the observer and tables tbl serv sysinfo, tbl serv observer list,
tbl serv test configuration, and their mapping-table tbl serv test configuration ob-
server list map on the server.
On the server, a graphical user interface (GUI) should be used for managing the
tables as changes in the observer lists are not trivial. The GUI is preferably a
webinterface or Java application.



Chapter 3

Implementation

3.1 Data Storage

3.1.1 Database Software

Large database applications such as MS SQL, Oracle or MySQL take up large
amounts of memory and processing capacity and are not serverless either.
A few databases are suitable for embedded systems, SQLite and H2 being among
them. Both databases are transactional, serverless, and have a small footprint. Both
databases are widely used in commercial and academic applications.
For the testbed and especially the observer, two factors are important regarding
the implementation of a database: throughput and memory usage on the filesystem.
These two factors are the ones that are most limited on an embedded system. For a
database, throughput is defined as the speed at which data can be inserted into the
database. This includes opening the database tables, checking constraints, possible
trigger actions, inserting the data, updating database tables, closing the database.
On both, SQLite and H2, throughput and memory performance tests have been
carried out.

3.1.1.1 SQLite Database

SQLite is an embedded SQL database engine that is serverless and fully ACID-
compliant (see Section 2.3). All data is stored in a single file that is portable to all
platforms due to its architecture-independent design.
A specialty is the manifest typing implemented in SQLite. The vast majority of
database systems use static typing: a data type is assigned to each column in a
table and every operation on that column checks whether the data is of the correct
type. This has the advantage that the reader of a column always knows what kind
of data is stored in it. With very few exceptions1, SQLite uses manifest typing:
a column can be declared to have a certain data type but this is not checked on

1One exception are columns declared as INTEGER PRIMARY KEY which always have to hold
integer values.



24 3 Implementation

operations on this column. This brings the advantage that each value of a column
only takes as much memory space as it needs for storing the data and not as much
as the data type defines (e.g. a value consisting of one character stored in a column
declared as VARCHAR(100) takes only one byte instead of 100 bytes in a static
typing architecture).

SQLite can be used from virtually any program that is able to access a filesys-
tem. Various SQLite APIs exist for different programming languages.
SQLite is a library that uses very little space - making it an ideal choice for em-
bedded systems such as the WSN testbed. The library has a memory footstep of
less than 380KB which can be tuned to less than 180KB if unused functionality is
omitted.
Due to its very compact size, robustness, and efficiency, SQLite is widely used in a
variety of commercial and academic applications. Examples are Android, Symbian,
Mac OS-X and Firefox.

3.1.1.2 H2 Database

H2 is lately being used in a variety of projects such as the Global Sensor Networks
project GSN.
H2 is a Java based application and can thus not be addressed easily from within
languages other than Java.
H2 is lightweight - its libraries need less than 1MB of memory, it is fast and open-
source. One of the advantages of H2 compared to SQLite is that it can be used
serverless as well as with a server process. This opens the possiblity of letting the
databases on the observers run in embedded (serverless) mode while the data gath-
ering server operates in server mode to provide easy access for applications and
users.
H2 implements security principles such as password authentication, file encryption,
and SSL/TLS. This feature is currently not needed on the WSN testbed but could
be useful in the future.

3.1.1.3 Evaluation

Both databases have been tested for the throughput of insert operations. Insert
operations are important because for the testbed it is the most used database op-
eration: the observer continuously inserts data to its database, the server gets data
from all observers and inserts it into the server database.
A defined number of rows, each containing three integer values, were inserted as
one single transaction in the databases in three consecutive runs. A test consisted
of three runs to allow speed improvements induced by Java caching. Each test was
run on a standard PC1 and the Gumstix platform. The databases were stored in
flash memory as this is the only accessible memory (besides RAM) on the Gumstix

1Quad core PC (4x2.4GHz, 3.24 GB RAM, Windows XP)



3.1 Data Storage 25

Platform PC Gumstix
Database SQLite H2 SQLite H2
Access method Bash Java Java Bash Java Java

1000 296 24 81 1110 53760 6192
2000 212 51 128 2063 108564 10774

25000 871 473 474 28413 1424423 165371

Table 3.1: Runtime of n insert statements on the database in [ms].

Platform Gumstix
Database SQLite H2

1000 1242 190
1250 1750 168
2500 1216 129
5000 883 112

Table 3.2: Runtime for insertion of 5000 samples split in blobs with n samples per blob in
[ms] using Java.

platform. Access was made through Java (H2), the Java wrapper Zentus (SQLite)
and Bash scripts (SQLite). For SQLite, the no-sync mode1 was used as this provides
higher speed. H2 ran in the embedded mode2.
As can be seen in Table 3.1, execution time increases approximately linear with the
number of inserted rows when measured on the Gumstix platform. Measured on the
PC, the execution time is sublinear. This effect is most likely due to the fact that on
the PC with its fast CPU, the execution time is dominated by the administrative
overhead of the database system (e.g. opening the database or gaining and releasing
access rights) rather than the actual insert operations whereas on the Gumstix the
insert operations and thus the file system writes dominate the execution time.

In a second test, blobs were used instead of integer values. For our application
this allows to store the incoming stream of binary measurement data from the pow-
erprofiling service in an efficient way.
The powerprofiling service generates a maximum of 5000 samples per second which
are inserted as blobs into the database. For the throughput performance test, blobs
with a specific number of float values were continuously inserted in each database.
The average over a ten second period can be seen in Table 3.2. The SQLite test
was run using Java as the access method.
From these data, the time needed per sample can be calculated according to Ta-
ble 3.3. As can be seen, H2 is about ten times faster than SQLite when the databases

1SQLite can be configured to stop operation at critical moments to check whether the processed
data has actually been written to the disk. In no-sync mode, SQLite never makes this check and
thus provides higher throughput at the cost of reduced robustness.

2If H2 runs in the embedded mode, the database is serverless and thus faster.



26 3 Implementation

Platform Gumstix
Database SQLite H2

1000 0.248 0.038
1250 0.350 0.034
2500 0.243 0.026
5000 0.177 0.022

Table 3.3: Time to insert one sample calculated from Table 3.2 in [ms]. As access method,
Java is used.

Raw data SQLite H2
size DB size Overhead DB size Overhead

3000 integers 11.72 14 19.45 416 3449.49
6000 integers 23.44 26 10.92 512 2084.30
75000 integers 292.97 311 6.15 3501 1095.00
Blob with 5000 floats 9.77 52 432.24 56 473.18

Table 3.4: Data size in [KB], overhead in [%].

are accessed using Java.

The memory requirements have been tested for both databases. Data with specific
size was inserted into the databases1 and the size of all database files was deter-
mined. The overhead was calculated as the ratio between the size of the inserted
data and the size of the database. The smaller the overhead, the more efficient the
database in terms of memory usage.
As can be seen in Table 3.4 the tested database systems behave very differently
in terms of memory usage. While they both take approximately the same amount
of memory for storing blobs, H2 is less efficient when storing relatively few inte-
ger values. Both databases scale approximately linear with H2 having a big initial
overhead.
SQLite stores all data in a single file while H2 creates three files: one each for data,
index and log file. When storing blobs, H2 creates even more files since it outsources
the blob data to external files.

