
 

 

 

 

 

 

 

 

 

 

 

Semester Project,  

September 2008 – November 2008 

 

Student: Mihai Calin 

ETH – ITET Master Studies 

Advisor: Dr. Franck Legendre 

Supervisor: Prof. Dr. Bernhard Plattner





 

 

 

 

 

 

Task Formulation 
 

Opportunistic content dissemination targets the broadcasting of content to a group of 
users using wireless ad hoc communications (e.g., PodNet). Previous works mainly 
focused on how the content dissemination process is affected by node collaboration. 
The performances [3,10] are significantly improved when nodes collaborate (i.e., 
store-and-forward).  

Assuming nodes collaborate, the goal of this thesis is to (i) get insight on the mobility 
dynamics to better understand how content spreads and (ii) study the benefit of node 
gatherings on content dissemination. Since we target the broadcast dissemination of 
content, it is straightforward to use broadcast at the link layer instead of pair-wise 
connections as it has been done until now.  

The work is split in the following tasks: 

T1. Review work on opportunistic content dissemination (i.e., Podnet literature) 

T2. Characterize mobility using real-world traces (i.e., CSG traces) 

     a- Statistical and structural properties (static topology) 

     b- Dynamic properties (clique evolution) 

T3. Design dissemination strategies using previous findings 

T4. Evaluate and compare the proposed strategys





 

 

 

 

 

 

Abstract 
 

Opportunistic content dissemination targets the broadcasting of content to a group of 
users (e.g., PodNet). Previous works mainly focused on how the content 
dissemination process is affected by node collaboration. The performances are 
significantly improved when nodes collaborate (i.e., store-and-forward). Assuming 
nodes collaborate, our primary interest is the benefit of node gatherings on content 
dissemination. Since we target the broadcast dissemination of content, it is 
straightforward to use broadcast at the link layer instead of pair-wise connections as it 
has been done until now. Using real-world traces collected in a research office 
environment, we first characterize mobility to get more insights on how the 
dissemination process can be enhanced. This is done with a static and dynamic 
characterization of the topology. We study how we can take profit of gatherings (or 
cliques) to perform link layer broadcasts. From our findings, we design new 
broadcasting content dissemination strategies. We evaluate our solutions by replaying 
traces and comparing them to the original pair-wise (link layer unicast) approach. 
Results show that our approach doubles the overall capacity of the network when 
multiple contents are being spread concurrently. We then study different approaches 
for optimizing the broadcast content dissemination in terms of overall propagation 
delay and energy expenditure. Delaying dissemination until two nodes can profit from 
the broadcast lowers the total number of transmissions from 16.5 to 8.55, while 
keeping a good overall propagation delay. 
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1. Introduction 
 

1.1. Podcasting 
A podcast refers to a new episode of data available for download over the internet by 
users that have subscribed for it [11]. The data is usually in the form of audio or video 
and can represent news bulletins, episodes of a TV-series, a personal blog entry etc. 
Although the data can be available for direct downloading, the podcast distinguishes 
from other means of transport by the fact that the user subscribes for a podcast and 
new episodes are downloaded automatically for him when they are available. The 
downloading is done by a program that is usually referred to as Podcatcher and that 
runs on the subscribers device; this program requests an RSS from a well-known 
address in the Internet. The obtained RSS document will point to, if existing, new 
episodes of the podcast.  

RSS is a family of formats that contain a summarized text and metadata like 
authorship of a frequently changing work (e.g. blog entries, news etc) [12].  

Podcasting was developed mainly for users of mobile devices that have no continuous 
connection to the Internet. The users would subscribe to a podcast and when they 
connect their mobile device to the Internet, this automatically checks and downloads 
new episodes of the podcast, if any available. There is still no mechanism for the 
podcast provider to push data toward the subscriber, only the latter can check for and 
request new episodes.  

The main advantage of podcasting represents its asynchronous nature; compared to 
streaming, the content provider and the subscriber don’t have to be online at the same 
time. The provider can upload a new episode to a web server and the user can 
download it at a later time. Moreover, he user can save the episode for watching at a 
later time than when it was downloaded.  

1.2. PodNet 
PodNet suggests a new way of content distribution to subscribers of podcasts. 
Compared to the traditional way in which each subscriber has to be connected to the 
Internet in order to check and download podcasts, podnet wirelessly implements an ad 
hoc podcasting between mobile devices that decouples the sharing from Internet 
based platforms. At gatherings of people, like in the bus on the way to work or at a 
late party, the devices can connect in an ad hoc manner and share stored information. 
If a subscriber didn’t get the chance to connect to the Internet to download the latest 
podcasts, it can do so by querying mobile devices in the vicinity for the subscribed 
podcasts.
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2. Problem Statement 
2.1. Motivation 

The current implementation of PodNet is disseminating content on a peer-to-peer 
base. This means two devices first establish a communication link to each other and 
then send the content over this link. Doing this in a wireless scenario raises more 
problems than in a wired one, because of the shared communication medium. The 
setup of a wireless link for the communication is a big time consumer and this 
represents a problem in the case of high mobility networks, where connections have 
to be switched quickly.  

Being in a wireless environment could be also used in our favor. Because each 
transmission is actually a broadcast, we could use that in order to send the information 
not only to one partner, but to every station that is in the wireless range. Using this 
approach we could disseminate content into a network much faster, especially if the 
station population is very dense. Not only could the overall propagation delay fall but 
the energy used to propagate the data might be lower on the whole network and also 
the network capacity could increase.  

