
Secure Content Dissemination in
Opportunistic Networks

Master Thesis

Carlos Anastasiades

Sascha Trifunović

April 24, 2009

Advisors: Bernhard Distl, Dr. Franck Legendre

Supervisor: Prof. Dr. Bernhard Plattner

Computer Engineering and Networks Laboratory, ETH Zurich

Abstract

PodNet is a distributed content dissemination architecture which allows exchanging content in

an opportunistic way between mobile devices using ad hoc radio communications. Currently,

participants cannot be held accountable for content they publish or relay since they are anony-

mous and not restricted in any way. PodNet is hence an ideal target for spammers and the

dissemination of objectionable content. This thesis extends the existing PodNet design with

integrated mechanisms, which provide the trusted and spam free distribution of user-generated

content. We focus on the challenging case of a pure opportunistic network without the support of

an infrastructure (e.g. gateways) or a central authority (e.g. PKI). We shift from a data-centric

approach to a user-centric approach. The identification of participants is based on self-created

credentials. Authors’ reputation is assessed by a two level rating which measures legitimacy (ob-

jective rating) and quality (subjective rating) of the published content. The level of trust among

users relies on the social ties between participants classified in categories, which are defined ei-

ther consciously through secure pairing (e.g. friends) or inferred from a community detection

algorithm (e.g. community members, familiar strangers, strangers). We show through simula-

tions using real world traces and synthetic models that exchanging reputation information among

users outperforms individual reputation collecting (i.e. no exchange) by reducing the spreading

of unwanted content by at least 50%. The impact of liars (i.e. participants who deliberately

spread false reputation) is reduced by weighting received reputations according to the source’s

social category. In addition, a spam control mechanism enslaves an author’s publication rate to

his/her reputation. It prevents unknown users from flooding the network and allows reputable

users to publish freely. It moreover serves as an incentive for content consumers to rate an author

in order to get more or less content from him/her. All the proposed extensions are implemented

and successfully tested on both Windows Mobile 2003 and Windows Mobile 6 running on HP

iPAQs and HTC Touch. The computational as well as the communication overhead is evaluated

and compared to the existing unsecured implementation. Additionally, an existing community

detection algorithm was improved and enhanced by a dynamic aging mechanism. The modified

algorithm was evaluated using real world traces and produced better-connected communities in a

shorter period of time. Overall, our schemes are not only relevant to PodNet but to opportunistic

networks in general where reputation and trust must be enforced in a distributed, unsecure, and

delay-tolerant mobile environment.

Acknowledgments

We would like to thank our two advisors Dr. Franck Legendre and Bernhard Distl for their great

support and guidance during the course of this thesis. We appreciated their confidence allow-

ing us to work very freely within the topic. They always had time for informative discussions,

challenged our ideas and provided us very helpful tips which pointed us in the right direction.

In particular, we want to thank Bernhard for all his constructive feedback on the security part

which often helped us see problems from a different perspective. Special thanks also to Franck

who provided us with very valuable know how in the area of social mobility and simulation

models and who helped us greatly with the structuring of our report. His remarks and scientific

advices were very valuable and helped increasing the quality of this report significantly. It was

a pleasure to work with them.

Finally, we would like to thank Prof. Dr. Bernhard Plattner for giving us the opportunity

to write our master thesis in this interesting area at the Communication Systems Group and for

the supervision of our work.

Contents

Contents

1. Introduction 21

1.1. Tasks . 22

1.2. Problem Formulation . 23

1.3. Summary . 24

1.4. Contributions . 26

1.5. Outline . 27

2. Related Work 29

2.1. PodNet . 29

2.2. Certificate Distribution . 29

2.3. Reputation and Trust . 30

2.4. Trust Propagation . 32

2.5. Sybil Attacks . 33

2.6. Community Detection . 35

3. Design 37

3.1. Requirements . 37

3.2. Attacker Model . 38

3.2.1. Countermeasures . 39

3.3. Authentication . 40

3.3.1. Identity Generation . 40

3.3.2. Signing Process . 42

3.3.3. Update Process . 43

3.4. Authorization . 44

3.4.1. Channel Properties . 44

3.4.2. Channel Class . 45

3.4.3. Authorization Lists . 46

3.4.4. PodNet Content . 48

3.5. Trust Metrics . 49

3.5.1. Environment vs. Community . 49

3.5.2. Social Model . 50

3.5.3. Friend Circle Buildup . 51

3.5.4. Community Detection . 52

7

Contents

3.5.5. Trust Weights . 57

3.6. Reputation System . 57

3.6.1. Personal Opinion . 58

3.6.2. Distributed Recommendations . 62

3.6.3. Combined Reputation . 63

3.6.4. Aging and Timeouts . 65

3.7. Spam Control . 67

3.7.1. Content Spamming . 67

3.7.2. Channel Spamming . 68

3.8. Conclusion of Design . 69

3.8.1. Summary . 69

3.8.2. Future Work . 71

4. Simulation 75

4.1. Scenarios . 75

4.2. Datasets . 77

4.3. Simulation Setup . 77

4.4. Simulation Results . 78

4.4.1. Non-Cooperating Nodes . 79

4.4.2. Moderator Blacklisting . 83

4.4.3. Reputation Spreading . 85

4.4.4. Send Rate Limitation . 90

4.4.5. Comparison of Different Measures . 93

4.4.6. Influence of Social Weights . 97

5. Implementation 99

5.1. Testbed . 99

5.2. Functionality Overview . 99

5.3. Cryptographic Library . 100

5.4. Communication Process . 101

5.4.1. Service Discovery . 101

5.4.2. Content Synchronization . 102

5.4.3. Secure Pairing . 105

5.5. Data Storage Module . 105

5.5.1. Structure . 105

5.5.2. Aging . 108

5.5.3. Statistics Collection . 108

5.6. Discovery Channel . 109

5.7. Potential Improvements . 110

5.7.1. Application Structure . 110

5.7.2. Communication Process . 111

Contents

6. Evaluation 113

6.1. Cryptographic Functions . 113

6.2. Communication Overhead . 115

6.2.1. List Overhead . 116

6.3. Computational Overhead . 117

6.4. Improved Community Detection . 119

6.4.1. Modified Simple . 119

6.4.2. Dynamic Aging Extension . 124

6.4.3. Security Implications of Community Detection 127

7. Conclusion 129

7.1. Summary . 129

7.2. Discussion . 131

7.2.1. General Applicability . 132

7.2.2. Hybrid Networks . 133

7.2.3. Anonymity and Privacy . 134

7.3. Outlook . 134

Appendices 137

A. ‘The One’ Simulator 139

B. MIT Data Set 141

B.1. Data Set Properties . 141

B.1.1. Conversion Table Date - Day . 142

B.2. Classification Process . 144

B.2.1. Source Information . 146

C. Simulation 147

C.1. Non-Cooperation . 147

C.1.1. Unclassified MIT Set . 148

C.1.2. Classified MIT Set . 149

C.1.3. Haggle . 151

C.1.4. Synthetic Traces . 152

C.1.5. Comparison Haggle - Synthetic Traces . 154

C.2. Moderator Blacklisting . 155

C.2.1. Classified MIT . 157

C.2.2. Haggle Set . 160

C.3. Personal Blacklisting . 162

C.3.1. Unclassified MIT . 162

C.3.2. Classified MIT . 165

9

Contents

C.4. Local Blacklisting . 171

C.4.1. Unclassified MIT . 171

C.4.2. Classified MIT . 174

C.4.3. Synthetic Traces . 180

C.5. Send Rate Limitation . 185

C.5.1. Classified MIT . 185

C.6. Personal vs. Local Blacklist . 192

C.7. Influence of Social Weights . 196

D. PodNet Implementation 197

D.1. Existing Protocol . 197

E. Evaluation 203

E.1. Cryptographic Functions . 203

E.2. Communication Overhead . 205

E.2.1. Unknown Devices - No Channels . 205

E.2.2. Generation of One Channel . 207

E.2.3. Subscribing to a Channel . 208

E.2.4. Exchanging Content . 210

E.2.5. Secure Pairing . 212

E.3. Computational Overhead . 212

E.4. Community Detection . 214

E.4.1. MIT Set . 214

E.4.2. Aging Parameters . 217

E.4.3. Snapshots . 218

List of Figures

List of Figures

1.1. PodNet Architecture. 22

2.1. A Simple Web of Trust Example . 32

3.1. PodNet Requirements. 37

3.2. A Friend Circle Scenario. 53

3.3. All Influences on the Combined Blacklist. 63

3.4. All Influences on the Combined Rating List. 64

4.1. Normal Content Spreading in the Unclassified MIT Set. 78

4.2. Non-Cooperation in Good Classified MIT Weeks. 80

4.3. Dissemination Performance for different Levels of Non-Cooperation. 82

4.4. Moderator Blacklisting in Good Classified MIT Weeks. 84

4.5. Personal Blacklisting in Good Classified MIT Weeks with Spam Rec. 10%. . . . 87

4.6. Local Blacklisting in Good Classified MIT Weeks with Suggestion Thr. of 20. . . 89

4.7. Send Rate with Local Blacklists in Good Classified MIT Weeks and Suggestion

Thr. of 20. 92

4.8. Comparison of Personal and Local Blacklists in Good Classified MIT Weeks. . . 94

4.9. Comparison of Personal and Local Blacklists in the Haggle Set. 96

4.10. Local Blacklisting with Community Weights and Spam Rec. 10% in the MIT Set. 98

5.1. PodNet Rating Interface. 100

5.2. Communication Protocol . 103

5.3. The Datastore Module. 106

6.1. Performance Evaluation on HP iPAQ and HTC Touch. 114

6.2. Computational Overhead Sending a Small File. 118

6.3. Community Size for different Familiar Set Thresholds using the Simple Algorithm. 120

6.4. Community Graph Constructed by the Simple Algorithm. 122

6.5. Community Graph Constructed by the Modified Algorithm. 123

6.6. Average familiar set size vs. aging parameters for the modified community detec-

tion algorithm with aging. 125

6.7. Average community sizes vs. aging parameters for the modified community detec-

tion algorithm with aging. 126

11

List of Figures

B.1. Number of Bluetooth Up Connections in the MIT Data Set. 141

B.2. Spreading Performance for Different Weeks in the Unclassified MIT Data Set. . . 143

B.3. Average Spreading Performance of Unclassified and Good, Average and Bad Clas-

sified Weeks. 145

C.1. Non-Cooperation in Unclassified MIT Weeks. 148

C.2. Non-Cooperation in Bad Classified MIT Weeks. 149

C.3. Non-Cooperation in Average Classified MIT Weeks. 150

C.4. Non-Cooperation in Haggle Data Set. 151

C.5. Non-Cooperation in Random Waypoint Model. 152

C.6. Non-Cooperation in Helsinki Model. 153

C.7. Moderator Blacklisting in Unclassified MIT Weeks. 156

C.8. Moderator Blacklisting in Average Classified MIT Weeks. 158

C.9. Moderator Blacklisting in Bad Classified MIT Weeks. 159

C.10.Moderator Blacklisting in Haggle Data Set. 161

C.11.Personal Blacklisting in Unclassified MIT Weeks with Spam Rec. 10%. 163

C.12.Personal Blacklisting in Unclassified MIT Weeks with Spam Rec. 50%. 164

C.13.Personal Blacklisting in Good Classified MIT Weeks with Spam Rec. 50%. . . . 166

C.14.Personal Blacklisting in Average Classified MIT Weeks with Spam Rec. 10%. . . 167

C.15.Personal Blacklisting in Average Classified MIT Weeks with Spam Rec. 50%. . . 168

C.16.Personal Blacklisting in Bad Classified MIT Weeks with Spam Rec. 10%. 169

C.17.Personal Blacklisting in Bad Classified MIT Weeks with Spam Rec. 50%. 170

C.18.Local Blacklisting in Unclassified MIT Set with Suggestion Thr. of 20. 172

C.19.Local Blacklisting in Unclassified MIT Set with Suggestion Thr. of 10. 173

C.20.Local Blacklisting in Average Classified MIT Weeks with Suggestion Thr. of 20. . 175

C.21.Local Blacklisting in Bad Classified MIT Weeks with Suggestion Thr. of 20. . . . 176

C.22.Local Blacklisting in Good Classified MIT Weeks with Suggestion Thr. of 10. . . 177

C.23.Local Blacklisting in Average Classified MIT Weeks with Suggestion Thr. of 10. . 178

C.24.Local Blacklisting in Bad Classified MIT Weeks with Suggestion Thr. of 10. . . . 179

C.25.Local Blacklisting in Random Waypoint Model with Spam Rec. 10%. 181

C.26.Local Blacklisting in Random Waypoint Model with Spam Rec. 20%. 182

C.27.Local Blacklisting in Helsinki Model with Spam Rec. 10%. 183

C.28.Local Blacklisting in Helsinki Model with Spam Rec. 20%. 184

C.29.Send Rate with Local Blacklists and Suggestion Thr. of 20 in Average Classified

MIT Weeks. 186

C.30.Send Rate with Local Blacklists and Suggestion Thr. of 20 in Bad Classified MIT

Weeks. 187

C.31.Send Rate with Local Blacklists and Suggestion Thr. of 10 in Good Classified

MIT Weeks. 189

C.32.Send Rate with Suggestion Thr. of 10 in Average Classified MIT Weeks. 190

List of Figures

C.33.Send Rate with Local Blacklists and Suggestion Thr. of 10 in Bad Classified MIT

Weeks. 191

C.34.Comparison of Personal and Local Blacklist combined with Send Rate in Bad

Classified MIT Weeks. 193

C.35.Comparison of Personal and Local Blacklist combined with Send Rate in Average

Classified MIT Weeks. 194

C.36.Comparison of Personal and Local Blacklist with Spam Recognition 10% in the

Haggle Set. 195

C.37.Local Blacklisting with Community Weights and Spam Recognition 20% in the

Unclassified MIT Set. 196

D.1. Transer_Client::ThreadRun(). 198

D.2. Transfer_Server::ThreadRun(). 199

D.3. Transfer_Common::Do_Messages() in Original Implementation 200

D.4. New Part to Transfer_Common::Do_Messages() 201

E.1. Computational Overhead Sending a Large File 213

E.2. Classification of the People in the MIT Data Set. 215

E.3. Call Connections Between People in the MIT Data Set. 216

E.4. Community Graph After 4 Weeks. 218

E.5. Community Graph After 8 Weeks. 219

E.6. Community Graph After 12 Weeks. 220

E.7. Community Graph After 16 Weeks. 221

E.8. Community Graph After 20 Weeks. 222

E.9. Community Graph After 24 Weeks. 223

E.10.Community Graph After 28 Weeks. 224

E.11.Community Graph After 32 Weeks. 225

E.12.Community Graph After 36 Weeks. 226

E.13.Community Graph After 40 Weeks. 227

13

List of Tables

List of Tables

3.1. Overview of Blacklists. 39

3.2. The Layout of User Credentials. 41

3.3. Fields of Channel Credentials. 44

3.4. All Entries of a Member List. 48

3.5. All Data Fields assigned to an Episode. 48

3.6. Description of aging algorithm parameters. 54

3.7. Trust Weights. 57

4.1. Overview of all Simulation Parameters with Non-Cooperating Nodes. 79

4.2. Average Spreading Performance in MIT and Haggle Set. 81

4.3. Overview of all Simulation Parameters with Moderator Blacklists. 83

4.4. People Having Spam Content with applied Moderator Lists in Good, Average and

Bad Classified MIT weeks. 85

4.5. Overview of all Simulation Parameters with Personal Blacklists. 86

4.6. People Having Spam Content with applied Personal Blacklists in Good, Average

and Bad Classified MIT Weeks. 86

4.7. Overview of all Simulation Parameters with Local Blacklist. 88

4.8. People Having Spam Content with applied Local Blacklists and Suggestion Thresh-

old of 20. 90

4.9. Comparison of different Suggestion Thresholds applied to Local Blacklists in Good

Classified MIT Weeks. 90

4.10. Overview over all Simulations Parameters with Send Rate Limitation. 91

4.11. Overview over all Simulation Comparing Different Measures. 93

4.12. Comparison of Personal and Local Blacklists in Having Spam Content in Good,

Average and Bad Classified MIT Sets. 93

4.13. Suggestion Threshold Barrier in different Classified MIT Weeks. 93

4.14. Overview over all Simulation Parameters with Social Weights. 97

4.15. Comparison of Different Social Thresholds to a fixed Threshold with Spam Recog-

nition 10%. 98

5.1. Details about the HP iPAQ and HTC Touch . 99

5.2. Collected Statistics. 108

15

List of Tables

6.1. Public Key sizes of ECC and RSA in bits corresponding to equal key strength. . 113

6.2. Communication Overhead of TCP Data. 115

6.3. List Format for Familiar and Community Set as well as Blacklist. 116

6.4. List Format for Friends List. 116

6.5. List Format for Rating List. 117

6.6. List Format for Global Blacklist. 117

6.7. List Format for Channel Blacklist and Member List. 117

6.8. Percentages of computational overhead when exchanging files of different sizes. . 119

B.1. Conversion Table: Date - Day Number. 142

B.2. Classification of Weeks with Similar Quality . 144

B.3. Classified Week Sets . 144

B.4. Source Information of 23 Randomly Selected Nodes 146

C.1. People Having Content with Different Levels of Non-Cooperation. 147

C.2. Non-Cooperation in Haggle Traces and Helsinki Model. 154

C.3. Non-Cooperation in Random Waypoint Model. 154

C.4. People Having Spam Content with applied Moderator Lists in Unclassified MIT

weeks. 155

C.5. People Having Spam Content with applied Moderator Lists in Unclassified MIT

Set. 155

C.6. Maximum of People Having Spam Content with applied Moderator Blacklists in

Good, Average and Bad Classified MIT Weeks. 157

C.7. Maximum of People Having Spam Content with applied Moderator Blacklists in

Haggle Data Set. 160

C.8. Maximum of People Having Spam Content with applied Personal Blacklists. . . . 165

C.9. Maximum of People Having Spam Content with applied Local Blacklists and sug-

gestion threshold of 20 opinions. 174

C.10.People Having Spam Content with applied Local Blacklists and Suggestion Thresh-

old of 10 Opinions. 174

C.11.Maximum of People Having Spam Content with applied Local Blacklists and Sug-

gestion Threshold of 10 Opinions. 174

C.12.People Having Spam Content with Send Rate and Suggestion Threshold of 20. . 185

C.13.Maximum of People Having Spam Content with Send Rate and Suggestion Thresh-

old of 20. 185

C.14.People Having Spam Content with Send Rate and Suggestion Threshold of 10. . 188

C.15.Maximum of People Having Spam Content with Send Rate and Suggestion Thresh-

old of 10. 188

C.16.Comparison Personal and Local Blacklist in Bad Classified Weeks. 192

C.17.Comparison Personal and Local Blacklist in Average Classified Weeks. 192

List of Tables

E.1. Encryption and Decryption with Asymmetric Cryptography on iPAQ 203

E.2. Encryption and Decryption with Asymmetric Cryptography on HTC 203

E.3. Signing and Verifying with Asymmetric Cryptography on iPAQ 204

E.4. Signing and Verifying with Asymmetric Cryptography on HTC 204

E.5. Encryption and Decryption with Symetric Crypto on iPAQ 204

E.6. Encryption and Decryption with Symmetric Cryptography on HTC 204

E.7. Encryption and Decryption with Symmetric Cryptography on iPAQ 204

E.8. Public Key, Private Key, Signature and Encrypted String Lengths 204

E.9. Current Implementation: Connection of two Unknow Devices 206

E.10.Original Implementation: Connection of two Unknow Devices 206

E.11.Current Implementation: Connection of Two Known Devices, Exchange of Dis-

covery Channel Information for One Additional Channel 207

E.12.Original Implementation: Connection of Two Known Devices, Exchange of Dis-

covery Channel Information for One Additional Channel 207

E.13.Current Implementation: Connection of Two Known Devices, Exchange of Addi-

tional Channel Meta Data for One Channel . 208

E.14.Original Implementation: Connection of two known Devices, exchange of Channel

Information for One Channel . 209

E.15.Current Implementation: Connection of Two Known Devices, Exchange of One

Content . 210

E.16.Original Implementation: Connection of Two Known Devices, Exchange of One

Content . 211

E.17.Current Implementation: Secure Pairing between Devices A and B 212

E.18.Processing Time Overhead for No file, Small (52.79KB) and Big File (5.99MB) . 212

E.19.Color Information for the MIT Data Set Classification. 214

E.20.Fixed Community Detection Parameters used on MIT Set. 217

E.21.Community Detection Dynamic Parameter Initialization used on MIT Set. 217

17

List of Algorithms

List of Algorithms

1. Simple . 35

2. Friend Circle Buildup . 52

3. Familiar Set Aging . 55

4. Community Set Aging . 56

5. Peer Selection . 102

19

1. Introduction

Due to the rapid proliferation of portable mobile devices, podcasting has become increasingly

popular in a wide area of fields such as education, entertainment, news propagation, politics and

marketing.

Traditional podcasting services [1] require servers across the Internet where producers of content

can provide such, usually organized as episodes in specific channels. On the other hand, end users

can subscribe to these channels in order to automatically fetch new episodes, whenever connected.

The playback of content is often done offline when the user is no longer connected to the Internet.

The PodNet1 project targets the mobile content distribution by extending the traditional pod-

casting concept for public (i.e. open and unrestricted) peer-to-peer content delivery among users.

The current hybrid architecture is shown in Figure 1.1. Besides the traditional way of getting

Internet content from fixed PodNet gateways, it consists of an opportunistic part which allows

users to fetch new content (either from the Internet or user-generated) from other mobile users

that are in proximity and carry the desired content.

In contrast to the fixed infrastructure, opportunistic connections lack any central authority and

continuous network reachability. Since the users may be in motion, very short and unstable con-

nections are possible and it is thus quite hard or even impossible to predict future encounters.

In order to avoid any assumptions on reachability, all the data transfers are performed over one

hop exclusively. Routing is replaced by the mobility of the users, since the user distributes the

content while moving around instead of the content being distributed over several hops.

Content which is generated in a channel will be immediately delivered to all connecting and

subscribed users. After reception, those users will supply it to all other subscribed users which

connect to them. Thus, there is a clear difference between author and supplier of content in

PodNet. In contrast to authors which have produced the content, suppliers cannot be held ac-

countable for it because every content is automatically supplied to others after the download,

even without reviewing it.

Currently, content publication is done anonymously without any restrictions. There is no notion

of a user’s identity which could help to identify the content’s authors, nor is it possible to check

the integrity of content. This makes PodNet an easy attack target since it enables spammers

to distribute a huge amount of spam messages for free and allows fakes to spread rumors and

criminals to exchange illegal content, all without having to fear any consequences as no easy

1http://www.podnet.ee.ethz.ch

21

1. Introduction

Figure 1.1.: PodNet Architecture.

identification is possible.

In order to hold users responsible for what they publish, a proper user definition including the

associated authentication is needed.

1.1. Tasks

Since PodNet was designed to allow mobile devices to exchange podcasts in a completely dis-

trusted way, it is important that a security design does not necessarily need any central infras-

tructure. Although the architecture of PodNet is hybrid providing fixed gateways connected to

servers, we constrained ourselves to the pure opportunistic part of PodNet. However, assuming

the central authority being an optional add-on, it could help verifying the authenticity of real

users.

This thesis comprises two main tasks, namely the trusted content exchange based on user rep-

utation and the spam free content publication in the opportunistic environment of PodNet. As

a main requirement to fulfill both tasks, user identities need to be introduced in order to bind

published content securely to its authors and increase individual accountability. The detailed

tasks can be found below.

Task 1: Securing both PodNet dissemination paths shown in Figure 1.1, i.e. the distribution

of Internet content from a server and the distribution of user-generated content. The individ-

ual accountability of user-generated content should be increased by author ratings which are

exchanged if possible before downloading the content. The decision whether to trust received

information or content should rely on the social ties between peers.

Task 2: The study of classical cryptographic solutions against spam and finding proactive

solutions which regulate publication in order to prevent spammers from flooding the network.

The proposed solution should solve the problem either by social regulation or by introducing a

rate limitation.

1.2. Problem Formulation

Several issues arise when trying to approach the tasks specified in Section 1.1. They can be

mainly divided into the following topics: identity, distribution, reputation, accountability, rating

and tradeoff.

Identity: In order to achieve individual accountability and exchange reputation information,

user identification and authentication is needed. Therefore, it is crucial that unique inimitable

user identities are generated. Using a centralized authority which generates the unique identity

at an initial registration process would solve the problem but would require an infrastructure

which is not available in opportunistic networks. Allowing every user to generate and declare his

or her own identity would enable the usage in a completely distributed environment but ensuring

the uniqueness of identities becomes more difficult and avoiding the creation of multiple identities

infeasible.

Distribution: The security measures should prevent bad content from spreading but allow le-

gitimate content to spread without restriction. Considering the PodNet distribution in Figure

1.1, the distribution of user-generated content becomes the most challenging of all distribution

schemes because the authorship is not limited to any well known group and everybody, even

unknown users, can create content. The question arises, whether to trust an unknown author

and to allow the content download or not.

Reputation: The main problem that a reputation system in PodNet faces is the fact that the

network is opportunistic which means that the users are not continuously connected to each

other like in the Internet. Requesting information from a centralized database or other users

on demand becomes infeasible because on the one hand, no other users or servers may be in

range, and on the other hand, the decision whether to download content should be made fast

23

1. Introduction

since users may move away as well. Every user has only an incomplete view of the network and

therefore, as a consequence, has to rely on other users’ opinions (see Rating below) about an

author. However relying on information of others increases the susceptibility to liars and the

question arises whether to trust a single user’s information if no other ratings are available.

Accountability: In most cases, it is not possible to hold suppliers responsible for the downloaded

content because in a PodNet environment, suppliers and authors may not be the same. In

particular, when subscribing to a channel, one would automatically download content which is

included in this channel from other users and at a later stage, supply it to others (become a

supplier) without necessarily having reviewed the content yet.

Rating: One way to give an opinion about other users as well as content is through rating.

But what information a rating should disclose is arguable. A rating can be considered from two

different angles. One one hand, one could rate the legitimacy of the content whether it conforms

with the description (objective rating) and on the other hand one could rate the user satisfaction

with the content (subjective rating). Assessing the user’s satisfaction is difficult because every

user may be different in behavior and taste. The difficulty in generating a consistent subjective

rating arises in particular because a user’s taste may influence his/her perception of the content

quality as well as the priority given to it.

When allowing multi-level rating, a more detailed rating is possible but a user that always rates

near the maximum values will gain a higher influence than several other users that rate smaller

values. Besides that, ratings may be depending on their context, i.e. trust in a user’s opinion

about content related to sports does not necessary lead to an agreement in the taste of music.

Additionally, ratings may evolve over time.

Tradeoff: A reasonable tradeoff between security, performance and usability has to be found

as explained in Section 3.1. From a security point of view, one would want to exchange all

possible information with all other users in order to get a nearly complete view of the network

but unfortunately, resources are limited on mobile devices and the sending overhead should

be reduced to a minimum in order to use most resources for the actual data transfer. The

dissemination of malicious content should thus be prevented but without affecting the exchange

of legitimate data. The user should be able to assess the quality of received content and regulate

the data exchange by that, but at a level of abstraction not confusing him or her.

1.3. Summary

This thesis comprises the extension of the existing PodNet by a security concept which allows

for a secure and spam free content distribution. Currently, participants are anonymous and not

restricted in any way when publishing content, which allows for an easy distribution of spam and

objectionable material. Although PodNet is a hybrid architecture, we only focus on the pure op-

portunistic content dissemination between mobile user, disregarding any possible infrastructure

such as central authorities.

In order to achieve this goal, one has to be able to hold users accountable for what they publish.

For this reason, a proper user authentication was introduce based on self created credentials.

This guarantees the inimitability of an identity since every user can be challenged for the private

key corresponding to his/her credentials. Preventing users from generating multiple identities

and launch sybil attacks is not that easy. In order to minimize their effect, every identity is

assigned a trust value which reflects the believe of an identity being genuine.

The level of trust between users depends on their social ties which are classified into different

categories. The most trusted users are friends, which are obtained by a secure pairing process.

By exchanging friends list a friend circle containing 2-hop friends is built, whose trust is still

high. Other trust levels are achieved by a community detection algorithm which was improved

and enhanced by an aging mechanism. The algorithm classifies surrounding users into familiar

strangers and community members which are each assigned a certain trust value. All other users

are treated as strangers, having minimum trust.

Content can be generated and shared for many different purposes in PodNet. For this reason

our design introduces three channels, namely open, restricted and closed. Traditional podcasts

may be published in restricted channels where only a few people are authorized to publish but

everybody may view content. Closed channels are encrypted, guaranteeing privacy for a small

group of people, e.g. friends, that want to share photos. The most challenging distribution takes

place in the open channel where everyone is free to publish.

In order to guarantee usability, users can now rate authors of content and asses their reputation

by sharing the acquired opinion with others. A two level rating was introduced which measures

legitimacy (objective rating) and satisfaction (subjective rating) of the published content. Au-

thors of illegitimate content are blocked (i.e. put on a blacklist) and this information is shared

among users. In case enough recommendations from other users are received, the author is

blocked as well. The impact of liars trying to manipulate the reputation is reduced by weighting

the received recommendations according to the source’s social category.

The subjective rating is used to regulate the publication rate of an author. This serves as a

proactive spam control mechanism which avoids the flooding of unwanted content and at the

same time allows reputable authors to publish freely. It additionally serves as an incentive to

rate an author, in order to get more or less content from him/her.

For the purpose of assessing the effectiveness of the proposed design, the different security mea-

sures were simulated using real world traces and synthetic models. We showed that exchanging

reputation information among users outperforms individual reputation collecting (i.e. no ex-

change) by reducing the spreading of unwanted content by at least 50% depending on the data

set. Additionally, we assessed that by applying social based weights to the recommendations

25

1. Introduction

we could reduce the influence of strangers by 50% and still achieve a higher detection speed of

unwanted content.

The security concept was integrated into the existing PodNet implementation and successfully

tested on both Windows Mobile 2003 and Windows Mobile 6 running on HP iPAQs and HTC

Touch. The overhead in communication and computation of the Secure PodNet was evaluated

and compared to its unsecured predecessor. Additionally, the performance of the enhanced com-

munity detection algorithm was evaluated using real world traces. Thanks to its modification it

produced better-connected communities and through the dynamic aging mechanism the detec-

tion would take a much shorter amount of time.

All in all, our schemes are not only relevant to PodNet but to opportunistic networks in gen-

eral where reputation and trust must be enforced in a distributed, unsecure, and delay-tolerant

mobile environment.

1.4. Contributions

The contributions of this thesis comprise the design, simulation, implementation, and evaluation

of security mechanisms that ensure the trusted and spam free content exchange within PodNet.

The main contributions consist of the following points.

• Design of a distributed identity management allowing the creation of unique IDs which can

be authenticated for different authorization profiles depending on the channel class namely

open, restricted, and closed.

• Definition of trust metrics relaying on social ties such as friends (established through se-

cure pairing) or community members (inferred from an enhanced community detection

algorithm).

• Appliance of a reputation system based on a two-level rating which allows to assess the

legitimacy (objective rating) and the satisfaction (subjective rating) of content and share

this information with surrounding users.

• Introduction of a spam control mechanism consisting of shared blacklists (reactive) and a

reputation dependent rate limitation (proactive).

• Simulation of the designed security measures using different traces and synthetic models

in order to assess their effectiveness.

• Implementation of the Secure PodNet and evaluation of its overhead in communication and

computation as well as the quality of the community detection algorithm and the benefit

of the added aging mechanism.

1.5. Outline

The remainder of this report is structured as follows: Chapter 2 presents background and

overview of state-of-the art solutions; Chapter 3 describes system requirements and design. Sim-

ulation results are shown in Chapter 4. The implementation is explained in Chapter 5 and

evaluated in Chapter 6. Chapter 7 concludes our work and gives prospects for future investiga-

tions.

27

2. Related Work

This chapter gives a review about the scientific literature of related work. The extension of the

traditional podcast concept to a hybrid PodNet is described. Additionally, the distribution of

certificates for classical as well as for self-organized systems is discussed. Thereafter, the different

definitions of reputation and trust are presented and how trust can be propagated. Furthermore,

some approaches to counteract sybil attacks are summarized. Finally, some existing community

detection algorithms are described.

2.1. PodNet

In [2], the traditional podcast concept is extended for public (i.e. open and unrestricted) peer-to-

peer content delivery among mobile users. It consist of a hybrid network where peers can share

content among themselves in an opportunistic way or download it from the Internet through

the PodNet gateways. Content is organized as episodes in channels and users solicit episodes

in subscribed channels. Every participant is able to create new channels and generate content

anonymously and without any restriction. Once content is published it is distributed automati-

cally to anybody who is interested in it.

In order to advertise an existing channel, it is added to a predefined discovery channel which ev-

ery node carries and updates automatically. This channel contains information about all known

channels of a node. If a user is unsure about what channels to ask for, he/she can consult the

contents of the discovery channel and select (i.e. subscribe to) all he/she is interested in.

The implementation of the concept in [3] provides synchronization and basic content distribution

functionality. The distribution is data-centric and does not provide any notion of a user. Every

user periodically broadcasts discovery messages in order to inform other devices about its pres-

ence. After randomly connecting to one of the present peers, synchronizing the common channels

and selecting all desired episodes, the data is exchanged in a way similar to BitTorrent [4].

2.2. Certificate Distribution

In a classical certificate architecture as described in [5] only an certificate authority may hand out

certificates to end user. These certificates are signed by the authority in order to be valid. For a

user to be able to check whether a certificate is valid he/she needs to hold at least one certificate

of a trusted certificate authority which was previously acquired through a secure side channel

or a setup process, as for example with the installation of a web browser. With the trusted

29

2. Related Work

authority’s certificate the other user’s certificate can be verified. For the purpose of dividing the

load, it should be possible for more than one authority to exist simultaneously. The authorities

are linked in a hierarchy which allows a user to verify certificates signed by authorities not known

directly.