3.1.1.4 Comparison and Software Decision

The database being used for our application should be small, fast, reliable, extend-
able, simple, and versatile. Reliability, simplicity, and extendability are met by both
databases, with SQLite being more versatile because it does not depend on Java as
the only access method.
According to Table 3.4, SQLite manages to store data with much less overhead

1The access methods are of no concern as the generated data is the same no matter which
language or wrapper is used.



3.1 Data Storage 27

than H2 making it more efficient in terms of memory usage.
H2 has a higher throughput compared to SQLite with the Java wrapper which
makes it the preferred database when using Java only. As the services running on
the observer will be written in C, Bash, Java and possibly other languages (e.g.
Perl) SQLite is preferred over H2 as it is more versatile and at least as fast as H2
as long as it is not used with Java. For SQLite, the memory footprint of the library
as well as the memory efficiency to store data in the database are much lower.
Moreover, SQLite provides functionality to easily access the database from a shell.
This can be useful for quick inspection of gathered data or debugging purposes.

3.1.2 Server Implementation

The server is implemented using SQLite as the database system and a standard
PC running on Windows1. The database is set up according to the database model
defined in Section 2.3.3. As SQLite does not provide automatic timestamping of
rows, triggers are defined on all tables which require automatic timestamps.
Two cron jobs are defined: one that periodically cleans up the database to free un-
used memory and keep the footprint of the database as small as possible. The other
cron job is the data collector which periodically collects data from all observers.
Both cron jobs as well as the initial setup of the database are configured and ad-
ministrated with the help of a bash script which was written for that purpose.

The data gathering script is invoked in a configurable interval. Its purpose is to
connect to all observers that are marked to participate in a certain test setup and
to gather all data pending for download on the observers. The algorithm works as
follows:

1. Select all active observers from table tbl serv observer list on the server data-
base.

2. If no active observers: stop.
Otherwise: get next active observer.

3. Select all tables on the observer that have data to fetch.

4. If no table: repeat 2.
Otherwise: get next table.

5. Select maximum keyobserver of current table on observer.

6. Select maximum keyserver of corresponding table on server.

7. Compare keys:

� keyobserver ≤ keyserver ⇒ repeat 4

1Cygwin is installed in order to use Unix programs such as SSH, Cron or Bash scripts.



28 3 Implementation

� keyobserver > keyserver ⇒ goto 8

8. Get all rows from the current table and store them in the corresponding table
on the server.

9. Delete all rows of the current table on the observer up to but excluding row
keyobserver.

10. Repeat 4.

This algorithm minimizes the number of accesses to the observer as only tables are
queried which actually have data to report. In step 9, keeping the row with the max-
imum key on the observers’ database ensures that during the next synchronisation
of the table, the maximum key can be fetched in step 5.

3.1.3 Observer Implementation

The database on every observer is implemented using SQLite. The database is
stored on an SD flash card as the database size can grow large. The structure of the
database is defined according to the database model from Section 2.3.3. As SQLite
does not provide automatic timestamping of rows, triggers are defined on all tables
which require automatic timestamps.
As on the server, a cron job is defined when initially setting up the database which
runs periodically and cleans up the database to free unused space. This is especially
important on the observer as the database size can become quite large when all
services are active and reporting to the database. After all data is fetched from the
server, the database size shrinks to almost zero before it blows up again. It is thus
good practice to clean up the database periodically to free unused memory.

3.2 GPIO Setting Service

The goal of the GPIO setting service is to be able to control the behavior of the
target node by issuing commands over wired GPIO pins of the microprocessor. One
GPIO line can be set or cleared by the observer which triggers some user defined
action on the target node.

3.2.1 Overview

With the GPIO setting service, the user can schedule an event to set or clear a
pin at a defined time in the future. The service keeps track of all scheduled events,
executes them and reports the actual execution time back to the database. If an
event cannot be executed for whatever reason, this is logged as well.
Because the setting of the pin has to be as accurate as possible, it is implemented
in a kernel module to provide best possible time accuracy. A pin setting or clearing



3.2 GPIO Setting Service 29

Kernel space User space

Service program

DB
Ringbuffer

Linked
list

API

/dev/ Database 
daemon

OS  
timer

Kernel module

Set pin

gpiosetting_list

gpiosetting_dbbuf

Figure 3.1: Overview of components of the GPIO setting service.

event is scheduled with the help of an OS timer which creates an interrupt after the
specified time. The corresponding interrupt handler sets or clears the pin, takes a
timestamp and reports to the database.
An overview of the components of the service is illustrated in Figure 3.1. The service
has three components: a kernel module for the functions with timing constraints, a
user space program for implementing the API and a database daemon in user space
which inserts the processed events into the database. All time critical functions are
implemented in the kernel module.

3.2.2 API

The API of the service follows the general service layout (see Section 2.2). There
are five API commands:

� testbed gpiosetting start : Start the service by loading the kernel module and
starting the database daemon.

� testbed gpiosetting stop: Stop the service, perform cleanup functions, stop the
database daemon and unloading the kernel module.

� testbed gpiosetting add(pin, edge, time): Schedule a new event. This API com-
mand requires three parameters:

– pin: Pin number of GPIO on Gumstix.

– edge: 0 to clear the pin, 1 to set it.



30 3 Implementation

��� ���� �������	
 ����� 
����
���
�� ��� ���������

����������������
����
������ ������������������������	 ����������������������	
�� �����

����������
����� �	

������������ �	

�	����

Figure 3.2: Program flow of kernel module after inserting a pin setting event. After removing
an event from the queue the kernel module schedules the next event if there is at least one
in the queue. Error checking is not showed in the flow chart.

– time: Absolute timevalue at which the event shall occur. Relative timeval-
ues are not accepted and have to be converted to absolute values by the
user.

� testbed gpiosetting remove(pin, edge, time): Remove a scheduled event from
the queue. The three parameters to be provided are the same as for the add-
command.

� testbed gpiosetting list : List the event queue in sorted order.

3.2.3 Kernel Module

The kernel module does the most important work for the service. At startup, it
registers two devices in /dev/: gpiosetting_list and gpiosetting_dbbuf. Both
devices are needed to transfer data from user to kernel space and vice versa. The
list device gpiosetting_list transfers IOCTL commands from the user API to
the kernel and lists the event queue from the kernel if requested by the user space
API testbed gpiosetting list. The dbbuf device gpiosetting_dbbuf is accessed by
the database daemon. The daemon reads the ringbuffer with all processed events
from the kernel module using this device and reports them to the database. When
the service stops, both devices are unregistered.
In Figure 3.2, the program flow of the kernel module after inserting a schedule for
a pin setting event is shown.
The module is in an idle state until there is at least one event registered. All events
to process are stored in a linked list, sorted by execution time. If the list is not
empty, the kernel module gets the first entry and calculates how much time is left
between the current time and the execution time. Next, the operating system timer
channel 4 of the Gumstix’ PXA270 processor is activated and set. An OS timer is
a set of registers and corresponding functionalities to provide high precision time
measurement on the hardware level. According to [26] the steps to set up an OS
timer are the following (see also Figure 3.3):



3.2 GPIO Setting Service 31���� ����� ����� ����� ����
Figure 3.3: Steps to set up an OS timer of the PXA270 processor in the Gumstix. The boxes
represent the PXA270 registers that need to be written. An x denotes a channel-specific
register.