Understanding the advantages and disadvantages of both dissemination strategies will 
help us find the right tradeoff for the communication parameters to make the system 
more robust and also to increase performance in terms of energy expenditure, overall 
propagation delay and network capacity.  

The goal of this thesis is to analyze and quantify the benefits obtained from 
implementing broadcast data dissemination instead of the actual unicast (peer-to-peer) 
dissemination. The properties of networks will be analyzed and how they influence 
the benefits generated by broadcast dissemination. Also we plan to improve the 
standard broadcast dissemination strategy in order to obtain a good tradeoff between 
the energy expenditure and overall propagation delay. 

2.2. Approach 
For analyzing the network properties and study their influence on the broadcast 
content dissemination scenario, we will use data from real-world mobility traces that 
were collected at ETH Zurich as part of the Semester Project of Jörg Wagner [5]. 
Nineteen people were asked to wear mobile devices the whole day for a week. Each 
device would then record the presence of other devices in its wireless range; the 
connection logs of the devices are the starting point of the analysis since they allow us 
to read which stations, where and for how long were connected. This traces are 
replayed over and over again with different parameters giving us a better insight in 
data propagation in a real environment. For more details, refer to 4.1.1.The Trace 
Data.  

The analysis sets off by looking at the nodes in the network and their properties. The 
average node degree will give a good insight about the size of groups that usually 
form in our network. We are interested in gatherings of nodes, since here broadcast is 
expected to be more effective than unicast. More about this in chapter 4.1.First 
Approach – Node Degree. Other questions we are interested in are: how many times 
we can talk about gathering of nodes and how long do they last on average? Are the 
groups of nodes mainly stable or do the members change continuously? How often do 
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nodes travel from one gathering to the other and thereby propagate the information to 
other groups of nodes? To find answers to these questions, we need to compute the 
connections between the nodes not only as node degrees but also as edges in a graph. 
This allows us to dynamically analyze the mobility of the nodes in the graph. Also 
when talking about connections between two nodes, the duration of a connection and 
its quality are essential. Threshold values for the quality will be analyzed and applied 
to filter the edges of the graph. More about this in chapter  4.2.Second Approach – 
Graphs.  

To better understand the properties of the network formed by the traces, we will 
compute the cliques present in the network in every second. The identification of and 
grouping by cliques seems to simplify the broadcast approach since all nodes that 
belong to a clique can use broadcast to reliably transfer information to the clique 
members. Also characteristic problems of wireless communications are diminished 
through this approach, like the hidden node problem. As information can be 
propagated to all nodes of a clique in one hop, cliques can be regarded as entities (or 
as single nodes) and the problem of content dissemination reduces to propagating the 
information to the clique itself instead of each node.  

We will analyze the cliques from both, a static and a dynamic point of view. From the 
static point of view, we will see what groups of nodes are mainly connected and can 
be seen as unities. From the dynamic point of view, we can extract information about 
the PDF of the cliques and use this information to propose improving dissemination 
strategies. Also the consistency of cliques in time will be analyzed showing, mainly 
giving an insight in the mobility character of the analyzed trace and how this 
influences the obtained simulation results. These results are presented in 5.Cluster-
based Trace Analysis.  

When the parameters of the network are known, direct simulations by replaying the 
traces for different dissemination strategies will give us results that we can 
numerically interpret to compare the unicast to the broadcast approach. In chapter 
6.1.Propagation Time and chapter 6.2.Network Capacity, we will be able to analyze 
the propagation time and the network capacity of both unicast and broadcast 
dissemination strategies simulated on the same traces and hence to directly compare 
the two approaches. 

After analyzing the benefits and faults of unicast and broadcast, dissemination 
strategies have to be developed that take advantage of the findings and show how to 
approach the node gatherings in order to have a positive effect on the propagation 
parameters (overall delay, energy expenditure). This is done in chapter 6.3.Strategies 
for Broadcast Content Dissemination. By limiting the maximum number of 
transmissions or delaying transmissions until some requirements are fulfilled, we will 
try to find the right balance between overall propagation delay and energy 
expenditure.  
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3. Related Work 
 

The topic covered in this paper is building upon results already presented in other 
papers in the field of wireless ad hoc podcasting, while enhancing these results 
through a new approach – that of broadcast communication between mobile devices.  

A starting point of the wireless ad hoc podcasting is [2] and presents protocols for 
substituting the client-server paradigm with a peer-to-peer paradigm where mobile 
nodes provide each other with contents. Also possibilities of caching and distribution 
strategies among the nodes participating in the communication are presented and 
analyzed.  

The paper [1] is a degree project that analyzes the principles of podcasting and creates 
a substituting system based on peer-to-peer communication, rather than on the client-
server architecture, present in traditional podcasting scenarios. A device-independent 
C++ software carries out the peer-to-peer synchronization and message exchange 
between two neighboring devices. Also a series of tests were run providing future 
researches with data gathered in a real life research-office environment. The data is 
also used to analyze and simulate the broadcast data communication in this current 
paper.  

The problem of broadcast in a network can be addressed in terms of cliques in a 
graph. Finding maximum cliques in a graph can be a time consuming task, because 
there is no better solution than backtracking. Paper [4] presents an interesting 
approach of a backtracking algorithm with an early cut of useless branches for 
computing maximum cliques in a graph.  