A self-organizing public-key management system is proposed in [6]. Similar to PGP [7], key

authentication is performed via chains of public-key certificates. Every user creates its own cer-

tificate and exchanges it over a secure side channel with trusted devices. These devices can then

issue the public-key certificate by signing and returning it to the owner if they believe in its

correctness.

In an initial state, every user only holds his/her own certificate signed by other devices and the

certificates he/she signed for others. Every node periodically polls its physical neighboring nodes

for unknown certificates with which certificate chains can be built. When two nodes meet, they

merge their repositories and try to find appropriate certificate chains.

The advantage of such a system is the fact that it reflects social relationships. However, in order

to verify a final certificate, all intermediate certificates in the chain have to be known and valid.

If one certificate is unknown or has expired, the chain breaks. Therefore, it is assumed that

all nodes can establish communication with any other certificate issuer within validity period.

They claim in [6] that any user would find at least one certificate chain to any other user in their

merged repository with a high probability but this approach assumes that all the peers have

well established local repositories, are socially well connected and have consciously signed many

social relationships.

The establishment of security associations among users (e.g. for issuing certificates) is considered

in [8] in a more general way. Two general approaches are presented: one being fully distributed

and the other using an off-line central authority. The central authority uniquely binds a node’s

identity to the public key, allowing automatic certificate exchange when nodes are in radio range

but needs additional infrastructure at initialization. In the fully distributed approach, friends

consciously exchange their certificates either over a secure side channel (as in [6]) including a

challenge response scheme or through a common friend. The latter approach cannot be au-

tomated and leads to problems when meeting complete strangers since in contrast to [6] no

certificate chains are build because trust is assumed to be non-transitive. The identification via

common friend is assumed to remove any ambiguity because he/she knows only a limited amount

of people. In both [6] and [8], the issuing entity checks whether the public key identity binding

is unique and correct.

2.3. Reputation and Trust

Reputation and trust are often confused and used interchangeably in literature although they

do not mean exactly the same. Trust towards a user defines the believe that a user will show a

certain behavior in the future whereas reputation is based on past experiences and observations

regarding the users’ behavior norms [9]. However, most works only consider one of both topics.

Due to the huge amount of different research work, we are presenting only a small selection of it.

Pretty Good Privacy (PGP) [7] proposes a decentralized authentication mechanism based on a

Web of Trust. Users can issue the trustworthiness of others’ public key bindings and validate

the trust in unknown users based on chains of aggregated trust relations. Trust is assumed to

be completely transitive and all the relations are subjectively assigned. The approach is static

since the trust values cannot change over time with the user’s behavior.

A more dynamic trust model is presented in [10]. The model incorporates both direct trust

based on previous experiences and recommended trust values received from other users. False

recommendations are adjusted by applying the semantic distance between the recommended and

experienced values to obtain a corrected value. However, the corrected value will still be inaccu-

rate if the difference varies a lot.

A bayesian formalization for distributed binary ratings is proposed in [11]. The system differ-

entiates between complete strangers which are ignored because no information is available and

known strangers which were never met but known from other users recommendations. If not

met before, trust is calculated recursively via known users and chains of trust.

A reputation system based on a modified bayesian approach is proposed in [12], [13], [14] and

[15]. In this approach the past experiences are weighted with a discount factor which serves as

fading mechanism. Ratings received from others are considered with less weight in order to trust

the own observations to a higher extent. Fake ratings are removed by applying a deviation test

which neglects ratings that differ by more than a threshold value from the other ratings. Such

a deviation test successfully removes ratings from extreme liars but does not detect strategic

lies below the threshold value which adaptively change a user’s rating towards the wrong state.

Additionally, the behavior test introduces a delay in detecting the correct reputation value after

a user’s behavior change.

In contrast to previous work, the system in [9] separates reputation for providing service/content

from reputation for providing recommendations and thus giving a sophisticated and accurate

view on reputations. The system represents its reputation value in the continuous range between

-1 and 1. Intermediate values may define the degree of trust, as above 0.2 means trustworthy

and above 0.8 very trustworthy1. The actual reputation value is a combination of the old and

new reputation value using a fading factor which regulates the importance of new aggregated

values and evolves the reputation over time. For all recommendations, the difference of recom-

mended value and direct observed behavior is computed dynamically and a maximum deviation

is allowed. Obviously, recommenders that deviate less from their own experience are given more

weight. Recommenders exceeding the threshold are ignored even though they are not necessarily

malicious but may have a different taste.

As incentive to rate content properly, reputation information with others is only performed with

peers that have good recommendation reputation. In the combination process of the reputation

values, the most weight is given to one’s own observations followed by recommendations from

1Symmetric for negative values and distrust.

31

2. Related Work

recommenders which are very similar to one’s direct experiences.

Finally, in [16] a bayesian trust framework is proposed which extends the model in [9] by allowing

n discrete trust levels. Assuming n = 4 different rating levels, the initial trust tuple d for another

user is uniformly distributed, i.e. d = (0.25, 0.25, 0.25, 0.25), for equal probability for all four

rating values. For every new rating, the value at the position corresponding to the rating value

is increased. The variance within the trust tuple indicates the confidence in a trust value, i.e. if

the variance is high, a user has high confidence in a value whereas when being zero (uniformly

distributed), the trust is minimum. A similar trust tuple is build for every user recommending

another peer. The values of both, direct and recommended trust, are then combined using a

weighted sum where the weighting is based on the confidence level of direct over recommended

trust as well as the subjective reliance on one’s own personal ratings.

2.4. Trust Propagation

In the previous section, we considered rating and reputation calculations. Here, we look at the

propagation of reputation and trust. In all of these approaches, each user sends his/her rating

values to other users which calculate a reputation value based on their own direct observations

as well as all received indirect observations. However, these approaches require quite a large

overhead since not all ratings may be needed. In [17] and [18] a method is presented which is

well suited for opportunistic networks because of its lower sending overhead. When a rating is

made, the rater sends the rating back to the rated user which can present it to other users when

they want to assess his/her trustworthiness.

The model neglects the problem of certificate distribution completely and assumes that every

device has a unique identifier.

A

DC

B

3

2

1

2
1

Figure 2.1.: A Simple Web of Trust Example: Taken from [17].

The lightweight trust distribution algorithm proposed in [17] allows every user to calculate a

subgraph of the web of trust. In particular, each user stores both the ratings generated for

other users (outgoing ratings) and all ratings from users who have rated the user itself (incoming

ratings). Whenever two users meet, they will exchange their incoming ratings and store the other

user’s ratings in order to build a subgraph of the web of trust. When device A in Figure 2.1

meets an unknown device B, it would calculate a trust value by first determining the performing

relation2 and the judging relation3. In order to be able to calculate both these relations, all the

devices in the subgraph should be well connected and have rated each other4. The trust value is

calculated after applying semi-supervised learning techniques on the most related relationships.

The method is inherently resistant to sybil attacks[19] since sybil users are not connected the

same way in the web of trust as regular users and therefore do not influence the trust propagation.

However, we will look at sybil attacks in Section 2.5.

When using this mechanism, it is crucial that the users cannot modify their own ratings locally

and therefore, a tamper proof storing mechanism is introduced in [18] which forces user to store

received ratings and prevents them from changing them or inventing ratings without having

received anything. The key idea is that a recursive hash chain is calculated over all the local

ratings always including the previous hash value and the new rating value in order to prevent

local tampering with the rating.

When a device A wants to rate a device B, it stores the rating locally in its own hash table before

sending it to B which also stores it in its hashing table. After having stored the rating, both

devices send a commitment message comprising the rating and hash entry to a witness node5

which should check the integrity and authenticity of both rating tables and therefore ensures

that both have correctly stored the rating. Despite the problem of agreeing on good witness

nodes and finding reasonable timeout values for the commitment messages, the mechanism may

work well if the supplier and author of the content either coincide or meet each other regularly

so that they can determine witnesses and exchange the locally stored ratings. However, if author

and supplier are not the same person and the downloading node would never meet the author,

the rating exchange and witnesses selection would be very difficult. It may be reasonable that in

such a case, the downloader would not store and exchange any rating at all since it would not be

clear where to send these commitment messages but this would mean that only devices meeting

each other regularly could rate each other.

In order to store rating tables from growing over time, ratings of the same relationship could be

summarized or discarded after an expiration time which is all not further elaborated in [17].

2.5. Sybil Attacks

A distributed environment lacks a central trusted authority which could guarantee one-to-one

correspondence between entity and identity. Therefore, an attacker can try to distort a reputation

system by creating a large number of identities for the same entity in order to gain a larger

influence.

Alternatively, an attacker may also profit from creating new identities to leave the bad reputation

of the old identity behind and being able to misbehave again.

2Relation between devices that are rated by the same rater A (itself).
3Relation between devices that have rated the same device B (interested user).
4In the example above, device C should have had contact with both D and B. This assumes that all rated devices

have provided content to the others.
5It is not specified how to select witness nodes but it should be in proximity of the device being rated (i.e. B)

in order to replay the message to device B if it was temporary unavailable.

33

2. Related Work

The difficulty in the PodNet system is not only the distributed environment but also the fact

that the network comprises mobile nodes which communicate in an opportunistic way. There

are different angles on how to tackle this problem. In [20], it is assumed that all identities of a

sybil attacker are bound to a single physical node and move together. In contrast to a group

of friends communicating simultaneously in parallel, sybil users can only communicate serially

and could thus be detected because they generate much fewer collisions on the MAC layer.

The disadvantage of this approach is the fact that it does not detect sybil users which are not

simultaneously used as well as fast switching between identities to quit bad reputation.

Other approaches consider the social network of individual users. SybilGuard[21] assumes that

malicious users can create many identities but only few trust relationships and honest nodes

have good connectivity to the rest of the network. By determining whether the graph has a

small quotient cut6, it can be estimated whether nodes are sybil identities or not. They claim

that social networks do not have such edges. However, they approach the problem for a routing

based environment observing the randomly selected routes of the individual nodes and stating

that routes from all sybil nodes always lead through the same edge.

Although not directly applicable to PodNet because it is based on one hop communication

only, exploiting the social relationship may be a valid concept. Similar to the lightweight trust

distribution algorithm in Section 2.4, one can assume that sybil nodes are not connected as well

as honest users.

In [22] a distributed trust model is proposed that uses anonymous authentication based on

blinded threshold signatures. They claim that a user wants to be anonymous in the system to

keep his/her privacy by using different pseudonyms, inside different communities. They refer to

[23] in which it is concluded, after formally analyzing with game-theoretic models, that when

allowing users to freely change identities, all unknown users should be regarded as malicious. As

a solution not to mistreat all unknown actors, they proposed to use a free but not replaceable

(once in a lifetime) pseudonym which is certified by a central authority.

The user reveals his/her certificate including his/her (once in a lifetime) identity to the other

community members which should know the identity in order to verify that no other member is

using this identity. In the following, the requesting user generates new credentials (private/public

key) which are used as pseudonym for that community and let the community members sign

the certificate using threshold cryptography. Although they claim that the method is fully

distributed, it still needs an initial (once in a lifetime) identity and it is not further specified

how community members verify that the same user did not already joined the community with

another identity.

6Small set of edges whose removal disconnects a large number of nodes (sybil identities) from the rest of the
graph.

2.6. Community Detection

Community detection can be used in order to automatically detect the importance of a peer

encountered regularly. It classifies users into different categories such as familiars (people en-

countered regularly), community members (people closely linked by a lot of common familiars)

and possibly others, depending on the algorithm used. All other users are treated as strangers

which means they are not known or not seen regularly. These classifications can be used to

establish trust, i.e. we could give an opinion of a community member more importance while

disregarding strangers completely.

Unfortunately, to the best of our knowledge, not much work is available in the area of real-time

distributed community detection in delay-tolerant networks. One of the few published works is

[24] in which three community detection algorithms are proposed, namely Simple, k-Clique and

Modularity. They differ in level of computational complexity and resource management.

Algorithm 1 Simple

f_thadd: Familiar set adding threshold
λ: Adding ratio
γ: Merging ratio
ni: A node
Fi: Set containing all familiars of node i
Ci: Set containing all community members of node i
n0: Local node
F0 = ∅
C0 = n0

for all nodes ni in proximity do

acquire Fi and Ci from ni
update n′is contact time ti
if ti > f_thadd then

add ni to F0

if | Fi ∩C0 | / | Fi |> λ then

add ni to C0

if | C0 ∩Ci |> γ· | C0 ∪Ci | then

merge C0 and Ci
end if

end if

end if

end for

Algorithm 1: Simple

The Simple community detection mechanism is described in Algorithm 1. It requires three design

parameters, the familiar set adding threshold f_thadd, the adding ratio λ and the merging ratio

γ. Once the total contact duration of a neighbor exceeds f_thadd the corresponding neighbor

ni is added to one’s familiar set F0. In case the adding criterion

| Fi ∩C0 | / | Fi |> λ (2.1)

35

2. Related Work

holds, ni is also added to one’s community set C0. Additionally, the aggressive version of the

algorithm merges the two communities while the merging criterion

| C0 ∩Ci |> γ· | C0 ∪Ci | (2.2)

is true.

In summary, as the name already implies, the Simple algorithm requires the fewest overhead

in computation, storage and sending, but the merging of similar communities in order to speed

up the detection decreases the accuracy. Besides that, three design parameters have to be set

carefully because they may change in different environments.

Algorithm 2: k-Clique

The k-Clique algorithm is very similar to Simple but the adding criterion is the following:

| Fi ∩C0 |≥ k− 1 (2.3)

This algorithm needs more data storage and sending overhead since the familiars of every com-

munity member are exchanged and the decision whether to include a node from the other user’s

community is made individually by checking Equation 2.3 for the corresponding community

member.

Algorithm 3: Modularity

Similarly, Modularity needs more storage and sending overhead, but additionally to k-Clique, the

calculation overhead is increased since the modularity difference has to be re-calculated for all

nodes whenever a node is added to the community.

All three proposed algorithms suffer the following disadvantages which are all highly important

in the PodNet environment:

• The performance evaluation of community detection in [24] is only considered after replay-

ing the entire traces and not adaptively during the replay process.

• Different design parameters are used depending on the environment in order to achieve the

best results in the processed traces, e.g. for the familiar set adding threshold f_thadd.

• The algorithm does not consider aging of contacts, thus ignoring that contacts lose their

importance after a large time of inactivity, as well as the uncontrolled growth of the com-

munity size it leads to.

3. Design

In this chapter the design of the Secure PodNet is illustrated in detail. At first, the different

requirements and the attacker models are presented. Then, the main design aspects consisting of

the authentication and the authorization of users are described. Furthermore, the trust metrics

used, as well as the design of the reputation system are shown. Finally, the measures taken

against spam propagation are pointed out.

3.1. Requirements

The main requirements of PodNet can basically be divided into three parts as shown in Figure

3.1: security, usability, and performance. It may not be possible to meet all requirements entirely

and therefore a tradeoff between security-usability and performance has to be found.

Usability Security Performance

PodNet

Figure 3.1.: PodNet Requirements.

Security Requirements: Security measures should improve the reliability and robustness of the

content dissemination. By content reliability we mean the possibility to hold people accountable

for what they do, either because they publish very good or bad content. Content from spammers

should be prevented from spreading whereas good content should be distributed throughout the

network. As a consequence, limiting bad content from spreading also avoids the depletion of

resources.

The main goal is to be able to asses trust of a user even if there was no contact in the past.

The user could be an author, who’s information should be available even if no content was ever

downloaded from him/her. This information could be obtained in advance from users (who’s

trustworthiness should also be known) which already have received content from that author,

either directly or through multiple relay order. Depending on the trust in that user, which can

37

3. Design

be based on the social relationship one has to him/her, the reputation information can be trusted

or not.

Therefore, unique, non-imitable user identities are needed, so that no user can claim to be another

existing user and content can be uniquely assigned to the user that published the content.

However, all security measures should not be too restrictive since PodNet’s main goal still remains

content dissemination in an opportunistic manner.

Usability Requirements: The system should allow the user to assess the legitimacy of and his

or her satisfaction with the downloaded content. Ideally, information about content and author

should already be provided in advance, i.e. before downloading the content. However, at the

cost of accuracy, the rating and information display should be performed at a level of abstraction

not confusing the user.

Furthermore, the system usability will be improved by requiring only minimal user interaction

because too much interaction would provoke the user to turn off the system. All the processing

should be done in the background without the user noting it. This means that the system also

automatically decides whether to perform a certain operation or whether to download and trust

content. Automatic decisions always bear the risk that attackers could try to fool the system

rules.

Performance Requirements: A good performance is required in PodNet, especially since the

computational power and energy on mobile devices is limited. Every usage of cryptographic

functions, especially asymmetric cryptography, should be well reasoned and only applied if really

needed. Therefore, the exchanged information should be limited to the minimum, e.g. only

exchanging information about the most recent authors in common channels.

Nevertheless, in Security, we want to know and exchange information about authors with all

communicating devices trying to obtain a complete picture of all authors. However, exchanging

information about all potential authors would be a huge communication overhead.

3.2. Attacker Model

In this section possible attack scenarios can be found, since it is important to know the threats

to a system before designing countermeasures against them. Therefore, we examine possibilities

of how adversaries could attack a distributed content dissemination system such as PodNet and

give a sketch of our countermeasures presented in the following sections. Depending on the

attackers ability, the attacks can be classified into exploiting attacks, cheating attacks and low

level attacks.

Exploiting Attack: This kind of attacker tries to exploits the system by properly using it. The

attacker is not able to change the functionality of the program. Some examples are: positive and

negative lying about rating, spamming or flooding as well as spreading of illegal or fake content.

Cheating Attack: A cheater is able to modify the functionality of the program. Some examples

of this kind of attack are: sybil attack (many user IDs on the same device), ID and channel

theft (impersonate person by using his/her user ID, reuse channel ID for completely malicious

channel), no cooperation (freeriding), ignoring of restriction and rules (e.g. send rate limitations,

ratios) and enclosure manipulation (sabotage complete file download by corrupting only one, not

identifiable, enclosure).

Low Level Attack: Low level attacks are independent of the system itself but exploit the weak-

nesses of wireless communication. Some examples are: replay and wormhole attacks, IP and

MAC address spoofing, man-in-the-middle attacks, jamming and DoS attacks.

3.2.1. Countermeasures

In this work, we add a proper user authentication and authorization to PodNet to counteract

possible cheating attacks or at least minimize their influence. Additionally, we introduce the

concept of highly trusted friends, distributed rating and blacklists as well as publication rate

limitations in order to reduce the effect of exploiting attacks.

In order to generate the rating and blacklists, a two level rating which measures the legitimacy

(objective rating) and satisfaction (subjective rating) of content is introduces in Section 3.6. Rat-

ing the content of an author will influence his or her reputation in the following way. If content

is rated as objectively bad, the author will appear on a blacklist whereas if it is subjectively

rated either good or bad, the author will appear on a rating list. The blacklisting mechanism

comprises four different blacklists which are defined Table 3.1.

Type Content

Personal Blacklist personal opinion of the user itself (per user)

Local Blacklist
all received opinions
received from one’s surrounding (per user)

Channel Blacklist
misbehaving authors inside a channel,
added by channel administrators (per channel)

Global Blacklist
misbehaving authors in several channels,
generated by a central authority (global scope)

Table 3.1.: Overview of Blacklists.

Except for global blacklist, which has global scope, all author reputation values are only valid in

a specific channel. The personal and local rating lists are defined likewise but comprise subjective

ratings. In contrast to blacklist, no channel or global rating lists are defined.

Whenever security mechanism are designed, it is crucial to make sure the additional overhead

does not introduce new attack points. Therefore, we have to ensure the rating and blacklists

39

3. Design

itself cannot be used as part of a flooding attack. This could be fulfilled for example by defining

a maximum list size and always including only the most current entries into the corresponding

list.

3.3. Authentication

In order to hold users responsible for what they publish, a proper user definition including the

associated authentication is needed. The most crucial part comprises the generation of a unique,

not imitable identity without requiring a central authority which regulates its selection. In this

section, we will first focus on the identity generation and the required authentication mechanism

in order to check another user’s identity. Then, the signing process is explained, including how

to establish special trust relationships between users. Finally, the credentials update process is

presented.

3.3.1. Identity Generation

The system should work in a distributed environment allowing a user to create his/her own

self-signed credentials without an initial registration at a central authority (CA). As presented

in Section 2.5, in the absence of a central authority, it is possible for an attacker to generate

several identities, i.e. sybil identities. We could require every device to initially register at a

central authority in order to obtain a once-in-a-lifetime identity but this would limit applicabil-

ity in a totally distributed environment. Therefore, we decided to have as an only requirement

that a user cannot easily imitate or steal the identity of an existing user. We are aware of the

fact that multiple identities are still possible but we will tackle that problem from a different

angle by considering the social connections of a user, either through friends, the community1 or

recommendations2 from trusted users.

The identity is built from the hash of a public key as done for the IP address described in

[25], [26] and [27]. In order to successfully steal another user’s identity, an impersonator would

need to find the corresponding private key or at least find one that has a public key which hashes

to the same identity. Both options are not an easy task.

Optionally the credentials can be signed at a later stage by a partially offline CA through a

registration process and/or by friends through secure pairing [8]. Both mechanisms are shortly

explained in Subsection 3.3.2.

3.3.1.1. User Credentials

The user credentials are shown in Table 3.2. The basic part of the credentials is generated at

first program startup and contains user name, serial number, validity period, algorithm ID and

1See Section 3.5.
2See Subsection 3.6.2.

User Credentials

Body

1. ID (Hash of Public Key)
2. Serial Number (random number)
3. Name (user input)
4. Validity Period
5. Algorithm Identifier
6. Public Key

Signature Self-Signed Signature (over Body)

Additional Signatures

1. History:
• previous ID
• Signature (over Body)

(with previous Private Key)
2. Authority:
• CA ID
• Signature (over Body)

3. Friends:
• List of Friend IDs
• List of Signatures (over Body)

Table 3.2.: The Layout of User Credentials.

public key. The name is a user prompted string which serves as a human readable identifier

in PodNet. The randomly generated serial number additionally helps a user in differentiating

between possible name collisions. However, the identity used by the protocol is still the hash of

the public key. The validity period is set to two years3 and the algorithm identifier specifies the

algorithm used for the signatures.

The additional fields comprise the history, authority and friends fields. The history field is used

in the update process (explained in Subsection 3.3.3) whenever a user renews his/her credentials.

In such a case, the history field shows his/her old ID4 which helps other users updating their

internal reputation tables for this user.

3.3.1.2. Challenging Process

Since credentials with the copied identity and name can be forged, a peer has to prove his/her

knowledge of the private key.

This challenging process will be performed in two cases:

1. At startup: If an unknown user is connecting, it will be challenged to check whether he/she

really carries the private key. Additionally, it may be a measure against fake attacks. After

generating a fake ID, an attacker would have to perform challenge request with all other

users which is a computational overhead for him/her.

2. Before data download: A supplier of content has to authenticate itself before people will

start downloading from him/her. By this means, the downloading peer knows that the

3See Subsection 3.3.3 for more information.
4Hash of the previous public key.

41

3. Design

communicating peer is using his/her own identity. This is important for several reasons:

If some data is corrupted or malicious, the information about the peer can be remembered

and appropriate countermeasure can be taken in the future. Besides, there may exist some

information which should only be exchanged if the communicating peers belong to a certain

group of people, e.g. showing meta information of a closed channel5.

This challenging process is flexible and does not necessarily need to be symmetric. It may need

a challenge response or challenge request response depending on whether one or both peers need

to authenticate themselves.

3.3.2. Signing Process

When allowing self-signed credentials, it is not possible to relay on the consistency of the creden-

tials. Therefore, it is possible to additionally sign the credentials by either a central authority or

friends in order to increase trustability. In the following two paragraphs we will briefly explain

these processes.

3.3.2.1. Registration

In a registration process, a user connects to an authority which signs the users credentials after

verifying its correctness. Signatures from central authorities (CA) ensure human identity since

in contrast to self-signed credentials, signatures from CAs cannot be automatically generated.

In order to make sure that a user can only generate one or at least a very limited number of

CA signed credentials the issuing authority could demand a mobile phone number and require

a SMS6 confirmation. The number should not be included in the credentials but stored locally

to prevent the same user from generating more than one identity. In this approach a problem

arises if a user loses his/her private key, e.g. when accidentally reseting the device. This could be

circumvented by not preventing a user to generate a new identity with the same phone number

forever, but only for a limited time, e.g. a month.

Another solution would be to require an even more complex process in order to unblock a phone

number, maybe even one that requires human interaction. One could even go one step further

and perform the entire registration process per SMS or MMS7 from a mobile device. This

would make the registration process quite location independent in urban areas. Since PodNet is

expected to work on mobile phones, the requirement for SMS reception may be an acceptable

restriction.

Another option would be to require stronger authentication by registering social security or

driver’s license number which would raise the barrier for launching a sybil attack but the need

for sensitive information may also scare away many potential users [21].

Authorities could advertise their services in the neighborhood using a flag in the service mask

5See Subsection 3.4.1 for more information.
6Short Message Service.
7Multimedia Messaging Service.

(see Paragraph Services below) of the discovery message8. Note however, that authorities are

not yet included in the current implementation.

3.3.2.2. Secure Pairing

In this process, friends sign each others certificate as proof of their friendship and by that,

increase their trust in each other.

Both users have to agree on a password and start a secure pairing process where authentication is

performed through a fixed three way challenge request response mechanism. The authentication

is done by encrypting one’s own peer ID with the password and sending it together with one’s

own credentials to the other peer. If the peer ID in the decrypted string and the credentials are

the same, the credentials are signed and the signature is returned to the owner which adds the

friend (and its signature) to the local friends list. Signatures from friends are used to establish

social trust which is explained in Section 3.5.

3.3.3. Update Process

All credentials have a validity period, e.g. 2 years. When the middle of this period is reached,

new credentials are generated which lead to a new identity9. These new credentials are also

signed by the old private key and this signature along with the old ID are included in the history

part of the credentials in order to show that both credentials represent the same identity.

This means that friends have a time frame of half the validity period to renew their friendship

and sign the new credentials. During that time, the identification can still be done with the

old credentials. The update process should be automatic when coming into range not requiring

secure pairing unless the particular friendship was intended not to be renewed.

3.3.3.1. Services

Additionally, together with the identity, users may advertise their services in the service mask of

the discovery messages. Although no special services are currently available, this service mask

could be used in the future to inform other users about special services. A node could for example

advertise its Internet connection or a central authority inform others about its registration service.

The variety of all these services will be dependent on the users’ needs. We currently use the

service flag in order to inform other users whether the owner’s credentials are trusted, i.e. signed

by an authority, or not. Depending on that information, a credential update may or may not be

required.

8Message that is broadcasted every 2 seconds in order to inform other peers about its presence and services.
9Since the identity is deduced from hash of the public key.

43

3. Design

Channel Credentials

1. ID (Hash of Public Key)
2. Name
3. Algorithm Identifier
4. Public Key
5. Signature (Over Fields 1-4)

Table 3.3.: Fields of Channel Credentials.

3.4. Authorization

As mentioned in Section 2.1, podcasts are always published into so-called channels. By extending

the podcasting concept for peer-to-peer delivery of user generated content, the need for new

channel definitions which are more suitable for the new publication scenarios becomes evident.

In this section, we define three new channel classes, namely open, restricted and closed, which

define different publication and viewing rights for users. In the authorization process, it is defined

whether or not a user is allowed to publish into a channel. Each published content is assigned to

a channel and an author by including the corresponding channel ID10 when signing the content.

Before certain content is downloaded in a specific channel, the channel properties as well as the

channel class and the authorization lists have to be checked to verify whether the transaction is

legal.

3.4.1. Channel Properties

Every channel requires credentials which are based on a generated public/private key pair. Sim-

ilar to the generation of identities in Subsection 3.3.1, the channel is identified by the hash of its

public key. The channel credentials and meta data comprise all information about a channel and

are both presented in this subsection. Information about access and publication rights of users

are all defined in the different authorization lists which are presented in Subsection 3.4.3.

3.4.1.1. Channel Credentials

The channel credentials are listed in Table 3.3. The user holding the corresponding private key is

automatically the owner of the channel and allowed to change the channel’s meta data as well as

all the authorization lists. When owners want to give up their administrative responsibilities in

the channel, they could pass the ownership over to another user by sending him/her the channel’s

private key and deleting it locally.

10The channel ID is part of the channel credentials explained in Section 3.4.1 is needed to assure no user can
copy the content into another channel where it may not be appropriate thus resulting in a bad reputation for
the author.

3.4.1.2. Channel Meta Data

The channel meta data contains additional information about the channel such as the channel

policy, a description field, a flag indicating the channel class11, and an optional field disclosing

the owner’s identity. The meta data is signed with the private key of the channel credentials so

that only the channel owner can perform changes to it.

Owner field: The owner field contains the owner’s user ID and a signature over the channel ID.

The signature assures that the channel is created by the specified user and not by other users

trying to profit from another user’s reputation.

The field is optional in order to retain the privacy of every channel owner. Although an owner

can regulate the content inside a channel with the help of authorization lists12, he/she may not be

able to examine every content published in the channel because of the nature of the distributed

environment. Particularly, in open channels user may publish content to which the owner does

not want to be related to.

On the other hand, disclosing the channel ownership may increase the trustworthiness, e.g. in

restricted channels because the authenticity can be checked by others.

Channel Policy: If a channel owner wants to specify certain general rules which apply to all

users in the channel, he/she can do so by specifying channel policies. Possible policy flags may

require the holding of specific signatures (e.g. general CA certification, CA certification with

verified age, etc.) or the definition of maximum publication rates13 per day which could be

enforced by the application of the sender itself. However, in the current implementation, no

channel policies are defined yet.

Description: All published content in the channel should be related to the description. The

description comprises human readable text describing the channel topic. By considering channel

descriptions, users can decide whether or not they are interested in the content the channel

offers. Optionally, besides the channel title, the description may already be exchanged in the

discovery channel serving as a hint for subscription. Instead of human readable text, keywords

could be extracted from the description. Such tags would be advantageous in comparing and

finding similar channels.

3.4.2. Channel Class

We define three different classes of channels depending on the purpose and sensitivity of the

published content. They are the open, the restricted and the closed channel. The definitions can

be found below.

11Comprises open, restricted and closed channels and is explained later.
12See Subsection 3.4.3.
13In contrast to the spam control mechanism described in Subsection 3.7 which limits the download of content.

45

3. Design

Open: In the open channel class every user is allowed to read and publish content. This is the

most challenging channel class since everybody, even strangers, can publish and therefore needs

strict regulations, such as distributed blacklists, ratings and spam control mechanisms. Open

channels could be used for all kinds of things including discussion boards or interest groups

presenting self-made texts, pictures or even videos.

Restricted: In restricted channels every user can read but only the members14 can publish

content. No spam prevention is needed because only a limited legitimated group does publish.

Restricted channels may be used for traditional podcasts from Internet showing publicly available

information such as newsfeeds from newspapers or television stations as well as a means to

distribute the homework by a teacher in school. These channels are used in case the authenticity

of the source is important but the information itself is not secret.

Closed: Private content can be published in closed channels. All content in this channel is

fully encrypted and only open to members which are listed in the member list14. Therefore,

closed channels may be used between friends, within a family or in a working environment where

informations should not be publicly available. For privacy reasons, contents (including channel

meta data and member list) are only exchanged after a successful authentication in order to prove

membership. Alternatively some channels could only be advertised in a special environment (see

Section 3.5 for more information). The user rights (read/write) inside a channel are regulated

in the member list and may still vary between the members. Only the owner or moderators can

include members on the member list.

Due to performance issues, symmetric cryptography is applied for encryption. Two methods

are theoretically possible: either the channel owner appends a channel key for the encryption

of all content to the channel meta data or every author generates its own symmetric key and

appends it to the episode meta data. In the current implementation, we use the second method.

Independent of the method used, every sender always encrypts the symmetric key with the public

key of the communicating member just before sending the actual content. By doing this, the

overhead of transferring unneeded keys can be reduced.

3.4.3. Authorization Lists

Authorization lists are tools to specify authorization inside a channel, such as writing or viewing

rights for example. As presented in the last section, we defined three types of channels which

may have different user roles. The user that created the channel is its owner and stores all

channel credentials. He/she is able to include moderators, which are additional administrators of

the channel, on the moderator list. Both moderators and owner have the right put misbehaving

users on a channel blacklist and thus ban them from publishing in the channel or, if the channel

is restricted or closed, add new member on the channel’s member list.

14See next Subsection 3.4.3.

Both global blacklist and channel blacklist are part of the combined blacklist explained later in

Subsection 3.6.3.

Global Blacklist: The global blacklist is only added for completeness. It is made by a central

authority and used in a way similar to blacklist in email traffic. Whenever connecting to another

peer, it is always checked and exchanged whether the other peer provides a newer version of

the list. This blacklist is used globally, meaning independently for all channels. Users which

misbehave in many channels by publishing illegal content will be included on this list. Since

the list is global it should not become uncontrollably large. For this reason only CA certified

identities should be added to this list.

Channel Blacklist: The channel blacklist is only used in open channels where no restrictions on

authors exist, in order to prevent malicious users from publishing. The channel owner and the

moderators administer this list by adding or removing malicious users which continuously violate

the channel rules e.g. by publishing explicit content in a channel for children. Every user inside

the channel will automatically receive the updates of this list together with other channel meta

data changes and new content whenever he/she downloads from a person having the updated

version.

Moderator List: This list contains the moderators of a channel. As explained above, moderators

are additional administrators of the channel and can perform different capabilities depending on

the channel class. These are:

• In open channels, moderators may update the channel blacklist with malicious user IDs.

• In restricted and closed channels, they are allowed to manage new members.

Only the owner of a channel is able to add new moderators to the moderator list, and for integrity

reasons, the list is signed by the channel owner.

Member List: Member lists can only be found in restricted or closed channels because its

purpose is to allow certain users to read and/or write content in the channel. Only the channel

owner and moderators are allowed to include new members and for integrity reasons, every new

entry is signed by its creator. In order to revoke the read and the write rights of a member,

his/her list entry has to persist, specifying that he/she has no rights. The member list entries

are specified in Table 3.4.

The users on the member, moderator or channel blacklist will eventually change their ID whenever

the public key of the user expires. Every moderator/owner who receives an updated certificate

for an existing user has to update all the existing entries for that user. All the other users will

have to wait for a signed list update from the moderator/owner. However, as specified in Section

3.3.1, users are still able to identify the user with the updated identity by his/her old ID in the

history part of the credentials.