1. Enable interrupts for the desired channel by setting the corresponding bit
in the OS Timer Interrupt Enable Register (OIER). If set, an interrupt is
generated if a match occurs between the OSMRx register and the OS timer.

2. Set the match value using the OS Timer Match Register (OSMRx) of the
channel. This is the value that is compared against the count register OSCRx.
The OSMRx register holds an absolute time value.

3. Set up the timer to compare against. The OS Match Control Register (OM-
CRx) lets the developer define against which count register to compare, what
actions should be taken after a match and which counter resolution to use.

4. The register of the OS Timer Count Register (OSCRx) increments on rising
edges of the clock which was selected to be used in the previous step.

5. If a match occurs (meaning that the OSCRx has the same value as the OSMRx
register), the corresponding bit for the channel where the match occured is
set in the OS Timer Status Register (OSSR). The interrupt handler has to
reset this bit in its routine.

The interrupt handler first checks whether the interrupt occured for channel 4. If
it did, the GPIO, which has to be set or cleared, is first put into output-mode and
then set to the appropriate value. Next, a timestamp is taken to record the exe-
cution time of the GPIO setting event. This information is stored in a struct that
holds all event data. Next, the interrupt register of the OS timer is reset and the
struct is removed from the event queue and inserted into the ringbuffer which holds
all processed events not yet fetched by the database daemon.
The insertion process has to check whether a wrap around in the ringbuffer occured
and report this to the database daemon, if appropriate. A wrap arround occurs
whenever the kernel module is much faster at inserting processed events compared
to the database daemon reporting the events to the database. Both processes update
a pointer to the next position they are going to operate on. If the kernel module
pointer overtakes the database daemon pointer, a wrap around occurs inducing a
dataloss because information that was not yet reported to the database is over-
written. In this case, an error message reporting the wrap around is generated and
reported to the database.
After inserting the event into the processed events buffer, the interrupt handler can



32 3 Implementation

safely delete the event from the event queue and schedule the next event.

The event scheduler always gets the first event from the event queue. It then checks,
whether the event was already missed for some reason. If yes, the execution time
field of the struct that holds the event is filled with zeroes to indicate a missed event.
The event is then removed from the event queue and inserted into the ringbuffer
holding the processed events before scheduling the next event.
If the event has not already been missed, the value for the OS timer match register
is calculated and the OS timer is activated. If the queue is empty, the OS timer is
deactivated and the kernel module returns into its idle state.

3.2.4 Database Daemon

The database daemon runs in user space in the background. Its purpose is to get
the list of processed events and possible error messages from the kernel module and
report this data to the corresponding tables in the database1.
Therefore the daemon gets the list of processed events from the kernel modules’ ring-
buffer over the device gpiosetting_dbbuf. The device is read in blocking mode, so
the kernel module puts the daemon to sleep as long as there is no data available on
the device. As soon as there is data, the kernel module writes it to the device and
wakes up the daemon which reads the data. The daemon itself keeps an adjustable
buffer which allows for periodic and thus more efficient writing to the database. As
soon as the buffer is full or after a timeout, the daemon starts a transaction and
writes all data from the buffer to the database. Using transactions, the daemon can
minimize the database accesses as well as the transaction time because transactions
are more efficient to perform than single insert-operations to the database.

When the service is shutting down, the daemon catches its termination signal,
flushes the buffer to the database and unregisters the device file.

1Processed events are reported to the table tbl obs gpio setting, errors of all services are logged
in table tbl obs errorlog.



Chapter 4

Service Evaluation

Software implementations need to be evaluated in order to show that they meet
their requirements. In this master thesis, the GPIO setting service (see Section 3.2)
has been implemented, tested, and finally evaluated according to its most important
requirement: the accuracy of the pin setting mechanism. It is crucial for this service
to set a pin as precisely as possible compared to the planned time of the setting
event. Two values determine the accuracy of the service:

� Offset. The offset is the amount of time the service is late or early when
setting a pin compared to the time it was planned. The constant offset can
be internally compensated.

� Variance. The variance is the variation of the offset which is induced by un-
predictable factors. The variance cannot be compensated as it is not known
before the execution time of an event.

Offset and variance of the GPIO setting service are influenced by the internal offset
of the observer which performs the pin setting action. Whenever the service sets an
OS timer on the observer, no guarantee can be given regarding the timer timeout
- the operating system only guarantees that the interrupt is not triggered before
the planned time. This is mainly because there are possibly other interrupts with
higher priority to be handled by the CPU before handling the OS timer interrupt.
Moreover, once the OS timer interrupt is handled, the pin cannot immediately be
set as there is a certain amount of overhead in the interrupt handler.
The clock of the observer does not tick precisely but has a certain skew due to inac-
curacies of the oscillator that drives the clock. This skew is in the range of ±50ppm
for the Gumstix [22]. If the mean skew is positive or negative, the clock will drift,
meaning that it is either slower or faster compared to real time. This effect can
partly be compensated by using a time synchronization protocol to minimize the
drift. For this purpose chrony was used and, consequently, had to be evaluated in
order to determine its influence on the internal accuracy of the observers as well as
on the accuracy between the observers, as they have to have a common timebase
in order to deliver inter-observer-comparable measurement data.



34 4 Service Evaluation

�������� ���	�


�������� ��	
���
 ��
�

��
	������
�����
��� ��
	��� ��
�

��
	������
��
��
 ��� �����
���

��

����
�
������� ����
�


�
������� ����
�
�
��
�����	��������

Figure 4.1: Instrumentation of the testcase. Offset measurements are labeled with ∆t, vari-
ance measurements with ∆f .

Several measurements were conducted on both the observer and the target node to
determine value and impact of offset and variance to the accuracy of the service.
As the observer as well as the target node are embedded systems, measurements
can only take place at certain physical points of the system which are suitable for
instrumenting. The measurements that were performed can be seen in Figure 4.1.

The offset was measured on the observer by evaluating the contents of the ob-
servers database which allowed for calculation of the offset between the time an
event was planned and the time it was actually executed.

The variance was measured on the observer and the target node. As it cannot
be directly obtained, it was measured using a frequency generator1 and frequency
counter2 respectively. On the target node, the frequency generator was used to pro-
duce periodic signal changes which can be interpreted as periodic pin changes. The
target node timestamped the detected pin changes. From these timestamps a fre-
quency could be reconstructed and the error of the frequency between the generator
and the target node could be determined. On the observer, a series of periodic pin
changes was scheduled and measured with the frequency counter. From the result
of the frequency counter measurement and the known interval between pin changes,
the frequency error could be calculated.
A measured positive or negative mean frequency error means that the clock of the
device under test is not running accurately compared to real time and therefore a
drift is resulting. This can be better explained as follows: a low-frequency signal
running in the same space as a high-frequency signal leads to a drift between the
edges of both signals as can be seen in Figure 4.2. As the offset between the sig-
nals grows over time, the result shown in Table 4.1 imposes a drift in the target’s
response time to a pin setting.

1HP 33120A Function Generator / Arbitrary Waveform Generator
2Agilent 53131A Universal Frequency Counter



4.1 Pin Setting Variance 35

����������
Figure 4.2: Drift of signals with different frequencies. The offset between the edges of the
signals grows over time.

Mean error [mHz] -0.010
Standard deviation [mHz] 0.017

Table 4.1: Mean error of measured frequency when detecting pin changes on target node
induced by the function generator at 0.5Hz. The mean error is the average error of the
measured frequency compared to the induced frequency.