Based on real-world mobility traces, [3] analyzes different dissemination strategies 
comparing cooperative versus non-cooperative behavior of nodes for storing and/or 
forwarding content. In particular, it evaluates how the performance is impacted by 
mobility. The main outcome is that node collaboration drastically increases the 
performances of content dissemination while the per-device overhead (or load) is very 
low and remains on average evenly distributed. [10] models the different 
dissemination strategies of [3] using analytical stochastic models (Markov chains) 
that agree with the empirical results obtained by replaying the traces.  
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4. Terminology 
 

Some terms in the paper tend to be ambiguous; a short explanation of the most used 
concepts seems in place.  

Definition 1 – Station: refers to a mobile phone, ipod, palm or other device with 
wireless networking capabilities, able to transmit, receive, store and play any 
information that is transmitted through podcasting. The term “node” is also used as 
representing a mobile device, but always in connection with a graph.  

Definition 2 – Beacon: is the small data package used to create the real life traces. It is 
emitted by each mobile device twice per second and all neighboring devices that are 
in the wireless range receive it.  

Definition 3 – Connection: is a wireless connection between two mobile devices, in 
which each device can “hear” the other one. When talking about graphs, it will be 
referred to as edge.  

Definition 4 – Node: is physically the same as a station; is used in connection to 
graphs in order to keep the graphs terminology consistent.  

Definition 5 – Clique: is a maximal complete sub graph (MCS) of a graph, meaning 
nodes that form a fully connected graph within another graph and has a maximal size.  

Definition 6 – Edge: is also referred to as connection in the early stages of the 
analysis; represents a possible two-way communication between two nodes of a 
graph.  

Definition 7 - Not infected: nodes that didn’t yet receive the information that is 
currently broadcasted through the network 

Definitioin 8 – Infected: nodes that have received the information that is currently 
broadcasted through the network
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5. General Trace Analysis 
5.1. First Approach – Node Degree 

In the sequel of this work, our analysis relies on mobility traces that were captured by 
Jörg Wagner during his SA [5]. We deal in this chapter with the raw data of the 
beacons received from other stations. We cannot yet talk about edges and graphs 
because we don’t have enough information about the interaction between the stations. 
So for now we only have stations with connections between them.  

5.1.1. The Trace Data 
In the Related Work chapter we have talked about live traces that are to be analyzed 
to provide information about broadcasting benefits. In order to understand how to 
decode this data, let’s see how it came to it in the first place.  

We use real-world mobility traces that we collected at ETH Zurich. These traces are 
then replayed in a simulator developed by Jörg Wagner. The setup used to collect 
these traces consists of 20 HP iPAQs probing their neighborhood every half a second 
using their integrated IEEE 802.11b chipset operated in ad hoc mode. Nineteen test 
users were asked to to carry the devices during five consecutive working days 
(Monday-Friday from 11am to 5pm). The test users were researchers, staff members, 
and students of a networking research lab, all working on the same floor having a size 
of 100 meters x 30 meters. The map in Figure 5.1 – Devices Location shows the users' 
desks. The test users were instructed to carry the iPAQs with them throughout the 
day.  A majority of the test users were researchers and spent most of the time at their 
desks. The users became mobile mainly due to lunch and coffee breaks, for going to 
the rest room, picking up printouts in the hallway, or meeting each other for 
discussions. Only few test users occasionally left the building or the campus for a 
limited period. 

 

Figure 5.1 – Devices Location 
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In order to have reliable data, we first strip the communication done data until 10 AM 
and after 17 PM.  

5.1.2. Node Degree analyzes 

5.1.2.1. Instantaneous Node Degree 
To evaluate the stationary regime (if any) of the traces, the 
minimum/maximum/average node degree is plotted in Figure 5.2.  

 

Figure 5.2 – Instantaneous Node Degree 

It represents the number of beacons each station receives in a certain second during 
the five days in which the activity was tracked. Red is the average over all stations, 
light gray the maximum over all stations and dark gray the minimum over all stations.  

The two following events are notable: on Friday, we can see that the maximum node 
degree drops heavily. This shows that no device “hears” beacons from more than two 
different stations.  

On Wednesday noon, we can see that the minimum node degree rises above zero, 
meaning that all devices receive a minimum of three beacons from different stations. 
This part of the trace can be interpreted as a meeting of the people carrying the 
devices.  

5.1.2.2. Averaged Node Degree 
Based on the instantaneous node degree presented in 4.1.2.1, the averaged node 
degree represents the average node degree of each second in a day. Hence Figure 5.3 
shows us the same data plotted in Figure 5.2, but averaged/maximized also over the 
five days.  
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Figure 5.3 – Averaged Node Degree 

The plot shows that the node degree is mainly stationary during the day.  

For the maximum values (light gray) we can notice the formation of lines at the 
values of 7, 8, 9 etc connections. These appear due to the way this plot was obtained: 
it’s the maximum value of a certain second, over all nodes and over all five days. The 
question would then be why we also have non-integer values? It’s because the plots 
were softened with a window of 10 seconds to avoid scattering.  

From the plot we can approximate the average node degree to about 3.5. We will see 
that this result will be somehow consistent across all measurements of the paper.  

5.1.2.3. Node Degree PDF 
The PDF of the Node Degree is plotted in Figure 5.4. It shows the PDF in red, 
averaged over all devices, and also the max/min of the PDFs of all nodes.  
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Figure 5.4 – Node Degree PDF 

Regardless of the zero values, the PDF reaches a maximum value for node degrees of 
3 and 4, proving our assumption from the previous plot.  