47

3. Design

Member List

1. User ID
2. Timestamp from Entry Creation
3. Member Rights
4. ID of Moderator/Owner who added the Entry
5. Signature by Moderator/Owner of Fields 1-4

Table 3.4.: All Entries of a Member List.

3.4.4. PodNet Content

Every content, also called episode in PodNet, comprises all fields in Table 3.5 consisting of the

episode meta data and actual data. All the episode meta data will be downloaded in advance to

check for blacklist nominations15 and ratings before downloading the data. The definition of the

meta data was inspired by the MetaInfo file in BitTorrent [4]. The publication time is included

for future use and would allow for the downloading and searching of new or recent content. The

hash list serves a similar purpose as in BitTorrent allowing to check the authenticity and integrity

of the individual data chunks. Authenticity of the content is checked by verifying the author’s

signature with his/her credentials included in the episode meta data.

Content

Meta Data

1. ID (Hash over Fields 2-6)
2. Content Name (Human readable and descriptive name)
3. Channel ID (of corresponding channel)
4. Publication Time
5. Hash List of Data Chunks
6. Author’s Credentials
7. Properties (File Type, Size, Encryption Flag, ...)
8. Author’s Signature (Over ID)
9. Optional: Encryption Key (in closed channels)

Data Enclosure

Table 3.5.: All Data Fields assigned to an Episode.

If we would rate the suppliers of content instead the authors (explained in Section 3.6), the

signature of the content would not be important because an authentication with the supplier is

always performed before any data download16. The reason for that is the fact that in PodNet

everybody downloads content and provides it to others automatically even though the content

may not be reviewed yet. Therefore, one cannot hold the supplier accountable for it but only its

author.

Whenever a content needs to be deleted, the content’s meta data have to persist and be marked

15Nomination on either the global, channel, personal or local blacklist, i.e. on the combined blacklist explained
later.

16See Challenging Process in Subsection 3.3.1.

as deleted. If everything would be deleted, the content would automatically reappear whenever

a supplier comes into contact.

3.5. Trust Metrics

Trust defines a belief in the honesty and trustfulness of a user’s future actions. In [9] and

[16], trust is assessed personally by comparing the similarity of personal experiences with prior

recommendations17 received from others. The trust value is dependent on the number and

accuracy of ratings. Such a mechanisms would therefore firstly require the users to vote on the

same content and secondly would decrease the trust level in users which perform ratings on many

authors because the probability of being different is larger.

Since we do not want to expect regular ratings from the users in order for the system to work, we

base the trust value of every user on completely different information such as the social relations

(friendships), environments and communities. Although the used information is different, the

trust values still remain individual and may change from person to person.

In this subsection the difference between community and environment are highlighted. Then the

roles a user can play are define in the social model. Furthermore, it is explained how friend

circles are built and how communities are detected.

3.5.1. Environment vs. Community

Although an environment is always associated with geographic locations and a community is

linked to people, both are closely related to each other. The relation is based on the assumption

that at a different location, one is surrounded by different people.

Similar to [28], the environment can be classified into three categories: home, work and other.

In each of them, different security mechanisms may be applied. Automatic detection of the

environment is hard since in the absence of any specialized location-aware hardware, a device

usually does not know its exact location. One could possibly try to analyze the neighbor devices

present at different times of the day. However, the devices would still not know their exact

location but only their neighboring devices. The environment could be completely different as

for example at work or taking a break with some colleagues at a bar. Therefore, we abandon

environment classification and focus on community detection in the following.

A community can be described as a well linked clustering of entities [29]. An entity is not bound

to one specific community and may therefore belong to more than one. Additionally, an even

more closely linked part of a community may build a sub-community. By analyzing contact

duration and/or contact frequency of the surrounding peers and sharing this information with

those, one can try to guess the communities to which one belongs.

17Recommendations about other user’s behavior. It will be defined later in Section 3.6.

49

3. Design

3.5.2. Social Model

Before going into details on community detection, the social model in PodNet is explained,

highlighting the different user roles in the system. Some roles may be combined since they are

not necessarily mutually exclusive.

Neighbors: Any peer that is in the user’s proximity at a given time is his/her neighbor. As there

is no special requirement on neighbors, they can be combined with any other role. Encountered

neighbors are saved for a certain time, depending on the regularity and the duration they are

encountered as well as an aging factor. See Subsection 3.5.4 for more information.

Authors: An author is the producer of content. Identifying authors is important in order to

hold users accountable for what they publish even though they are not necessarily neighbors.

Authentication can be performed by checking the author’s signature included in the episode

meta data18 and accountability is fulfilled by applying the rating mechanism which is described

in Section 3.6.

Suppliers: Suppliers are users who provide content to other users and hence are neighbors.

However, they are not necessarily the authors of the content and therefore, cannot be held

accountable for it.

Optionally, in order to save resources, a supplier could decide to spread content only for a certain

time or with a certain probability. Besides that, the usage of incentives to reward suppliers could

motivate people to provide content and ensures fairness in the distribution process. However,

such optional features are out of the scope of this work.

Friends: Friendship is a relation with a trusted peer which is established through secure pairing

as explained in Secure Pairing in Subsection 3.3.2. It can only be performed consciously when

both peers meet each other (neighbors) and agreed on a common password for the secure pairing.

After having established friendship, these peers will trust each other to a much higher degree.

In particular, this influences the social trust value which is important when exchanging ratings

as explained in Subsection 3.6.2. Besides that, friendship relations help building up the friend

circle as explained in the next paragraph. In contrast to [6] and PGP, signatures from friends

are not required for usage but are an add-on in order to increase the social trust.

Friend Circle Members: When two peers meet, they may first exchange their friends list and

then check whether they have common friends. As shown in [30], friends up to six hops can be

trusted to a high degree. Based on the common friends information, friends circles can be built

as explained in Subsection 3.5.3. Members of a friend circle are assumed to be more trustworthy

than regular users but less trustworthy than direct friends.

18See Subsection 3.4.4 for more information.

Familiar Strangers: Familiar Strangers [31] are people we do not know (strangers) but meet

regularly (familiars). They can be more trusted than completely unknown users due to two

reasons. Firstly, these peers do not frequently change their identity in order to abandon bad

reputation. Secondly, incomplete files can be easily completed at another day. Although an

attacker could still initially behave nicely and start an attack some weeks later after having an

increased trust level (and also an increased potential effect), the weight given to these peers is

still low and generating such identities would require a much higher effort for the attacker. In

order to prevent attackers from using several identities at the same time, some techniques such

as in [20] could be used19. For the sake of simplicity, we make no distinction between the terms

Familiar Strangers and Familiars and use them interchangeably. If familiar is used as a predicate

e.g. for node, user or peer, it implies that the corresponding node, user or peer is a Familiar.

Community Members: Users that have a high percentage of common Familiar Strangers are

assumed to be well linked and are thus in the same community. Communities can be formed

at locations where most people see each other over a significant period of time, e.g. in work

environments or at home.

Community members are more trusted than single Familiar Strangers since they share a sig-

nificant part of daily and social activities. However, they are still less trusted than Friends or

Friend Circle Members because an attacker can always obtain community membership without

much effort assuming he/she is a familiar already as shown in Subsection 6.4.1.

Strangers: Unknown users are classified as Strangers. Initially every user is a stranger because

no or only little information about the user is available. Therefore, Strangers are the least trusted

users in the network because they have not yet proved to be honest. Strangers are usually new

users of the network, which have only rarely interacted with others. However, attackers which

do often change their identities in order to obfuscate their intentions may also be classified as

strangers. By meeting other people regularly, a stranger can become a familiar peer, community

member and by secure pairing build friendships and friend circles thus increasing his/her social

trust value for specific peers.

3.5.3. Friend Circle Buildup

In order to build up a friend circle, a node ni requires to be friends20 with at least one person

who is saved in n′is friends list FRi. As shown in Algorithm 2 a user’s friend circle contains

at least all the 2-hop friends, i.e. the friends of friends. So any two peers that have a common

friend will always add each other to their friend circle. Additionally, a peer is added as well, if

at least a certain adding percentage padd of their friends are already in one’s friend circle.

Additionally, the peer’s friends are merged into one’s friend circle if they coincide at least by

the merging percentage pmerge because we assume that those peers may have similar trustability

19See Sybil Attacks in Section 2.5.
20The process of becoming friends is described in Section 3.3.2 under Secure Pairing.

51

3. Design

Algorithm 2 Friend Circle Buildup

padd: Adding threshold
pmerge: Merging threshold
ni: A node
FRi: Set containing all friends of node i
FCi: Set containing all friend circle members of node i
n0: Local node
FC0 = ∅
for all nodes ni in proximity do

acquire FRi from ni
if ni ∈ FR0 then

merge FRi and FC0

else

if FRi ∩ FR0 6= ∅ then

add ni to FC0

else if | FRi ∩ FC0 | / | FRi |> padd then

add ni to FC0

end if

if | FRi ∩ FC0 | / | FRi |> pmerge then

merge FRi and FC0

end if

end if

end for

as those already in the circle. Note that unlike friendship established through secure pairing,

the friend circle adding and merging process is not necessarily symmetric as explained in the

example below.

The probability of merging or including a user into the friend circle decreases with increasing

hop distance and thus limits the size of the friend circle and the order of transitivity.

An example scenario is depicted in Figure 3.2. For this example we chose a padd of 60% and

a pmerge of 90%. The nodes Red, Green and Blue are shown together with their friends (the

smaller nodes in the circle around the them). Additionally, the Red’s friend circle is shown which

contains some of Green’s and Blue’s friends (orange and oragnge shadowed nodes). In case Red

would meet Green, he is added to the friend circle since more than 60% of his friends are in Red’s

friend circle.

In case Blue is met, Red would not only add him to the friend circle, but also merge Blue’s

friends, since 90% of them are member of the friend circle already. On the other hand, Red’s

friends might not be in the Blue’s friend circle which would give Blue no reason to add Red to

his friend circle.

3.5.4. Community Detection

As mentioned in Subsection 2.6, not much work has been published for distributed community

detection in delay-tolerant networks. In [24] the three algorithms Simple, k-Clique and Modular-

Figure 3.2.: A Friend Circle Scenario.

ity are proposed.

The Simple algorithm needs the least overhead in computation, storage and sending but suffers

the disadvantage that an accelerated community construction by merging communities is very

inaccurate. Every user only exchanges his/her familiar and community set.

Both k-Clique and Modularity algorithm need high sending and storage overhead since addition-

ally all familiar sets of all community members are also exchanged. On the other side, both

algorithms can perform an accelerated community detection by community merging without los-

ing the construction precision since all the community member information is available as if the

respective peers would be present.

Compared to Simple and k-Clique, the Modularity algorithm has the advantage that (besides

the total contact duration threshold for familiar nodes) no additional design threshold is needed,

making the algorithm more flexible for changing environments. However, it needs much more

processing overhead because the modularity has to be re-calculated for every community member

whenever a new community member is added.

It is evident that all three algorithms have advantages and disadvantages. We decided to base

our community detection algorithm on Simple because of the fewer computational and sending

overhead which is crucial on mobile devices21. In [24] they also suggest the Simple algorithm for

mobile devices with constraints on complexity because it showed quite acceptable results.

However, this algorithm is not perfect at all and more research is needed in this area, especially

in considering the aging aspect as already mentioned in Section 2.6. For this reason we have

21Compare to Performance Requirements in Subsection 3.1.

53

3. Design

slightly modified the algorithm in several ways.

3.5.4.1. Modified Community Building Algorithm

The main change to the Simple consists of substituting the community adding criterion in Algo-

rithm 1 from

| Fi ∩C0 | / | Fi |> λ (3.1)

to

| Fi ∩ F0 | / | Fi |> λ ∧ | Fi |≥ k (3.2)

where λ is the adding ratio, Fi is the familiar set of the other node and F0 and C0 are the

own familiar and community set respectively. Additionally, similar to the k-Clique algorithm,

we require a minimum of k members to be in the familiar set before the community algorithm

considers adding the peer.

By this modification the quality of the detected communities are improved significantly. The

evaluation of the modified algorithm can be found in Section 6.4.1.

3.5.4.2. Aging Mechanism

The aging mechanism we apply consists of two parts, a Familiar Set Aging and a Community Set

Aging, which should regulate the size in the familiar and community set respectively. Whenever

two devices see each other, their contact duration value is increased. The Familiar Set Aging

mechanism decreases that contact duration value periodically.

Parameter Description

f_sizemin Min. familiar set size
f_sizemax Max. familiar set size
f_agemin Min. familiar set aging speed
f_agemax Max. familiar set aging speed
f_agestep Familiar set aging speed step
f_thmin Min. familiar set adding threshold
f_thmax Max. familiar set adding threshold
f_thstep Familiar set adding threshold step
f_age Familiar set aging speed
f_thadd Familiar set adding threshold
f_threm Familiar set removing threshold

c_sizemin Min. community set size
c_sizemax Max. community set size
c_thmax Max. community set removing threshold
c_thstep Community set removing threshold step
c_threm Community set removing threshold
c_age Community set aging speed

xalien Alienation factor

Table 3.6.: Description of aging algorithm parameters.

In order to have more dynamic parameters, we decided to make the familiar set aging speed

f_age as well as the adding threshold f_thadd (defines when a peer is added to the familiar

set), dependent on the familiar set size. Similar to [29], the aging should depend on the time

passed since the peer was last seen. Therefore, the aging is multiplied by a factor that increases

exponentially with time in order to neglect short time variations. We call this the alienation

factor xalien. The description of all the required parameters22 are summarized in Table 3.6.

Algorithm 3 Familiar Set Aging

f_age = f_agemin
f_thadd = f_thmin
f_threm = f_thmin − f_thstep
loop

for all nodes ni in the familiar set F0 do

reduce n′is contact time ti by f_age · xalien
if ti < f_threm then

remove ni from F0

end if

end for

if | F0 |< f_sizemin then

reduce f_thadd and f_threm by f_thstep (if f_thadd > f_thmin)
reduce f_age by f_agestep (if f_age > f_agemin)

else if | F0 |> f_sizemax then

increase f_thadd and f_threm by f_thstep (if f_thadd < f_thmax)
increase f_age by f_agestep (if f_age < f_agemax)

else

if | F0 | increased since last aging cycle then

increase f_thadd and f_threm by f_thstep (if f_thadd < f_thmax)
increase f_age by f_agestep (if f_age < f_agemax)

else if | F0 | decreased since last aging cycle then

reduce f_thadd and f_threm by f_thstep (if f_thadd > f_thmin)
reduce f_age by f_agestep (if f_age > f_agemin)

end if

end if

wait for next aging cycle
end loop

The idea behind having an aging factor depending on the familiar set is to give less social users

the ability to build small communities, as well as to limit the community size for very social

users. In order for the aging to work for a broad range of social behaviors, the range of desired

familiar set sizes is specified between f_sizemin and f_sizemax. As long as the familiar set

size is below f_sizemin the aging speed f_age decreases each aging cycle towards a minimum

f_agemin. While the size of the familiar set is in the desired range, f_age is augmented or

reduced depending on whether the familiar set size has increased or decreased since the last aging

cycle. As soon as the size surpasses f_sizemax the aging speed f_age increases dramatically

22An example of specific values for the parameters can be found in Table E.20.

55

3. Design

towards a maximum f_agemax. The familiar set adding threshold behaves exactly the same as

the aging speed. The Familiar Set Aging mechanism is described in Algorithm 3.

Algorithm 4 Community Set Aging

c_threm = c_thmax
loop

for all nodes ni in the community set C0 do

increase n′is community member time t_cmi by c_age
if t_cmi > c_threm then

remove ni from C0

end if

end for

if | C0 |< c_sizemin then

increase c_threm by c_thstep (if c_threm < c_thmax)
else if | C0 |> c_sizemax then

decrease c_threm by c_thstep
else

if | C0 | increased since last aging cycle then

decrease c_threm by c_thstep
else if | C0 | decreased since last aging cycle then

increase c_threm by c_thstep (if c_threm < c_thmax)
end if

end if

wait for next aging cycle
end loop

The community set is aged as well removing community members after a certain time of complete

inactivity. This is done by increasing the timeout of each community member during every aging

cycle by c_age. In case the timeout reaches the removal threshold c_threm the corresponding

user is removed from the community. Every time a community member is met and fulfills the

community adding or merging criterion, the timeout of the community member is reset to zero.

As can be seen in Algorithm 4, the removal threshold c_threm depends on the community set

size similar to the familiar set adding threshold f_thadd is depending on the familiar set size as

described above. This Community Set Aging algorithm requires the range of a desired community

set size to be defined in between c_thmin and c_thmax. Its behavior below, in and above this

range is comparable to the Familiar Set Aging mechanism.

3.5.4.3. Optional Modification

Additionally, one could think about not using the accelerated community construction by dis-

abling the merging of communities. The reason for this is that it is very inaccurate and com-

munity detection should be done individually for every node. In [32], it is observed that most

people are members in several communities which may differ in size and people. Very active

people which are in several different communities, e.g. home, work, sports club, politic party,

etc., would hardly ever merge a community because the percentage of common people would be

small.

A positive side effect of avoiding the merging of communities is that the exchange of the commu-

nity set would become obsolete which would decrease the sending overhead and computational

complexity.

3.5.5. Trust Weights

Ideally, if there were no malicious users and if no information would be available, all sugges-

tions, even from unknown users would be helpful. However, if information from trusted users

is available, the influence of unknown users should be limited so that they can hardly outstrip

the more trusted users. There is always a tradeoff between relying on opinions from unknown

persons when no information is available and neglecting this information completely.

In Table 3.7, we present the weight assignment we chose in our design. However, depending

on the preferences (security versus information) the weightings could easily be changed in the

future.

Group Trust Weight

Stranger 1
Familiar Stranger 5
Community Member 10
Friend Circle Member 25
Friends 50
Oneself 100

Table 3.7.: Trust Weights.

In [23], the cost of trusting unknown users when allowing users to freely change identities, is

formally analyzed using game-theoretical models. Even though they concluded, that in such

a case, all unknown identities should be regarded as malicious, we will not neglect these users

but give them much lower weight. Since ratings are only exchanged between directly connected

peers, an attacker would have to connect to every victim that he/she wants to fool with much

more fake identities in order to exchange fake ratings and thus locally manipulate the victim’s

perception of another user’s reputation.

3.6. Reputation System

The reputation of a user regards his/her behavior norms and is based on past experiences. It

combines personal opinion and received recommendations which are both obtained by rating the

author.

Personal opinion comprises the user’s own view from his/her own past experiences about the

content from an author. The reputation of an author is built by calculating the weighted sum of

one’s own opinion and received recommendations from others. Note, that in order to avoid loops

and the resulting rating amplification, we only exchange information from direct experiences

57

3. Design

when meeting another peer, i.e. own download experiences. The weights of the recommenda-

tions are independent of the user’s rating and depend completely on their trust value which is

defined in Section 3.5. The reputation of an author should help a user to decide whether or not

to download content from that author.

Every user can assess an author’s reputation by a two-level rating which measures the legit-

imacy and satisfaction of published content per author and channel (explained in Subsection

3.6.1). The author can thus have different reputations values in different channels and the rat-

ings evolve over time as old ratings have a decreased influence on the reputation.

In [9], it is stated that reputation should comprise the following four properties: subjectiveness,

context-dependence, dynamics and time. In the following, we will analyze our proposed rating

against these four properties.

Subjectiveness: The rating is subjective because the same content can be rated differently by

different users. However, it is not arbitrary and therefore we use the two level rating which on

the first level measures the legitimacy (objective rating, should be similar for all users) and a

subjective rating which may be different depending on the users and his/her taste.

Context-Dependence: The context-dependence of a reputation is important since e.g. a good

engineer may not be automatically a good cook. We consider context-dependence because all

reputation and ratings of an author is always relative to a specific channel. Instead of content

rating, we apply author rating because we assume that the behavior of an author inside the same

channel will not vary significantly.

Dynamics: The reputation should be dynamic in order to allow bad authors to improve their

reputation and good authors should get a lower reputation when publishing bad content. This

will be ensured by using a fading factor smaller than 1 in the personal reputation calculation

shown in Equation 3.3.

Time: The time requirement regulates the aging of all ratings so that old ratings are less

weighted than new ratings. We currently don’t consider explicit aging of rating weights as in

[9]. The fading factor naturally ages the personal ratings implicitly and the validity of blacklist

entries is regulated by timeout values defined in Subsection 3.6.4. We decided not to age the

rating values because the rating should be valid as long as the content is present.

3.6.1. Personal Opinion

In order to express an opinion about content, a user has to rate the content. The corresponding

author is then added to the personal list which should reflect this opinion. More importance

should be given to ratings of recently obtained content in order to calculate an up-to-date opinion

of the author.

3.6.1.1. Rating

Every user may optionally rate content to influence the reputation value of its author locally

and as a consequence improve the quality of the content received in the future. As indicated in

Section 2.3 many different rating system exist in literature. In most systems, the user is asked

for an opinion (legitimacy, quality, taste) about a content or service and the system deduces

an appropriate action from it. In this work, we will use a two level rating which will evaluate

legitimacy and quality/taste of the content at the same time.

The first level comprises objective rating, i.e. whether the content is legitimate. The second

level rating is subjective and is used to rate either the quality of the content or reflects the user’s

taste. It is difficult to differentiate between quality and taste because a user’s taste may influence

his/her perception and priority of the quality. Both rating levels are mutually exclusive meaning

that if a content is rated as not legitimate, no second level rating is needed and vice versa.

As specified above, the author rating is context-dependent relative to the channel the content is

published in. All the personal ratings (subjective or objective) from direct experiences are stored

in personal lists and will be exchanged among all users subscribed to the same channel prior to

every data exchange inside the channel. The users that receive that information will store it in

their local lists and process it based on the trust value of the recommender as explained later in

Subsection 3.6.2.

Objective Rating: An objective rating states whether content is legitimate or not. If the content

is not legitimate, it might be one of the following:

• illegal/objectionable

• fake

• spam

• misplaced

Non-legitimate content such as illegal/objectionable, fake or spam should be blocked because it

is clearly unwanted content. It is arguable whether misplaced content should be treated as harsh.

More appropriate might be to delete it locally and rate it as (subjectively) bad.

Subjective Rating: Content can be rated as either good or bad depending on the quality or

the taste. The number of consequent good/bad content in the personal rating list will influence

the spam control mechanism (see Section 3.7). When several of the received contents from the

same author are rated as bad, the author can be locally blocked without notifying other users

by setting a blocking flag in the personal rating list. In this case, only a subjective bad rating

would be exchanged with others.

59

3. Design

The subjective rating is translated from ‘good’ and ‘bad’ into ‘+1’ and ‘-1’. We use binary values

for three reasons: Firstly, we want all the values to have the same influence on the rating which

would not be the case with multi-level ratings. Secondly, we assume that a user will only rate

a content when he/she either liked or disliked it. Contents that are just acceptable may not

be rated at all. Thirdly, the rating should influence the binary decision whether to download

content or not. Since the decision should be taken automatically, a binary rating may simplify

that mechanism. This rating value r is then added to the existing rating rold the following way:

rnew = rold · a+ r · (1− a) (3.3)

The parameter ‘a’ denotes a fading factor. It may be in the range of [0, 1[. The closer ‘a’ is to

1, the more important are the previous ratings, i.e. the slower the fading. In order to illustrate

a concrete example, for a fading value of 0.9 the formula would be:

rnew = rold · 0.9 + r · 0.1 (3.4)

This personal rating is performed exactly the same as in [9] without the time dependency of the

fading factor. The resulting rating may be in the continuous range of]-1, +1[. The higher the

absolute value of the rating, the higher the confidence in the rating. Similar to [9] one could

even derive a multi-level rating by defining e.g. values larger than 0.2 as trustworthy, values

larger than 0.8 as very trustworthy and similar for negative ratings values smaller than -0.2 un-

trustworthy and smaller than -0.8 very untrustworthy. All values are initialized with zero which

means ignorance.

The subjective rating influences the spam control mechanism as described in Section 3.7. If

the subjective rating reaches a certain (negative) threshold, the corresponding author is blocked

for a period of time depending on the Blocking Time (explained in Subsection 3.6.4).

Blocking Content: Although blocked content is not automatically deleted23, the content itself

and all following contents from the same author are prevented from being exchanged at all.

Blocking content due to personal taste as with the subjective rating (explained above) should

not affect the overall spreading performance of the content. Indeed, results in [33] and our simu-

lations with non-cooperating nodes in Section 4.4 indicate that limiting the number of suppliers

only slightly reduces the overall spreading performance.

On the contrary, malicious content which is blocked due to objective rating should be prevented

from spreading. Therefore, this blocking information is exchanged to all users subscribed to

the same channel, which, on their part, would start blocking the content as soon as a sufficient

23This decision is left to the user.

amount of blacklist suggestions are received24, i.e. more than the suggestion threshold.

There are two distribution processes fighting against each other, namely, the local blacklist and

content spreading. By introducing the suggestion threshold, the blacklist spreading is put at dis-

advantage compared to the content spreading because the reception of several blacklists is needed

before the measure becomes active. However, the spreading of blacklist information has a clear

advantage when several malicious authors generate content because the blacklist information can

be summarized in only a few packets and are sent at the beginning of the data transfer, whereas

content exchange needs much more time.

Assuming an author to regularly send spam using the same identity over a long period of time,

the users would have time to rate content and exchange ratings so that the spreading of future

contents could be prevented. Normally, there is a delay between content reception and content

rating which leads to a problem if an author just wants to flood the channel with many contents

at the same time and then disappears forever. Therefore, we have applied a spam control mech-

anism which regulates the amount of content a user receives from different authors. The rate

limiting is explained in Section 3.7.

3.6.1.2. Personal Lists

Every device stores its personal ratings either in its rating or blacklist depending on whether the

rating was subjective or objective.

Personal Blacklist: The personal blacklist contains all the authors that should be blocked as a

consequence of an objective rating. The list also includes a counter cbl, stating how many times

an author has been blocked, as well as a timeout tblock, indicating how long the particular author

will be blocked. Each time the counter increases, the blocking time will increase. See Subsection

3.6.4 for more information on the blocking timeouts. This adaptive mechanism tolerates rare

misconducts but remembers the past misbehaviors similar to [34]. The blacklisted entries are

exchanged with others as long as they are blacklisted locally.

Personal Rating List: The personal rating list contains two values for each author: the rating

itself and a spreading timeout value which indicates how long the direct rating is spread. The

timeout is necessary for two reasons: firstly, only recent ratings should be spread and secondly,

the amount of sent ratings should be limited.

Some informations about the number of received ratings may be useful. However, the calculated

rating value indicates whether several rating exist and whether the majority of the recent ratings

about the author are positive or not.

24Note that only direct information from own experience with downloaded content is exchanged. A node which
starts blocking a peer because of received blacklist information will not share this information with others.
See Subsection 3.6.2 for more information.

61

3. Design

3.6.2. Distributed Recommendations

Having a personal opinion about some content and its author is a good way to increase the qual-

ity of the received content. However, ideally, one would like to know something about the quality

of a content produced by an not yet known author before actually getting it, i.e. before having

an own opinion. This is the reason why recommendations from other users become important.

Every user has to distribute its own personal opinions to its neighbors and all received personal

opinions (i.e. recommendations) from others are summed up and stored in local lists (described

below). We assume the exchanged overhead to be small since all rating and blacklists are always

exchanged within a context (i.e. in every channel) and therefore, the recommendations affect all

subscribed users.

The reputation of an author is the combination of all recommendations received from users

one has interacted with (which are stored in the local lists), and, if available, the own personal

opinion (which is stored in the personal lists). In this subsection the distribution process and

the concept of local lists is described.

3.6.2.1. Distribution Process

When two users interact, the personal rating and blacklists are exchanged. In order not to receive

the same list too many times, the exchange is only performed when the list changes which can

be regulated by a timestamp.

Only basic information from the personal lists is exchanged, i.e. for the blacklist the identity

of the blocked author, and for the rating list, the author ID together with a discretized rating

value25.

3.6.2.2. Local Lists

The received recommendations are stored in two local lists. The blocked authors are added to

the local blacklist and the ratings are integrated into the local rating lists.

We don’t need rating tuples as in [16] because every user has discretized his/her own rating

values into a four level rating depending on his/her personal rating list. This value is already

aggregated over several contents and indicates confidence by its absolute value.

Local Blacklist: The local blacklist contains an entry for every author a blacklist recommen-

dation was received. Every entry itself contains a list of all the user that have recommended to

block the author and a timeout value for each recommendation. If the number of recommenda-

tions exceeds a certain suggestions threshold, the author is blocked until the blocking timeout is

reached. See Subsection 3.6.4 for more information on the timeout length. Recommendations

from different sources are weighted differently depending on their social trust value. This would

25For simplicity reasons we transform the continuous range of the rating to a value in the discrete set
{−1,−0.5, +0.5, +1} as explained later. The higher the absolute value, the higher the confidence in that
value.

mean, assuming a suggestion threshold of 100, either 2 friends, 4 friend circle members, 10 com-

munity members, 20 familiars or 100 strangers need to provide a blacklist recommendation in

order for an author to be blocked. The complete list of trust weights can be found in Subsection

3.5.5. Optionally, as a potential future improvement, the number of needed recommendations

may depend on the personal rating of the author in question. This would mean that if one has

a good opinion about an author more suggestions are needed before he/she gets blocked.

Local Rating List: The local rating list is a list comprising all the received ratings. The received

ratings comprise values from the personal rating lists of the corresponding sender. The continuous

value is discretized to a discrete value in the set of {−1,−0.5, +0.5, +1} in order to save resources

in sending and storing. The higher the absolute value of the rating, the higher the confidence

of the rater in his/her rating. A user cannot gain higher influence by sending its rating values

more often since his/her old rating values are replaced by the new ones if they have changed.

The influence in the combined reputation is only dependent on the social trust value of the

recommending user.

3.6.3. Combined Reputation

In order to get a usable reputation value, the personal and the local lists have to be combined.

Every author which is on any of the two blacklists is blocked. An overview over all values that

influence the combined blacklist can be found in Figure 3.3.

Made by central
autority

Global Blacklist

Made by channel
owner and
moderators

Channel Blacklist

Combined Blacklist

Combined Blacklist
from others

(recommendations)

Local Blacklist

Own objective
rating

Personal Blacklist

Objective Rating

Own subjective
rating

(if rating too bad)

Personal Rating

Subjective Rating

Figure 3.3.: All Influences on the Combined Blacklist: The combined blacklist is build from the
global and channel blacklist (which are both central), from own and received objective ratings as well
as from own subjective ratings if the rating is too low. Note that the entries from the global blacklist
are used locally and only objective ratings from the personal blacklist are exchanged with others.

The combined rating is the weighted sum of all the ratings for a particular author, including the

ones in the local and the personal rating list. The different entries should be weighted differently

63

3. Design

according to the trust weight of the rater. Figure 3.4 gives an overview over the combined rating.

Combined Rating List

Continous ratings [-1,1]
are classified into
{-1, -0.5, 0.5, 1}

before exchange

Personal Rating List

...

Personal Rating List

...

Personal Rating List

Received Personal Ratings from other users

××

If ratings received from friends:
take accurate rating, else:

take sign of rating

Local Rating List

User rates content from
author with r in {-1, 1}

Rating entry of author in own
rating list gets updated with:

 rnew = rold · a + r · (1-a)

Personal Rating List

Own Personal Rating

weightsweight

+

PreprocessingPreprocessing

Figure 3.4.: All Influences on the Combined Rating List: The combined rating list is build from
the personal and local rating list. The entries are first preprocessed to ensure that the minimum
influence of trusted accurate ratings is at least as high as of untrusted ratings. The resulting rating
values are then weighted according to their trust values and combined to a weighted sum.

Before building the actual weighted sum the ratings have to be preprocessed for the following

reason: In case several ratings from several sources with different trust values are available the

simple weighted sum would produce a reasonable value. But if only a stranger’s rating is avail-

able and this stranger gives the author the maximum value the weighted sum would produce a

high value we cannot really trust. Therefore the influence of such ratings has to be limited. It

should not be possible for a user to increase his/her influence with a higher (positive or negative)

rating. As a consequence we only consider the sign (+/−) of the ratings received from lesser

trusted users. This results in an influence range between -1 and 1.

On the other hand, ratings received by friends are trusted to be accurate thus all four discrete

values are used. However, we would like the minimal influence of a friend to be the same as a

strangers influence. For this reason we multiply their rating by 2 resulting in the values -2, -1, 1

and 2. Finally, our own rating minimal influence should be adjusted to the strangers influence

range as well and is therefore multiplied by 10, producing a value in the continuous range be-

tween -10 and 10.

It might be a reasonable idea to share a more fine grained rating, e.g. 10 discrete values instead

of 4, and to differentiate more between the trust levels. An example would be to use all the

10 discrete values for friends, 8 for friend circle members, 6 for community members and so on.

However, due to simplicity reasons, we currently avoid using such a fine grained rating.

All the trust weights used to combine the ratings are summarized in Subsection 3.5.5. As we

mentioned in Section 3.5, we use static weights which depend on the user’s social relations and

environment. We do not adjust weights based on the accuracy of their recommendations as in

[9] and [16] since we may not have enough common ratings (personal and recommendations) to

assess a reasonable value.

The advantage of the weighted sum is the fact that it preserves the rating ratios depending

on the weights. Because of the additional preprocessing of the ratings, if we see a rating value

higher than 1, we know for sure that rating was influenced by at least one friend who is pretty

confident in his rating or by oneself. If a rating value is higher than 2, we can directly conclude

that the rating has to be influenced by oneself which gives higher confidence in the rating.

In case one has rated an author positively once, the resulting personal rating would be

(0 · 0.9 + 1 · 0.1) = 0.1. (3.5)

With the described combination process the resulting preprocessed value would be 1 and in order

to compensate that rating one would need 100 strangers, 20 familiars, 10 community members, 4

friend circle members and 2-4 friends which have a contradicting opinion. If one has rated more

than once, more contradicting ratings are necessary.