All measurements on the observer were made under no load of the CPU as well
as under full load as this can cause side effects that need to be addressed. The
observer CPU was loaded by running an SSH key generation with a large key size
which brings the CPU to full load but does not produce any interrupts.

The variance measurement on the target and on the observer are discussed in Sec-
tion 4.1. The evaluation of the offset on the observer is handled in Section 4.2.

4.1 Pin Setting Variance

The variance of the pin setting was measured at two positions: on the observer
when setting pins and on the target node when detecting pin changes.

4.1.1 Target Node Variance

For measuring the variance of the target node, periodic events at 0.5Hz were gener-
ated using the frequency generator. The generated frequency was applied to GPIO
pin 13 of a TinyNode using breakout wires and a BNC cable. The TinyNode was set
up to sense state changes on pin 13, timestamp the events and report them to the
observer over the UART interface using the Java SerialForwarder. From the time-
stamps the frequency of the pin changes could then be calculated and compared to
the frequency set with the generator. The results of the target node measurements
can be seen in Table 4.1. A small negative error of the frequency is measured. This
means the frequency is lower and hence the period is longer compared to the in-
duced frequency. Thus, the target nodes’ clock is running slower than it is supposed
to.
The standard deviation of the mean error is low which leads to the conclusion that



36 4 Service Evaluation

No Load Full Load
Mean error
[mHz]

Standard devi-
ation [mHz]

Mean error
[mHz]

Standard devi-
ation [mHz]

C-Program -0.013 0.003 -7.326 9.054
Kernel Module -0.013 0.000 -0.009 0.001

Table 4.2: Mean error of generated frequency on observer at 0.5Hz measured with the fre-
quency counter. The userspace C-program runs with the default scheduling priority. The
kernel module runs with time synchronization turned off to avoid disturbances due to clock
adjustments.

No Load Full Load
Mean error
[mHz]

Standard devi-
ation [mHz]

Mean error
[mHz]

Standard devi-
ation [mHz]

C-Program -5.496 122 -45076 284
Kernel Module -1.500 3.635 -1.501 4.681

Table 4.3: Mean error of generated frequency on observer at 50Hz measured with the fre-
quency counter. The userspace C-program runs with the default scheduling priority. The
kernel module runs with time synchronization turned off to avoid disturbances due to clock
adjustments.

the mean error is almost constant.
In addition to the drift there is an offset in the response time induced by the time
needed to invoke the interrupt handler and to timestamp the event in TinyOS. Ac-
cording to [27] a context switch to an interrupt handler needs 20 cycles in TinyOS
which corresponds to 2.5µs on the TinyNodes’ MCU. This value represents a lower
bound for the offset which will be larger the more load there is on the MCU.

4.1.2 Observer Variance

The variance of the pin setting on the observer was measured using the frequency
counter and a sequence of pin setting events at different frequencies (0.5Hz and
50Hz). GPIO pin 75 was used in the observer’s CPU for this purpose and was
connected to the frequency counter using breakout wires and a BNC cable. The
frequency counter was set for DC coupling with a 100kHz filter and triggering at
1.5V on the positive slope.
The results of the variance tests on the observer for different frequencies can be seen
in Tables 4.2 and 4.3. With the CPU under no load and a low frequency of 0.5Hz,
the mean error is for the kernel module as well as for the userspace C-program small
with a small standard deviation.
For tests under full load of the CPU at 0.5Hz, one can see the limits in the through-
put of the userspace C-program: the CPU is busy all the time and as the C-program
has the same scheduling priority as the SSH keygeneration program used for putting
the CPU to full load, the C-program suffers from large delays as it does not always



4.2 Pin Setting Offset 37

get the CPU when it needs it. This effect can also be observed when measuring at
higher frequencies (see Table 4.3) where the userspace module becomes unusable.
These test results suggest using a kernel module for the pin setting service, as code
in the kernel space runs in interrupt context and can thus preempt userspace code.
Another method to overcome this problem could be to increase the scheduling prior-
ity of the userspace C-program but one would risk starving other processes running
on the CPU by assigning a high priority to the program. This is not likely to happen
with a kernel module as only the time critical part of the module (the pin setting)
runs in interrupt context whereas the rest of the kernel module is preemptable.
Nevertheless the kernel module can also starve other processes if there is a high
number of pin setting interrupts to handle.
The standard deviation of the kernel module is good even with high frequencies
and under full load of the CPU as can be seen in Table 4.3. The mean error of
-1.501mHz corresponds to an error in the time domain of about 0.6µs which is very
small.

4.2 Pin Setting Offset

In Section 4.1 only the drift and standard deviation of the pin setting signal were
tested and discussed. These measurements do not allow for analysis of the offset
induced by the processor to switch to the interrupt handler which sets the pin
and actually does the setting. This offset is inevitable and thus cannot be reduced.
However, as the offset is known before execution time it can be eliminated in the
software by subtracting it when scheduling events for the OS timer.

4.2.1 Test Setup

The test is done using software measurements. A number of pin setting events are
scheduled with different intervals between the events on a CPU under no load as
well as on a CPU under full load. To ease comparisons between the different tests,
the same frequencies as in the other tests (0.5Hz, 50Hz, 100Hz) were used. These
frequencies correspond to intervals of 1s, 10ms, and 5ms between the events.
The interrupt handler did not need any modifications as directly after the pin setting
a timestamp is taken which is reported to the database on the observer. This makes
it easy to analyse the offset of the pin setting as one can compare the planned time
to the execution time which are both stored in table tbl obs gpio setting in the
database (see Section 2.3.3).

4.2.2 Test Results

The testresults for the measured frequencies and the different CPU loads can be
seen in Figure 4.3. The offset is always positive as the OS timer guarantees to trigger
the interrupt at earliest at the planned time.
The offset itself is explained by the time the processor needs to possibly wait for



38 4 Service Evaluation

�����
������
����

������� ��		�����
����������	

�	�
���
����
�

Figure 4.3: Offset of pin setting on observer. The results are derived from averaging the off-
set time of 6000 pin changes. No time synchronization was active during the measurement.

other interrupts to finish, to perform the context switch to the interrupt handler
(6 cycles≈33ns according to [26]), and to execute the interrupt handler code to the
point where the pin is set and afterwards the timestamp is taken (approximately
14µs). As the time needed for the context switch is negligible, the deterministic
part of the offset can be determined as approximately 14µs.
The source for the remaining part of the offset time could not be determined and
can have several causes. One is the fact that the interrupt handler of the OS timer
has to wait if another interrupt with a higher priority is running its interrupt
handler at the time the OS timer interrupt occurs. This can also be a possible
explanation for the increasing standard deviation for high frequencies: the higher
the frequency (and hence the shorter the interval between two occurrencies of the
OS timer interrupt) the higher the probability that the OS timer interrupt triggers
when another interrupt handler is already running.
Another factor that can prolong the offset time is the imprecision of the 13MHz
clock on the observer. The 13MHz clock has a specified frequency tolerance of
±50ppm [22]. The ARM core that was used for the testing had a frequency error
of -26.7ppm (±0.3ppm). The frequency error of the observer was determined by
examining the logfiles of the time synchronization tool chrony which measures the
frequency error of the clock. An error of -26.7ppm corresponds to an error of 26.7µs
per second. This means that even though the frequency error lies in the limits of the
specification, the clock which is used to schedule the pin setting events is running
slow compared to real time. This leads to an error in the timestamping mechanism
of the service that becomes larger the farther in the future a scheduled event lies
(the frequency error sums up over time). This effect explains the decreasing offset
values for increasing event frequencies in Figure 4.3.