Also important to note is that the minimum PDF over all devices for node degrees of 
4 and 5 is no smaller than approx. 5 meaning that each node has a node degree of 4 or 
5 at least 5% of the time.  

An explanation for this behavior could be found if we refer to figure 1.1. We an see 
that because of the arrangement in the offices, usually groups of 4 to 5 stations are 
near to each other, having the possibility to “hear” each other. Having this 
explanation, we could also try to interpret it as the nodes not having much mobility. 
We will get back to the mobility later on.  

5.1.3.  Summary 
The first section, entitled “First Approach”, mainly deals with the edge degree of the 
Graph. It is a first approach, because in the next section we will start over and look at 
the connections between our nodes as edges of a graph and not as undirected 
connections between pair of nodes. We will continue to use the graphs approach in 
further analyzes because of the numerous algorithms already developed for analyzing 
graphs. Also Clusters will be introduced in a future section, that are based on graphs.  

The results of the first approach will serve as comparison for the results we will 
obtain in the next sections. By plotting the instantaneous node degrees for both the 
whole week and also averaged over one day we have shown that the node degree of 
the graph is mainly stationary.  
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The most important finding of this section is the average node degree of 3.5. The 
bottleneck discussed in subsection 4.1.2.3 also shows that each node has a node 
degree of 4 or 5 at least 5% of the time. This result was interpreted as relying on the 
arrangement of the stations in offices, usually in groups of 4 or 5.  

In the next section we will approach the analysis of the network from graph 
perspective. The connections between the nodes will become undirected edges and 
parameters for edge computation will be analyzed and optimized.  

5.2. Second Approach – Graphs 

5.2.1. Introduction 
The first approach served to get a quick overview of the traces and the data we are 
dealing with. We have seen the node degree is 3.5 on average, which leads to the 
assumption that we can compute a connected graph, also with node degree of 3.5.  

In the first approach we only analyzed the node degree by the number of received 
beacons, but never traced the beacons back to see if it’s an undirected communication. 
We also missed a metric for the connection quality such that we can filter faulty 
connections through a threshold. All in all we can say that the values are rather 
statistical.  

In the second approach, we plan to look at the stations as nodes of a connected 
graph and to compute the edges based on an undirected communication between the 
nodes. Hence we will check in the log of two stations to see if both received the 
beacon send by the other and if yes, we will assume the stations are connected. Also a 
quality second-based metric will be applied to the edges (explained next). Having the 
quality metric, we can easily apply a sliding quality window and a threshold for weak 
edges.  

5.2.2. Sliding Quality Window and Quality Threshold 

5.2.2.1. Link Quality Metric 
The quality metric we want to apply is based on the number of beacons that are sent 
and received in a second. Remember that each node transmits two beacons per second 
to all nodes in its wireless range. So if we have an edge between two nodes, we 
calculate the quality of this edge with the following formula:  

 

Basically, if in one second each of the two nodes we’re looking at receives two 
beacons from the other node, the quality of the connection is 1.  

We have no guarantee that this quality metric is accurate. One station receiving a 
number of beacons sent by another stations doesn’t mean sending more data over the 
link will also work. But because our traces only report the number of sent and 
received beacons, we can only rely on this metric and hope it is different from the 
reality by a factor.  

Based on this quality metric, we also implement a sliding quality window that 
averages the quality of an edge over several seconds. The ideal length of the window 
will be discussed next.  
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5.2.2.2. Sliding Quality window 
The sliding quality window computes the quality of the connection in one second as 
an average of the qualities of several seconds. This way, short or mainly faulty 
connections are suppressed and only strong, long lasting connections are promoted.  

If in an ideal environment, we want to consider connections between people walking 
by each other, we could make the sliding window 6 seconds and the threshold of 0.5. 
This means that the quality of an edge in a second is averaged from the quality of the 
same edge in 6 surrounding seconds and we only keep edges having a quality higher 
than 0.5.  

5.2.2.3. Impact of Quality Window Length 
Figure 5.5 shows the impact of different sliding quality windows – for 3, 5 and 7 
seconds. It plots the number of edges currently in the graph for each second in the five 
days of measurement.  

 

Figure 5.5 – Number of Edges for small Quality Windows  

We can see that the impact of the three window durations is rather low; only on 
Monday afternoon we see a notable difference between durations 3 and 7 of approx. 5 
edges.  

The outcome of this test can be interpreted as following: our graph has not a very high 
mobility, hence windows of 3 and 7 seconds don’t have a big impact on the number of 
edges. On Monday afternoon on the other hand, we can talk about a higher mobility, 
where the difference between durations of 3 and 7 is about 10% of the edges.  

Running the simulation with higher values for the duration confirms that the graph 
has certain mobility, seen for values of eg. 25 seconds. Figure 5.6 shows the impact of 

On Monday afternoon we have a 
notable difference between the different 
node degrees  high mobility 

Different window lengths 
have little impact on the 
number of edges.  
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sliding window durations 4, 11, 18 and 25 as the number of edges in each second of 
Monday and Tuesday, the first two days of the experiment.  

 

Figure 5.6 – Number of Edges for large Quality Windows 

On Monday afternoon we again see the big edge difference among the values of the 
sliding window, whilst in the rest of the period we see a small difference. The sliding 
window length of 25 making a difference to the one of 4 proves that our graph is 
sensitive to different sliding window sizes, but the mobility is so low that connections 
last usually over 24 seconds.  