The combined rating currently only influences the duration of the Blocking Time (see next

subsection). However, in future applications, the combined rating may be useful when regu-

lating the amount of content that should be downloaded by the rating quality as explained in

Subsection 3.8.2.

3.6.4. Aging and Timeouts

There are four aspects of an authors reputation entry that should age. Firstly, the validity

of a list entry should be limited, secondly, the personal opinion about an author should only

be spread for some time, thirdly, an author should not be blacklisted indefinitely and fourthly,

authors having bad ratings should not be blocked forever.

Author Lifetime: An author entry should not be valid forever. If the entry does not change at

all (lacking new personal or reputation ratings), it could be deleted after some time which could

depend on the rating the author has and whether his/her content is locally available. If the rating

is very good or very bad, the lifetime could be longer, since the high rating value of the author

65

3. Design

must have required many episodes that have been rated and remembering this information may

be more important. In the current design we delete the entry after having deleted all of his/her

content and waiting an additional timeout period tauthor and depending on the author rating

rauthor:

tauthor = 28days · rauthor (3.6)

We chose a minimum of 28 days (four weeks) of remembering because people may not rate that

often and we don’t want to forget authors too fast.

Spreading Timeout: Whenever a user creates or changes the personal rating of an author, this

opinion will be shared with other users but only for some limited time in order to reduce the

sending overhead of the channel meta data. Assuming a user having an almost fixed environment

of people he/she regularly sees, one can assume that the rating and content is already exchanged

and one could save power and time by not sending old ratings again. In our prototype, we chose

a spreading timeout tspread of

tspread = 14days (3.7)

which correspond to two weeks. Even if a user is met regularly the information could still be

missed the first week when being sick or absent for a few days. This user could receive it in

the second week. Note that the spreading timeout only affects personal ratings since blacklisted

authors are exchanged as long as the authors are blacklisted.

Suggestion Timeout: As mentioned in Subsection 3.6.2, information about blacklisted authors

is received from other users. All received blacklist recommendations are stored and if the number

of entries exceeds a certain suggestion threshold, the author will be blocked. However, the

recommendations should only be remembered for a short time because of people who deliberately

try to blacklist specific authors by sending blacklist recommendations. The timeout is reset

whenever the recommendation is received again from the same author. In the current design, we

assume a suggestion timeout tsugg of

tsugg = 7days (3.8)

which corresponds to one week. We chose it as a tradeoff between wanted information spreading

and limiting unwanted wrong recommendations. Assuming a fixed environment, where everybody

sees everybody at least once a week, the recommendations would be reset within the timeout

period whereas fake recommendations which may not be met regularly may be removed.

Blacklisting Timeout: There are two different blacklists: personal and local blacklists. Authors

being on either one of both are blocked for a certain period of time. The first time the author is

blacklisted, the blocking period should be shorter than for the consecutive times. The blocking

period for the personal blacklist depends on a counter26 cbl that increases every time the author

26See Personal Lists in Subsection 3.6.1.

is blocked27. This adaptive mechanism remembers past misbehaviors and increases the blocking

time whenever the author is blocked again. It’s like putting the author on probation, increasing

the punishment with every additional violation.

In the current design, we calculate the blacklist timeout tbl by

tbl = cbl · 28days (3.9)

which is quite high compared to the other timeouts in this section. We set it that high because

objectively bad rated content leading to blacklist nominations is clearly unwanted. This is much

worse than content of bad quality or not according to our taste which is just not what we expected.

An author on the local blacklist is blocked for as long as there are enough recommendations

available. Whenever the recommendations become insufficient, the author is blocked for 7 more

days which equals tsugg above.

Blocking Time: Whenever the combined rating reaches a certain negative threshold, the cor-

responding author is blocked. The blocking time tblock depends on the absolute value of the

combined rating. In this design, we calculated it by multiplying the rounded absolute value of

the combined rating crauthor with 14 days (2 weeks), i.e.

tblock = round(crauthor) · 14days. (3.10)

When assuming a blocking threshold of -2, every author is initially blocked at least for 4 weeks. If

bad content is received after this blocking time, the rating decreases and gets blocked immediately

for a longer time. The content will not be blocked when rated positively, even if it still remains

below tblock.

3.7. Spam Control

There are two types of spamming are possible, content (episode) spamming and channel spam-

ming. The former includes traditional spamming of content as known from e-mail spam, the latter

is specific to the discovery channel of PodNet and comprises the generation of many channels to

which users could subscribe. In this section, we will differentiate between those two.

3.7.1. Content Spamming

In order to limit and impede the spreading of spam and other unwanted content, two main

techniques are used. The first one is blacklisting whereas the second and more proactive one, is

rate limited publication.

27Optionally one could subtract the subjective rating from the counter before multiplying it in order to block
people with good ratings for less time.

67

3. Design

3.7.1.1. Blacklisting

The blacklisting mechanism comprises several blacklists (see Figure 3.3) used in different ways.

There is a personal blacklist, containing the personal opinions, then there is a local blacklist

which reflects the opinion of ones surrounding, a channel blacklist is used in order to empower

channel moderators to ban certain authors and optionally a global blacklist could be used if a

central authority is available.

3.7.1.2. Rate Limiting

The rate limitation regulates the download of content and allows only a limited amount of

downloads per day and author. This avoids spam floods and it gives the users some time to

review and rate the content. There are two reasons why we don’t limit the rate at the sender.

Firstly, attackers modifying the code28 could easily bypass such security measures and secondly,

a supplier does not know how much content we already received from an author or the rate

limitation we currently have.

The actual rate per author starts with one content per day and is dependent on the authors

rating on the personal rating list. Note that we base the rate limit only on the personal rating so

that no attacker can increase the ratings of his/her sybil users in order to increase the publication

limit. If the personal rating rp of an author is greater than 0, the maximal amount of content

one might get from that author is calculated the following way:

210·rp (3.11)

If no personal rating is available, a rate of 1/day is set as default. This produces an exponential

increase of the publication rate limit.

Making the rate limitation dependent on the personal rating has the positive side effect that

users wanting to receive more content from an author, have to rate him/her and therefore, the

rate limitation serves as an incentive for rating the content. However, assuming an attacker is

generating many different user IDs, he/she could still flood a channel even if the rate limitation

is applied. Therefore, it may be necessary to add an additional download limitation of e.g. max-

imum two contents per day and channel from unknown29 and untrusted authors, i.e. authors

not having CA certified credentials, in order to reduce the effect of potential spam attacks.

3.7.2. Channel Spamming

A spammer could also deliver messages in channel titles or flood another user with a huge amount

of generated channels so that the user can hardly find any usable channel to subscribe. We cur-

rently did not do any changes to the discovery channel and include all local channels without

28Compare Cheating Attacks in Section 3.2.
29Unknown means: no credentials available.

checking any legitimacy or perform a spam protection. The reason why we do so is the fact that

we generate separate channel credentials and allow an owner to anonymously create a channel as

explained in Subsection 3.4.1. The main reason for this was mainly the possibility that a channel

owner can pass the ownership over to somebody else if he/she would leave the network or wants

to quit channel administration.

If one would generate the channels with the author credentials, one could use an additional

blacklist for channel owners tackling channel spamming. But this would lead to an additional

overhead which may not be wanted at all.

Alternatively, one could design the discovery channel differently as explained in Subsection 5.6.

The main changes would possibly comprise the introduction of channel aging and timeouts for

received channels suggestions and/or the exchange of only locally subscribed channels. Addi-

tionally, channel quality or availability information could help to improve the relevance of the

shown channels in the discovery channel.

3.8. Conclusion of Design

In this section, we will shortly summarize and conclude the most important parts from the design

and present potential improvements for future work.

3.8.1. Summary

We will give here a short summary over the key point in the design.

Authentication:

• Every user generates its own identity including a public/private key pair. The unique

identity inside PodNet is ensured by using the hash of the public key as identifier.

• Other user can ensure a user’s identity by challenging him or her for the private key.

• Friend ties increase trust in specific users and are performed via secure pairing. As proof

of the friendship, friends sign each other’s credentials.

• Optionally, but not yet implemented, partially offline authorities could also sign the user’s

credentials by a mechanism that ensures human identity.

Authorization:

• Open, restricted and closed channels provide containers for different needs. Everybody

is allowed to publish in and download from open channels. In restricted channels only a

limited group of people can write but everybody can see the content. Closed channels are

defined for small groups where information is private and is thus encrypted.

69

3. Design

• Corresponding to the three channels, we define three user roles, i.e. owner, moderator,

member and all others being regular users.

• The owner has created the channel and is allowed to nominate moderators (Moderator

List) which administer the channel. Owner and moderators are allowed to include members

(Member List) in the channel and give them certain read and/or write rights. In particular,

in restricted channels, they define which members are allowed to publish content whereas

in closed channels, they define which users can view and/or publish content.

• Global blacklists are generated by central authorities and are exchanged between all peers

(if needed) just after connection.

• Channel blacklists are generated from channel owners and moderators and are only valid

within the same channel. These lists are exchanged among all subscribed users together

with the channel meta data.

• Every content is signed by its author and the signature as well as the author’s certificate

is included in the episode meta data. Every user can check integrity upon reception.

Trust:

• Trust is automatically assigned by familiar and community detection. The criterion to be

included bases on time and similarity of the environment.

• Additionally, stronger trust can be assigned by consciously constructing Friends relations.

The exchange of friends list can help automatically find the two-hop friends and include

them in the Friend Circles.

Reputation:

• The author reputation is built by a two-level rating assessing the legitimacy (objective

rating) of and the satisfaction (subjective rating) with the content.

• Every user can rate downloaded content by himself/herself. Non-legitimate contents, i.e.

spam, fakes, illegal/objectionable content, are usually blocked directly whereas bad rated

content influences the spam control mechanism (see below). Additionally, if several contents

from the same author get a bad rating from the user, it will be blocked temporarily as well.

• The subjective rating is based on a binary values. The cumulation of ratings can still lead

to a multi-level rating.

• The rating information (subjective and objective) is exchanged among users which are

subscribed to the same channel before the exchange of any content and even if no other

data is transferred.

• In order to reduce the influence of liars, the recommendations (received ratings) are weighted

with the users’ trust value. Received objective ratings have to exceed a certain suggestion

threshold before they have an effect.

• The received objective ratings are currently processed in order to block misbehaving authors

after exceeding the suggestion threshold. The exchanged subjective ratings are currently

only used to calculate the Blocking Time but could gain importance in future applications,

as for example to regulate the amount of received content (see next Subsection).

• The duration of blocking an author increases with the number of his/her misbehaviors.

Spam Control:

• The spam control mechanism targets publication rate of users inside a channel. It starts

with 1 content per day and increases with a higher subjective rating.

• In order to prevent sybil users to switch identities for spamming, only a maximum amount

of content from unknown authors is allowed.

3.8.2. Future Work

In this subsection, we list potential extensions and improvements to the current design. Most of

them are already mentioned as optionally in the text.

CA Registration:

• The Registration process by a partially offline authority is currently not implemented.

However, in a hybrid network like PodNet, it would be straightforward to perform such an

action by PodNet gateways.

• Performing the entire registration process by SMS/MMS would make the registration quite

location independent in many industrialized countries. Since PodNet is assumed to run on

smart phones, that may not be a huge restriction.

• An authority could check additional properties as for example the legal age of a user

for parental control. Channel owners may require the users to fulfill certain criteria and

require the reception of certain CA signatures before the user is allowed to participate in

and download from the channel (i.e. channel policies).

• Authorities may advertise the registration process in their neighborhood by using the ser-

vice mask field in the discovery message.

71

3. Design

Channels and Content:

• The publication time included in the content (episode) meta data is currently not used. In

future applications it may enable the download of new content or limit the dissemination

of old information.

• The description of channels and content is currently made via human readable text. Future

application could profit from extracting keywords from this description or even replace the

description completely by tags. Keywords would enable channel/content search and the

comparison of similar channels which could also be helpful for reputation (See below).

• Channel Policies could enable the channel owner to define channel specific rules, such as

a sender rate limitation which is fixed and for everybody the same, or requiring users to

obtain an authority certificate stating several specific properties (see above).

• Introduction of a revocation list: A list inside a channel that contains all episode IDs that

should be deleted by the users in the channel. This list would enable users to delete specific

content without blocking the author.

Rating:

• By exploiting the two level rating, a user could regulate the amount of content he/she gets

in a more sophisticated way than only with the spam control mechanism. If not much

content is available, he/she can neglect the subjective rating and only look for legitimate

content to get everything that is legitimate. On the other hand, if a lot of content is

available, he/she can regulate the amount of download content by additionally requiring a

certain positive rating.

• It may be interesting to investigate whether weight refinements, i.e. giving more weight to

people who rate content similarly, would improve accuracy.

• One could substract the subjective rating from the blacklist counter before calculating the

blacklisting timeout in order to block people with very good ratings (besides the blocked

content) for less time.

Distribution:

• In order to save resources, a supplier could decide to spread content only for a certain time

or with a certain probability. The usage of incentives to reward suppliers may motivate

people to provide content and ensures fairness in the distribution process.

• If some downloaded data is corrupted or malicious, the information about the supplier could

be remembered and appropriate countermeasures can be taken in the future. Although the

supplier cannot be held accountable for the content itself, he/she should have checked the

integrity of the downloaded content before supplying it to others. Since an authentication

is performed before every download, the supplier cannot pretend to be someone else.

• When selecting a peer as supplier we only consider his/her trust value. Other factors,

like providing special services30 or having a good author rating31 might be taken into

consideration. Additionally, one could prefer suppliers who provided good content in the

past.

• In particular in closed channels, user may not want to reveal any informations to unau-

thorized persons. Therefore, an additional authentication of the downloader (additional to

the supplier authentication) may be reasonable.

30See Subsection 3.3.3.
31In case the peer is an author.

73

4. Simulation

In this chapter all the aspects concerning the simulations are described, starting with the Sce-

narios which highlight the simulated behaviors. Then, the data sets which were used in order

to perform the simulations are presented. Furthermore, the setup of the simulations is defined.

Finally, the results of the simulated behaviors are shown.

4.1. Scenarios

In our simulations we focus on scenarios operating in the open channels. Limiting the dissemi-

nation of bad content in closed or restricted channels is less difficult since only a limited group

of well-known people is allowed to publish content. The problem arises when trying to control

content dissemination in open channels where everybody can publish.

Every scenario requires a model of the user’s behavior, specially when it comes to rating content.

Modeling a user’s rating behavior is a difficult task since it comprises taste and social aspects

which need to be evaluated in a real-world deployments. Therefore, we only simulate objective

rating1 resulting in blacklists. The exchange of global blacklists made by a central authority is

not simulated at all since it is an add-on based on traditional reactive spam protection used e.g.

in e-mail systems. We allow its usage but do not simulate its efficiency because they are already

well known and lead to a spam protection at least as effective as with moderator blacklists. The

following five behaviors are simulated.

Non-cooperating Nodes: Non-cooperating nodes behave in such a way that they download

content but do not provide it to other nodes. There are two reasons why we simulated the effect

of non-cooperating nodes: Firstly, to test the resilience of the network against freeriders which

do not cooperate on purpose. Secondly, to study the effect of different nodes not participating

in the distribution of certain content because of their particular taste.

Moderator Blacklisting: Moderators are regular users which have the capacity to put misbe-

having nodes on a channel blacklist as explained in Subsection 3.4.3. In our model they detect

spam upon content reception and generate blacklists which are only valid within the channel.

We assume that they are known by all users so that they can accept the blacklists immediately

1See Section 3.6 for objective rating.

75

4. Simulation

upon reception2. In order to increase the dissemination speed, the received channel blacklists

themselves are exchanged among all users of a channel before sending any content.

Personal Blacklisting: Assuming a user not wanting to rely on other persons’ opinions at all,

he/she handles his/her own blacklist based on his/her own experience. Every user detects mali-

cious messages with a certain probability but does not share that information with other nodes.

If content gets blocked, it is not advertised anymore to other users and no other content from

the same author is downloaded.

Locally Shared Blacklist: As with personal blacklists, every node detects spam messages with

a certain probability but additionally exchanges this information with all nodes it communicates

with. In order to avoid exponential spreading, only direct information, i.e. information based

on downloaded content, is exchanged. Indirect information, i.e. suggestions received from other

users, may only influence the download decision of new content locally. Because open channels

are susceptible to liars, the received recommendations cannot be immediately accepted and

suggestion thresholds3 are used. We will observe the effectiveness of sharing blacklist information

with others compared to keeping it secret as with personal blacklists.

Send Rate Limitation: Because blacklists are reactive and slow, an author that just wants to

flood the network with spam messages would not be prevented from conducting his/her plan.

We therefore suggested in Section 3.7 the usage of a regulated send rate which limits the amount

of messages received by the same author. We combined this simulation with local blacklisting

and simulated a constant send rate limitation of 1/day4.

Socially Weighted Recommendations: Assigning a higher weight to recommendations from

community members may improve the susceptibility to occasional attackers as explained in Sub-

section 3.5.1 by allowing the adjustment of the suggestion threshold for the local blacklist. We

will compare the community weighted recommendations with results from regular local black-

listing.

Note that all simulations showing the spreading performance of exchanged blacklist, in particular

the moderator blacklists and all local blacklists, can be considered as worst case scenarios because

we assume unlimited bandwidth resulting in an immediate exchange of every user’s blacklist and

contents.

However, in reality, users may not be connected long enough to exchange all their information.

Whereas many blacklist recommendations may fit in one packet, a single data content itself may

require several packets depending on the content size. Since blacklists are exchanged before

2As explained in Subsection 3.4.3, channel blacklists would be signed allowing only the moderators to change
any information on it.

3Defines the minimum number of recommendations needed before accepting the information.
4Send rate increase based on the rating is neglected due to simplicity reasons.

data transmission, the blacklist information would spread much faster, particularly in mobile,

opportunistic networks, where short connection periods are common and the transmission of

large data is hindered.

4.2. Datasets

The simulations are based on real world mobility traces as well as synthetic models. We first used

the MIT reality traces5 because it is the largest publicly available data set. The set consists of

data from 96 distinct persons6 which was collected over a period of several months. The spread-

ing quality of the individual weeks varies a lot because of the large collection period comprising

all semester breaks, holidays, Christmas breaks and semester starts which are all different from

the regular semester. In a second simulation round, we therefore classified the weeks into good,

bad and average weeks. Details about the classification process can be found in Appendix B.2.

However, the connection density was still quite low even in good weeks because during the data

collection, the bluetooth scanning interval was reduced to one scan every five minutes in order

to increase the standby time of the mobile phones7.

We repeated some simulations with the Haggle iMotes Infocom traces due to a higher connection

density8. However, the Haggle dataset is much smaller and comprises only 41 persons over a

period of three days which gives only limited insights into human interactions. Both datasets

were obtained from the Crawdad repository9.

As reference, we repeated some simulations using generated traces from a Random Waypoint

model (RWP) consisting of 100 nodes moving at a speed of 0.5m
s

and 1.5m
s

, a topology of

1000m× 1000m, a transmit range of 10m. We consider nodes to be in contact if it lasts at least

10s. Additionally, we used a modeled environment of Helsinki10 which is more sophisticated than

pure Random Waypoint since it is map based and contains points of interest. Both traces were

generated over a period of 2 weeks.

4.3. Simulation Setup

In general, we assume that two nodes exchange and synchronize all their contents when they meet

each other regardless of their connection duration (except for RWP and Helsinki). We assume

that all users are subscribed to the same open channel and all information is exchanged within

this channel. Every simulation is repeated several times by selecting a different random source

node in every round and averaging over all the simulations to obtain the final simulation result.

5http://reality.media.mit.edu/
6Note that one person does not have any contacts with any other persons and is therefore excluded.
7http://www.crawdad.org/meta.php?name=mit/reality
8The resolution is also slightly better since they have a two minutes scanning interval.
9http://crawdad.cs.dartmouth.edu/

10This model consists of 126 nodes and came along with ‘The One’ Simulator which we used for the simulations
as explained later.

77

4. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts
content 1

Figure 4.1.: Normal Content Spreading in MIT Set: One content is generated at day 0 without
applying any spreading restrictions. Huge increase around day 60 correspond to semester start at
MIT comprising much more connections.

We avoided simulating the content generation with all possible nodes due to time limitations.

However, the simulations seem stable as results for different randomly chosen nodes look very

similar. More information about the randomly selected sources can be found in the Appendix

B.1.

The traces were replayed with ‘The One’ simulator11, an opportunistic network simulator devel-

oped at University of Helsinki, which we extended so that all nodes could process the received

messages individually and perform actions based on both the message and their internal state.

A detailed explanation of the extension can be found in Appendix A.

Because of the different duration of the trace data we simulated the message generation differ-

ently. When using the MIT dataset, every source generates one content per week on Monday

morning at midnight. When using RWP and Helsinki, one content is generated per day and

when using the Haggle traces, we simulated the content generation every 12 hours.

4.4. Simulation Results

In this section the results of simulating the different scenarios introduced in Section 4.1 are

presented. They consist of the effect of non-cooperating nodes, the advantages of blacklists

created by moderators and the performance comparison of personal versus the locally shared

blacklist. Additionally, the importance of limiting the send rate as well as the positive effect of

exploiting social ties are included as well.

In Figure 4.1 the normal spreading of a content in the unclassified MIT data set is shown. We

see a huge increase around day 60 which corresponds to the semester start at MIT12. All the

content sent before the semester start will only spread poorly because of the inactivity of most

individuals. The semester start itself comprises the most connections because all people are

11http://www.netlab.tkk.fi/tutkimus/dtn/theone/
12See Appendix B.1 for more information.

present at that time. If assuming the continuous generation of one content per week, this will

result for most people in a burst of 8 content at semester start where they first see people pro-

viding that content. Because of the quality differences of the individual weeks, we classified the

data set into three sets of good, bad and average weeks and replayed some weeks in order to get

data set sizes of 30 weeks. Details about the classification can be found in Appendix B.2. The

simulation results obtained with good weeks look similar than with unclassified weeks starting

at week 9 (around semester start). For a better visibility, we don’t show the unclassified plots in

this section but they can be found in Appendix C.

All spam simulations shown in this section13 were performed with a malicious content recog-

nition probability of 10% on average14. We simulate a pessimistic scenario with a low spam

recognition because we assume that users may not vote that frequently. When assuming a

higher recognition of malicious content, the results would be much better as some simulation

results in Appendix C show. We cannot expect from every user to detect malicious content at a

very high rate since recogntion depends on the nature of the content, i.e. classical spam would

be recognized with a higher probability than malware or wrong information.

4.4.1. Non-Cooperating Nodes

The spreading performance in the presence of non-cooperating nodes is simulated using different

traces, either realistic or synthetic, for parameters ranging from full cooperation to nearly total

non-cooperation as summarized in Table 4.1. These results enable the analysis of the influence

of nodes which do not participate in the dissemination of content, either deliberately or for a

lack of interest.

Simulations with Non-Cooperating Nodes

Unclassified MIT Classified MIT Haggle Synthetic Models

Parameters

23 author seeds 23 author seeds 25 author seeds 11 author seeds
5 non-coop. seeds 11 non-coop. seeds 7 non-coop. seeds 7 non-coop. seeds
23× 5 sim rounds: 23× 11 sim rounds: 25× 7 sim rounds: 11× 7 sim rounds:

1 author 1 author 1 author 1 author
1 content/week 1 content/week 1 content/12h 1 content/24h
0-90% non-coop. 0-90% non-coop. 0-90% non-coop. 0-90% non-coop.

Figures
Fig. C.1 Good: Fig. 4.2 Fig. C.4 Random: Fig. C.5

Average: Fig. C.3 Helsinki: Fig. C.6
Bad: Fig. C.2

Table 4.1.: Overview of all Simulation Parameters with Non-Cooperating Nodes.

In Figure 4.2, the average spreading performance of good classified MIT weeks is shown over

a time period of four weeks. The percentage of non-cooperation ranges from 0% to 90%. The

graph shows a relative exponential performance drop with linear increase of non-cooperating

13Except the simulations with moderators where a content recognition of 100% is assumed and all users accept
moderator suggestions upon reception.

14We defined a predisposition to rate between 0% and 100% for every user in order to model some users which
rate very often whereas others only seldomly do so. Every user has thus a spam recognition between 0% and
20% which lead to an average spam recognition of 10%.

79

4. Simulation

nodes. The reason may be the breaking of some weak links that connect different social groups

at higher levels of non-cooperation. Up to 30% of non-cooperation, the performance is almost

exactly the same and even with a rate as high as 90%, still approximately two thirds of the

people would receive the content15.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

day number

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading over four weeks with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure 4.2.: Non-Cooperation in Good Classified MIT Weeks: Average spreading performance
of one content generated at day 0, observed over a period of four weeks. Linear increase of non-
cooperation leads to exponential decrease in spreading performance.

The simulation results for other data sets, i.e. bad, average and unclassified MIT weeks, Hag-

gle traces as well as Random Waypoint and Helsinki models can be found in Appendix C.1.

Depending on the mobility environment (e.g. campus, conference or synthetic), the timescale

of dissemination varies. Table 4.2 shows the average spreading performance16 of all real world

traces. In good classified MIT weeks content needs four weeks until reaching 86% of all peo-

ple whereas in the Haggle data set, it needs only 24 hours to reach the same level. Figure 4.3

compares the performance of content spreading with varying number of non-cooperating nodes

(for 0% to 90%) for different traces. Because of the different connection density, we show con-

15Compared to the people that would receive it with fully cooperating nodes.
16Assuming fully cooperating nodes.

tent dissemination over four weeks for all MIT traces whereas over 24 hours for all other data sets.

Dataset Percentage of total nodes
MIT Unclustered 68.00%

MIT Good 86.37%
MIT Bad 41.08%

MIT Average 64.15%
Haggle 86.85%

Table 4.2.: Average Spreading Performance: Percentage of people from entire dataset receiving the
content in four weeks (MIT) or 24 hours (Haggle). The numbers are relative to the entire data set
size of 96 people (MIT) and 41 (Haggle).

The susceptibility to non-cooperation depends on the intensity of the environment which depends

on cycles (semester, breaks). However, the susceptibility to non-cooperation also depends on the

quality of the environment as Figure 4.3 shows. In good classified MIT weeks, even if 90% of

all nodes do not cooperate, more than ∼ 66% of the original nodes would receive the content in

four weeks whereas in a bad environment, only ∼ 37% would get it. This result seems obvious

because in a bad environment, less connections exist and only 41% of all people17 would get

the content assuming full cooperation of all nodes. Therefore, the non-cooperation of individual

links affects the content dissemination to a higher extend18.

In a high density environment like Haggle, where almost all nodes see each other within 24

hours, the spreading performance is only slightly decreased up to a very high percentage of

non-cooperation because still many connection links exist. These results are consistent with the

findings from [33].

17Compare Table 4.2.
18The details can be found in Appendix C.1.

81

4. Simulation

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

percentage of non−cooperation

pe
rc

en
ta

ge
 o

f p
eo

pl
e

ha
vi

ng
 c

on
te

nt
 r

el
at

iv
e

to
 fu

ll
co

op
er

at
io

n

average content spreading with 0 − 90 % non−cooperating nodes

Haggle 24h
MIT Unclassified 28d
MIT Good 28d
MIT Average 28d
MIT Bad 28d

Figure 4.3.: Non-Cooperation compared to Full-Cooperation: Different levels of non-cooperation
compared to full cooperation for the Haggle and MIT traces. The time scale varies between 24 hours
(Haggle) and four weeks (MIT). The distribution performance decreases faster for traces comprising
fewer connections.

4.4.2. Moderator Blacklisting

In this subsection the results of simulating the spreading performance of spam when using the

moderator blacklist is presented. All the performed simulations are consolidated in Table 4.3.

Through the results the efficiency of the global and the channel blacklist described in Subsection

3.4.3 can be assessed.

Simulations with Moderator Blacklists

Unclassified MIT Classified MIT Haggle

Parameters

23 spammer seeds 23 spammer seeds 11 spammer seeds
5 moderator seeds 31 moderator seeds 23 moderator seeds
23× 5 sim rounds: 23× 31 sim rounds: 11× 23 sim rounds:

1 spammer 1 spammer 1 spammer
1 content/week 1 content/week 1 content/12h
1 moderator 1 moderator 1 moderator
preq: 100% preq : 100% preq : 100%

Figures
Good: Fig. 4.4

Fig. C.7 Average: Fig. C.8 Fig. C.10
Bad: Fig. C.9

Table 4.3.: Overview of all Simulation Parameters with Moderator Blacklists.

The channel blacklist is generated by moderators and exchanged among all users of a channel.

Every user accepts and uses the channel blacklist just after reception and before data trans-

mission. In Figure 4.4, the average spreading performance of content generated by a randomly

selected spammer is shown in the presence of a randomly selected moderator as specified in Table

4.3. Whenever the moderator receives content, he or she recognizes it with a probability preq of

100% and starts exchaning the channel blacklist. The randomly selected spammer generates a

new content every week.

The x-axis in Figure 4.4 shows the number of days since the first spam generation. The y-axis

shows the number of people that have received the content. In particular, the blue dotted line

shows the number of hosts that would have received the content if no countermeasures were

taken, the solid blue line shows the hosts that do provide the content to others after reception

and the red line shows the users that have received the content but have blocked it. Thus, the

solid blue line together with the red line shows the total number of people that have received the

content and the difference between (red and blue) line to the dotted line shows the nodes that

have blocked the content without having received it.

Although the moderator receives the content the same day of generation and recognizes it with

a probability of 100%, there is still a fast increase of people providing the first content in the

uppermost graph in Figure 4.4. At its maximum 79% of all people that have seen the content

have also received it and almost 62% of them do provide it to others. In a good environment,

malicious content spreads very fast but on the other hand, as soon as the moderator has detected

the content, the blacklist will spread fast as well. Therefore, we see a high sharp peak of people

providing the content in Figure 4.4.

The other graphs in Figure 4.4 show the content spreading for the next three contents generated

83

4. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure 4.4.: Moderator Blacklisting in Good Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. One moderator detects spam upon reception
with recognition probability of 100% and exchanges that information with others which immediately
accept the blacklist information. The red and blue line together show the number of people that have
received the content. The blue line presents the number of people that provide the received content
to others whereas the red line show the persons that block the content after reception. The graph
shows the distribution of the first four contents generated in the first four weeks.

in the following three weeks respectively. We see that the dissemination of these is neglectable

since most users are already blocking the content after the first week.

We repeated the simulations in bad and average classified MIT weeks in order to see the spread-

ing effects in environments with worse distribution conditions. The figures can be found in

Appendix C.2 together with the simulation results of the unclassified MIT and Haggle data set.

The spreading performance of the first content generated in the first week in the presence of only

one moderator is summarized in Table 4.4.

In a good and average environment, the moderator will get the content already the first day

whereas in a bad environment, it takes 9 days on average until it reaches the moderator. The

weeks in Table 4.4 are all relative to the moderator’s recognition of the content.

Good Average Bad
time having providing having providing having providing

1 week 65.79% 8.63% 75.39% 40.04% 83.32% 71.06%
2 weeks 63.99% 4.78% 67.11% 27.33% 82.77% 71.57%
4 weeks 64.07% 4.22% 63.10% 13.37% 77.01% 52.73%
8 weeks 62.83% 1.96% 62.60% 6.80% 62.23% 14.98%
16 weeks 62.01% 1.18% 61.12% 1.39% 57.05% 3.78%

Table 4.4.: Moderator Blacklists: The table lists the percentages of people providing and having
the first content in good, average and bad classified MIT weeks. The week times are all relative to
the spam recognition of the (only one) moderator. The percentages are obtained with respect to the
people receiving the content with normal spreading.

As mentioned above, the percentage of people providing the first content in a good environment

forms a sharp maximum on the same day of publication. However, one week after the publication,

the malicious content is well known and less than 10% of the people that have seen the content also

provide it to others. The fewer connections an environment has, the slower the malicious content

disclosure. In a bad environment, people will not start to blacklist the author immediately and

the percentage of people providing the content will still increase until two weeks after recognition

of the content. The reason is the bad spreading of the moderator’s blacklist.

4.4.3. Reputation Spreading

In the last subsection, we’ve seen the spreading performance when using a channel blacklist

generated by a moderator. All users immediately accepted the blacklist but did not perform their

own malicious content recognition. In this subsection, we will observe the spreading performance

when relying on objective ratings. The measures influencing objective reputation consist of

two parts, the personal and the local blacklisting. In order to show the effectiveness of both

approaches, we evaluate them separately. The results are presented in the this section.

4.4.3.1. Personal Blacklisting

As explained in Section 3.6.1, every device handles its own personal blacklist based on user input.

85

4. Simulation

Simulations with Personal Blacklist

Unclassified MIT Classified MIT Haggle Synthetic Models

Parameters

23 spammer seeds 23 spammer seeds 25 spammer seeds 11 spammer seeds
in each round: in each round: in each round: in each round:

1 spammer 1 spammer 1 spammer 1 spammer
1 content/week 1 content/week 1 content/12h 1 content/24h
prec: 10%, 50% prec: 10%, 50% prec: 10%, 20% prec: 10%, 20%

Figures

prec 10%: Fig. C.11 Good: Haggle: Random Waypoint:
prec 50%: Fig. C.12 prec 10%: Fig. 4.5 prec 10%: Fig. 4.9 prec 10%: Fig. C.25

prec 50%: Fig. C.13 prec 20%: Fig. C.36 prec 20%: Fig. C.26
Average: Helsinki:
prec 10%: Fig. C.14 prec 10%: Fig. C.27
prec 50%: Fig. C.15 prec 20%: Fig. C.28
Bad:
prec 10%: Fig. C.16
prec 50%: Fig. C.17

Table 4.5.: Overview of all Simulation Parameters with Personal Blacklists.

Good Bad Average
time having providing having providing having providing

1 week 100% 90.36% 100% 94.74% 100% 92.60%
2 weeks 99.90% 84.86% 95.28% 87.89% 97.02% 84.34%
4 weeks 96.52% 73.97% 95.96% 83.41% 100% 78.14%
8 weeks 95.95% 59.95% 90.76% 65.74% 100% 67.66%
16 weeks 95.92% 39.88% 85.67% 41.07% 98.37% 40.31%

Table 4.6.: Personal Blacklists: The table lists the percentages of people providing and having the
first content in good, average and bad classified MIT weeks. The week times are all relative to day
0 and the percentages to the people having the content with normal spreading. The spam recognition
is set to 10%.