4.3 Time Synchronization Effects 39

4.3 Time Synchronization Effects

Time synchronization tools compensate for the clock drift induced by the frequency
error of the CPU clock. This is done by slowing down or speeding up the logical
clock.
When running tests for the pin setting accuracy and pin setting processing time
evaluations, timelines of several measurements showed peaks, as can be seen in Fig-
ure 4.4(a) or level changes, as in Figure 4.4(c) about three seconds after the start
of the measurement. When turning off the time synchronization tool chrony which
runs on the observer, these level changes disappeared. It is thus evident that chrony
has an influence on the execution time of events.
As chrony is based on NTP it adjusts the clocks in periodic intervals of four sec-
onds by switching to one of two possible correction frequencies of the local clock.
This can be also seen in the logfiles of chrony which are updated every 64 seconds.
Every 60 seconds there is a synchronization of chrony with the time server followed
by a four second adjustment interval. The correction frequencies are achieved by
swallowing a specific number of oscillator pulses in the clock prescaler [23].
In Figure 4.4(a) the peak is high for about four seconds followed by a mean er-
ror that is almost zero. This is most likely an adjustment interval of chrony that
was recorded and influenced the measurement. As after the adjustment interval the
clock is running accurate, the mean error drops to almost zero. The level change
in Figure 4.4(c) lasts for more than four seconds. This could be explained by a
big offset of chrony where after the first adjustment interval another adjustment
interval needed to be performed in order to correct the clock drift.

Even though the time synchronization mechanism accounts partly for inconsistent
timestamps on the observer, it is an integral part of the testbed as it is needed to
synchronize all observers which have to have a common timebase in order to deliver
inter-observer-comparable timestamps. In the next section, the timing behavior of
several observers against each other is analyzed.

4.4 Synchronicity of Observers

All evaluations in the previous sections were carried out on one single observer-
target-subsystem and could therefore only capture the different internal errors of
the observer, the target node and their interconnection. As in the testbed numerous
observers will operate together, they need to have a common timebase which allows
for synchronous execution of commands such as GPIO pin settings. Furthermore,
the timestamps generated on different observers should be comparable and thus
require synchronized clocks on the observers as well.



40 4 Service Evaluation

T
im

esync
N

o
T

im
esync

������ ����� ����� ����� ����� ����� ����� ����������������	�
������������������������	��
����
� � � � � � � � � � 	

��������
(a

)
0
.5

H
z

������ ������ ������ ������ ������ ������ ������ ������ ����������	���
�������������������	�����
����������
� � � � � � � � � � 	

��������
(b

)
0
.5

H
z

������� ������� ������� ����� ������ ������ ������ ������������	
��
� � � � � � � � � � 	

��������
(c)

5
0

H
z

������� ������� ������� ������ ����� ����� ������ ������������	
��
� � � � � � � � � � 	

��������
(d

)
5
0

H
z

F
igure

4.4:
Influence

of
tim

e
synchronization

on
evaluation

experim
ents.

T
he

charts
represent

typicalm
easurem

ent
results

for
pin

setting
accuracy

testruns
w

ith
and

w
ithout

the
tim

e
synchronization

tool
chrony

running.



4.4 Synchronicity of Observers 41

������������������
�������	 ���
���	 �������	 �������	 �������� ����	�
� ��������

���������	���

�	���
�

����
Figure 4.5: Time synchronization of chrony at system startup. Chrony connects to the server
once minute and measures its offset to the time server. From the offset, the clock drift
(frequency error) can be calculated and the clock can be adjusted accordingly. As can be
seen, chrony needs around 14 minutes to stabilize.

4.4.1 Test Setup

Two observers with identical configuration have been compared against each other.
Eventhough there will be a potentially high number of observers operating at the
same time in the testbed, it is sufficient to evaluate the synchronicity of two ob-
servers as all observers on the testbed will be synchronized over the same server
and not amongst each other. This implies that the observers are independent of
each other and thus the average error between two observers is constant no matter
how many observers are operating in the testbed.
As timing server, a standard PC was used which synchronized itself using three
time synchronization servers. This server was then used as a local time synchro-
nization server for the attached observers. In order to minimize the network latency,
the server and all observers were attached to the same network switch. Before each
measurement, the observers were running idle for at least 30 minutes to let their
time synchronization settle down to steady state.

Two different measurements were carried out: one to measure the time offset when
multiple observers are scheduled to set a GPIO pin at the same time and another
to measure the time offset when monitoring a GPIO pin at multiple observers.
For measuring the time offset when multiple observers are scheduled to set a GPIO
pin at the same time, the two Gumstix computers at hand were connected to an
oscilloscope1. Both observers were scheduled to execute 1000 pin setting events ac-
cording to the same schedule. The trace of the pins was then recorded with the
oscilloscope and the offset between the edges of the two signals was calculated from
this data.
In the second set of measurements, the offset of the timestamps when monitoring

1Tektronix MSO 4054 Mixed Signal Oscilloscope



42 4 Service Evaluation

No Load Full Load
Mean offset [µs] 12 17
Standard deviation [µs] 9 4

Table 4.4: Time difference between two observers when setting pins at synchronized time
intervals.

No Load Full Load
Mean offset [µs] 14 156
Standard deviation [µs] 47 38

Table 4.5: Time difference between two observers when monitoring pins.

the same pin was measured. For this test, the frequency generator was connected to
two observers. Using the generator, a sequence of 1000 pin changes was triggered on
both observers at the same time. The observers were set up to detect the changes
of the pins using the gpio-event kernel module [28] and output the generated time-
stamps. Analyzing these timestamps allowed for comparing the offset of the time
synchronization between the observers when detecting events.
Both test scenarios were conducted under full load as well as with an idle CPU on
both observers.

4.4.2 Test Results

The results of the testruns with the oscilloscope can be seen in Table 4.4. The mean
offset between the observers is of about the same magnitude for both an idle CPU
and under full load. This makes sense, as under full load both observers are busy
and will serve the pin change interrupt at about the same time, as this measurement
does not take the internal offset of the observers into account due to their CPU load.

The results of the testruns for pin monitoring synchronicity are listed in Table 4.5.
There is a difference in the offset for an idle CPU compared to full load of a factor
10. This can be explained by the mechanism that was used for measuring the offset:
each pin change triggers an interrupt in whose interrupt handler the timestamp is
generated. As according to [26] interrupts of GPIO lines have low priority, there is
a high chance that under full load the CPU is handling other interrupts with higher
priority when a GPIO interrupt arrives. This effect cannot be seen in the results for
the GPIO setting tests (see Table 4.4) because there the pin is set in the interrupt
handler of an OS timer which has a very high priority.

4.5 Conclusions

The most important factor when evaluating the GPIO setting service is the accu-
racy of the pin setting which dictates an acceptable error for the service of at most



4.5 Conclusions 43

Mean error [mHz] Standard deviation [mHz]
Observer -1.501 4.681
Target -0.010 0.017
Total -1.511 4.681

Table 4.6: Worst case variance of GPIO setting service. The total standard deviation is
calculated as σ =

√
4.6812 + 0.0172 as both variables are independent and normally dis-

tributed.