The special case of Monday afternoon shows us that there is a logarithmic difference 
between the edges for values of 4, 11, 18 and 25. Hence, Monday represents a high 
mobility state of our setup.  

Based on the obtained plots, choosing a sliding window size of 5 seconds seems 
appropriate for both the low and high mobility characteristics of our graph. 
Furthermore, Monday has both low and high mobility character, so it will be used in 
our further analyses rather than the data over the whole week.  

5.2.2.4. Impact of Quality Threshold 
The quality threshold represents a threshold for the averaged quality values in each 
second. Figure 5.7 shows the total number of edges in each second on Monday for 
different threshold values (0.5, 0.6, 0.7, 0.8, 0.9).  

Plot shows same 
characteristics as Figure 5.5 
– Number of Edges for 
small Quality Windows  
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Figure 5.7 – Number of Edges for different Quality Thresholds 

Obviously, the differences are more pronounced in the case of high mobility (Monday 
afternoon) than in the case of low mobility (Monday morning). But a general 
tendency is for the plots to center around the value of 0.67, from which the spread is 
logarithmically in both ways.  

Based on this observation, we choose an ideal quality threshold of 0.67 for our next 
computations; the value is not high allowing a lot of edges to appear, but also over the 
average of 0.5.  

5.2.2.5. Edge Quality 
Some interesting results can be obtained by plotting the connection between two 
specified nodes. The blue curves are the actual connection qualities between the two 
nodes, whilst the green curves are smoothed values such that a tendency can be seen.  

After recalling the geographic position of the nodes (Figure 5.1) we can see that 
Figure 5.8 Edge between 11 and 17shows nodes (11 and 17) that were together in the 
same office. On Tuesday these nodes were not connected at all, while on the other 
days we have casual connections.  

Figure 5.9 - Edge between 11 and 9 shows the contact between two nodes belonging 
to different offices, but separated by only two walls and a short distance.  

Figure 5.10 - Edge between 11 and 19 shows the contact between two nodes very far 
apart in our layout. The very few connections are distributed over the 5 days and are 
mainly very short. Only on Wednesday we can talk about a connection long enough to 
have a data transfer under real conditions (green line also rises above 0).   
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Figure 5.8 Edge between 11 and 17 

 

Figure 5.9 - Edge between 11 and 9 

 

Figure 5.10 - Edge between 11 and 19 

5.2.3. Summary 
In this section we discussed the interpretation of the network as a graph. The 
connections between the nodes were computed as undirected edges of a graph. Also a 
quality metric was introduced for each edge of the graph such that faulty edges can be 
dropped from the analysis by applying a threshold.  

The use of sliding windows helps eliminating very short connections and also helps 
identify the quality of alternating connections. A good choice for the sliding window 

11 and 17 show long connections of a 
good quality  low mobility graph 

11 and 9 show only few but long and 
strong connections during the week. 

11 and 19 show very few connections during 
the week. Only on Wednesday the connection 
is strong enough to enable a data transfer 
under real conditions 
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length was proved to be 5 seconds. Also connection quality threshold was considered 
when computing the edges and experiments show that a threshold of 0.67 is a good 
choice for accepting or dropping a possible edge.  

The setup of this section also demonstrates that our traces have a rather low mobility, 
excepting the Monday afternoon when it rises.  

In the next section we will use the obtained results to compute the static and dynamic 
edges of the graph. By static, a stationary regime is referred where all edges are taken 
and examined, regardless of time. In the dynamic approach, the edges of each second 
will be analyzed. 
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6. Cluster-based Trace Analysis 
6.1. Static View 

First we are going to analyze the graph from a static point of view, followed by the 
dynamic analysis. The static point of view neglects the time evolution of the graph, 
watching and analyzing all edges in the same time. It’s useful for PDF and frequent 
cliques computation in the graph.  

6.1.1. Edge Quality Graph 
Having computed the edges of the graph we can now easily represent the edge quality 
(Figure 6.1).  

 

Figure 6.1 – PDF of all edges 

Weak edges are marked with yellow and strong ones with red. Weak and strong only 
refers to how often this edge is present in our graph (meaning the number of seconds 
this edge is present to the total number of analyzed seconds) analyzed on the data 
from Monday. The graph can also be referred to as the edge PDF, because each edge 
is colorized by the probability that the specific edge is present at any chosen time 
instant.  

Node 12 has an awkward behavior: it has very strong connections to the nodes in the 
lower right part of the graph, but not to its neighbors. Because this is the case for all 
of the edges starting in 12, we believe that node 12’s position is plotted wrong and it 
was rather in the same office with 19 or 14.  

Node 6 has no strong connection to any other node (but for 12), but has a very high 
node degree. It is connected to most nodes of our graph.  

We can see that we have week edges between the lower right and the upper left of our 
graph – the main edges between these two clusters would be 10-19, 16-13 and 18-5, 
18-15.  
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6.1.2. Small World Example 
Having the PDF of all edges in our graph, we can go further and cut down the edges 
based on a strength threshold. A small-world network is a type of mathematical graph 
in which most nodes are not neighbors of one another, but most nodes can be reached 
from every other by a small number of hops or steps [6]. In Figure 6.2 we see the 
cliques computed with only those edges that are present in the graph more than half of 
the time.  

 

Figure 6.2 – Cliques Present more than half of the Time 
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Although the number of computed cliques is 6, we can see that the upper cliques 
(green, blue, orange and red) mainly have the same nodes as members; they differ 
mostly by one node. This is why we could say we have a single clique involving all 
nodes, but not fully connected (missing one or two edges).  