In the the following simulations, we assumed that every user classifies spam just at reception

with a certain recognition probability prec based on his/her predisposition19. The spreading

performance is calculated by averaging over randomly selected spammers, each generating one

new content every week as specified in Table 4.5. In Figure 4.5, the content spreading of the

first four contents generated in the first four weeks is shown for a prec of 10%. Because of the

low recognition probability, almost all users get the first content. By receiving more content in

the following weeks, the probability of spam recognition increases because of the multiple rating

opportunity which may result in more users blocking the author. Content from a blocked author

will not be advertised anymore to other users and succeeding contents of the same author will not

be accepted anymore. However, since no information is exchanged, every user has to recognize

bad content on his/her own and it is likely that bad content will never disappear so that new

users would always get it. In Table 4.6 the spreading performance of all the good, bad and

average environments is shown for a spam prec of 10%. We see that spam recognition in all three

environments decreases similarly with time, i.e. the percentages of people providing the content

would be similar. The reason for that behavior is the fact that they all do not take advantage

in exchanging their informations. The spam protection is therefore reduced to the isolated spam

recognition of the individual users which is not very efficient.

19See beginning of this section.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure 4.5.: Personal Blacklisting in Good Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

87

4. Simulation

4.4.3.2. Local Blacklisting

In the previous subsection, we observed that keeping the information secret is not efficient at

all. Now we share our opinion with others. Table 4.7 summarizes all simulations done with local

blacklists.

Simulations with Local Blacklist

Unclassified MIT Classified MIT Haggle Synthetic Models

Parameters

23 spammer seeds 23 spammer seeds 25 spammer seeds 11 spammer seeds
in each round: in each round: in each round: in each round:

1 spammer 1 spammer 1 spammer 1 spammer
1 content/week 1 content/week 1 content/12h 1 content/24h
prec : 10% prec : 10% prec : 10% prec : 10%
thsugg : 10, 20 thsugg : 10, 20 thsugg : 4, 8 thsugg : 10, 20

Figures

thsugg 10: Fig. C.19 Good: Haggle: Random Waypoint:
thsugg 20: Fig. C.18 thsugg 10: Fig. C.22 thsugg 10 & 20: thsugg 10 & 20:

thsugg 20: Fig. 4.6 Fig. 4.9 Fig. C.25
Average: Helsinki:
thsugg 10: Fig. C.23 thsugg 10 & 20:
thsugg 20: Fig. C.20 Fig. C.27
Bad:
thsugg 10: Fig. C.24
thsugg 20: Fig. C.21

Table 4.7.: Overview of all Simulation Parameters with Local Blacklist.

Exchanging information about malicious authors could improve the detection speed but in ex-

change the susceptibility to liars increases. As mentioned in Subsection 3.6.2, the single opinion

of a user may not be trusted because he/she may be lying, but if a certain amount of recommen-

dations20 is received we, assume the information to be correct and trust the recommendation.

The recommendations comprise only information from direct transactions and are exchanged

before sending any other content.

Figure 4.6 shows the content spreading in good classified weeks for a recognition probability prec

of 10% and a fixed suggestion threshold thsugg of 20 recommendations. The threshold value

corresponds to around 20% of all people in the data set which is very high, in particular when

regarding the low prec of 10%. Thus, there is quite a large time delay until the threshold is

reached and the measure takes effect.

Table 4.8 shows that after week 16, only 15% of the people are still providing the first content

generated in the first week. This value is less than half the number that is observed with personal

blacklisting. Other than with personal blacklists, we can see clear differences between the three

environments in this case. While the content distribution in good environments is reduced by

half compared to the personal blacklisting, it is only slightly decreased by around 12% and 14% in

bad and average environments respectively. The reason for the difference in improvement is the

fact that a fixed threshold of 20 suggestions was used which corresponds to different percentage

20Above the suggestion threshold.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure 4.6.: Local Blacklisting in Good Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 20 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

89

4. Simulation

Good Average Bad
time having providing having providing having providing

1 week 100% 90.36% 100% 92.60% 100% 94.74%
2 weeks 99.90% 84.86% 97.02% 84.34% 95.28% 87.98%
4 weeks 96.52% 73.97% 100% 78.14% 95.96% 83.41%
8 weeks 95.95% 38.76% 100% 67.10% 90.76% 65.74%
16 weeks 95.92% 15.29% 98.37% 34.64% 85.67% 35.96%

Table 4.8.: Local Blacklists: The table lists the percentages of people providing and having the first
content in good, average and bad classified MIT weeks. The week times are relative to day 0 and
the percentages to the people having the content with normal spreading. The spam recognition is set
to 10% and the suggestion threshold equals 20 opinions.

time Threshold 20 Threshold 10
1 week 90.36% 90.36%
2 weeks 84.86% 84.07%
4 weeks 73.97% 59.87%
8 weeks 38.76% 13.52%
16 weeks 15.29% 9.71%

Table 4.9.: Local Blacklist in Good Classified MIT Weeks: The table shows the differences in
people providing the first content when using a suggestion threshold of 20 or 10 opinions.

of users present in the environment. Whereas in a good environment with many connections, the

threshold is reached fast, it takes more time to reach the same amount of recommendations in a

bad environment. Decreasing the recommendation threshold would increase the detection speed

as shown by simulations in Appendix C.4.2 indicate. Table 4.9 compares the number of users

providing content for two different values of the suggestion threshold. As long as the threshold is

not reached, the simulations with both threshold values show the same performance. However,

as the number of recommendations exceed the suggestion threshold, people start blocking the

author and stop providing the content. In Table 4.9, a clear difference of people providing the

content can be seen at week 4 which means that a suggestion threshold of 10 recommendations

is reached between the second and forth week.

However, even when decreasing the suggestion threshold, there are still some users which provide

the content to others because they either did not recognize it as spam or did not receive enough

blacklist suggestions. This is not as bad as it seems because most people may have blocked the

content and thus, the content may not start spreading again. A channel blacklist21 made by

moderators could complement local blacklists in order to achieve that an author is blocked by

all users that participate in the channel.

4.4.4. Send Rate Limitation

Because of low a recognition probability or a high suggestion thresholds, users may receive spam

before being able to block it. Therefore, a send rate limitation22 is proposed to prevent users

from completely flooding the network with new content. All simulations performed which show

21See Section 4.4.2.
22See Section 3.7 for more information.

it’s effect listed in Table 4.10.

Simulations with Send Rate

Classified MIT

Parameters

23 spammer seeds
in every round:

1 spammer
1 content/week
prec: 10%
thsugg : 10, 20
send rate enabled

Figures

Good:
thsugg 10: Fig. C.33
thsugg 20: Fig. 4.7
Average:
thsugg 10: Fig. C.32
thsugg 20: Fig. C.29
Bad:
thsugg 10: Fig. C.33
thsugg 20: Fig. C.30

Table 4.10.: Overview over all Simulations Parameters with Send Rate Limitation.

Therefore we generated a burst of 300 contents on the first week and observed the spreading

using the send rate limitation.

We assume that a user allowing unlimited download will only rate an author once when he/she

receives the content whereas other users using a send rate will rate each day they receive content.

In Figure 4.7, we see the effect of a send rate compared to the unlimited download after the spam

burst.

When allowing unlimited downloading, all the content would spread the same because every

user would receive all the available content automatically at once without acknowledging or even

noticing. After that, he/she would provide all the content to others and therefore help spam-

mers to cheaply send content to many people. In the absence of a send rate, all contents would

therefore arrive at day 1 whereas when using a send rate limitation of one content per day, the

last content would be downloaded 300 days later.

We are aware of the fact that the simulated spreading performance shows an upper bound of

the real performance since all ratings are done independently. It can be assumed that a user

receiving 300 contents from one person at the same day would immediately block that author.

However, a user receiving one spam content per day would certainly also start blocking that

author long before receiving the last content.

There are mainly two advantages in downloading content from authors at a later stage. Firstly,

the user may have more time to look at the content and block the author if needed. Secondly,

information about the behavior of an author may already have spread in the network and a user

can benefit from experiences of other users.

91

4. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

normal spreading
providing content
normal spreading (1/day)
providing content(1/day)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure 4.7.: Effect of Send Rate in Good Classified MIT Weeks: Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 20 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates receives
content every day after reception. The graph shows the people providing the first four contents of
the burst.

4.4.5. Comparison of Different Measures

In this subsection, we will combine our different approaches trying to compare their effectivity.

All the performed comparing simulations can be found in Table 4.11.

Simulations Comparing Different Measures

Classified MIT Haggle

Parameters

23 spammer seeds 25 spammer seeds
in every round: in every round:

1 spammer 1 spammer
1 content/day 1 content/12h
prec: 10% prec: 10%
thsugg :10%, 20% thsugg : 10%, 20%

Figures
Good: Fig. 4.8 Haggle: Fig. 4.9
Average: Fig. C.35
Bad: Fig. C.34

Table 4.11.: Overview over all Simulation Comparing Different Measures.

In Figure 4.8, local blacklists with a suggestion threshold thsugg of 10 and 20 recommendations

and personal blacklists are combined with a send rate limitation of one content per day for a

recognition probability prec of 10%. As Table 4.12 shows, the exchange of blacklist can indeed

speed up the blocking process. Content that is blacklisted personally without exchanging the

information will hardly die out assuming every user voting only once for each content. A system

using a threshold of 20 opinions will behave the same than using personal blacklists until it

reaches the threshold value and the content gets blocked. In the current simulations, this value

was reached at day 17 as Table 4.13 shows. When decreasing the threshold value to 10, the

content would get blocked earlier.

Personal Threshold 20 Threshold 10
time having providing having providing having providing

1 week 100% 86.60% 100% 86.70% 100% 85.96%
2 weeks 99.12% 77.44% 99.12% 77.44% 99.12% 68.21%
4 weeks 99.22% 62.31% 99.22% 55.89% 99.22% 48.64%
8 weeks 99.28% 39.05% 99.28% 18.40% 99.04% 11.50%
16 weeks 99.29% 30.40% 99.29% 14.11% 98.72% 8.52%

Table 4.12.: Comparison of Personal and Local Blacklists in Good Classified MIT Weeks: The
table lists the percentages of people providing and having the first content when combining a send rate
limitation of one content/day, an individual detection recognition of 10% and exchaning blacklist
information with a suggestion threshold of 10 and 20 opinions. The week times are relative to day
0 and the percentages to the people having the content with normal spreading.

classification time threshold 20 time threshold 10
good day 17 day 3

average day 23 day 9
bad day 57 day 32

Table 4.13.: Suggestion Threshold Barrier: The table lists the times when a threshold of 20 and
10 opinions is reached in good, average and bad classified MIT weeks.

93

4. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

normal spreading (1/day)
personal blacklist (1/day)
local blacklist, threshold: 20 (1/day)
local blacklist, threshold: 10 (1/day)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure 4.8.: Comparison of Personal and Local Blacklists in Good Classified MIT Weeks: Average
spreading performance of one content generated by a spammer every day. Personal and Local
Blacklisting is combined with a send rate limitation of 1 content/day. Every user individually
detects spam with a recognition probability of 10%. Additionally, suggestion thresholds of 20 and
10 opinions are used. The graph shows the percentages of people providing the first four contents
generated in the first four weeks.

Since the time scale of dissemination in the MIT sets is quite high due to the few number of

connections, we compared local blacklisting with personal blacklisting also in the Haggle data

set and marked 8 hours of inactivity as night shifts. The result can be found in Figure 4.9.

Similar to the MIT set, we see that personal blacklisting is not efficient at all and exchanging the

information about blocked peers could significantly decrease the amount of users providing the

content. Whereas with personal blacklists still 62.88% of the people provide the content after 72

hours, this percentage would be decreased to 10.39% and 3.61% with suggestion thresholds of 8

and 4 respectively23. When neglegting the night shift, the simulation results with the Haggle set

show a performance similar to the generated traces as Appendix C.1.5 shows.

However, decreasing the suggestion threshold increases the susceptibility to liars. As presented

in Section 2.4, a mechanism that addresses the lying about ratings is MobiRate. It ensures that

a user cannot lie about content that he/she did not receive by using hash lists and selecting

witness users. Unfortunately, MobiRate is not suitable in the PodNet environment because of

two main reasons. Firstly, we want to rate the authors which are not necessarily the suppliers

of the content. Secondly, selecting reliable witness nodes is an unsolved problem. But even if

MobiRate would work, it would still be possible to lie about the rating of a content that one

has actually received, e.g. by giving a good instead of a bad rating and vice versa. In the next

section, we therefore address the problem by weighting the recommendations from community

members with higher trust weights as explained in Subsection 3.5.5.

23A suggestion threshold of 8 correponds to ∼ 20% of the total of nodes and 4 corresponds to ∼ 10% which are
comparable percentages to the MIT set.

95

4. Simulation

Figure 4.9.: Comparison of the Personal and Local Blacklists in the Haggle Set: Average spreading
performance of one content generated by a spammer every 12 hours. The percentage of people
providing content is compared between Personal and Local Blacklisting. Every user individually
detects spam with a recognition probability of 10%. Additionally, suggestion thresholds of 8 (∼ 20%
of total set) and 4 (∼ 10%) opinions are used. The gray shaded regions show an 8 hour inactivivity
period during night. The graph presents the percentages of people providing the first four contents
generated in the first 36 hours.

4.4.6. Influence of Social Weights

In the last section, we observed that decreasing the suggestion threshold leads to a faster spam

recognition. As already mentioned above, reducing the threshold value facilitates wrong reputa-

tion spreading by attackers. Therefore, we suggested to weight recommendations of community

members with a higher weight.

Simulations with Community Detection

Unlassified MIT

Parameters

23 spammer seeds
in every round:

1 spammer
1 content/week
prec: 10%, 20%
thsugg : 20, 30, 40
weights:

community: 10
familiars: 5
others: 1

Figures
prec 10: Fig. 4.10
prec 20: Fig. C.37

Table 4.14.: Overview over all Simulation Parameters with Social Weights.

In this section we will show the results of simulating local blacklisting with community weights

which are received by using a modified version of the Simple algorithm24. The evaluation of the

algorithm parameters can be found in Subsection 6.4.1.

When classifying the different weeks into good, bad and average, the underlying social pattern

was destroyed by our classification process. Therefore, we simulated the local blacklists with

community weighted recommendations as specified in Table 4.14 only in the unclassified MIT

data set.

In Figure 4.10 we compare social thresholds25 of 20, 30 and 40 recommendations to the suggestion

threshold thsugg of 20 used previously. As Table 4.15 shows, the maximum peak of people

providing content would be decreased significantly even when using a social suggestion threshold

of double the fixed value. However, when increasing the social threshold, people which only

belong to a small community or none at all, will have more difficulties in blocking the author. As

mentioned in Subsection 4.4.3.2, this is not as bad as it seems since the content will not spread

widely anymore because most users may have blocked the author already. However, in order not

to discriminate against small communities, a tradeoff between threshold security and average

community size has to be found.

24See Subsection 3.5.4 for more information.
25Thresholds which considers the social relationships by community weights. Familiars and community members

have a weight of 5 and 10 respectively.

97

4. Simulation

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

day number

of

 h
os

ts

content 1

thr: 40 (social)
thr: 30 (social)
thr: 20 (social)
thr: 20

Figure 4.10.: Community Weighted Recommendations: The percentage of people providing content
is compared between a fixed suggestion threshold of 20, and community weighted thresholds of 20,
30 and 40 opinions for a spam recognition of 10%.

time E20 (social) E30 (social) E40 (social)
day 61 (peak) 50.36% 69.82% 83.73%

day 250 32.38% 47.62% 125.71%

Table 4.15.: Comparison of Social Thresholds: The effect on people providing content is shown for
three social thresholds relative to the fixed threshold of 20 opinions. The spam recognition is set to
10%.

5. Implementation

The basic PodNet application was created in a previous master thesis by Clemens Wacha and is

documented in [3]. In this chapter we highlight the most important changes to the code. Before

implementing all the security related features we had to choose and adapt a cryptographic library.

In the implementation itself the biggest changes were preformed to the data storage module and

the communication process. At the end of this chapter we also suggest improvements to the

existing code.

5.1. Testbed

The original implementation was tested on a variety of platforms. However, time only allowed

us to test the modified application on Windows CE based systems. The actual PodNet imple-

mentation was successfully tested on Windows Mobile 6 running on a HTC Touch and Windows

Mobile 2003 running on a HP iPAQ. The details about the devices can be found on Table 5.1.

device type HP iPAQ hx2410 HTC Touch

processor Intel(R) PXA270 520MHz OMAP 850 201MHz
RAM memory 59.55MB 47.93MB

operating system Windows Mobile 2003 Windows Mobile 6

Table 5.1.: Details about the HP iPAQ and HTC Touch

5.2. Functionality Overview

At first program startup, the device automatically generates credentials for the device owner

which basically comprise a public/private key pair and a user prompted name. The name is used

as human readable identifier within PodNet but a user will be identified anonymously by the

hash of his/her public key. After the first program start, whenever the application is closed and

restarted, the credentials, among other saved information, are loaded in order to keep the same

user identity.

The basic interface has not changed extremely, the creation of channels and episodes still works

the same way as well as the discovery of and the subscription to new channels. There are mainly

three new functionalities which are worth mentioning in detail:

99

5. Implementation

Figure 5.1.: PodNet Rating Interface.

• A Rating Interface was added. It allows a user to rate an episode which has the effect

described in Section 3.6 and 3.7. Every episode can only be rated once and the rating will

be aggregated to its author in the channel. The rating interface can be seen in Figure 5.1.

• Another enhancement is the Channel Management. The owner of a channel can add and

remove moderators as well as include members or put users on the channel blacklist de-

pending on the channel class. A moderator has the same rights to manage the members

and the channel blacklist as the owner.

• Further, the Secure Pairing1 can be initiated from the peers dialog in order to establish a

friendship with a neighboring peer.

All other new interfaces only provide additional information like trust values of all users seen so

far as well as rating values and episode list from an author in a particular channel.

5.3. Cryptographic Library

As explained in Chapter 3 we require both symmetric and asymmetric cryptography as well as

hashing for the security extensions. Asymmetric cryptography is needed for authentication in

the challenge response mechanism as well as to sign episodes and the different lists. Symmetric

cryptography on the other hand is used in secure pairing to encrypt a challenge with a given

password as well as to encrypt files in closed channels.

1See Secure Pairing in Subsection 3.3.2.

We decided to use the Crypto++ library2 version 5.5.2 which provides the most common crypto-

graphic algorithms. Its wildly usage in practice, its FIPS compliance and platform independence

made it our first choice. The library has been ported to Windows Mobile 20053 and we modified

it so it would run on Windows Mobile Pocket PC 2003. We considered the Advanced Encryp-

tion Standard (AES) for symmetric encryption, the Secure Hash Algorithm (SHA) for hashing

and compared the performance of RSA [35] and Elliptic Curve Cryptography (ECC) [36] for the

asymmetric cryptographic operations. The evaluation of the cryptographic library can be found

in Section 6.1.

5.4. Communication Process

In this section the changes performed to the communication process are discussed. In particular,

there is the service discovery including the peer selection process which leads to the actual content

synchronization in the transfer protocol as well as the manually invoked secure pairing with the

purpose of forming social connections.

5.4.1. Service Discovery

In order for PodNet to work in an opportunistic network service discovery packets have to be

broadcasted periodically. As described in [3] these packets are sent every 2 seconds and contain

every peer’s ID4, a service mask and 3 timestamps.

Besides the existing ‘new content’-timestamp, another one for the community lists as well as

one for the global blacklists was added. They are both used to indicate whether an update of

those lists is needed. In order to keep the discovery packet small we abandoned the 19 byte string

encoding of the timestamp5 used before and only used 4 bytes to represent the seconds since 1970.

The service mask is used to advertise available services by the corresponding peer. It is cur-

rently only used to announce the podcast service itself and to state whether the peer holds a

CA signed certificate. This way, a neighbor can request a credentials update from a peer that

has recently obtained an additional CA signature. Additional services that might be useful are

providing Internet connection, a registration service for a CA or even forwarding service in case

routing is allowed.

Every peer collects all the available discovery packets and comes up with a peer list. When-

ever more than one peer is available on the peer list one of them has to be selected to start

the content synchronization process. In the previous implementation this selection procedure

2http://www.cryptopp.com/
3http://www.ugosweb.com/cryptopp.aspx
4The random string used in the previous implementation is replaced by the hash of the public key of the peer’s

credentials.
5See Section 5.7.

101

5. Implementation

was random with equally distributed probabilities for each peer. However, it is a good idea to

consider a peer’s trust value6 when selecting a neighbor. It is obviously preferable to synchro-

nize content with previously known and/or even trusted peers since we know already something

about their behavior. On the other hand, if a peer is blocked7 for some reason, we don’t want

to connect to it at all.

Algorithm 5 Peer Selection

n = number of active peers
for all peers pi such that 1 ≤ i ≤ n do

store p′is trust value ti
end for

sum s0 = 0
for i = 1 to n do

si = si−1 + ti
end for

generate a random equally distributed number r in the range [0, sn]
for i = 1 to n do

if r < si then

select pi
end if

end for

In order to select a peer for connection, Algorithm 5 is used. It chooses a peer pi with a probability

according to his/her trust value ti. The three for-loops have a complexity of O(n) each, where

n is the number of active peers, and all other statements are done in constant time. Thus the

resulting complexity of the algorithm is O(n).

Although we only considered the trust value, other factors, like providing special services8 or

having a good author rating9 might be taken into consideration when selecting a peer.

5.4.2. Content Synchronization

Whenever content is exchanged between users a transfer protocol is executed. How much and

what content is exchanged is defined by the download policy. In our implementation the protocol

had to be modified slightly as well as some policies had to be added. The changes are described

in this subsection.

5.4.2.1. Transfer Protocol

The former basic mechanism to synchronize content can be separated into eight stages [3]. In

order to guarantee a proper authentication and authorization we had to modify several of them

6See Section 3.5.
7Blocked users have trust value 0.
8See beginning of this subsection.
9In case the peer is an author.

Challenge Request

Challenge Response

List Exchange

Channel Hash

Server

Personal Ratings

Query Episodes

Channel Metadata

Episode Info

Request Episode

Challenge Request Response

List Exchange

Channel Metadata

Personal Ratings

Query Episodes

Episode Info

Request Episode

Added/Modified parts in red

Download

Query

Exchange

Hello

Negotiate
Channel Hash

Client

Figure 5.2.: Communication Protocol

as well as introduce the ‘EXCHANGE’ stage as explained below10. The important changes to

the transfer protocol are shown in Figure 5.2 where the red colored parts point at differences

compared to the basic implementation in [3].

HELLO: In case the peers do not have each other’s credentials, they will be exchanged and

challenged in a challenge request response scheme. The existing mechanism which exchanges

only a hello packet in both ways is still present but only used if the two communicating peers

have each others credentials already.

EXCHANGE: This stage only exists if either the friends list, the familiar list, the community

list or the global blacklist of the corresponding peer is outdated. If this is the case the required

10Visualizations pointing at the implementation changes can be found in Appendix D.1.

103

5. Implementation

list is exchanged and updated. In order to know whether the lists need an update, timestamps

are sent in the discovery packets.

QUERY: The ‘QUERY’ stage is already used to request and exchange the episode list of the

desired channels. Additionally, the channel meta data as well as the users rating and blacklist

recommendations are exchanged for the requested channels. Note that the additional informa-

tion is only exchanged if the downloading peer does not possess the newest version of it. In order

to avoid sending this information multiple times, information timestamps are exchanged. In case

episodes are desired for download after this stage, the supplier, if not already done during the

‘HELLO’ stage, has to be authenticated before entering the ‘DOWNLOAD’ stage.

The most significant change of the transfer protocol is the introduction of an authentication

by a challenge request response mechanism.

If the authentication is performed during the ‘HELLO’ stage, it ensures that the peer is the

actual owner of the credentials he/she presents. In case it is done in the ‘QUERY’ stage before

downloading content the reason is a different one. The idea is to make sure we know from whom

we get content. For example, if the hash of the received data chunk results to be corrupted,

the specific peer could be punished or blocked11. This can only be done if they are properly

authenticated before data transfer.

Note that in the current implementation the hash check is not performed over the different chunks

but over the whole file. Additionally, no action is taken when the hash check fails since the hash

check occasionally fails for unexplainable reasons although the received file seems to be correct.

5.4.2.2. Download Policy

The previous implementation introduced a download policy per channel. It allowed the user to

choose between the policies all, manual and newest. As the name already implies, download

policy all decides that all the content in a channel should be downloaded whereas under the

manual download policy, only the meta data of an episode is downloaded and the user decides

whether to download the actual data or not. Download policy newest, although present in the

GUI, was not implemented at all, thus in practice it would behave as in the manual policy. We

did not modify the functionality of those existing policies, although the newest policy where only

recently published content would be downloaded would make a lot of sense, in particular when

one could determine how new the desired content should be.

In order to make use of an author’s reputation, a new default policy12 is introduced, namely

automatic. Under this policy we check that an author is not blocked for any reason and rate

limit is not reached13 before downloading the episode.

11Optionally, one could think of rewarding peers one gets a lot of valid content from.
12Replacing former default policy all.
13See Section 3.7.

Additionally, the policy none was added, which does not download any content or episode meta

data at all but only collects reputation information from authors in the channel. This way a user

may explore the quality of a channel without downloading any content.

5.4.3. Secure Pairing

The secure pairing is performed in order to prove friendship by signing each other’s credentials

in a secure way. This is achieved through a basic three way challenge response request protocol

based on a commonly known password.

The user initiating the pairing procedure encrypts his/her user ID with the password as proof of

the knowledge of the secret key and sends his/her credentials together with the encrypted string to

the other user. Upon reception the other user verifies the decrypted user ID. If the verification

is successful, the received credentials are signed and the signature is sent back together with

his/her own credentials and encrypted user ID.

In case the initiating user receives the correct user ID, the signature of the newly acquired friend’s

credentials is returned and the received friend signature is added on the friends list. From that

moment on, both users can proof their friendship by presenting the friend’s signature.

5.5. Data Storage Module

The ‘Datastore’ module of the PodNet implementation increased dramatically in size and com-

plexity since it no longer had to hold only the channels and episodes but also information about

users and the community. Additionally, the new data structures are much more dynamic and

time dependent, thus periodically aging the ‘Datastore’ becomes necessary. Besides the core

functionality, this module also collects statistical data which could be useful for future applica-

tions.

5.5.1. Structure

The ‘Datastore’ was used to contain only channels and episodes, i.e. the actual content that

is shared and distributed in PodNet. However, in order to introduce a notion of a user and

to apply the proposed security measures, the existing structures had not only to be enhanced,

but new structures to save additional data, such as user specific information, had to be defined.

The complete structure of the new ‘Datastore’ module can be seen in Figure 5.3. Each of the

submodules are explained in the following.

Credentials The ‘Credentials’ module assures the basic authentication14. For simplicity reasons

the same module was used for both users and channels. Apart from the required information like

name, ID, public key, the credentials provide an interface for the basic verification and encryption

functions as well as the signing and decryption operations in case the private key is available.

14See Section 3.3.

105

5. Implementation

DataStore

Channels Community

Users

XML Module

Global Blacklist

Channel

Credentials

Blacklist

Meta Data

Moderator List

Member List

Episode

Meta Data

Encryption Info

Author

Enclosure

Neighbor

Familiar Set

Statistics

Community List

My Familiars

My Community

My Friends

User

Credentials

Status

CA

Credentials

Self

Figure 5.3.: The Datastore Module.

Users This module manages all the ‘User’ structures which store information about every entity

one comes into contact with. The least a ‘User’ structure requires is a user ID but in case more

information is known, also the user’s ‘Credentials’ may be stored in it. In case the user is a

neighbor, it contains the ‘Neighbor’ module described below. For every channel in which the

user publishes content, an ‘Author’ module is added to the ‘User’.

Neighbor In the ‘Neighbor’ module all statistical contact data15 for encountered users including

all his/her social data like friends and community members are saved. This information is used

by the community detection algorithm16 as well as to determine the trust in the encountered

user.

Author An ‘Author’ module exists per ‘User’ and ‘Channel’ in case the user has created

episodes in the specific channel. Each episode is linked to the ‘Author’. The module contains all

the reputation data collected about the user such as personal and local rating and blacklist.

Channels The ‘Channel’ structure already existed in the original implementation with the

purpose of managing all the episodes, but is enhanced and additionally contains a ‘Credentials’

module in order to assure the authority in a channel. The channel meta data were slightly

modified and the authorization lists17 were added as well in order to manage the users of a

channel.

Episodes The ‘Episode’ structure which also already existed in the original implementation is

used to store the actual content. The episode meta data were only slightly modified but its

ID is cryptographically bound to the channel it is published in and the author it is created by.

Additionally, in case the episode is included in a closed channel, the episodes encryption info is

stored in this structure as well.

Community This module is in charge of the community detection and friend circle construction

algorithms. It keeps track of the active peers in order to allow recording of connection statistics

by the ‘Neighbor’ module. It updates and ages the community and familiar sets periodically and

builds up the friend circle whenever friends lists are received from neighbors.

Global Blacklist The global blacklist is applied against all authors in all channels and therefore,

this Module is at the lowest level of the ‘Datastore’. It contains the list of blacklisted user IDs

and should be timestamped and signed by a CA.

XML Module The sole purpose of this module is to preform all the XML encoding and decoding

for all the different modules in the ‘Datastore’. The reason this functionality was outsourced is

the drastically increased amount of functions compared to the original implementation.

15See Subsection 5.5.3.
16See Subsection 3.5.4.
17See Subsection 3.4.3.

107

5. Implementation

5.5.2. Aging

In order for the proposed security feature to work properly as well as to keep the size of the

‘Datastore’ under control, an aging mechanism had to be introduced. Mostly user related infor-

mation is aged. The aging is performed every hour although only neighbor information has to be

aged that frequently since it is required for the community detection as described in Subsection

3.5.4. Author related information usually ages on a daily basis as all the timeout values for

blacklists, recommendations and ratings are specified in multiples of days as described in Section

3.6.4. Each user entry itself, specially if the user is not an author and does not contain any

additional neighbor information, should age and be deleted upon a timeout to avoid saving peers

one will never hear from again.

The aging in the ‘Datastore’ also has to make sure that rate limitations, which ensure that only

a certain amount of content is downloaded per author or channel18, are reset every day.

5.5.3. Statistics Collection

Whenever a neighbor peer is discovered we start to save statistical data about the encounter.

Currently, the only data that is used is the total contact time. This information is required

for community detection19. In fact much more detailed statistics are actually saved. For every

encounter with every node the start end times are saved. Additionally, the number of encounters

as well as the time the peer was seen for the first and for the last time is recorded. If a future

community detection mechanism or any other algorithm should need such information, it can

be found in the ‘Neighbor’ module. Additionally, it could be useful to collect other information

as well. Such information may comprise the frequency of connections compared to the actual

data transfers with a peer. This information, as well as detailed data upload and download

statistics could be used to influence the peer selection process20 and increase fairness in the

content distribution. All the statistical information is summarized in Table 5.2.

Value Description

time_seen_total Total time the peer was in proximity
time_seen_aged Total time reduced by aging (for community detection)
count_seen_total Total amount of times the peer was seen
connection_times Start/end time pairs of each time peer was in proximity
first_seen First time the peer was encountered
last_seen Last Time the peer was seen
times_connected Amount of times synchronized with peer (unimplemented)
times_data_exchanged Amount of times data exchanged with peer (unimplemented)
data_received Amount of data received from peer (unimplemented)
data_sent Amount of data sent to the peer (unimplemented)

Table 5.2.: Collected Statistics.

18See rate limitation for unknown authors in Subsection 3.7.1 under Rate Limiting.
19See Subsection 3.5.4.
20See Subsection 5.4.1.

5.6. Discovery Channel

In Clemens Wacha’s implementation [3] the discovery channel is implemented as a hard-coded

regular channel which all users are subscribed to. Basic channel information of known channels

is included as episodes. When two peers meet, they always exchange all the episodes in the

discovery channel independent of whether the channels are locally available or not. A peer can

then subscribe to one of the channels in the discovery channel and will download the content the

next time he/she sees the channel.

This transparent handling of the channel discovery by abusing the channel/episode infrastruc-

ture is no longer useful in the current implementation since the infrastructure became much

more complex. Considering who the owner of this channel should be and why this channel needs

credentials results in the conclusion that the channel discovery mechanism has to be revised.

Due to the limited time frame we did not redesign the discovery channel.

It is also obvious that the current method does not scale since every user’s discovery chan-

nel will tend to include all possible channels even though they have never been seen. As a

consequence, the size of the discovery channel will increase dramatically which handicaps the

channel handling. Finding interesting channels and subscribing to them becomes increasingly

difficult the more channels are available.

One could tackle the problem in many ways. It would help if responses to channel discovery

request only comprise the channels which are locally available. Additionally, the received chan-

nels in the discovery channel could age and be removed if they are not subscribed for a certain

time. Optionally, if a channel is seen regularly, the aging timeout could be reset so that the

most common channels would not be removed. To reduce sending overhead, one could introduce

maximum accepted discovery channel sizes which would limit a user to completely flood another

user with channels. Another option would be to have a channel rating or at least some kind

of availability information. An accurate and relevant channel rating would be tricky to achieve

but the availability can easily be detected by counting the number of distinct users offering the

channel. On the other hand, a user could be interested in a channel which has a low availability.

For this reason it could also be interesting to try to bring content with low availability to the

interested user instead of removing it from the Discovery Channel.

Another, more rudimentary option, as specified in the concept in [2], would be to limit the

spreading of channels in the discovery channel by only exchanging them on demand and not

during each data transfer as in the current implementation. A user that is interested in new

channels could then request the available channels from the discovery channel of other users.

Nevertheless, this scalability issue is out of the scope of this thesis and was thus not considered.

109

5. Implementation

5.7. Potential Improvements

In this section, we present some aspect of the current PodNet implementation which in our opin-

ion should be improved. It is organized into two parts. The first part contains some structure

related improvements whereas the second part explains some optimizations for the communica-

tion process.