500µs.
The error of the service can be distinguished into two factors: the offset and the
variance of the error. The offset can be partly compensated by the service software
whereas the variance is stochastic and thus cannot be compensated.
The maximum offset measured on the system was 53µs (see Figure 4.3). This is far
below the requirements and thus of no concern.
The variance of the pin setting on both the target node and the observer are in
the range between microhertz and a few millihertz. Summing up the worst case
variances of the observer and the target (see Sections 4.1.2 and 4.1.1), according to
Table 4.6 one gets a worst case variance of -1.511mHz with a standard deviation
of 4.681mHz. The variance corresponds to an error in the period of about 0.6µs (if
calculated for a measurement frequency of 50Hz). This value as well as the offset is
far below the requirement.
Summing up, it can be stated that the evaluated observer fulfills the requirements
as the variance as well as the offset are far below the requirement.

The evaluation of the time synchronization between two observers shows that the
offset between two arbitrary observers is in the range of 150µs or less (see Sec-
tion 4.4.2). As the observers will not be under full load all the time, generally there
will be a clock difference of less than 20µs between them. This time synchronization
precision is within the limits accepted for the testbed. Further precision could be
achieved if necessary by tuning the real time clock (RTC) on the observers.





Chapter 5

Conclusion and Future Work

All software implemented in this thesis - the GPIO setting service, the time synchro-
nization with NTP/chrony and the server with the testbed database - were tested,
evaluated and finally proved to be well within the requirements. With the GPIO
setting service, events can be set accurately with less than 500µs time difference.
The local time of each observer is accurate and creates a common timebase for all
observers as a side effect.
The accuracy of all so far implemented parts of the observer proves that the ap-
proach of a testbed with a Gumstix as a strong observer is the right way to go.
Beyond this master thesis the completion of the testbed will require the dedication
of more hardware (observers, target-observer-interface boards, server) and man-
power to complete all services and bring the testbed to a state which allows for the
start of productive use of the testbed.

Some design and implementation work remains to be done:

� Implementation of remaining services.

� Upgrade of the backbone testbed to run on wireless ethernet.

� Design and implementation of testbed server which will act as time synchro-
nization server, database host, data analyze and data mining server.

� Enhancement of the number of supported target platforms.

� Evaluation of scalability.

� Partitioning of the testbed into subsystems if needed.

� User and access management.

� Security concept and implementation to protect observer from external threats
such as: attacks over ethernet, theft ob testbed parts if deployed outside, . . .

Moreover, long-term tests with numerous observers involved would allow for further
evaluation of the testbed and the implemented services.





Bibliography

[1] Matthias Woehrle. Proposal for Master Thesis: Wireless Sensor network
Testbed 2.0: A new service oriented architecture. TIK, ETH Zurich, September
2008.

[2] Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer. Dozer: ultra-
low power data gathering in sensor networks. In IPSN ’07: Proceedings of
the 6th international conference on Information processing in sensor networks,
pages 450–459, New York, NY, USA, 2007. ACM.

[3] SOSUS, sound surveillance system. http://www.globalsecurity.org/
intell/systems/sosus.htm. [Online; accessed March 23, 2009].

[4] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John
Anderson. Wireless sensor networks for habitat monitoring. In WSNA ’02:
Proceedings of the 1st ACM international workshop on Wireless sensor net-
works and applications, pages 88–97, New York, NY, USA, 2002. ACM.

[5] Igor Talzi, Andreas Hasler, Stephan Gruber, and Christian Tschudin. Per-
maSense: investigating permafrost with a WSN in the Swiss Alps. In EmNets
’07: Proceedings of the 4th workshop on Embedded networked sensors, pages
8–12, New York, NY, USA, 2007. ACM.

[6] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner,
Kevin Tu, Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and
Wei Hong. A macroscope in the redwoods. In SenSys ’05: Proceedings of the 3rd
international conference on Embedded networked sensor systems, pages 51–63,
New York, NY, USA, 2005. ACM.

[7] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes: Experiences
from a pilot sensor network deployment in precision agriculture. In Proceed-
ings of the 14th International Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS), April 2006.

[8] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and Matt
Welsh. Fidelity and yield in a volcano monitoring sensor network. In OSDI
’06: Proceedings of the 7th symposium on Operating systems design and imple-
mentation, pages 381–396, Berkeley, CA, USA, 2006. USENIX Association.

http://www.globalsecurity.org/intell/systems/sosus.htm
http://www.globalsecurity.org/intell/systems/sosus.htm


48 Bibliography

[9] H. Baldus, K. Klabunde, and G. Muesch. Reliable set-up of medical body-
sensor networks. In Proceedings of EWSN 2004: European Conference on
Wireless Sensor Networks, 2004.

[10] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Aru-
mugam, M. Nesterenko, A. Vora, and M. Miyashita. A line in the sand: a
wireless sensor network for target detection, classification, and tracking. Com-
put. Netw., 46(5):605–634, 2004.

[11] Ivan Stoianov, Lama Nachman, Sam Madden, and Timur Tokmouline.
PIPENET: A wireless sensor network for pipeline monitoring. In IPSN ’07:
Proceedings of the 6th international conference on Information processing in
sensor networks, pages 264–273, New York, NY, USA, 2007. ACM.

[12] Kay Römer and Friedemann Mattern. The design space of wireless sensor
networks. Wireless Communications, IEEE, 11(6):54–61, December 2004.

[13] ns-2. http://nsnam.isi.edu/nsnam/index.php. [Online; accessed October
21, 2008].

[14] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: a library for par-
allel simulation of large-scale wireless networks. In PADS ’98: Proceedings
of the twelfth workshop on parallel and distributed simulation, pages 154–161,
Washington, DC, USA, 1998. IEEE Computer Society.

[15] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: accurate
and scalable simulation of entire TinyOS applications. In SenSys ’03: Proceed-
ings of the 1st international conference on embedded networked sensor systems,
pages 126–137, New York, NY, USA, 2003. ACM.

[16] Matthias Dyer, Jan Beutel, Thomas Kalt, Patrice Oehen, Lothar Thiele, Kevin
Martin, and Philipp Blum. Deployment support network - a toolkit for the de-
velopment of WSNs. In EWSN ’07: Proceedings of the 4th European Workshop
on Sensor Networks, pages 195–211. Springer, 2007.

[17] Geoffrey Werner-Allen, Patrick Swieskowski, and Matt Welsh. MoteLab: a
wireless sensor network testbed. In IPSN ’05: Proceedings of the 4th inter-
national symposium on information processing in sensor networks, page 68,
Piscataway, NJ, USA, 2005. IEEE Press.

[18] Vlado Handziski, Andreas Köpke, Andreas Willig, and Adam Wolisz. TWIST:
a scalable and reconfigurable testbed for wireless indoor experiments with sen-
sor networks. In REALMAN ’06: Proceedings of the 2nd international workshop
on multi-hop ad hoc networks: from theory to reality, pages 63–70, New York,
NY, USA, 2006. ACM.

http://nsnam.isi.edu/nsnam/index.php


Bibliography 49

[19] Emre Ertin, Anish Arora, Rajiv Ramnath, Vinayak Naik, Sandip Bapat, Vinod
Kulathumani, Mukundan Sridharan, Hongwei Zhang, Hui Cao, and Mikhail
Nesterenko. Kansei: a testbed for sensing at scale. In IPSN ’06: Proceedings of
the 5th international conference on Information processing in sensor networks,
pages 399–406, New York, NY, USA, 2006. ACM.