 

Figure 6.3 – Cliques present more than 0.75 of the Time 

In this case, only the lower clique is present, but in the same situation as the upper 
clique in Figure 6.2 – meaning we again have overlapping cliques and we could talk 
about only one clique, not fully connected (missing one edge).  

It’s clear now that the nodes 12 actual position is rather near to nodes 19, 1 etc and 
not in the same office with 7, because it was connected to nodes 19, 1, 5, 13 more 
than 75% of the time.  

6.1.3. Clique Size Distribution 
We continued the analysis by plotting the clique size distribution – Figure 6.4.  
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Figure 6.4 – Clique Size Distribution 

Although the title suggests it is the PDF of the clique size, it’s actually the PDF of the 
size of the clique that holds a node. 

This example is going to illustrate it better: if we take a random node, with a 
probability of 0.325 it will be a member of a clique of size three. With probability of 
0.28 a member of a clique of size two and so on.  

If the real clique size distribution were to be represented, the number of cliques of 
size two would be greater than that of cliques of size three and so on. The proof can 
be expressed as an example: let’s consider the case in which we have 12 nodes with 
equal probability of being in a 2-node or a 6-node clique. That means that half of the 
nodes will be in a 6-node clique, and the other half in two-node cliques. That gives us 
one 6-nodes clique and three 2-node cliques. So the probability of having 2-node 
cliques is three times greater than the one of having 6-node cliques.  

Cliques of size one were not considered in this graph because of their trivial state – 
they have only one member so they don’t have all the properties of a clique.  

We can see here the concordance to our first results: we were talking about an average 
node degree of 3.5. Starting from that data, that was computing directed edges, we 
filtered data by computing the undirected edges. We filtered some more by applying 
the quality sliding window and the threshold value of 0.67 and we ended up with 
nodes being in cliques with two other nodes (on average). The obtained value of 3 
nodes in a clique is a decent value considering the filtering done.  

At this point we can already say that broadcast is going to help the communication in 
our graph, let’s just evaluate to what extend. From here we will go further and analyze 
the graph from the dynamic point of view, starting with the clique stability. 
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6.2. Dynamic View 

6.2.1. Clique Stability 
Clique stability is basically the way a clique evolves in time. Figure 6.5 shows the 
stability of the clique formed by nodes 2, 3 and 15.  

 

Figure 6.5 – Evolution of the Clique [2 3 15] over one Hour 

The plot represents the evolution of this data for one hour from 11AM to 12PM on 
Monday. The analyzed nodes (in this case 2, 3, 15) can themselves form a clique of 
three nodes or can be contained inside a bigger clique. The ContainedNodes (orange 
line) shows the number of analyzed nodes that are currently in a clique. Sometimes all 
three are in a clique, but other times only two of them are in the same clique. In the 
latter case, we only look at the two that are in the same clique and state the 
ContainingClique Size. This ContainingClique Size (gray line) shows the size of the 
clique currently holding the analyzed nodes. This can be greater than three if the 
analyzed nodes together with other nodes form a clique.    

We can see that the average stability time for the nodes in this clique is approx. 100 
seconds. This means that once each 100 seconds one of the nodes leaves or rejoins the 
original clique. Assuming our time to transmit the data to be 1 second, 100 seconds 
characterizes the graph as having a low mobility.  

6.3. Summary 
In this section we have analyzed the static and the dynamic view of the graph defined 
by the edges between the nodes. In the static view, the edge PDF was elaborated 
giving us an insight in the communication of the graph. We have seen that the most 
communication happens between nodes in the same offices and interoffice 
communication is rare. Also we saw that there are usually two groups of nodes that 
generate fully or almost fully connected subgraphs (cliques): these are the upper ones 
and lower ones, as presented in Figure 6.1 – PDF of all edges.  



 22 

The computed clique size distribution shows a theoretically very important 
measurement. It shows that with the highest probability, a node will appear in a clique 
of 3 nodes. This result is in concordance with the result presented in 4.1.2.3, where 
the average node degree was proved to be 3.5. After removing directed connections 
(one way communication channels), sporadic edges (by applying the sliding window) 
and low quality ones (by applying the threshold filter) and ending up having an 
probabilistic clique size of 3 is a positive feedback. 

The evolution of a clique has also been discussed in this section and the results were 
presented in Figure 6.5 – Evolution of the Clique [2 3 15] over one Hour. This states 
that a clique is mostly stable for an average of 100 seconds. If we look at a maximal 
data transmission time of 1 second, we can again characterize the system as having a 
low mobility.  

The clique size distribution and the evolution of a clique are important parameters in 
determining the theoretical improvements of broadcast content dissemination. The 
next section proves in a theoretical approach why we shouldn’t expect a lower 
propagation delay of broadcast dissemination vs. unicast dissemination but rather an 
increase of the network capacity – with a factor depending on the average clique size 
(in our case the factor is two).   

The next section will present the experimentally obtained propagation time and 
network capacity, which will match the theoretical ones. 
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7. Content Dissemination Strategies 
7.1. Propagation Time 

7.1.1. Insight on Dissemination Process 
If we analyze the problem theoretically, a graph having a high or low mobility would 
profit differently from the broadcast data transmission. Let’s see why. 