5.7.1. Application Structure

The current breakdown of the functionality into the different modules does make sense but in

the actual implementation modularity was sacrificed by disregarding encapsulation completely.

Hardly any attributes are private thus the modules lack a proper interface. This is important

because anybody that tries to make a small change to a simple unimportant data member of

a specific module has to change half the application. For example if one changes a field in the

meta data of an episode one would not only break code in the ‘Datastore’ module but also the

transfer infrastructure and the graphical userface.

This problem mostly concerns the data storage module. It even got worse with the added

functionality, specially because a lot of the new structures are linked between each other. In

particular, the ‘User’ module is not solved optimally. Designing a proper ‘Datastore’ is not an

easy but necessary task since it is used intensively by the rest of the application. Another issue

that should be mentioned is the significant amount of dynamic memory used and shared among

the submodules inside the ‘Datastore’ module. This memory, as well as the mutexes used to

ensure that only one thread is accessing the data, should be handled by smart pointers in order

to prevent memory leaks and deadlocks.

In order to access every module from everywhere the global ‘app’ pointer was introduced in

the original implementation. This destroys modularity completely. An easy fix would be to

introduce a module communication bus or a central communication module holding all the mes-

sage queues, subscription services of the different modules. The global rc_commands which use

the the ‘app’ pointer in order to call member functions of the different modules, should be im-

plemented as functions in the scope of the class they actually belong to.

There are a few other issues concerning the application structure that are worth mentioning.

The router module should be a separate thread. Firstly because it is a communicating part of

the application, secondly because it crashes sometimes. If that happens, it would at least not

block the rest of the application, one could kill it and restart it without the user noticing.

Another issue is the extensive use of inheritance in this implementation. There is no reason for

example why the ‘SyncManager’, the ‘Router’ and the ‘SimpleRPC’ module have to be a socket.

If they would just have a socket, it would make more sense and the code would be more intuitive

as well.

The cryptographic wrapper could be improved as well. The PodNet implementation does not

contain any custom made exceptions. Error handling is done by traditional conditional state-

ments, return values and log messages. The Crypto++ library however throws a lot of exceptions.

It does not only do so when serious errors occur but also when the library is used properly e.g.

when trying to decrypt a corrupted file. Unfortunately this was discovered too late so proper

handling was not included in the wrapper when it was written. For this reason exceptions are

caught manually when using the wrapper. Clients of the wrapper should not have to worry about

such details, thus such matters should be dealt with internally.

Apart from the issue with the exceptions the implemented wrapper lacks the ability to change

algorithms and key size at runtime. Finding an alternative to the preprocessor directives which

switch the algorithm, would solve this issue.

5.7.2. Communication Process

The communication process has several drawbacks. Firstly, it is a semi duplex procedure. This

should be changed by making the sending and receiving part totally independent from each other

which can be done by introducing two separate message queues and would make the whole pro-

cess more flexible. This way, one would not be forced to get content or at least check whether

there is available content from users that establish a connection with us, which also makes sense

from a security point of view. Besides, it increases fairness since user could then download con-

tent from each other simultaneously.

Another optimization would be avoiding the use of XML to send any data. Not only because the

tags require unnecessary space, but also because a lot of random strings like IDs and signatures

are exchanged and they require a lot of escaping. Currently all random strings are hex encoded

which takes the double amount of space. All of this overhead could be reduced by introducing a

better format.

An additional small improvement would be to save the timestams as 4 byte integers instead of

strings in the format ‘yyyy-mm-dd-hh:mm:ss’ consisting of 19 bytes and requiring string parsing.

111

6. Evaluation

6.1. Cryptographic Functions

We evaluated the overhead in size and processing time on both a HP iPAQ and a HTC Touch.

The detailed specifications can be found in Table 5.1.

In Figure 6.1, we compare the times needed on both the iPAQ and HTC to sign and verify a

string of length 190 bytes using a key size of 2048 Bit for RSA and 224 Bit for ECC1. In general,

all test on cryptographic functions performed better on the iPAQ because of stronger processing

power.

When using RSA, the processing time of private key and public key operations varied a lot

whereas in ECC they stayed approximately at the same level. The signing of a string with

RSA took more than three times longer than with ECC but on the other hand, verifying was

approximately 15 times faster with RSA. On average, the RSA cryptography takes more time.

However, we assume that people will generate new content rather seldom in the PodNet environ-

ment compared to the amount of content received which has to be checked for authenticity. In

Figure 6.1 the time it takes to perform different cryptographic operations on the mobile devices

is presented. The group of bars on the right side show that signing and five times verifying of a

string takes more than twice the time with ECC than with RSA. Thus, the figure indicates that

RSA cryptography would be much more efficient in such an environment which motivated us to

use RSA in the current implementation.

However, increasing the key length size in RSA has a much higher impact on processing and

storage overhead than in ECC since the key size increases exponentially compared to ECC as

the specifications from [37] in Table 6.1 show.

ECC RSA

160 1024
224 2048
384 7680

Table 6.1.: Public Key sizes of ECC and RSA in bits corresponding to equal key strength.

In the current implementation, we reduced the RSA key size from 2048 to 1024 bit2 to limit the

1RSA 2048 and ECC 224 are considered equally secure despite the key size difference.
2We are aware of the fact that a key size of 1024 bit is too short to be considered secure since [38] shows that

with substantial effort and costly equipment, it can be broken in less than a year. We reduced it for this
prototype due to speed improvements.

113

6. Evaluation

Figure 6.1.: Performance Evaluation on HP iPAQ and HTC Touch.

sending overhead to use RSA key sizes3. When increasing the key size to a value larger than

2048 in future implementations, a reconsideration of ECC may be needed because of it’s smaller

key and signature size as well as faster computation times as [39] shows.

Since signatures and identities4 are frequently exchanged, we chose to use the SHA1 hashing

algorithm in order to reduce the sending overhead. It produces digest lengths of 20Bytes which

are much shorter than stronger SHA versions but at the expense of a weaker security. Symmetric

cryptography is performed with AES 128 which could easily be extended to 256Bit but guarantees

enough security at the moment.

6.2. Communication Overhead

It is difficult to compare the communication of the Secure PodNet implementation with the

original implementation because the overhead depends on the exchanged list sizes which vary

in size with the number of entries. Therefore, we excluded the list exchange from our overhead

comparison but address them in Subsection 6.2.1. We evaluated the overhead of the basic data

transfer mechanisms by observing the network traffic with Wireshark5. The detailed results can

be found in Appendix E.2. We will divide overhead observations for a file with size ∼ 26KB

into the three stages, i.e. Hello, Query and Download procedure which can be found in Table

6.2. The remaining stages, i.e. Negotiate and Done comprise no overhead.

Original Implementation Current Implementation Overhead

Hello

without Auth:
52 Bytes (2 msg) 56 Bytes (2 msg) 7.69%

with Mutual Auth:
2026 Bytes (3 msg) 379.96%

Query

No Channel: No Channel:
122 Bytes (4 msg) 188 Bytes (4 msg) 54.09%
1 Channel: 1 Channel (with meta):
1121 Bytes (8 msg) 3075 Bytes (10 msg) 174.30%

1 Channel (normal):
1502 Bytes (8 msg) 33.99%

Download

1 Episode: 1 Episode (with Auth):
27456 Bytes (57 msg) 27608 Bytes (41 msg) 0.55%

1 Episode (without Auth):
27466 Bytes (39 msg) 0.04%

Table 6.2.: Communication Overhead of TCP Data.

When neglecting the exchange of any lists, a user that connects to an unknown device and

downloads a file of size ∼ 26KB from an unknown channel would experience a communication

overhead of 13.27%. However, in normal operation, when both user know each other and the

3Compare with Table E.8.
4Identity: hash of public key, refer to Section 3.3.1.
5http://www.wireshark.org/

115

6. Evaluation

user would download from a channel he/she already holds the current meta data, the overhead

would be reduced to only 1.44%. The more content a user will download from the same channel,

the smaller the overhead since the sending of channel meta data and the authentication will only

be performed once per connection.

6.2.1. List Overhead

All the exchanged lists are sent in separate packets6. In the original implementation, the receiver

of the transfer client holds partial packets in its receiving buffer until the packet is complete and

forwards only completed packets to the Message handler. Due to the fact that the exchanged

lists may have varying sizes, we increased the buffer to hold a maximum of 20 Flex packets7. In

this chapter, we will analyze the entry sizes of the different lists.

Familiar, Community, Blacklist: The list format for the familiar and community set, as well as

for the blacklist are all identical. The layout is shown in Table 6.3. The timestamp and signature

are generated at creation of the list. Every list entry comprises a 20 Byte peer ID which leads

to a maximum of 65 entries per exchanged packet. The maximum list size that would fit in the

receiver buffer would contain 1448 different entries. However, because of the aging algorithm

in the community detection algorithm8, the list size should not become that large but may be

exchanged quite regularly.

4 Byte 128 Byte 20 Byte . . .

Timestamp Signature Entry (Peer_ID) . . .

Table 6.3.: List Format for Familiar and Community Set as well as Blacklist.

Friends List: The overhead of friends lists is much larger since every list entry additionally

contains a 128 Byte signature of the friend. The format is as in Table 6.4. Due to the large

size of the friend signatures, only 9 friends can be included in one single packet. However, the

maximum buffer size would still hold 196 friend entries at maximum.

4 Byte 20 Byte 128 Byte . . .

Timestamp Peer_ID Signature . . .

Table 6.4.: List Format for Friends List.

Rating List: The format of the rating list is shown in Table 6.5. Compared to the blacklist

above, an additional rating value of 1 Byte per entry is added. Therefore, 62 entries can be

included in a single packet which corresponds to ratings for 62 different authors per channel. At

maximum, 1379 entries can be exchanged.

6Except the Moderator list which is exchanged together with the Channel Meta data.
7See [3].
8See Subsection 6.4.2.

4 Byte 128 Byte 20 Byte 1 Byte . . .

Timestamp Signature Peer_ID Rating . . .

Table 6.5.: List Format for Rating List.

Global Blacklist: Additionally to the blacklist above, the global blacklist comprises the ID of

the central authority (CA). The format in Table 6.6 allows to send a maximum of 64 entries

in a single packet and a maximum 1447 entries would fit in the receiving buffer. However, the

number of global list entries may be potentially high since the global blacklist is considered in

all channels.

4 Byte 20 Byte 128 Byte 20 Byte . . .

Timestamp CA ID CA Signature Peer_ID . . .

Table 6.6.: List Format for Global Blacklist.

Moderator List: The moderator list is part of the channel meta data, which is stored in XML,

and thus shares the timestamp and signature with the other meta data. Every moderator list

entry comprises the entire moderator certificate which has a size of ∼ 900 Byte. In order to save

resources, the channel meta data is therefore only exchanged if the receiver would need it.

Channel Blacklist, Member List: Both lists are XML encoded. Every entry contains all the

fields in Table 6.7. Both IDs and the signature are hex encoded which doubles their size and

results in an entry size of 341 Bytes. A single data packet would thus only include 4 entries and

a maximum of 85 list entries can be exchanged at once.

20 Byte 4 Byte 20 Byte 1 Byte 128 Byte . . .

Peer ID Timestamp Mod Id Rights Mod Signature . . .

Table 6.7.: List Format for Channel Blacklist and Member List.

From all these considerations, it becomes evident that the list encodings needs to be improved

since the hex encoding of all peer IDs and signatures in XML doubles the effective entry size and

thus increases the exchanged overhead significantly.

6.3. Computational Overhead

In order to evaluate the computational overhead of the current implementation, we measured

the total synchronization time as well as the time needed for hashing and decrypting a file in the

different channel types. The evaluation was performed in the original9, open and closed channel

by sending either one of the following:

1. No File: only episode meta data exchange (without channel meta data)

9By original we mean channels from the original implementation documented in [3].

117

6. Evaluation

2. Small File: 52.79 KB in size

3. Large File: 5.99 MB in size

Figure 6.2.: Computational Overhead Sending a Small File.

The measured times varied ∼ 10% although we calculated the average over 100 synchroniza-

tions10. This was probably due to temperature fluctuation since the devices bacame quite hot

and could not be cooled down properly. The surrounding wireless traffic seemed constant at the

times meassured so this was probably not the reason. The processing times for the small file are

visualized in Figure 6.2. The basic transfer times increases with increased channel complexity

because more channel meta data has to be send, i.e. hashes and encryption keys. However, the

overhead decreases with increasing file size as Table 6.8 shows.

At first view, this was expected because all processing overhead is sent at the meta data which

is independent of the size of the data. However, we observed11 when subtracting the increased

10The detailed data can be found in Table E.18.
11See Figure E.18.

Percentage Overhead

Open Channel Closed Channel
No File 1.66% 1.66%

Small File 14.37% 49.57%
Large File 8.26% 50.36%

Table 6.8.: Percentages of computational overhead when exchanging files of different sizes.

hash processing time, the basic transfer processing will be significantly reduced compared to

the original implementation. The reason may be the fact that in the original implementation,

the maximum packet size exceeded the maximum segment size as explained in Subsection E.2.4

which resulted in splitting the exceeding packet into a large and a small packet.

In contrast to the open channel, the data transfer in a closed channel does not increase with

file size because of a large processing overhead for file encryption. We cannot explain this huge

overhead since in Table E.7, the processing time for a much larger file using even larger encryption

keys was substantially lower. The authentication overhead for the challenge response mechanism

varied always between 60 and 130ms for all data transfers and is thus almost neglectable compared

to costly cryptographic functions on files such as hashing and encrypting.

6.4. Improved Community Detection

In this section the modification of the community detection algorithm is evaluated and compared

to the its original counterpart [24]. In a second part the aging algorithm is analyzed and as a

final note some security issues concerning these algorithms are highlighted.

6.4.1. Modified Simple

As mentioned in Subsection 3.5.4 we based the community detection on the Simple algorithm.

In order to verify the desired behavior we analyzed the algorithm based on the MIT reality

traces12 as well as with a simple real world scenario using the iPAQ devices. We also applied the

algorithm on the Haggle traces12 but since we lacked the information of the social connections

no proper analysis could be preformed.

The average community size the Simple algorithm detects using different familiar set thresholds

in the MIT traces is quite constant as the blue line in Figure 6.3 shows. Nevertheless the size of

the individual communities can vary a lot as the yellow and the red line, corresponding to node

39 and 94, shows. The reason can be found in the criterion13 Simple uses to add a familiar node

to the community.

In order to visualize the problems with this criterion we constructed the following scenario with

12See Section 4.2.
13See Equation 3.1.

119

6. Evaluation

Figure 6.3.: Community Size for different Familiar Set Thresholds using the Simple Algorithm
(MIT traces).

the iPAQ devices. There is a certain amount of people in a room, e.g. 5, and before entering

the room in a certain order, the individuals have never been in contact before. If one waits long

enough e.g. hours, days or weeks, they should all be in each others community. But when using

Simple this is not the case.

The two persons that got into the room first will add each other to their familiar sets after some

time as can be deduced from Algorithm 1. Since every person is in his/her own community set,

the overlap with the other person’s familiar set is maximal, and they add each other to their

community. When the third person that entered the room is added as a familiar, the overlap of

his/her familiar set with the community set of the first two persons is at the maximum again

and therefore the third person is added to the community set of the first two persons. On the

other hand the third person will not add the others to the community if λ > 0.5 in Equation 3.1

because their community set is already twice as big as the third person’s community. The same

is true for the fourth person if λ > 1
3 and the fifth person if λ > 0.25. The suggested parameter

in [24] is λ = 0.6.

The construction of communities thus depends on the order people include familiar peers and see

each other. The approach in k-Clique may be less susceptible to that kind of instability because

it needs a fixed number k− 1 of people in the community set belonging to the others familiar set

in order to include a user in his/her community as Equation 2.3 shows. However, this criterion

has the disadvantage of requiring a fixed number that overlaps both sets which results in the

fact that people with big familiar sets being added to many communities and people with small

familiar sets not being added that often.

The comparison of the community and the familiar sets, which are constructed based on two

completely different criterion seems inadequate as a condition for constructing communities. We

therefore changed the criterion and compare only the two familiar sets with each other. In order

to require users to build up a familiar set before actually being added to someones community

one can require an additional minimal familiar set size k. The resulting criterion to add a peer

into one’s community can be seen in Equation 3.2.

This modified community detection algorithm would not only solve the issue with the five people

in the same room mentioned above but it also shows better results when applied to the MIT re-

ality traces. We applied the original and the modified algorithm on the traces using λ = 0.6 and

different familiar set adding thresholds and k = 1. In [24] one of the best results for Simple was

obtained with a threshold between 150k and 250k seconds. In Figure 6.4 the resulting graph14

of Simple for a threshold of 27h which corresponds to 226,8k seconds is shown.

The communities detected seem quite similar to the ones constructed by the Modified Simple al-

gorithm shown in Figure 6.5. But when looking more closely one can see an important difference.

In the original algorithm most of the connections are one-sided. This means that from a node’s

point of view, the communities may not look so nicely. Node 29 in Figure 6.4 for example has

14The graph was visualized with Cytoscape (http://www.cytoscape.org/).

121

6. Evaluation

Figure 6.4.: Community Graph Constructed by the Simple Algorithm.

Figure 6.5.: Community Graph Constructed by the Modified Algorithm.

123

6. Evaluation

node 1, 15, 16, 18, 34, 39, 57, 75, 78, 83, 86, 94, 95 and 96 in its community, which corresponds

to most of the community shown in red, but from the other node’s perspective, e.g. node 34 or

75, their community is empty. This does not happen in the modified algorithm where the most

of the connections are two-sided. In this example the average edges per node increase from 1.9 to

4.0 and the percentage of two-sided connection against the total amount of connections increases

from 13.6% to 38.7%.

6.4.2. Dynamic Aging Extension

Although the community detection algorithm was significantly improved, the results presented

in the last subsection show only an end result after a period of nine month in the MIT data

set. Ideally, we would want a short initialization phase to build up a community which than

can evolve over time. For this purpose an aging mechanism is required. The aging algorithm we

propose is described in Subsection 3.5.4.

Before analyzing the results of the aging algorithm we should have a closer look at the MIT

reality traces first. From the 96 people in the traces, 27 belong to the MIT Sloan business school

whereas the rest are members of the MIT media lab. Although the two buildings are next to

each other15 there are no social connections between these groups as the analysis of the phone

records show16. Except for the five freshmen, the subgroups of the media lab are more difficult

to identify since they consist of different years of grad students and faculty members. A visual-

ization of these groups can be found in Figure E.2.

The community detection algorithm using the aging mechanism needs a different set of pa-

rameters. We simulated several sets modifying different parameters and the outcome seems very

stable which indicates that the dynamic behavior of the aging works quite well. A sample set

of the fixed parameters can be found in Table E.20 and the initialization values of the dynamic

parameters are listed in Table E.21. These where the parameters used to produce the results

presented in the following.

In order to examine the effect of the community detection algorithm with the applied aging,

the community graph as well as information of the dynamic parameters are analyzed every 4

weeks. This results in 11 snapshots of the community graph, whereas the first one is still during

semester break.

The average familiar set size presented in Figure 6.6(a) shows an initial learning phase after

which the value is stable at around 14. Note that the value is not only decreasing towards the

end because of the applied aging mechanism but also because of a lower connection density at

the end of the semester. The values show the same dynamic bahaviour as the aging speed and

the familiar set adding threshold shown in Figure 6.6(b) and 6.6(c).

15See http://reality.media.mit.edu/dataset.php
16If two nodes have called each other, a social connection is assumed. The resulting graph can be found in Figure

E.3.

(a) Average familiar set sizes over time.

(b) Average aging speed over time.

(c) Average adding threshold over time.

Figure 6.6.: Average familiar set size vs. aging parameters for the modified community detection
algorithm with aging.

125

6. Evaluation

The average community size can be seen in Figure 6.7(a). The values around 3 to 4 are similar

to the end result of the algorithm without aging. Figure 6.7(b) shows the community removal

threshold, and as one would expect, it shows the opposite behavior compared to the community

size.

(a) Average community set sizes over time.

(b) Average remove threshold over time.

Figure 6.7.: Average community sizes vs. aging parameters for the modified community detection
algorithm with aging.

The course of the snapshots17 of the community graphs also shows an interesting evolution.

After the first four weeks, only a few people from the media lab are detected. The community is

strongly interconnected and the center of it is a professor. In the second snapshot just around

semester start, more media lab members are in the community. Additionally, four freshmen

appear, forming a nice clique. The three next snapshots are all during semester so the media lab

community has become bigger and the fifth freshmen completes the clique. On the other hand

17The figures can be found in Appendix E.4.3

the Sloan business school students have arrived forming a separate community. During that time,

the communities look similar but the interconnections increase. After that time, the December

break starts and the interconnections start decreasing which results in smaller community sizes.

The last few snapshots belong to the spring semester. They have a bit less interconnections but

the communities are similar. In particular, the separation between the Sloan business school and

the MIT media lab can always be seen very clearly.

6.4.3. Security Implications of Community Detection

Applying community detection to PodNet rises new security relevant questions. There are two

stages a peer can achieve with the applied algorithm, familiar or community member. Obviously

one would not like peers to be able to cheat their way into our familiar or community sets.

The only way a peer is added to the familiar set is if he/she was in proximity for long enough.

There is no way one can accelerate this process e.g. sending more frequent discovery packets is

not effective since time is measured instead of counting the discovery messages. Once a peer is

added the the familiar set one evaluates whether to add this users to the community as well.

This evaluation can be fooled quite easily.

In the original Simple algorithm this can be achieved by only advertising the peer one is con-

nected to in the familiar set. After being added to the the familiar set, the criterion to be added

to the community will then always be true.

In the k-Clique algorithm the strategy to be added to another user’s community is the opposite.

One can add all encountered users to one’s familiar set. This would also result in being added

to everyones community set at least with a very high probability.

In the Modified Simple algorithm, an attacker can obtain community membership by receiving

the familiar set of a victim in a first connection round and replay it in a second one.

The aging mechanism has a security drawback as well. If a stalker would constantly be present

with a high number of identities, all these identities would be added to the familiar set. Since

the familiar set size would increase, the aging would accelerate and legitimate users would be

removed from the familiar set.

A detailed analysis of these issues is needed since the solution is still open.

127

7. Conclusion

In this chapter the main contributions are summarized, highlighting the identity management,

trust metrics and reputation system which were introduced to PodNet. Furthermore, some

general aspects of this work are discussed, like its general applicability, the implications and

benefits a hybrid network architecture would introduce and the privacy concerns of such a content

distribution mechanism. Finally, an outlook is given highlighting interesting areas for future

work.

7.1. Summary

The goal of this thesis was to design a security concept for PodNet in order to assure the secure

content dissemination among mobile users. To achieve this goal a proper user authentication was

introduced, based on self generated identities. Users can now rate authors of content and asses

their reputation by sharing the acquired opinion with others. The level of trust among users

relies on the social ties such a friendship (built by secure pairing) or belonging to the same com-

munity (detected automatically). Additionally, a spam control mechanism prevents the flooding

of content.

For the purpose of assessing the effectiveness of the proposed design, different security measures

were simulated using real world traces and synthetic models. After observing satisfying results

in the simulations, the security measures where integrated into the existing PodNet implemen-

tation. Finally, the quality of the community detection as well as the communication overhead

of the security measures were evaluated.

The content distributed in PodNet can either originate from a central Internet server or from

other users. In order to define security measures that best suit the different distribution require-

ments, our design introduces three channels, namely open, restricted and closed.

Traditional podcasts and Internet content may be published in restricted channels where author-

ship is limited to only a few people, whereas closed channels may be used in small groups which

want to keep their information private (e.g. friends sharing holiday pictures). The most difficult

and challenging distribution takes place in the open channel where content is user-generated and

everyone is free to publish.

Securing content exchange in a completely distributed and open environment based on user

reputation is as difficult as it is complex. The most basic but nevertheless crucial part of the

129

7. Conclusion

design of the security measures comprises the unique generation of a user identity that cannot be

imitated by others. By using the hash of a self created public key as identity, we can authenticate

a user by challenging him or her for the private key. Additionally, users can become friends by

consciously performing a secure pairing in which each user signs the other user’s credentials as

proof of the friendship.

As mentioned already, the identification of users is based on anonymous user-generated iden-

tities. Since user can generate multiple identities (sybil attack), we assess their reputation and

trust as an indication of their quality as suppliers and authors which is not necessarily the same.

The reputation measures the user’s quality as author of content and is based on past experiences

whereas trust defines a belief in the honesty of a user’s future action. For our design, we assume

to have an increased trust in users to which we are connected to, either socially (friends) or by

the environment (community members) because we assume attackers to frequently change the

identities to abandon bad reputation. A user wanting to change his or her identity is still free to

do that but he/she cannot impersonate a reputable user and will lose all the gathered reputation

and social connections when switching to the new identity. The author’s signature appended to

a content will always bind the authors’s identity and thus implicitly his/her reputation to the

generated content. A user that often changes his or her identity will neither have a good trust

nor reputation value.

The reputation value for an author is built by assessing the quality of his or her published

content. Since users meet in an opportunistic way, they cannot ask other users or a central

database on demand and have to collect reputation information on their own.

In our simulations, we observed that calculating a reputation value only from direct experiences

is inefficient since every user has to download bad content before reacting on it. Such a solution

would thus be reactive, slow and content may still spread for weeks because of some users never

rating received content. A good way to significantly increase the detection speed is the exchange

of reputation information among users. It improves the detection in two ways, firstly, users may

profit from global knowledge about an author and proactively block the author even without

receiving any malicious content, secondly, even users that did not recognize the bad content as

such will start blocking it and thus prevent its further dissemination. However, the problems

with this approach are twofold, on the one hand it enables attackers to spread wrong informa-

tion (lies) and thus influence the reputation in a negative way, while on the other hand, users

themselves may rate content differently due to their taste.

In order to minimize the latter, we introduced a two level rating combining an objective and a

subjective rating together. The objective rating ensures trusted content exchange by measuring

the legitimacy of content which should be assessed similarly by the majority of users. The sub-

jective rating reflects the users’ satisfaction which may vary depending on a user’s taste, culture,

social situation or educational background.

In order to minimize the problem of lying user, they can be prevented from taking dispropor-

tionately high influence on the reputation by two measures. Firstly, by introducing a suggestion

threshold of required objective ratings to ensure confidence in the rating, and secondly, by weight-

ing all received ratings, with the user’s trust value. Attackers that often change their identity

will be viewed as strangers to whom only a minimum trust is assigned, whereas well known users,

community members and friends will have much higher trust.

To the best of our knowledge, not much work has been done in the area of community de-

tection for opportunistic networks. We therefore modified an existing lightweight algorithm that

performed poorly and observed very promising results showing the detection of much better

connected communities. We also added an aging mechanism which allows a much faster and

more dynamic communities detection. Simulations with community weighted reputation values

showed that when considering community information, the values of the suggestion threshold (i.e.

the minimum number of recommendations required) can be doubled1 compared to unweighted

case without decreasing the detection speed. This implies that an attacker with a much lower

trust weight than regular users would need much more effort in order to influence other user’s

reputation.

Since the reputation exchange suffers the serious drawback of requiring to downloaded content

and consciously rate it before information can be exchanged, an attacker can flood the channel

without fearing any bad reputation by frequently changing the identity. Therefore, we introduce

a spam control mechanism that proactively limits the amount of content a user can download

from the same author per day. This rate evolves with the reputation value of an author. Hence,

only a limited amount of contents can be downloaded from completely unknown authors whereas

the rate does not affect reputable authors. Additionally, the mechanism also serves as an incen-

tive for the user to rate content in order to get more or less content from an author.

A real user’s behavior is difficult to model because when it comes to rating content, it may

depend on many various properties such as taste, social situation, culture or educational back-

ground which may sometimes even not be rational. Therefore, a real deployment is needed in

order to examine the applied security measures under realistic conditions.

7.2. Discussion

In this section we take a closer look at some of the approaches used in this work and discuss

how general their application is in order to be used on other types of networks and to solve

other problems. Since PodNet is originally designed for a hybrid network, i.e. an opportunistic

network combined with a fixed infrastructure, the benefits of such networks are examined as

1Recommendations of community members are counted as multiple suggestions from strangers in order to give
them a higher weight.

131

7. Conclusion

well. In the last part some privacy issues are covered, and how the proposed security measures

deal with them.

7.2.1. General Applicability

In this work we treat several different concepts which are interesting beyond the borders of

PodNet and opportunistic networks. The most important ones are Identity Management, Trust

Metrics, and Reputation.

Identity Management: The management of identities in an opportunistic network is a difficult

task. There are two main challenges when entities are able to build their own credentials. They

consist of making identity theft impossible and inhibiting sybil attacks. The first, i.e. the pro-

tection of a user’s identity, has been solved by asymmetric cryptography. As long as an identity

is bound to a public key and as long as the user manages to keep the corresponding private key

secret, the identity can be verified assuming the cryptographic algorithms are secure.

The second and more challenging problem when lacking a central authority is avoiding the

generation of many identities by a single user (sybil attack). While a true one-to-one, once in

a lifetime binding between an identity and an individual is already challenging when having a

central infrastructure at one’s disposal, it becomes impossible in a fully self organized environ-

ment. Although occasional changes of a user’s identity would not be terrible, the generation of

a large amount of simultaneous identities becomes a problem since it opens the possibility for

many different attacks, e.g. increasing one’s influence in a distributed rating system.

This work tackles this problem from a social angle by establishing certain Trust Metrics. This

has been done in other areas already, e.g. in PGP [7] chains of trust are built. While chains

usually require routing or at least the availability of all the certificates to complete a chain, the

approach we used is more general since it has no such constraints and can thus be applied in a

large number of different types of networks as discussed in the next paragraph.

Trust Metrics: In order to establish trustfulness of a user we assume, similar to PGP, the tran-

sitivity of trust to a certain degree. Whereas in PGP a user is either trusted or not, depending

on whether a chain is found, we distinguish between different trust levels by classifying social ties

in different categories. Although we currently just have five different categories (and associated

trust levels), namely friends (highest trust), friend circle member (high trust, somewhat below

friends), community member (low trust), familiar (lower trust but close to community members)

and stranger (minimal or no trust at all), this can be extended to provide a more fine grained

scale of different trust levels. One can for example trust a user with three common friends more

than some distant member in our friend circle, with whom we have no common friend with at

all. No matter how fine grained the different trust levels, or how complex the algorithms are,

the basic concept remains valid for any distributed network. Additionally, this concept cannot

only be used to calculate the probability of an identity belonging to a trustworthy user, but also

other areas, e.g. for routing and forwarding.

Another way to establish trust is to calculate a similarity between two users. This can be

done in several ways, e.g. by comparing how much of the same or at least similar subscribed

channels are available. A better way would be to compare how similarly two individuals rate

content. This has several advantages over comparing the similarity of available channels. Firstly,

a user has to rate consciously, which increases the probability of dealing with a valid identity

and secondly the ratings have to be similar which not only assures a comparable taste, but also

suggests the rating is not being randomly generated.

This way of assessing trust can be easily combined with the social network approach which makes

it a good add-on. The drawback is that it is bound to a system where the offered services can

be rated, like providing content in this case.

Reputation: The reputation framework used in this work can be applied to any other content

exchange protocol or system where users provide a service. The reason lies in the general nature

of PodNet which is based on the distinction of the author and the supplier of a content. While

other systems require direct connections between the user being rated and the one rating, PodNet

does not guarantee such a connection, it is actually highly unlikely to exist at all. We build up

a reputation about a certain user using our own and our surrounding’s opinion without any

restrictions on that user. It does not matter whether the user is somebody who has never been

met, a member of the same community, a friend or even oneself, the system works transparently

for everybody. Another reason for this transparency is that we do not assume a trustworthy user

to produce content we necessarily like, thus separating trust and reputation. This makes it very

flexible and protocol independent.

7.2.2. Hybrid Networks

The original PodNet concept is based on a hybrid network consisting of an opportunistic part

which allows users to exchange content among themselves and a limited amount of gateways

which allow the distribution of Internet content. Although the security measures proposed in

this work are mainly based on the opportunistic part of PodNet most of them could benefit

significantly from the hybrid architecture. Specifically, the creation of a secure identity with

a higher resilience to sybil attacks can be achieved with a registration process as described in

Section 3.3.2 under Registration. Such a registered identity could also allow the verification of

additional feature like age which would be useful to limit channels providing explicit content for

the view of adults only.

Another part of the security measures which could benefit from the hybrid architecture is the

reputation system. It not only allows the usage of a global blacklist as described in Subsection

3.4.3, but also the caching or collecting of user generated ratings in order to receive a more

133

7. Conclusion

detailed opinion about an author and spread it among users. Since the infrastructure part can

communicate over a different medium, e.g. the Internet, the reputation of an author can be

spread much faster and also in areas the content has not yet reached.

7.2.3. Anonymity and Privacy

One of the main issues when designing a security concept for PodNet was to make sure we can

hold users accountable for their actions. At the same time a user would like to stay anonymous,

so no other user should be able to link the real person to the user’s content or rating. This

becomes obvious when thinking what could happen if a boss discovers his or her content is being

badly rated by his or her secretary. Our Secure PodNet guarantees this kind of anonymity by

using the hash of the public key as the identity. Although an identity can be held accountable

for what the corresponding user does, either by blocking or rating, there is no way of identifying

the person behind the identity. As mentioned before, this is generally wanted, but it could be

problematic when content is illegal and the author should be identified and possibly sued. This

problem could be solved by the registration explained in the previous subsection.

Another privacy issue arises when publishing the owner of a channel. In general, the owner

should have the option to stay anonymous, since he or she might not want to be linked to the

content other users publish in the channel. A similar issue exists in the closed channel, where

the different members might not want to be linked to the channel itself or to other members

in the channel. Both issues are taken care of in the proposed security measures. A channel is

represented by its own credentials and only optionally linked to the owners ID and the member

list of a closed channel is only shared among themselves.

There is one last privacy concern which is not considered by the current security design. It

allows for a low level attack and comprises the tracking of an ID. Discovery messages are sent

out regularly and since they contain the user ID, they can be used to follow a person. This

can be done independently of the fact that the user ID is just an anonymous hash which does

not allow the explicit identification of the person being tracked. This is a very general problem

beyond the scope of PodNet and this work and remains open.