[20] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer, Frank Siege-
mund, and Lothar Thiele. Prototyping wireless sensor network applications
with BTnodes. In 1st European Workshop on Wireless Sensor Networks
(EWSN 2004), pages 323–338, January 2004.

[21] I. Haratcherev, G. Halkes, T. Parker, O. Visser, and K. Langendoen. Power-
bench: A scalable testbed infrastructure for benchmarking power consumption.
In Int. Workshop on Sensor Network Engineering (IWSNE), 2008.

[22] Intel Corporation. Intel®PXA270 Processor. Electrical, Mechanical, and
Thermal Specification, April 2005.

[23] David Mills. Network Time Protocol (Version 3) Specification, Implementation.
RFC Editor, United States, 1992.

[24] Matthias Woehrle. Power testing project, TIK, ETH Zurich.

[25] Niclas Finne, Joakim Eriksson, Nicolas Tsiftes, Thiemo Voigt, Adam Dunkels,
and Fredrik Österlind. Sensornet checkpointing: enabling repeatability in
testbeds and realism in simulations. In Proceedings of EWSN 2009: 6th Euro-
pean Conference on Wireless Sensor Networks, Cork, Ireland, 2009.

[26] Intel Corporation. Intel®PXA27x Processor Family Developer’s Manual, April
2004.

[27] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and
Kristofer Pister. System architecture directions for networked sensors. In
ASPLOS-IX: Proceedings of the ninth international conference on architec-
tural support for programming languages and operating systems, pages 93–104,
New York, NY, USA, 2000. ACM.

[28] Gumstix GPIO event driver. http://docwiki.gumstix.org/GPIO_event.
[Online; accessed March 27, 2009].

http://docwiki.gumstix.org/GPIO_event




Appendix A

Database Schematics





Appendix B

Task Description



Computer Engineering and Networks Lab (TIK)

Fall Term 2008

MASTER THESIS

for
Christoph Walser

Supervisor: Matthias Woehrle
Co-Supervisor: Andreas Meier

Start date: 29. September 2008
End date: 7. April 2009

Wireless Sensor Network Testbed 2.0: A new service oriented

architecture

Introduction

Wireless Sensor Network (WSN) nodes are small battery-powered platforms usually equipped with a
micro controller, a radio module and a sensor. These nodes can, for instance, be deployed in a house
to measure data (i.e. temperature) and forward this data to a base station. However, the base station
is usually not in communication range with all sensor nodes. This requires that the sensor nodes build
an ad-hoc network to forward the data over multiple hops, as illustrated in Figure 1. According to a
vision of Stankovic et al. [1], this enables a “seamless integration of computing with the physical world
via sensors and actuators”.

The battery-powered nodes are not only constrained by the very limited power supply (battery) but
also in processing power, memory size and communication possibilities to name a few. These limitations
result in various difficulties when implementing a WSN application. For instance, an optimized MAC

Sensor Node
Sink Node

Figure 1: Schematic of a wireless sensor network (WSN): There is usually a dedicated (sink) node
acquiring the sensor data gathered by the sensor nodes. Not all sensor nodes are in direct communication
range with the node, requiring them to form a multi-hop ad-hoc network.

54 B Task Description



protocol is required to duty cycle the node’s radio, whereas the routing protocol has to deal with the
very limited memory and processing capabilities. Especially the combination of low-power operation and
wireless communication seems to be a crux for the robustness and reliability of WSNs. This combination
results in unpredictable communication channels (links) between the nodes due to reasons of interference
and fading. Various research groups analyzed this behavior [2, 3] and showed that the quality of different
links varies greatly and that some links show a very unpredictable and not deterministic behavior.

In order to arrive at a functioning system at deployment time, several test platforms have been proposed
such as simulators [4, 5], emulators [6] or various testbeds [7, 8, 9]. While other test platforms abstract
away from the intricacies of the hardware, a testbed provides code execution on real hardware typically
placed in an environment which closely resembles the deployment region.

Figure 2: The target nodes are connected to the node of the ‘Deployment Support Network’ (DSN) with a
short wire. This secondary (wireless) network provides a flexible access to the target nodes, in particular
it allows updating the application code, logging data from and sending commands to the targets.

Testbeds are used for different kinds of test:

� Integration testing, to check whether the application adheres to the specification,

� Performance testing, to check whether the application’s performance is acceptable under differing
environmental conditions,

� Regression testing, to check wether previously found problems do not exist in newer software ver-
sions,

� Stress testing, to determine under which deviating environmental conditions the system may fail,

� etc.

While current testbeds have several features, which allow for superior testing than on other platforms,
they often lack features indispensable for general testing tasks: tight synchronization, reproducibility
among others.

Problem Definition

The main goal of this thesis is to design, evaluate and analyze a service oriented testbed architecture
based on a Gumstix Verdex [10] platform. The Gumstix platform includes a powerful processor and the
possibility to connect via ethernet or WLAN to the back-end architecture.

In order to reach this goal, the project should proceed according the following steps:

55



1. The student should write a project plan and identify its milestones (thematic and time wise). In
particular there should be enough room for the final presentation and the report.

2. The student should study related work in the area of WSNs, focusing on testbeds [7, 8, 9] and
testing [11, 12, 13] and WSN development and its intricacies [14, 15, 16]. The student should also
look out for further related work in this area. The results of this literature research should be
written down as a first chapter of the report.

3. The first task is to collect requirements for distributed sensor node testing and present them in a
concise and detailed manner. The Gumstix platform is in turn evaluated based on these criteria on
its applicability in WSN testing.

4. The second task is designing and implementing a resource-efficient logging utility for the sensor node
itself with minimal probing effect. Staring point for this work is a previous semester thesis that
presents a general overview and interfaces as well as the work on EnviroLog [17] and NodeMD [18].
An evaluation of buffer size versus log size and log frequency versus local logging reliability should
be performed based on several selected testcases.

5. The third task is to implement a method for programming a node from the Gumstix module
with the possibility to retrieve and apply RAM state via the bootlader. Possible issues are that the
bootloader also resides in RAM and may override program state, the requirement of idle peripherals
and the initialization of peripherals before applying a RAM image.

6. The fourth task is data collection and synchronization on the observer. For once a a method for
transferring information from and to the Gumstix module from a local development host as with
the DSN Logger and time synchronization of the observer using NTP or other protocols such as
proposed in [19].

7. The last task is to apply the tools provided on real test, tests for the PermaSense [20] and the
Harvester [21] project using the tools and mechanisms provided above.

8. This is the set of tasks that must be accomplished. Further work is performed based on preferences
and strengths of the student.

Organization

� Duration of the Work:
This Master Thesis starts 29. September 2009 and has to be finished no later than 30. April 2009.

� Project Plan:
A project plan with its milestones is held and updated continuously. Unforeseen difficulties that
change the project plan have to be documented and should be discussed with the supervisors.