If we consider a high mobility graph, we can think that in the first second a node 
sends data to all other nodes that can hear it. Because the mobility is high, in the next 
seconds, all nodes that received the data in the first second are sending it to other 
nodes they came across in this second, and these are ideally totally different nodes 
than the neighbors of the first second. In contrast to this broadcasting approach, 
consider the peer-to-peer connection. In the first second, the first node transmits data 
to only another node. In the next second two nodes transmit data to other two nodes. 
The overall propagation delay is much higher than in the case of broadcasting, 
especially if the average clique size is big.  

Let’s consider a low mobility graph. In the first second a node sends data through 
broadcast to all nodes that can hear him. In the second second all nodes have the 
information, but are still there and not transmitting it to anyone else. Only after a 
while the nodes that have the information come across other nodes and transfer the 
information to those. The propagation time is slower than in the previous example, 
and taken to the extreme case it’s as fast as the case without broadcasting. In the peer-
to-peer case, a clique stays connected very long, so there’s enough time to transmit 
the data to all nodes in a peer-to-peer manner.  

From these theoretical considerations we can draw the conclusion that broadcasting 
lowers the overall propagation delay only if we are in a high mobility graph. 
Otherwise there is not much of a difference to the peer-to-peer scenario. Since we 
characterized our graph as having a low mobility, we will see if the theoretical results 
mirror in the simulation results.  

7.1.2. Unicast vs. Broadcast Dissemination 
In the case of peer-to-peer (unicast) communication, one node is assumed to have the 
information that will be spread throughout the network. The information quantity is 
such that it is fully transmittable in a frame of one second. In the peer-to-peer strategy 
each node tries to transmit the data to a neighboring node that doesn’t already have it. 
This generates a somehow cascade flow of the data in the network.  

In the case of broadcast communication, again a node is assumed to have the 
information at start. In each second, each node that has the information picks a 
random clique he’s a member of and that contain nodes that didn’t yet receive the 
data. It then broadcasts the data to all the nodes belonging to this clique. A node can 
be a member of several cliques (e.g. Node 19 in Figure 6.3 – Cliques present more 
than 0.75 of the Time – he is both a member of the green and purple cliques) so one 
clique is randomly chosen.  
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7.1.3. Simulation Scenario 
In this setup we consider two dissemination strategies: peer-to-peer (unicast) and 
broadcast. These strategies are simulated over the traces described in 4.1 for the time 
window Monday.  

If we run the propagation time as a comparison between the broadcast and the peer-
to-peer strategies, we obtain the results in Figure 7.1 and Figure 7.2. The plots 
represent the propagation time averaged over 20 runs with a different initial content 
provider in each run and only for the traces of Monday.  

 
Figure 7.1 – Propagation Time for Broadcast and Peer-to-Peer Strategies 
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Figure 7.2 – Propagation Time for Broadcast and Peer-to-Peer Strategies – Detail  

As we can see in Figure 7.2, that is basically just a zoomed version of Figure 7.1, the 
effect of broadcasting is rather modest. There is an increase in propagation time, but 
not to the extent that would justify the implementation.  

We can see a relatively high propagation at start until approx 16 nodes are infected in 
the graph. Only later between 13.00 and 14.00 the propagation continues and all 
nodes get infected. An explanation for this behavior could be the fact that the people 
wearing the devices meet at lunch break and so help propagating the content to nodes 
barely reachable before.  

At this point it has to be said that from an intuitive point of view this rather modest 
progress has an explanation in the mobility of the graph. In the case of high mobility, 
we could imagine to have much better results with broadcast rather than with peer-to-
peer strategies.  

7.2. Network Capacity 

7.2.1. Theoretical Considerations 
We have already seen that the average clique size is 3 nodes. Let’s briefly think of the 
case in which data travels through the graph. In the case of cliques of size 3, one 
source node always transmits data to two other nodes in the same time instance, in the 
case of broadcasting, whilst in the case of peer-to-peer, a node transmits only to 
another node at a time hence half of the dissemination rate. These being the 
theoretical results, we can see that Figure 7.3 confirms the results through the 
simulation over our graph.  

7.2.2. Simulation Scenario 
Again we compare the results of a peer-to-peer and a broadcast dissemination 
strategies, this time from the propagation capacity point of view. For both strategies, a 
random node in the graph is considered to have enough buffered information, such 
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that it doesn’t run out of content that waits to be sent out. Hence, we consider that 
there is always content to be disseminated.    

In the case of peer-to-peer communication, each node transmits data to the 
neighboring nodes that don’t already have the information. When all neighbors 
received the information, a node proceeds to sending the next chunk. Inside a clique 
the data transmission is done cascade like in sequential seconds.  

In the case of broadcast communication, a node searches for the biggest clique he’s a 
member of and that contain nodes that didn’t jet receive the information. It sends the 
information to all nodes of the clique, even to those already having it, through 
broadcasting. When all cliques a node is member of received the information, the 
node proceeds to sending the next chunk of data.  

Assuming n nodes in a clique and a channel capacity C, we can say the amount of 
data that is transferred is C in the unicast case and (n-1)C in the broadcast case. We 
can also represent these considerations by comparing the unicast case with a perfect 
time division multiplexing scheme such that the capacity is shared between the n-
modulo(n,2) nodes with a possible modulo(n,2) idle node. For the broadcast case, the 
full capacity is used and all nodes receive C such that the total amount of data 
transferred is (n-1). Hence, the capacity ratio of broadcast vs. unicast is [(n-1)C]/C = 
(n-1). If we apply the numerical evaluation to our case, then we have to look at the 
average clique size, which is around three (Figure 6.4 – Clique Size Distribution), 
which gives us a doubling of the dissemination capacity. In terms of energy 
expenditure, these formulas also apply i.e., we have (n-1) transmissions with the 
broadcast case vs n transmissions in the unicast case. Given that the unicast case 
requires N-1 transmissions in total to spread the content to the all network, we could 
expect less required transmissions in the broadcast case. Further analysis of this issue 
is out of the scope of this thesis and is discussed in the Discussion Section.  