7.3. Outlook

In this section we present suggestions for further investigations and improvements to the cur-

rent PodNet system. Because of the wide variety of topics in this work, we divided them into

the following subjects: Podcast, Rating, Identity and Evaluation. The implementation specific

improvements can be found in Section 5.7.

Podcast: The current podcasting system comprises several limitations and drawbacks. Some

of them may be reduced by:

• Redesign of the discovery channel in order to improve visibility and relevance of its content

by limiting the exchanged channels, introducing channel aging and define channel rating

as explained in Section 5.6. Besides that, the exchanged informations may be extended

to include channel descriptions which could give users insights whether to subscribe to a

channel or not.

• Refining and applying channel policies introduced in Subsection 3.4.1 may restrict the

channel access for certain persons. A user may require a certificate or signature which

states that he/she fulfills certain properties, such as e.g. being of legal age, which are

required to view contents from a channel.

• Introduction of revocation lists which include episode IDs that should automatically be

deleted by every user in the channel in order to remove content without blocking its author.

• Deployment of a Bloom Filter for episodes as has been done for channels in the original

implementation [3] in order to reduce the transmission overhead and thus decrease the

synchronization time.

• Introduction of channel tags similar than in [40], [41] which describe the content of a

channel. Instead of human readable text, keywords may be used in order to evaluate

similarities between channels which may be used when assigning user similarities (see Rating

below).

• The integration of incentives or game-theoretic approaches may additionally increase reli-

ability and fairness of the content dissemination process.

Rating: The author reputation presented in Section 3.6 may be extended by the following:

• Introducing similarities between received recommendations as in [9] or [16]. We currently

rate the weighting based on the environment which may be reasonable for objective rat-

ings but inaccurate for subjective ratings because of different tastes inside the community.

Additionally the similarity of two persons’ local channel list can be calculated and be used

as an indication for similar taste.

• Exploiting the similarities of channels may additionally be useful when only a few author

information is available in a specific channel but plenty of it in a very similar one. It may

then be reasonable to derive the reputation from these related channels [9].

• The effect of subjective rating may be increased. Currently, we primarily use the objective

rating in order to block misbehaving peers and use the subjective ratings only to vary the

limit in the rate limitation. It may be advantageous to allow manual combination of both

ratings in a way that all objectively rated content may be considered if only few content

is available and, additionally, subjective rating is enabled to set a basic rating requirement

when many contents can be found.

135

7. Conclusion

• Make the rate limitation dependent on environment. In an environment of only a few peo-

ple, one may allow more content downloads and be less restrictive than in an environment

of many people where, due to the potential high amount of contents, also legitimate data

may be viewed as spam.

• Assigning a confidence value [42]2 to the received recommendations may help assessing the

trust of rating values in the combination process3.

Identity:

• Find mechanisms which efficiently prevent sybil attacks in opportunistic networks without

requiring any central authorities.

• Instead of the the IPv4 address, a mobile IPv6 address which could also serve as identity

and thus prevent ambiguities and address collisions in SyncList and SyncHistory.

• More Investigations towards identity and certificate revocation is needed.

Evaluation:

• A real world deployment is needed in order examine social connections and evaluate the

effectiveness of the community detection as well as the users’ rating behavior under realistic

conditions.

• The proposed community detection algorithm should be analyzed with real world data that

reveal the social connections. Ideally, one may try to make the community parameters

dependent on the environment.

• It may also be reasonable to make the recommendation weights and suggestion threshold

dependent on the environment, i.e. the amount of people in one’s community.

• Evaluate the security implications of community detection as mentioned in Subsection 6.4.3

and make it hard to influence an other user’s view of his/her community.

2Confidence value: the number of people that have provided a specific rating.
3See Section 3.6.3.

Appendices

137

A. ‘The One’ Simulator

As mentioned in Section 4.3, we had to modify ‘The ONE’ simulator in order to use it for our

purpose. The main problem consisted in the simulator being connection and message oriented.

In order to simulate the spreading of content the hosts needed to be able to save data. For this

reason a ‘HostBody’ module was inserted into each host represented by the ‘DTNHost’ module.

This module takes care of all the abilities a host requires in our scenarios.

In order to make use of the new functionality in the hosts we needed the ability to config-

ure them. For this reason a ‘ConfigurationEvent’ was created. In order read out configurations

from a file we modified the ‘StandardEventReader’. It can now interpret a commands in the

following format: ‘CONF <host ID> <command> <argument>’. For the available commands,

the code should be consulted.

Since usually the configuration such as the generation of content should not be read from a file

but be done periodically, a ‘ConfigEventGenerator’ module was created. The configuration event

generator can be configured via the settings file. In order to handle all the new settings correctly

the ‘Settings’ module had to undergo some small changes. The available settings can be found

at the end of this chapter.

The hosts also need the ability to synchronize content and other information. For this reason a

‘SynchronizationEvent’ was introduced. Since the synchronization events should be triggered by

a connection between two hosts, a ‘ConnReactiveEventGen’ module was implemented. As the

name implies it has the ability to generate events whenever two hosts connect or disconnect.

In order for the configuration event generator to perform certain tasks regularly and for the

connection reactive event generator to detect connections and disconnections of hosts, they have

to implement the ‘UpdateListener’ and the ‘ConnectionListener’ interface. Since those interface

where originally implemented for the reports, a hack was needed to make them available to the

event generators. For this reason the ‘SimScenario’ as well as the ‘EventQueueHandler’ module

were slightly modified.

In order to output all the simulated data some new reports were created. The most frequently

used were the ‘BLContentReport’ which outputs content spreading data that can be read by

Matlab, and the ‘CommunityReport’ which outputs community related information including a

community graph. For the functionality of the other reports added, namely the ‘ContentReport’,

139

A. ‘The One’ Simulator

the ‘ContentSpreadingReport’, the ‘ConnectivityGraphReport’ and the ‘SpreadingGraphReport’,

the code should be consulted.

Settings: There are two new event generators that can be enabled in the settings. The ‘Con-

nReactiveEventGen’ can only be enabled but does not take any parameters. The ‘ConfigEvent-

Generator’ on the other hand takes parameters to specify the content and spam generation

intervals to configure the different roles of users and their behavior. For more information one

can look into a settings file or into the code of the ‘ConfigEventGenerator’ module.

B. MIT Data Set

B.1. Data Set Properties

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

day number

of

 u
p

co
nn

ec
tio

ns

distribution of up−connections over time

Figure B.1.: Number of Bluetooth Up Connections in the MIT Data Set.

The collected data comprises a lot of detailed information from which we just used the Bluetooth

connection data as trace information.

The data set consist of 97 persons from which 8 persons have never seen any other contact, these

are persons with IDs: 25, 48, 52, 53, 55, 64, 67, 87. Person 25 is additionally also never seen by

any other person, i.e. person 25 is isolated.

The total simulation time is 491 days. The first entry in the data collection is made at the 1th

of January 2004 and the last at the 5th of May 2005. At day 360 there was Christmas eve where

141

B. MIT Data Set

No. Month # Days Ref. Days

1. Jan’ 04 31 0
2. Feb’ 04 29 31
3. Mar’ 04 31 60
4. Apr’ 04 30 91
5. May’ 04 31 121
6. Jun’ 04 30 152
7. Jul’ 04 31 182
8. Aug’ 04 31 213
9. Sep’ 04 30 244
10. Oct’ 04 31 274
11. Nov’ 04 30 305
12. Dec’ 04 31 335
13. Jan’ 05 31 366
14. Feb’ 05 28 397
15. Mar’ 05 31 425
16. Apr’ 05 30 456
17. May’ 05 31 486

Table B.1.: Conversion Table: Date - Day Number.

almost no activity was measured. The Semester of the academic year 2004/05 at MIT started at

around day 251 (first day of class 8.September) 1. The day - date conversion can be computed

with the help of Table B.1. In order to calculate the original day number to a specific date, go to

the corresponding month in Table B.1 and add the number of days in the date to the reference

number.

B.1.1. Conversion Table Date - Day

However, Figure B.1 shows that the first 200 days have only a few Bluetooth Up Connections.

In a first simulation round, we therefore discarded them and re-numbered the days and started

counting from original day 200, i.e. Monday July 19, 2004. In order to find the correct date,

always subtract 200 days in Table B.1.

In Figure B.2, we see that the quality of the individual weeks can vary a lot which motivated us

to classify the weeks and perform a second simulation round.

1http://web.mit.edu/registrar/www/calendar0405.html

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

week day

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

content spreading for different weeks

average
individual weeks

Figure B.2.: Spreading Performance for Different Weeks in the Unclassified MIT Data Set.

143

B. MIT Data Set

B.2. Classification Process

Because of the week quality difference, we classified the weeks in a second simulation round

into good, average and bad weeks. The classification was performed by hand by observing the

spreading performance of one content sent per week for all users and splitting the weeks based

on the average number of people having the content. The limits are set as follows (a being the

number of people having the content):

Unfortunately, after having discarded the first 200 days, the dataset only consisted of 42 week.

Criterion Action Clustered Weeks Total Weeks
a < 5: discard week 1-3, 24 4

5 < a < 24: bad week 4- 8, 23, 25, 36, 38, 39 10
25 < a < 47: average week 26, 27, 31-35, 37, 40, 41 10

47 < a: good week 9 - 22, 28-30 17

Table B.2.: Classification of Weeks with Similar Quality

Therefore, we had to repeat repeat the usable weeks several times in order to have 30 weeks per

scenario. The classification is shown in the following table:

Classification Weeks
Good 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 28, 29, 30, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 28, 29
Bad 4, 5, 6, 7, 8, 23, 25, 36, 38, 39, 4, 5, 6, 7, 8, 23, 25, 36, 38, 39, 4, 5, 6, 7, 8,

23, 25, 36, 38, 38, 39
Average 26, 27, 31, 32, 33, 34, 35, 37, 40, 41, 26, 27, 31, 32, 33, 34, 35, 37, 40, 41, 26,

27, 31, 32, 33, 34, 35, 37, 40, 41

Table B.3.: Classified Week Sets

As Figure B.3 shows, the average of all ’average weeks’ correspond approximately to the average

spreading curve of the unclassified weeks in the first simulation round. It is a little bit higher

because of less people being active in the average weeks.

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

day number

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading over four weeks

all weeks
good
average
bad

Figure B.3.: Average Spreading Performance of Unclassified Weeks Compared to Good, Average
and Bad Classified Weeks.

145

B. MIT Data Set

B.2.1. Source Information

oid survey position survey neighborhood survey hours survey regular

1 - - - -
10 mlgrad Fresh Pond* 11am-9pm* very
11 1styeargrad Central 11am - 8pm somewhat
19 sloan - - -
20 sloan - - -
30 5thyear Central 11am - 8pm not at all
31 sloan - - -
39 student Porter 9am - 5pm very
40 sloan Central 11am - 8pm somewhat
49 6thyeargrad MIT 11am - 8pm very
50 sloan Boston 9am - 5pm very
59 student MIT 9am - 5pm somewhat
60 8thyear - - -
67 sloan - - -
68 mlfrosh MIT no schedule* not at all
69 newgrad - - -
70 masfrosh MIT 4pm-8pm* somehwat
77 sloan MIT 11am - 8pm somewhat
78 student Boston 11am - 8pm somewhat
79 sloan - - -
88 staff Brookline 9am - 5pm very
89 newgrad MIT 11am - 8pm very
97 newgrad Boston 11am - 8pm somewhat

Table B.4.: Source Information Information of 23 Randomly Selected Nodes: These nodes were
randomly selected (same seed) in all simulations with the MIT data set.

C. Simulation

C.1. Non-Cooperation

Percentage MIT Unclassified MIT Good MIT Bad MIT Average Haggle 24h
0 100% 100% 100% 100% 100%
10 99.18% 99.43% 96.44% 99.26% 99.59%
20 98.73% 98.49% 91.85% 98.61% 99.18%
30 97.89% 98.05% 87.90% 97.22% 98.62%
40 94.77% 97.11% 85.46% 95.56% 97.34%
50 93.56% 96.86% 81.67% 93.35% 96.76%
60 91.76% 96.02% 76.16% 89.53% 95.65%
70 86.99% 94.38% 67.58% 83.29% 93.03%
80 79.00% 89.71% 56.33% 70.31% 90.72%
90 57.31% 66.64% 36.89% 42.34% 85.99%

Table C.1.: Non-Cooperation in Varying Environments: The average spreading performance of
one content after exchanging it for four weeks.

147

C. Simulation

C.1.1. Unclassified MIT Set

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

day number

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading over four weeks with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure C.1.: Non-Cooperation in Unclassified MIT Weeks: Average spreading performance of one
content generated at day 0, observed over a period of four weeks.

C.1.2. Classified MIT Set

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

day number

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading over four weeks with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure C.2.: Non-Cooperation in Bad Classified MIT Weeks: Average spreading performance of
one content generated at day 0, observed over a period of four weeks.

149

C. Simulation

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

100

day number

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading over four weeks with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure C.3.: Non-Cooperation in Average Classified MIT Weeks: Average spreading performance
of one content generated at day 0, observed over a period of four weeks.

C.1.3. Haggle

Figure C.4.: Non-Cooperation in Haggle Data Set: Average spreading performance of one content
generated at day 0, observed over a period of 24 hours. The shaded regions mark an 8 hours
inactivity period during night.

151

C. Simulation

C.1.4. Synthetic Traces

0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

110

hours

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading per day with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure C.5.: Non-Cooperation in Random Waypoint Model: Average spreading performance of
one content generated at day 0, observed over a period of 24 hours. The corresponding parameters
are specified in Section 4.2.

0 5 10 15 20
0

20

40

60

80

100

120

hours

nu
m

be
r

of
 a

ll
pe

op
le

 h
av

in
g

co
nt

en
t

average content spreading per day with 0 − 90 % non−cooperating nodes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

Figure C.6.: Non-Cooperation in Helsinki Model: Average spreading performance of one content
generated at day 0, observed over a period of 24 hours. The corresponding parameters are specified
in Section 4.2.

153

C. Simulation

C.1.5. Comparison Haggle - Synthetic Traces

When comparing the synthetic traces of in Figures C.5 and C.6 with the high density real world

traces from haggle in Figure C.4, we observe that the content dissemination speed is similar

if neglecting 8h of inactive night shift as Table C.2 shows. There are two numbers for each

simulations in the Haggle set. The number in brackets shows the real time including the 8 hours

night shift, the other number shows the time when subtracting the night shift. In particular the

times from the Helsinki model are very close the real world Haggle set.

Percentage Haggle: 40% 60% 80% Helsinki: 40% 60% 80%
0 3150 6500 (51850) 10500 (55850) 5640 7480 10430

10 3300 6750 (52100) 10850 (56200) 5780 7680 10670
20 3500 6900 (52250) 11100 (56450) 5900 7960 11410
30 3600 7300 (52650) 11500 (56850) 6400 8630 12210
40 3650 7400 (52750) 12100 (57450) 6470 8920 13060
50 3800 7700 (53050) 12400 (57750) 7010 9860 14330
60 3950 8050 (53400) 14250 (59600) 7980 10910 16030
70 4300 8950 (54300) 17600 (62950) 8480 11670 17210
80 4650 9750 (55100) 20250 (65600) 9890 13880 20010
90 6100 11900 (57250) 30300 (75650) 11060 15530 24370

Table C.2.: Non-Cooperation with Haggle Traces and Helsinki Model: This table shows the times
in seconds until reaching 40%, 60% and 80% of all people in the Haggle and Helsinki Set for different
levels of non-cooperation.

Percentage Random Waypoint: 40% 60% 80%
0 2710 3400 4260

10 3110 3850 4770
20 3390 4290 5360
30 3850 4790 5950
40 4130 5160 6500
50 4740 6010 7600
60 5660 7110 9120
70 6640 8570 11190
80 8890 11880 15850
90 13140 18850 26570

Table C.3.: Non-Cooperation in Random Waypoint Model: This table shows the times in seconds
until reaching 40%, 60% and 80% of all people in Random Waypoint model for different levels of
non-cooperation.

C.2. Moderator Blacklisting

C.2.0.1. Unclassified MIT

Unclassified
time having providing

1 week 68.18% 34.06%
2 weeks 70.42% 14.42%
4 weeks 69.77% 4.33%
8 weeks 69.29% 1.69%
16 weeks 68.57% 1.04%

Table C.4.: Moderator Blacklists: The table lists the percentages of people providing and having
the first content in unclassified MIT weeks. The week times are all relative to the spam recognition
of the (only one) moderator. The percentages are obtained with respect to the people receiving the
content with normal spreading.

classification time tot. having max. providing (of all 96)
Unclassified 58d 70.29% 31.11%

Table C.5.: Moderator Blacklists in Unclassified MIT Weeks: The table lists the percentages of
people providing and having the first content in the Unclassified MIT weeks. The week times are
all relative to the spam recognition of the (only one) moderator. The percentages are obtained with
respect to the people receiving the content with normal spreading.

155

C. Simulation

0 50 100 150 200 250
0

50

100

day number

of

 h
os

ts

content 1

0 50 100 150 200 250
0

50

100

day number

of

 h
os

ts

content 9

0 50 100 150 200 250
0

50

100

day number

of

 h
os

ts

content 10

0 50 100 150 200 250
0

50

100

day number

of

 h
os

ts

content 13

having content (normal spreading)
providing content
blocking content

Figure C.7.: Moderator Blacklisting in Unclassified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. One moderator detects spam upon reception
with recognition probability of 100% and exchanges that information with others which immediately
accept the blacklist information. The red and blue line together show the number of people that have
received the content. The blue line presents the number of people that provide the received content
to others whereas the red line show the persons that block the content after reception. The graph
shows the distribution of contents 1, 9, 10, 13 generated in the corresponding weeks. Huge increase
at semester start at around day 60 because of much more connections.

C.2.1. Classified MIT

classification time tot. having max. providing (of all 96)
good 1.5h 79.41% 36.54%

average 14.8h 64.57% 18.99%
bad 36.5h 77.98% 24.41%

Table C.6.: Moderator Blacklists: Time in hours when the maximum of users having the content
is reached in good, average and bad classified MIT weeks.

157

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.8.: Moderator Blacklisting in Average Classified MIT Weeks: Average spreading per-
formance of one content generated by a spammer every week. One moderator detects spam upon
reception with recognition probability of 100% and exchanges that information with others which im-
mediately accept the blacklist information. The red and blue line together show the number of people
that have received the content. The blue line presents the number of people that provide the received
content to others whereas the red line show the persons that block the content after reception. The
graph shows the distribution of the first four contents generated in the first four weeks.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.9.: Moderator Blacklisting in Bad Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. One moderator detects spam upon reception
with recognition probability of 100% and exchanges that information with others which immediately
accept the blacklist information. The red and blue line together show the number of people that have
received the content. The blue line presents the number of people that provide the received content
to others whereas the red line show the persons that block the content after reception. The graph
shows the distribution of the first four contents generated in the first four weeks.

159

C. Simulation

C.2.2. Haggle Set

The moderator detects the malicious content already after 15 minutes. The maximum of people

providing the content is achieved after 16 minutes and shown in Table C.10. At maximum 32.76%

of all 41 people provide the content.

time having providing
15min 87.89% 67.16%

20h 4.84% 75.77%

Table C.7.: Moderator Blacklists: Time in hours when the maximum of users having the content is
reached in the Haggle data set. The percentages are relative to the normal spreading of the content.

Figure C.10.: Moderator Blacklisting in Haggle Data Set: Average spreading performance of one
content generated by a spammer every 12 hours. One moderator detects spam upon reception with
recognition probability of 100% and exchanges that information with others which immediately accept
the blacklist information. The red and blue line together show the number of people that have received
the content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The gray shaded regions
show an 8 hour inactivivity period during night. The graph presents the distribution of the first four
contents generated in the first 36 hours.

161

C. Simulation

C.3. Personal Blacklisting

C.3.1. Unclassified MIT

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 9

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 10

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 13

having content (normal spreading)
providing content
blocking content

Figure C.11.: Personal Blacklisting in Unclassified MIT Weeks: Average spreading performance of
one content generated by a spammer every week. Every user detects malicious content upon reception
with a recognition probability of 10%. All the users keep that information secret not notifying others.
The red and blue line together show the number of people that have received the content. The blue
line presents the number of people that provide the received content to others whereas the red line
show the persons that block the content after reception. The graph shows the distribution of contents
1, 9, 10, 13 generated in the corresponding weeks. Huge increase at semester start at around day
60 because of much more connections.

163

C. Simulation

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 9

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 10

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 13

having content (normal spreading)
providing content
blocking content

Figure C.12.: Personal Blacklisting in Unclassified MIT Weeks: Average spreading performance of
one content generated by a spammer every week. Every user detects malicious content upon reception
with a recognition probability of 50%. All the users keep that information secret not notifying others.
The red and blue line together show the number of people that have received the content. The blue
line presents the number of people that provide the received content to others whereas the red line
show the persons that block the content after reception. The graph shows the distribution of contents
1, 9, 10, 13 generated in the corresponding weeks. Huge increase at semester start at around day
60 because of much more connections.

C.3.2. Classified MIT

The maximum percentage of people providing the content can be found in Table C.8. The time,

when the maximum point is reached increases for a decrease in the environment quality.

classification time tot. having content max. providing (of all 96)
good 13.8d 99.90% 77.94%

average 16.5d 99.94% 59.19%
bad 60.0d 92.00% 41.44%

Table C.8.: Personal Blacklists: Time in hours when the maximum of users having the content is
reached in good, average and bad classified MIT weeks. The recognition probability is set to 10%.

165

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.13.: Personal Blacklisting in Good Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 50%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.14.: Personal Blacklisting in Average Classified MIT Weeks: Average spreading perfor-
mance of one content generated by a spammer every week. Every user detects malicious content
upon reception with a recognition probability of 10%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

167

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.15.: Personal Blacklisting in Average Classified MIT Weeks: Average spreading perfor-
mance of one content generated by a spammer every week. Every user detects malicious content
upon reception with a recognition probability of 50%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.16.: Personal Blacklisting in Bad Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

169

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.17.: Personal Blacklisting in Bad Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 50%. All the users keep that information secret not
notifying others. The red and blue line together show the number of people that have received the
content. The blue line presents the number of people that provide the received content to others
whereas the red line show the persons that block the content after reception. The graph shows the
distribution of the first four contents generated in the first four weeks.

C.4. Local Blacklisting

C.4.1. Unclassified MIT

171

C. Simulation

0 50 100 150 200 250
0

20

40

60

80

100

total days

of

 h
os

ts

content sent at week 1

of hosts having content (normal spreading)
of hosts having content
of hosts blocking content

0 50 100 150 200 250
0

20

40

60

80

100

total days

of

 h
os

ts

content sent at week 9

of hosts having content (normal spreading)
of hosts having content
of hosts blocking content

0 50 100 150 200 250
0

20

40

60

80

100

total days

of

 h
os

ts

content sent at week 10

of hosts having content (normal spreading)
of hosts having content
of hosts blocking content

0 50 100 150 200 250
0

20

40

60

80

100

total days

of

 h
os

ts

content sent at week 13

of hosts having content (normal spreading)
of hosts having content
of hosts blocking content

Figure C.18.: Local Blacklisting in Unclassified MIT Set: Average spreading performance of one
content generated by a spammer every week. Every user detects malicious content upon reception
with a recognition probability of 10%. All users exchange blacklist information with others and
accept received information if it exceeds the suggestion threshold of 20 opinions. The red and blue
line together show the number of people that have received the content. The blue line presents the
number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of contents 1, 9, 10, 13
generated in the corresponding weeks. Huge increase at semester start at around day 60 because of
much more connections.

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 9

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 10

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 13

Figure C.19.: Local Blacklisting in Unclassified MIT Set: Average spreading performance of one
content generated by a spammer every week. Every user detects malicious content upon reception
with a recognition probability of 10%. All users exchange blacklist information with others and
accept received information if it exceeds the suggestion threshold of 10 opinions. The red and blue
line together show the number of people that have received the content. The blue line presents the
number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of contents 1, 9, 10, 13
generated in the corresponding weeks. Huge increase at semester start at around day 60 because of
much more connections.

173

C. Simulation

C.4.2. Classified MIT

The maximum of people providing content when using local blacklist with a suggestion threshold

of 20 recommendations and a recognition probability of 10% can be found in Table C.9.

classification time total having content max providing (of all 96)
good 13.8d 99.90% 77.94%

average 16.5d 99.94% 59.19%
bad 60.0d 92.00% 41.44%

Table C.9.: Local Blacklists: Time in hours when the maximum of users having the content is
reached in good, average and bad classified MIT weeks. The recognition probability is set to 10%
and the suggestion threshold equals 20 opinions.

Good Average Bad
time having providing having providing having providing

1 week 100% 90.36% 100% 92.60% 100% 94.74%
2 weeks 99.90% 84.07% 97.02% 84.34% 95.28% 87.98%
4 weeks 96.52% 59.87% 100% 74.89% 95.96% 83.41%
8 weeks 95.95% 13.52% 99.57% 53.31% 89.07% 50.58%
16 weeks 95.83% 9.71% 98.25% 29.33% 77.03% 22.74%

Table C.10.: Local Blacklists: The table lists the percentages of people providing and having the
first content in good, average and bad classified MIT weeks. The week times are relative to day 0
and the percentages to the people having the content with normal spreading. The spam recognition
is set to 10% and the suggestion threshold equals 10 opinions.

classification time total having content max providing (of all 96)
good 12.5d 99.95% 77.63%

average 16.5d 99.94% 59.10%
bad 46.5d 91.59% 31.97%

Table C.11.: Local Blacklists: Time in hours when the maximum of users having the content is
reached in good, average and bad classified MIT weeks. The recognition probability is set to 10%
and the suggestion threshold equals 10 opinions.

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 50 100 150 200 250
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.20.: Local Blacklisting in Average Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 20 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

175

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.21.: Local Blacklisting in Bad Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 20 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.22.: Local Blacklisting in Good Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 10 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

177

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.23.: Local Blacklisting in Average Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 10 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

having content (normal spreading)
providing content
blocking content

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.24.: Local Blacklisting in Bad Classified MIT Weeks: Average spreading performance
of one content generated by a spammer every week. Every user detects malicious content upon
reception with a recognition probability of 10%. All users exchange blacklist information with others
and accept received information if it exceeds the suggestion threshold of 10 opinions. The red and
blue line together show the number of people that have received the content. The blue line presents
the number of people that provide the received content to others whereas the red line show the persons
that block the content after reception. The graph shows the distribution of the first four contents
generated in the first four weeks.

179

C. Simulation

C.4.3. Synthetic Traces

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 1

normal spreading
personal
local, thr: 20
local, thr: 10

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 2

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 3

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 4

Figure C.25.: Local Blacklisting in Random Waypoint Model: Average spreading performance of
one content generated by a spammer every day. Every user detects malicious content upon reception
with a recognition probability of 10%. All users exchange blacklist information with others and accept
received information if it exceeds the suggestion threshold of 20 and 10 opinions. The colored lines
present the number of people providing the corresponding content. The graph shows the distribution
of the first four contents generated in the first four days. The detailed model parameters can be
found in Section 4.2.

181

C. Simulation

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 1

personal
local, thr: 20
local, thr: 10

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 2

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 3

0 2 4 6 8 10 12 14
0

50

100

total days

of

 h
os

ts

content sent at day 4

Figure C.26.: Local Blacklisting in Random Waypoint Model: Average spreading performance of
one content generated by a spammer every day. Every user detects malicious content upon reception
with a recognition probability of 20%. All users exchange blacklist information with others and accept
received information if it exceeds the suggestion threshold of 20 and 10 opinions. The colored lines
present the number of people providing the corresponding content. The graph shows the distribution
of the first four contents generated in the first four days. The detailed model parameters can be
found in Section 4.2.

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 1

normal spreading
personal
local, thr: 20
local, thr: 10

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 2

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 3

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 4

Figure C.27.: Local Blacklisting in Helsinki Model: Average spreading performance of one content
generated by a spammer every day. Every user detects malicious content upon reception with a
recognition probability of 10%. All users exchange blacklist information with others and accept
received information if it exceeds the suggestion threshold of 20 and 10 opinions. The colored lines
present the number of people providing the corresponding content. The graph shows the distribution
of the first four contents generated in the first four days. The parameter information can be found
in Section 4.2.

183

C. Simulation

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 1

normal spreading
personal
local, thr: 20
local, thr: 10

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 2

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 3

0 2 4 6 8 10 12 14
0

20

40

60

80

100

120

total days

of

 h
os

ts

content sent at day 4

Figure C.28.: Local Blacklisting in Helsinki Model: Average spreading performance of one content
generated by a spammer every day. Every user detects malicious content upon reception with a
recognition probability of 20%. All users exchange blacklist information with others and accept
received information if it exceeds the suggestion threshold of 20 and 10 opinions. The colored lines
present the number of people providing the corresponding content. The graph shows the distribution
of the first four contents generated in the first four days. The parameter information can be found
in Section 4.2.

C.5. Send Rate Limitation

C.5.1. Classified MIT

Good Average Bad
time having providing having providing having providing

1 week 100% 86.70% 99.41% 84.98% 95.51% 85.90%
2 weeks 99.12% 77.44% 97.32% 77.03% 86.74% 75.99%
4 weeks 99.22% 55.89% 99.34% 67.39% 89.11% 79.23%
8 weeks 99.28% 18.40% 99.94% 53.12% 91.36% 72.29%
16 weeks 99.29% 14.11% 98.34% 36.26% 93.51% 60.54%

Table C.12.: Local Blacklists Combined with Send Rate Limitation: The suggestion threshold is
set to 20 opinions and the recognition probability equals 10%. The table lists the percentages of
people providing and having the first content in good, average and bad classified MIT weeks. The
week times are all relative to day 0 where the first content is generated. The percentages are obtained
with respect to the people receiving the content with normal spreading.

classification time total having content max providing (of all 96)
good 3.8d 100% 75.82%

average 24.4d 99.26% 52.90%
bad 60.0d 95.59% 56.30%

Table C.13.: Local Blacklist Combined with Send Rate Limitation: Time in hours when the
maximum of users having the content is reached in good, average and bad classified MIT weeks. The
spam recognition is set to 10% and the suggestion threshold equals 20 opinions.

185

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

normal spreading

providing content

normal spreading (1/day)

providing content(1/day)

Figure C.29.: Effect of Send Rate in Average Classified MIT Weeks:Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 20 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates received
content every day after reception. The graph shows the people providing the first four contents of
the burst.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

normal spreading

providing content

normal spreading (1/day)

providing content(1/day)

Figure C.30.: Effect of Send Rate in Bad Classified MIT Weeks:Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 20 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates received
content every day after reception. The graph shows the people providing the first four contents of
the burst.

187

C. Simulation

Good Average Bad
time having providing having providing having providing

1 week 100% 85.96% 99.41% 84.98% 95.51% 85.90%
2 weeks 99.12% 68.21% 96.78% 72.21% 86.74% 75.99%
4 weeks 99.22% 48.64% 99.28% 57.52% 89.11% 79.23%
8 weeks 99.04% 11.50% 99.53% 46.17% 91.16% 65.65%
16 weeks 98.72% 8.52% 98.16% 30.98% 92.92% 54.11%

Table C.14.: Local Blacklists Combined with Send Rate Limitation: The suggestion threshold is
set to 10 opinions and the recognition probability equals 10%. The table lists the percentages of
people providing and having the first content in good, average and bad classified MIT weeks. The
week times are all relative to day 0 where the first content is generated. The percentages are obtained
with respect to the people receiving the content with normal spreading.

classification time total having content max providing (of all 96)
good 3.8d 100% 75.41%

average 24.4d 99.79% 48.23%
bad 60.0d 94.82% 52.76%

Table C.15.: Local Blacklist Combined with Send Rate Limitation: Time in hours when the
maximum of users having the content is reached in good, average and bad classified MIT weeks. The
spam recognition is set to 10% and the suggestion threshold equals 10 opinions.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

normal spreading

providing content

normal spreading (1/day)

providing content(1/day)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.31.: Effect of Send Rate in Good Classified MIT Weeks:Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 10 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates received
content every day after reception. The graph shows the people providing the first four contents of
the burst.

189

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

normal spreading

providing content

normal spreading (1/day)

providing content(1/day)

Figure C.32.: Effect of Send Rate in Average Classified MIT Weeks:Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 10 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates received
content every day after reception. The graph shows the people providing the first four contents of
the burst.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

normal spreading

providing content

normal spreading (1/day)

providing content(1/day)

Figure C.33.: Effect of Send Rate in Bad Classified MIT Weeks:Average spreading performance
of 300 contents generated by a spammer at day 0. Every user detects spam with a recognition
probability of 10% and exchanges that information with others. Received information is accepted
after exceeding a suggestion threshold of 10 opinions. Without send rate of 1 content/day, all 300
contents are rated only once at first reception. When using the send rate, every user rates received
content every day after reception. The graph shows the people providing the first four contents of
the burst.

191

C. Simulation

C.6. Personal vs. Local Blacklist

Personal Threshold 20 Threshold 10
time having providing having providing having providing

1 week 95.51% 85.90% 95.51% 85.90% 95.51% 85.90%
2 weeks 86.74% 75.99% 86.74% 75.99% 86.74% 75.99%
4 weeks 89.11% 79.23% 89.11% 79.23% 89.11% 79.23%
8 weeks 91.36% 72.29% 91.36% 72.29% 91.16% 65.65%
16 weeks 93.68% 62.29% 93.51% 60.54% 92.92% 54.11%

Table C.16.: Comparison Personal and Local Blacklist in Bad Classified Weeks: Malicious Content
is generated every day and exchanged among users which detect spam with a recognition probability
of 10%. Additionally, local blacklists with a suggestion threshold of 20 and 10 opinions are used.