� Weekly Meetings/Reports:
In regular (weekly) meetings with the supervisors, the current state of the work, potential difficulties
as well as future directions are discussed. The day before the weekly meeting a brief status report
should be sent to the supervisors commenting on these issues, in order to allow an adequate meeting
preparation for the student and the supervisors.

� Research Journal:
The work’s progress is written down in a research journal that is handed in to the supervisor at the
end of the project.

� Progress Reports:
Every Month a short report of approximately 5 pages summarizes the progress, status and next
steps for the thesis.

56 B Task Description



� Beginners Presentation:
Approximately two to three weeks after the start you will shortly present the objectives of the work
as well as some background on the topic. The presentation should be no longer than 5 minutes and
consist of maximally two slides.

� Final Presentation:
By the end of the project, you will present the achieved result. The presentation should not exceed
20 minutes.

� Documentation:
At the end of the project, no later than 24. April 2009, you will have to hand in a written report.
Together with the system implementation/software this report is the main outcome of the project.
Document your work accurately. Additionally make sure to comment your code extensively, allowing
a follow-up project.

� Evaluation of the work:
The criteria for grading the work are described in [22].

� Finishing up:
The required resources should be cleaned up and handed back in.

References

[1] J. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and obligations for physical com-
puting systems.,” IEEE Computer, vol. 38, no. 11, pp. 23–31, 2005.

[2] J. Zhao and R. Govindan, “Understanding packet delivery performance in dense wireless sensor
networks,” in First Int’l Workshop on Embedded Software (EMSOFT 2001), pp. 1–13, 2003.

[3] N. Reijers, G. Halkes, and K. Langendoen, “Link Layer Measurements in Sensor Networks,” in Proc.
1st Int’l Conf. on Mobile Ad-hoc and Sensor Systems (MASS ’04), Oct. 2004.

[4] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and scalable simulation of entire
TinyOS applications,” in Proc. 1st ACM Conf. Embedded Networked Sensor Systems (SenSys 2003),
pp. 126–137, Nov. 2003.

[5] L. Girod, N. Ramanathan, J. Elson, T. Stathopoulos, M. Lukac, and D. Estrin, “Emstar: A software
environment for developing and deploying heterogeneous sensor-actuator networks,” ACM Trans.
Sen. Netw., vol. 3, no. 3, p. 13, 2007.

[6] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network simulation with precise
timing,” in Proc. 4th Int’l Conf. Information Processing Sensor Networks (IPSN ’05), p. 67, 2005.

[7] G. Werner-Allen, P. Swieskowski, and M. Welsh, “MoteLab: A wireless sensor network testbed,” in
Proc. 4th Int’l Conf. Information Processing Sensor Networks (IPSN ’05), pp. 483–488, Apr. 2005.

[8] V. Handziski, A. Koepke, A. Willig, and A. Wolisz, “Twist: a scalable and reconfigurable testbed for
wireless indoor experiments with sensor networks,” in Proc. 2nd international workshop on Multi-
hop ad hoc networks: from theory to reality (REALMAN ’06), (New York, NY, USA), pp. 63–70,
ACM Press, 2006.

[9] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen, K. Martin, and P. Blum, “Deployment support
network - a toolkit for the development of WSNs,” in Proc. 4th European Workshop on Sensor
Networks (EWSN 2007), pp. 195–211, 2007.

[10] gumstix inc., “gumstix - dream, design, deliver,” September 2008.

[11] Rincon Research Corporation, “Tinyos 2.x automated unit testing / tunit.”
http://www.lavalampmotemasters.com/, May 2008.

57



[12] M. Woehrle, C. Plessl, J. Beutel, and L. Thiele, “Increasing the reliability of wireless sensor networks
with a distributed testing framework,” in Proc. 4th IEEE Workshop on Embedded Networked Sensors
(EmNetS-IV), pp. 93–97, ACM, 2007.

[13] M. Woehrle, J. Beutel, and L. Thiele, “Wireless sensor networks testing and validation,” in Handbook
of Embedded Systems, To appear.

[14] P. Levis, “Tinyos programming,” June 2006.

[15] J. Choi, J. Lee, M. Wachs, and P. Levis, “Opening the sensornet black box,” Tech. Rep. SING-06-03,
Stanford Information Networks Group, Stanford University, CA, 2006.

[16] K. Langendoen, A. Baggio, and O. Visser, “Murphy loves potatoes: Experiences from a pilot sensor
network deployment in precision agriculture,” in Proc. 20th Int’l Parallel and Distributed Processing
Symposium (IPDPS 2006), pp. 8–15, 2006.

[17] L. Luo, T. He, G. Zhou, L. Gu, T. F. Abdelzaher, and J. A. Stankovic, “Achieving repeatability
of asynchronous events in wireless sensor networks with envirolog,” in INFOCOM 2006. 25th IEEE
International Conference on Computer Communications. Proceedings, pp. 1–14, Apr. 2006.

[18] V. Krunic, E. Trumpler, and R. Han, “Nodemd: diagnosing node-level faults in remote wireless
sensor systems,” in MobiSys ’07: Proceedings of the 5th international conference on Mobile systems,
applications and services, (New York, NY, USA), pp. 43–56, ACM, 2007.

[19] P. Blum, Guaranteed Time Synchronization in Wireless and Ad Hoc Networks. PhD thesis, Dept.
Information Technology and Electrical Engineering, ETH Zürich, Switzerland, Nov. 2004.

[20] SwissExperiment, “Permasense:home - swissexperiment,” September 2008.

[21] Computer Engineering and Networks Lab - ETH Zürich, “Harvester in tinyos 2 contrib,” 2008.

[22] TIK, “Notengebung bei Studien- und Diplomarbeiten.” Computer Engineering and Networks Lab,
ETH Zürich, Switzerland, May 1998.

58 B Task Description



Appendix C

Work Schedule



60 C Work Schedule



 
Statement regarding plagiarism when submitting written work at ETH Zurich  
 
 
 
 
 
By signing this statement, I affirm that I have read the information notice on plagiarism, 
independently produced this paper, and adhered to the general practice of source  
citation in this subject-area. 
 
 
Information notice on plagiarism:  
http://www.ethz.ch/students/semester/plagiarism_s_en.pdf
 
 
 
 
 
 
 
_______________________ ___________________________________ 
 
place and date   signature 
 
 
 
 
 
 
 
 

4/4  




	Introduction
	Wireless Sensor Networks
	Validation of Wireless Sensor Networks
	Testbeds
	Deployment Support Network
	MoteLab
	TWIST
	Comparison

	Problem Statement and Scope of this Thesis
	Chapter Overview

	Conceptual Design
	Time Synchronization
	Design Requirements
	Network Time Protocol
	NTP Network Layout

	Services
	Design Requirements
	GPIO Monitor
	GPIO Setting
	Logging Service
	Power Profiling
	Further Services

	Data Storage
	Design Requirements
	Database Architecture
	Database Model


	Implementation
	Data Storage
	Database Software
	Server Implementation
	Observer Implementation

	GPIO Setting Service
	Overview
	API
	Kernel Module
	Database Daemon


	Service Evaluation
	Pin Setting Variance
	Target Node Variance
	Observer Variance

	Pin Setting Offset
	Test Setup
	Test Results

	Time Synchronization Effects
	Synchronicity of Observers
	Test Setup
	Test Results

	Conclusions

	Conclusion and Future Work
	Database Schematics
	Task Description
	Work Schedule