Personal Threshold 20 Threshold 10
time having providing having providing having providing

1 week 99.41% 84.98% 94.41% 84.98% 99.41% 84.98%
2 weeks 97.32% 77.03% 97.32% 77.03% 96.78% 72.21%
4 weeks 99.34% 67.93% 99.34% 67.39% 99.28% 57.52%
8 weeks 99.94% 56.30% 99.94% 53.12% 99.53% 46.17%
16 weeks 98.34% 42.51% 98.34% 36.26% 98.16% 30.98%

Table C.17.: Comparison Personal and Local Blacklist in Average Classified Weeks: Malicious
Content is generated every day and exchanged among users which detect spam with a recognition
probability of 10%. Additionally, local blacklists with a suggestion threshold of 20 and 10 opinions
are used.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

normal spreading (1/day)

personal blacklist (1/day)

local blacklist, threshold: 20 (1/day)

local blacklist, threshold: 10 (1/day)

Figure C.34.: Comparison of Personal and Local Blacklists in Bad Classified MIT Weeks: Average
spreading performance of one content generated by a spammer every day. Personal and Local
Blacklisting is combined with a send rate limitation of 1 content/day. Every user individually
detects spam with a recognition probability of 10%. Additionally, suggestion thresholds of 20 and
10 opinions are used. The graph shows the percentages of people providing the first four contents
generated in the first four weeks.

193

C. Simulation

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 1

normal spreading (1/day)
personal blacklist (1/day)
local blacklist, threshold: 20 (1/day)
local blacklist, threshold: 10 (1/day)

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 2

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 3

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

day number

of

 h
os

ts

content 4

Figure C.35.: Comparison of Personal and Local Blacklists in Average Classified MIT Weeks:
Average spreading performance of one content generated by a spammer every day. Personal and
Local Blacklisting is combined with a send rate limitation of 1 content/day. Every user individually
detects spam with a recognition probability of 10%. Additionally, suggestion thresholds of 20 and
10 opinions are used. The graph shows the percentages of people providing the first four contents
generated in the first four weeks.

Figure C.36.: Comparison of the Personal and Local Blacklists in the Haggle Set: Average spread-
ing performance of a content generated by a spammer every 12 hours. The percentage of people
providing content is compared between Personal and Local Blacklisting. Every user individually de-
tects spam with a recognition probability of 20%. Additionally, suggestion thresholds of 8 (∼ 20% of
total set) and 4 (∼ 10%) opinions are used. The gray shaded regions show an 8 hour inactivivity
period during night. The graph shows the percentages of people providing the first four contents
generated in the first 36 hours.

195

C. Simulation

C.7. Influence of Social Weights

0 50 100 150 200 250
0

5

10

15

20

25

30

35

40

45

50

day number

of

 h
os

ts

content 1

thr: 60 (social)
thr: 40 (social)
thr: 20 (social)
thr: 20

Figure C.37.: Community Weighted Recommendations: The percentage of people providing content
is compared between a fixed suggestion threshold of 20, and community weighted thresholds of 20,
30 and 40 opinions for a spam recognition of 20%.

D. PodNet Implementation

D.1. Existing Protocol

197

D. PodNet Implementation

Open socket to
IPAddr from

SyncList

Add socket to
sockset,

connected=1,
done=0

YES

NO

NO

NO

NO

NO

NO

NO

NO

State ==
TX_NEGOTIATE?

Process_Negotiate()YES

State ==
TX_QUERY?

Process_Query()YES
State ==

TX_ERROR?
Process_Error() YES

State ==
TX_DOWNLOAD?

Process_Download()YESProcess_Finished()

State ==
TX_SERVING

?

Remote_done
==1?

State =
TX_CLOSING

YES YESDelete this client

State ==
TX_TEST?

Process_TestSuiteSend()YES

Receive()Do_Messages()Process_Closing()
State ==

TX_CLOSING
?

YES

Done == 0?
Connected ==

1?
YES

Mark all sockets
ready that are

ready
YES

Socket open?
State =

TX_ERROR
NO

NO

Process_ListExchange()
State==

TX_LIST_EXCHANGE
?

NO

YES

Figure D.1.: Transer_Client::ThreadRun(): The red colored block is new.

Open socket to
IPAddr from

SyncList

NO

Add socket to
sockset

YES

YES YES

NO

NO

NO

NO

YES

YES

YES

YES YES

NO

YES

NO

YES

NO

YES

NO

Socket open?
State =

TX_ERROR

Done == 0?
Connected ==

1?

Mark all sockets
ready that are

ready

Receive()Do_Messages()Process_Closing()
State ==

TX_CLOSING
?

State ==
TX_NEGOTIATE?

Process_Negotiate()

State ==
TX_QUERY?

Process_Query()
State ==

TX_ERROR?
Process_Error()

State ==
TX_DOWNLOAD?

Process_Download()Process_Finished()

State ==
TX_SERVING

?

Remote_done
==1?

State =
TX_CLOSING

Delete this client

State ==
TX_TEST?

Process_TestSuiteSend()

NO

State ==
TX_LIST_EXCHANGE

?

NO

Process_ListExchange()YES

Send_AuthRequest()

connected=1,
done=0

Authentication
needed?

YES

Generate
SYNC_HELLO

packet, push it on
MessageQ

NO

Figure D.2.: Transfer_Server::ThreadRun(): The red colored block is new.

199

D
.

P
o
d
N

et
Im

p
lem

en
ta

tio
n

Msg =
PollMessage()

from MessageQ

Msg != NULL?

msgType !=
MSG_SYNC?

Typecast to
SyncMessage

NO

Msg ->Discard()
Msg ->PollMessage()

YES

Connected?
msgSenderID
== ID_SEND?

YES
Send()
Packet

YES

NO

Switch(getType)
of SyncMessage

NO

YES

End
Do_Messages()

SYNC_Done SYNC_Error
SYNC_Stream

Test

YES

ERROR 400

Msg->Discard()
Msg=PollMessage()

NO

YES

ERROR 400

NO

YES

ERROR 400

NO

YES

ERROR 400

NO

YES

ERROR 400

NO

YES

ERROR 400

NO

YES

ERROR 400

NO

Set
remote_content_date

Remote_done=1

YES

NO

HandleError()

State =
TX_Test

SYNC_Hello

State==
TX_HELLO?

HandleHello()

SYNC_Channel
Hash

State ==
TX_NEGOTIATE

?

HandleNegotiate()

SYNC_Query
Episodes

State==
TX_QUERY ||

TX_DOWNLOAD||
TX_SERVING?

HandleQuery
Episodes()

SYNC_Episode
Info

State==
TX_QUERY ||

TX_DOWNLOAD||
TX_SERVING?

HandleEpisode
Info()

SYNC_Request
Episode

State==
TX_QUERY ||

TX_DOWNLOAD||
TX_SERVING?

HandleRequest
Episode()

SYNC_Request
ByRef

State==
TX_QUERY ||

TX_DOWNLOAD||
TX_SERVING?

HandleRequest
ByRef()

SYNC_Piece

State==
TX_DOWNLOAD

?

HandlePiece()

SYNC_Disconnect

State!=
TX_CLOSING

?

State =
TX_ERROR

done =1

F
ig

u
r
e

D
.3

.:
T

ra
n

sfer_
C

o
m

m
o
n

::D
o
_

M
essa

g
es():

T
h
is

pa
rt

is
still

th
e

sa
m

e
th

a
n

in
th

e
o
rigin

a
l

im
p
lem

en
ta

tio
n

.

Switch(getType)
of SyncMessage

SYNC_Channel
MetaData

SYNC_Personal
Blacklist

SYNC_Personal
RatingList

YES

ERROR
PROCEDURE

Msg->Discard()
Msg=PollMessage()

YES

ERROR
PROCEDURE

YES

ERROR
PROCEDURE

YES

ERROR
PROCEDURE

NO

ERROR
PROCEDURE

NO

YES
ERROR

PROCEDURE

NO

YES
ERROR

PROCEDURE

HandlePersonal
Blacklist()

HandlePersonal
RatingList()

SYNC_Auth
Request

No Req already
received?

HandleAuth
Request()

SYNC_AuthResponse
Request

No Req nor
RespReq already

received?

HandleAuthResponse
Request()

SYNC_Auth
Response

No Resp already
received?

HandleAuth
Response()

SYNC_Global
Blacklist

State==
TX_LIST_EXCHANGE

&& Global Blacklist
wanted?

HandleGlobal
Blacklist()

SYNC_Familiar
Set

State==
TX_LIST_EXCHANGE

&& FamiliarSet
wanted?

HandleFamiliar
Set()

SYNC_Community
Set

State==
TX_LIST_EXCHANGE

&& CommunitySet
wanted?

HandleCommunity
Set()

SYNC_Friends
List

State==
TX_LIST_EXCHANGE

&& FriendsList
wanted?

HandleFriends
List()

State==
TX_TX_QUERY ||
TX_DOWNLOAD ||

TX_SERVING ?

HandleChannel
MetaData()

State==
TX_TX_QUERY ||
TX_DOWNLOAD ||

TX_SERVING ?

YES
ERROR

PROCEDURE

YES
ERROR

PROCEDURE

State==
TX_TX_QUERY ||
TX_DOWNLOAD ||

TX_SERVING ?

YES
ERROR

PROCEDURE

NO NO NO
NO NO NO NO

YES

NO

F
ig

u
r
e

D
.4

.:
N

ew
P

a
rt

o
f

T
ra

n
sfer_

C
o
m

m
o
n

::D
o
_

M
essa

g
es():

T
h
e

yello
w

blocks
a
re

perfo
rm

ed
befo

re
n

ego
tia

tin
g

a
n

y
ch

a
n

n
els,

th
e

o
ra

n
ge

co
lo

red
a
u
th

en
tica

tio
n

blocks
a
re

eith
er

u
sed

a
t

th
e

H
ello

sta
ge

o
r

ju
st

befo
re

th
e

d
o
w

n
loa

d
sta

ge
a
n

d
th

e
red

co
lo

red
blocks

m
a
y

be
u
sed

befo
re

exch
a
n

gin
g

th
e

E
p
isod

e
m

eta
d
a
ta

fo
r

a
ch

a
n

n
el.

201

E. Evaluation

E.1. Cryptographic Functions

All evaluation results from the cryptographic functions test are presented in this section. The

performance tests were evaluated on a HP iPAQ and a HTC Touch. The specifications can be

found in Table 5.1. The results of the performance tests on symmetric cryptography as well as

asymmetric cryptography are presented in Tables E.1 - E.5. The colors in the tables correspond

to different file and string sizes in Bytes. See below for color definition.

70B

190B

1900B

19000000B

iPAQ Public Key Cryptography
Generate Key Encrypt String Decrypt String Encrypt File Decrypt File

RSA 1024 1539 3 22 8 27
RSA 2048 8303 5 113 11 119
RSA 4096 61151 11 673 16 685
ECC 160 419 41 29 52 39
ECC 224 419 612 58 40 61
ECC 384 1196 197 131 198 159

Table E.1.: Encryption and Decryption with Asymmetric Cryptography on iPAQ: Times in [ms].

HTC Public Key Cryptography
Generate Key Encrypt String Decrypt String Encrypt File Decrypt File

RSA 1024 5133 8 103 52 141
RSA 2048 27784 15 475 56 522
RSA 4096 214411 33 2564 84 2625
ECC 160 1267 136 94 185 137
ECC 224 1887 193 135 242 182
ECC 384 4923 876 610 918 718

Table E.2.: Encryption and Decryption with Asymmetric Cryptography on HTC: Times in [ms].

203

E. Evaluation

iPAQ Public Key Cryptography
Sign String Verify String Sign File Verify File Verify Bad

RSA 1024 24 2 25 4 2
RSA 2048 113 4 116 6 4
RSA 4096 668 8 668 10 9
ECC 160 22 33 24 35 1
ECC 224 30 60 31 61 60
ECC 384 100 198 102 203 199

Table E.3.: Signing and Verifying with Asymmetric Cryptography on iPAQ: Times in [ms].

HTC Public Key Cryptography
Sign String Verify String Sign File Verify File Verify Bad

RSA 1024 103 6 103 10 7
RSA 2048 479 11 481 16 11
RSA 4096 2573 26 2584 30 27
ECC 160 70 100 72 104 3
ECC 224 102 184 104 192 187
ECC 384 342 726 442 730 730

Table E.4.: Signing and Verifying with Asymmetric Cryptography on HTC Times in [ms].

iPAQ Symmetric Key Cryptography
Generate Key Encrypt String Decrypt String Encrypt File Decrypt File

AES CBC 128 3 1 0 17 15
AES CBC 256 3 1 0 17 11

Table E.5.: Encryption and Decryption with Symetric Crypto on iPAQ: Times in [ms].

HTC Symmetric Key Cryptography
Generate Key Encrypt String Decrypt String Encrypt File Decrypt File

AES CBC 128 99 3 2 75 71
AES CBC 256 1 2 0 55 56

Table E.6.: Encryption and Decryption with Symmetric Cryptography on HTC: Times in [ms].

iPAQ Symmetric Cryptography (large file)
Encrypt File Decrypt File

AES CBC 256 6877 6344

Table E.7.: Encryption and Decryption with Symmetric Cryptography on iPAQ: Times in [ms].

String Lengths
Private Key Public Key Signature Encrypted

raw hex encoded raw hex encoded raw hex encoded raw hex encoded
RSA 1024 631 1262 160 320 128 256 128 256
RSA 2048 1215 2430 292 584 256 512 256 512
RSA 4096 2373 4746 548 1096 512 1024 512 1024
ECC 160 203 406 214 428 42 84 251 502
ECC 224 258 516 279 558 56 112 267 534
ECC 384 401 802 441 882 96 192 307 614

Table E.8.: String Lengths in Bytes

E.2. Communication Overhead

In this section, we analyze the data transfer of two devices running on the current and the original

implementation after capturing the exchanged information with Wireshark1. The connecting

device acts as client connecting to another device which acts as server. A device only connects

to another device if it assumes that the other device stores new informations. In general, the

server answers TCP connection request by sending a first Hello message to the client.

E.2.1. Unknown Devices - No Channels

In this scenario two devices that do not know each other connect. Since both devices do not know

each other, a three way challenge request response mechanism replaces the existing exchange of

Hello messages2 in the Hello Procedure. The messages are larger because they comprise the user

credentials.

Both devices do not hold any channels or episodes and therefore only information from the empty

discovery channel is exchanged. In the visualization in Table E.9, device A acts as client and

wants to connect to a device B (server) in order to learn information about it. If any of these two

devices would already store a global blacklist, social lists (familiar set, community set or friends

list) which comprise other user’s identities, this information would be exchanged between the

Hello Procedure and the ChannelHash exchange as shown in Figure 5.2. In every later connection

of these two devices, the lists would only be exchanged if a device would have an updated version

of its own (or global) list.

In the Hello Procedure, it is evaluated whether a list update is needed since every device adds a

timestamp of the last received version of the other device’s social lists to the message. The other

device will then decide whether it stores a more updated version which has to be exchanged.

This minimizes the communication overhead since lists are only exchanged if they are needed.

Note that the size of these list depend on the number of entries and we do not evaluate it here

for a better comparability with the original implementation.

1http://www.wireshark.org/
2Note that if one of these two devices would know the other device, the Hello Procedure would be replaced by

a two way Response Request mechanism.

205

E. Evaluation

Device A Device B

←− AuthRequest (33 Bytes)
AuthResponseRequest (1011 Bytes) −→

←− AuthResponse (982 Bytes)
(possible list exchange) −→

←− (possible list exchange)
.

ChannelHash (156 Bytes) −→
←− ChannelHash (156 Bytes)

QueryEpisodes (60 Bytes) −→
←− QueryEpisodes (60 Bytes)

EpisodeInfo (34 Bytes) −→
←− EpisodeInfo (34 Bytes)

Done (25 Bytes) ←−
−→ Done (25 Bytes)

Table E.9.: Current Implementation: Connection of two Unknow Devices

Device A Device B

←− Hello (26 Bytes)
Hello (26 Bytes) −→

ChannelHash (156 Bytes) −→
←− ChannelHash (156 Bytes)

QueryEpisodes (50 Bytes) −→
←− QueryEpisodes (50 Bytes)

EpisodeInfo (11 Bytes) −→
←− EpisodeInfo (11 Bytes)

Done (25 Bytes) ←−
−→ Done (25 Bytes)

Table E.10.: Original Implementation: Connection of two Unknow Devices

E.2.2. Generation of One Channel

In this scenario, device A generated a channel, adds this information in its Discovery Channel and

advertises it as new content in the discovery messages. Device B realizes that device A provides

new content and connects to device A. Since the only common channel is still the discovery

channel, only channel information from this channel, including general information about the

new generated channel, is exchanged. Besides this channel, no data is present in the network.

Device A Device B

Hello (28 Bytes) −→
←− Hello (28 Bytes)
←− ChannelHash (156 Bytes)

ChannelHash (157 Bytes) −→
←− QueryEpisodes (60 Bytes)

QueryEpisodes (60 Bytes) −→
←− EpisodeInfo (34 Bytes)

EpisodeInfo (603 Bytes) −→
←− Done (25 Bytes)

Done (25 Bytes) −→

Table E.11.: Current Implementation: Connection of Two Known Devices, Exchange of Discovery
Channel Information for One Additional Channel

Device A Device B

Hello (26 Bytes) −→
←− Hello (26 Bytes)
←− ChannelHash (156 Bytes)

ChannelHash (157 Bytes) −→
←− QueryEpisodes (50 Bytes)

QueryEpisodes (50 Bytes) −→
←− EpisodeInfo (11 Bytes)

EpisodeInfo (432 Bytes) −→
←− Done (25 Bytes)

Done (25 Bytes) −→

Table E.12.: Original Implementation: Connection of Two Known Devices, Exchange of Discovery
Channel Information for One Additional Channel

207

E. Evaluation

E.2.3. Subscribing to a Channel

In this scenario, device B subscribes to the channel that device A has created in Subsection E.2.2,

adds it to its local channels and advertises the new information in the discovery message. Device

A will receive the discovery message and connects to device B because it stores newer information

since the last connection. Device A does not realize that it already holds that information. In this

connection round, both devices ask for two channels, i.e. two QueryEpisodes are needed. The

smaller packet corresponds to the discovery channel because it comprises only basic information,

the larger packet to the new user generated channel.

In the current implementation, every device stores a timestamp for every channel meta data which

is exchanged in the QueryEpisodes packet. Every receiver of the packet will check whether it

stores a newer version of the meta data and only sends that information if it is newer. Because

device B has not received any meta data at all, device A sends that information including the

channel credentials.

Additionally with the channel timestamp, a personal timestamp which defines the last version

of personal list received from the other device would be exchanged. A device that receives the

timestamp will check whether it has updated its own personal lists in the meantime and only

sends the new list if it is newer. Note that in the example below, no personal lists (personal

blacklist and personal rating lists) are exchanged because they are still all empty. We did not

simulate the personal list exchange for a better comparability with the original implementation

and since the size of these lists depend on the number of entries.

Device A Device B

←− Hello (28 Bytes)
Hello (28 Bytes) −→

←− ChannelHash (157 Bytes)
ChannelHash (157 Bytes) −→

←− QueryEpisodes (60 Bytes)
QueryEpisodes (60 Bytes) −→

←− QueryEpisodes (63 Bytes)
QueryEpisodes (63 Bytes) −→

←− EpisodeInfo (603 Bytes)
EpisodeInfo (603 Bytes) −→

←− EpisodeInfo (16 Bytes)
ChannelMetaData Part1 (1460 Bytes) −→
ChannelMetaData Part2 (113 Bytes) −→

(possible personal lists) −→
. . .

EpisodeInfo (34 Bytes) −→
Done (25 Bytes) −→

←− Done (25 Bytes)

Table E.13.: Current Implementation: Connection of Two Known Devices, Exchange of Additional
Channel Meta Data for One Channel

Device A Device B

←− Hello (26 Bytes)
Hello (26 Bytes) −→

←− ChannelHash (157 Bytes)
ChannelHash (157 Bytes) −→

←− QueryEpisodes (50 Bytes)
QueryEpisodes (50 Bytes) −→

←− QueryEpisodes (53 Bytes)
QueryEpisodes (53 Bytes) −→

←− EpisodeInfo (432 Bytes)
EpisodeInfo (461 Bytes) −→

←− EpisodeInfo (11 Bytes)
EpisodeInfo (11 Bytes) −→

Done (25 Bytes) −→
←− Done (25 Bytes)

Table E.14.: Original Implementation: Connection of two known Devices, exchange of Channel
Information for One Channel

209

E. Evaluation

E.2.4. Exchanging Content

In this scenario, device A additionally generates an episode consisting of a picture file3. Com-

pared to Subsection E.2.3, the channel meta data will not be exchanged anymore, since device

B already stores the newest version. Device B starts a connection to device A after realizing

that device A carries new information. In the Table E.16 it becomes evident that the original

implementation wrongly assigned the maximum packet size to 1468 instead of 1460 bytes. As

a result, TCP splits each packet into two packets, a large packet of 1460 and a small one of

only 8 Bytes which slows down the transmit rate in the original implementation. In the cur-

rent implementation, we observe an additional one way challenge response mechanism before

data transmission as shown in Table E.15. A downloader always checks the authenticity of a

supplier before starting any download. If a user only supplies content, an authentication from

the downloader is not needed because the supplier will not download any potential malicious or

intentionally corrupted content.

In contrast to the authentication messages in Subsection E.2.1, no credentials are exchanged

because both devices already know each other from a previous session and thus only need to au-

thenticate if they supply content. Note that if a device has already performed the authentication

in the Hello Procedure of the same connection, no authentication is needed anymore before the

data download.

Device A Device B

Hello (28 Bytes) −→
←− Hello (28 Bytes)
←− ChannelHash (157 Bytes)

ChannelHash (157 Bytes) −→
←− QueryEpisodes (60 Bytes)

QueryEpisodes (60 Bytes) −→
←− QueryEpisodes (63 Bytes)

QueryEpisodes (63 Bytes) −→
←− EpisodeInfo (603 Bytes)

EpisodeInfo (603 Bytes) −→
←− EpisodeInfo (34 Bytes)

EpisodeInfo Part1 (1460 Bytes) −→
EpisodeInfo Part2 (463 Bytes) −→

Done (25 Bytes) −→
←− AuthRequest (8 Bytes)

AuthResponse (134 Bytes) −→
←− RequestEpisode (54 Bytes)
←− RequestByRef (23 Bytes)

. . . (19 ×)
Piece (1460 Bytes) −→

. . . (18 ×) −→
Piece (695 Bytes) −→

←− Done (25 Bytes)

Table E.15.: Current Implementation: Connection of Two Known Devices, Exchange of One
Content

3We exchanged a picture file of size of 25.95KB

Device A Device B

Hello (26 Bytes) −→
←− Hello (26 Bytes)
←− ChannelHash (157 Bytes)

ChannelHash (157 Bytes) −→
←− QueryEpisodes (50 Bytes)

QueryEpisodes (50 Bytes) −→
←− QueryEpisodes (33 Bytes)

QueryEpisodes (53 Bytes) −→
←− EpisodeInfo (432 Bytes)

EpisodeInfo (461 Bytes) −→
←− EpisodeInfo (11 Bytes)

EpisodeInfo (517 Bytes) −→
Done (25 Bytes) −→

←− RequestEpisode (44 Bytes)
←− RequestByRef (23 Bytes)

. . . (19 ×)
Piece (1460 Bytes) −→

Piece (8 Bytes) −→
. . . (both 18 ×)

Piece (551 Bytes) −→
←− Done (25 Bytes)

Table E.16.: Original Implementation: Connection of Two Known Devices, Exchange of One
Content

211

E. Evaluation

E.2.5. Secure Pairing

In this scenario, device A starts a secure pairing with device B. The message size are similar

than in Subsection E.2.1 because they also comprise the credentials, but additionally to the

authentication, a friend signature is exchanged. After completion of this mechanism, both devices

add each other’s friend signature on it’s friends list.

Device A Device B

←− AuthRequest (928 Bytes)
AuthResponseRequest (1058 Bytes) −→

←− AuthResponse (134 Bytes)
←− PairingDone (3 Bytes)

PairingDone (3 Bytes) −→

Table E.17.: Current Implementation: Secure Pairing between Devices A and B

E.3. Computational Overhead

Processing Time Overhead

Original Open Channel Closed Channel
No File 602ms 612ms 612ms

Small File

1176ms 1345ms 1759ms
· hash: 84ms · hash: 110ms

· decrypt: 270ms

Large File

59066ms 63947ms 88813ms
· hash: 11951ms · hash: 11778ms

· decrypt: 27878ms

Table E.18.: Processing Time Overhead for No file, Small File (52.79KB) and Big File (5.99MB):
The times are averaged over 100 connections and file exchanges.

Figure E.1.: Computational Overhead Sending a Large File

213

E. Evaluation

E.4. Community Detection

E.4.1. MIT Set

Sloan Business School
MIT Media Lab

Freshmen Professor Other

Blue Tones Green Yellow Red Tones

Table E.19.: Color Information for the MIT Data Set Classification.

Figure E.2.: Classification of the People in the MIT Data Set: Color Information in Table E.19.

215

E. Evaluation

Figure E.3.: Call Connections Between People in the MIT Data Set: Color Information in Table
E.19.

E.4.2. Aging Parameters

Fixed Parameter Value

Min. familiar set size 5
Max. familiar set size 30
Min. community set size 5
Max. community set size 30
Add ratio λ 0.6
Merge ratio γ 0.6
Min. familiar set aging speed 1 s

h

Max. familiar set aging speed 40 s
h

Familiar set aging speed step 0.5 s
h

Min. familiar set adding threshold 600s
Max. familiar set adding threshold 3600s
Familiar set adding threshold step 200s
Community set aging speed real time
Max. community set removing threshold 2419200s (28days)
Community set removing threshold step 43200s (12h)

Table E.20.: Fixed Community Detection Parameters used on MIT Set.

Dynamic Parameter Initial Value

Familiar aging speed Min. familiar set aging speed
Familiar set adding threshold Min. familiar set adding threshold
Familiar set removing threshold Familiar set adding threshold - 200s
Community set removing threshold Max. community set removing threshold

Table E.21.: Community Detection Dynamic Parameter Initialization used on MIT Set.

217

E. Evaluation

E.4.3. Snapshots

Figure E.4.: Community Graph After 4 Weeks: Color Information in Table E.19.

Figure E.5.: Community Graph After 8 Weeks: Color Information in Table E.19.

219

E. Evaluation

Figure E.6.: Community Graph After 12 Weeks: Color Information in Table E.19.

Figure E.7.: Community Graph After 16 Weeks: Color Information in Table E.19.

221

E. Evaluation

Figure E.8.: Community Graph After 20 Weeks: Color Information in Table E.19.

Figure E.9.: Community Graph After 24 Weeks: Color Information in Table E.19.

223

E. Evaluation

Figure E.10.: Community Graph After 28 Weeks: Color Information in Table E.19.

Figure E.11.: Community Graph After 32 Weeks: Color Information in Table E.19.

225

E. Evaluation

Figure E.12.: Community Graph After 36 Weeks: Color Information in Table E.19.

Figure E.13.: Community Graph After 40 Weeks: Color Information in Table E.19.

227

Bibliography

Bibliography

[1] RSS Advisory Board. Really simple syndication specification. Version 2.0.11, March 2009.

http://www.rssboard.org/rss-specification.

[2] M. May G. Karlsson, V. Lenders. Delay-tolerant broadcasting. In Proceedings of the ACM

SIGCOMM Workshops (CHANTS), 2006.

[3] C. Wacha. Wireless ad hoc podcasting with handhelds. Master’s thesis, Swiss Federal

Institute of Technology, 2007.

[4] Bram Cohen. The bittorrent protocol specification, February 2008.

http://www.bittorrent.org/beps/bep_0003.html.

[5] W. Polk D. Solo R. Housley, W. Ford. Rfc 2459: Internet x.509 public key infrastructure

certificate and crl profile, 1999.

[6] J. P. Hubaux S. Capkun, L. Buttyan. Self-organized public-key management for mobile

ad-hoc networks. In IEEE Transactions on Mobile Computing, 2003.

[7] P. R. Zimmermann. The Official PGP User’s Guide. MIT press, 1995.

[8] L. Buttyan S. Capkun, J. P. Hubaux. Mobility helps peer-to-peer security. In IEEE Trans-

actions on Mobile Computing, 2006.

[9] V. Issarny J. Liu. Enhanced reputation mechanism for mobile ad hoc networks. In Proceed-

ings of the 2nd International Conference on Trust Management, 2995:48–62, 2004.

[10] S. Hailes A. Abdul-Rahman. Supporting trust in viral communities. In Proceedings of the

33rd Hawaii International Conference on System Science, 2000.

[11] A. Halberstadt L. Mui, M. Mohtsahemi. Ratings in distributed systems: A bayesian ap-

proach. In Proceedings of the 11th Workshop on Information Technologies and Systems,

2001.

[12] J. Y. Le Boudec S. Buchegger. Performance analysis of the confidant protocol. In Proceedings

of the 3rd ACM International Symposium on Mobile Ad Hoc Networking & Computing

(MobiHoc’ 02), 2002.

[13] J. Y. Le Boudec S. Buchegger. The effect of rumor spreading in reputation systems for

mobile ad-hoc networks. In WiOpt’ 03: In Proceedings of the 2003 Conference on Modeling

and Optimization in Mobile, Ad Hoc and Wireless Networks, 2003.

Bibliography

[14] J. Y. Le Boudec S. Buchegger. A robust reputation system for p2p and mobile ad-hoc

networks. In Proceedings of the 2nd Workshop on the Economics of Peer-to-Peer Systems,

2004.

[15] J. Y. Le Boudec S. Buchegger. Self-policing mobile ad-hoc networks by reputation systems.

IEEE Communications Magazine, v43:101 – 107, 2005.

[16] L. Capra D. Quercia, S. Hailes. B-trust: Bayesian trust framework for pervasive computing.

In Proceedings of the 4th IEEE International Conference on Trust Management (iTrust),

2006.

[17] L. Capra D. Quercia, S. Hailes. Lightweight distributed trust propagation. In Proceedings

of the 2007 Seventh IEEE International Conference on Data Mining (ICDM’ 07), 2007.

[18] L. Capra D. Quercia, S. Hailes. Mobirate: Making mobile raters stick to their world. In

UbiComp’ 08: Proceedings of the 10th International Conference on Ubiquitous Computing,

2008.

[19] J. R. Douceur. The sybil attack. In Proceedings of the 1st International Workshop on

Peer-to-Peer Systems (IPTPS), 2002.

[20] B. Levine C. Piro, C. Shields. Detecting the sybil attack in mobile ad hoc networks. In

Securecomm and Workshops, 2006.

[21] P. B. Gibbons A. Flaxman H. Yu, M. Kaminsky. Sybilguard: Defending against sybil attacks

via social networks. In SIGCOMM ’ 06: Proceedings of the 2006 Conference on Applications,

Technologies, and Protocols for Computer Communications, 2006.

[22] L. Capra D. Quercia, S. Hailes. Tata: Towards anonymous trusted authentication. In

Proceedings of the 4th International Conference on Trust Management, 2006.

[23] P. Resnick E. J. Friedman. The social cost of cheap pseudonyms. Journal of Economics and

Management Strategy, 10:173–199, 2001.

[24] S. Y. Chan J. Crowcroft P. Hui, E. Yoneki. Distributed community detection in delay

tolerant networks. In MobiArch’ 07: Proceedings of the 2nd ACM / IEEE International

Workshop on Mobility in the Evolving Internet Architecture, 2007.

[25] M. Roe G. O’Shea. Child-proof authentication for mipv6 (cam). ACM SIGCOMM Computer

Communication Review, 31:4–8, 2001.

[26] C. Castelluccia G. Montenegro. Statistically unique and cryptographically verifiable (sucv)

identifiers and addresses. In NDSS’02, 2002.

[27] N. Feamster D. G. Andersen, H. Balakrishnan. Accountable internet protocol (aip). In

Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication (SIGCOMM

’08), 2008.

229

Bibliography

[28] S. Hailes D. Quercia. Mate: Mobility and adaptation with trust and expected-utility. In-

ternational Journal of Internet Technology and Secured Transactions (IJITST), 2007.

[29] K. Xu S. Y. Chan, P. Hui. Community detection of time-varying mobile social networks.

work in progress paper.

[30] B. Boe K. Almeroth B. Y. Zhao G. Swamynathan, C. Wilson. Do social networks improve

e-commerce? a study on social marketplaces. In Proceedings of the first workshop on Online

Social Networks (WOSP’ 08), 2008.

[31] E. Goodman E. Paulos. The familiar stranger: Anxiety, comfort, and play in public places.

In Proceedings of the 4th International Conference on Trust Management, pages 298–312,

2004.

[32] I. Farkas T. Vicsek G. Palla, I Derenyi. Uncovering the overlapping community structure

of complex networks in nature and society. Nature, 435, 2005.

[33] V. Lenders M. May G. Karlsson O. R. Helgason, F. Legendre. Performance of opportunistic

content distribution.

[34] S. Hailes L. Yan. Cooperative packet relaying model for wireless ad hoc networks. In

Proceeding of the 1st ACM International Workshop on Foundations of Wireless Ad Hoc and

Sensor Networking and Computing (FOWANC’ 08), 2008.

[35] A. Adleman R. Rivest, R. L. Shamir. A method for obtaining digital signatures and public

cryptosystems. Communications of the ACM, 21:120–126, 1978.

[36] Standards for Efficient Cryptography Group (SECG). Sec 1: Elliptic curve cryptography,

2000.

[37] Standards for Efficient Cryptography Group (SECG). Sec 2: Recommended elliptic curve

domain parameters, 2000.

[38] E. Tromer A. Shamir. Factoring large numbers with the twirl device. In Proceedings of the

23rd Annual International Cryptology Conference (CRYPTO), 2003.

[39] K. Lauter. The advantages of elliptic curve cryptography for wireless security. IEEE Wireless

Communications, 11:62–67, 2004.

[40] L. Capra V. Zanardi. Social ranking: Uncovering relevant content using tag-based recom-

mender systems. In Proceedings of the ACM Conference On Recommender Systems, pages

51–58, 2008.

[41] V. Zanardi D. Quercia, L. Capra. Selecting trustworthy content using tags. Invited Paper

at SECRYPT, Special Session on Trust in Pervasive Systems and Networks, 2008.

Bibliography

[42] V. Kalogeraki T. Repantis. Decentralized trust management for ad-hoc peer-to-peer net-

works. In Proceedings of the 4th international workshop on Middleware for Pervasive and

Ad-Hoc Computing (MPAC’ 06), 2006.

231