In both cases, we measure the quantity of information that is transmitted in each 
second through the network  
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Figure 7.3 – Propagation Capacity for Broadcast and Peer-to-Peer Strategies 

 

7.3. Strategies for Broadcast Content Dissemination 

7.3.1. Introduction 
Chapter 7 has shown that broadcast is a better choice than peer-to-peer 
communication especially from the network capacity (and energy expediture) point of 
view. Also, although it has not been pointed out, the nature of the wireless 
broadcasting of transmitting information to all communication partners using the 
same amount of energy encourages us to look closer at this possibility and to analyze 
further advantages that can be obtained through different dissemination strategies.  

First we will show the simple way of broadcasting information in the network, based 
on random transmissions to random cliques. Next we are going to compute the best 
solution for propagating the content in our network; it’s an unrealistic approach since 
global knowledge is needed to search for the best way to transmit information in each 
second, but it will give us a good upper bound for comparing the other strategies. 
Next we will use the idea of limiting the number of transmissions of each node. This 
should help us lower the number of average transmissions by, hopefully, keeping the 
overall propagation delay constant. The last approach, which will also yield the most 
interesting results, will be to postpone the transmission of data until a certain number 
of nodes are in the vicinity that would profit from the information.  

To the concepts used in this chapter, some notes have to be made. The terms of 
infected and not infected will appear more often, because of their simple way of 
explaining the concept we are dealing with. If we see the information as a disease that 
travels from a node to another one, at any moment of time we can break the nodes 
into two groups: infected and not infected, simply meaning nodes that have already 
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received the information (infected) and others that didn’t (not infected). As soon as a 
not infected node comes in the range of an infected one (and the latter transmits it’s 
information to the first one) we can say that the first node becomes infected, meaning 
it now also has the information and can potentially transmit it to other not infected 
nodes.  

7.3.2. Dissemination Strategies 

7.3.2.1. Simple Dissimination 
This approach is the most easily to realize in terms of implementation at node-level. 
Each infected node transmits the information to one of the cliques he’s a member of 
and that contain uninfected nodes. The choosing of the clique is done randomly but if 
an infected node is a member of at least one clique that contains uninfected nodes, it 
will get the chance to transmit the information. Recall that a node can be a member of 
more than one clique (see Figure 6.3 – Cliques present more than 0.75 of the Time:  
node 19 is both a member of the purple and the green cliques).  

While broadcasting in a real network, infected stations concurrently transmit 
information to the uninfected nodes in their vicinity. In order to avoid data collisions, 
the infected nodes first synchronize to the nodes that they will infect, setting the 
communication parameters. On our traces we cannot simulate the concurrency 
because of the software limitations, so a sequential algorithm is used instead. In the 
case of the Simple Dissemination, the order in which the nodes transmit is chosen 
randomly while in the case of the Best Search Dissemination the order is computed 
through a greedy algorithm to maximize the infected nodes and minimize the number 
of transmissions.  

For more information, see the Appendix.  

7.3.2.2. Search Best Dissemination 
In the Search Best approach broadcasting the data in the network relies on global 
knowledge and can therefore be considered unrealistic for propagation scenarios. In 
each second, all nodes are analyzed and the best transmission order is chosen to 
assure a maximum spread of the information per number of broadcast transmissions.  

In more clear terms, in each second the node is searched that can infect most other 
nodes with a broadcast transmission. These nodes are infected and the next best node 
is chosen to transmit. This goes on until no node can infect any other nodes. Also we 
assume that one node can not only infect nodes of one clique with one broadcast, but 
can infect all nodes of the cliques he’s a member of with only one broadcast. This is a 
realistic approach as long as we consider longer synchronization times between the 
nodes of the different cliques (longer synchronization times = avoiding the hidden 
terminal problem).  

For more information, see the Appendix.  

7.3.2.3. Limited Transmissions Dissemination 
We have seen that in the case of peer-to-peer communication, nodes improve the 
tradeoff between overall propagation delay and number of transmissions by limiting 
the maximal number of transmissions per node. It is interesting to see if we have the 
same case in the broadcast scenario. This idea also forces an even distribution of the 
number of transmissions per node (global fairness).  
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The main goal is to lower the number of overall transmissions since more nodes are 
forced to transmit information and also these new nodes might have more optimal 
conditions for broadcasting. On the other side, a node could have the opportunity for 
an optimal broadcast but has already reached the maximum number of transmissions. 
In this case, the optimal state would be wasted.  

For more information, see the Appendix.  

7.3.2.4. Delayed Transmission Dissemination 
The Delayed Transmission Dissemination relies on the simple fact that broadcasting 
to a low number of nodes wastes energy. If we delay one nodes transmission until that 
node has at least a certain number of uninfected neighbors, we can propagate the 
information with a lower number of transmissions. On the downside, waiting for 
several nodes to join until a transmission is done, rises the overall propagation delay.  

The tradeoff between overall propagation delay and number of transmissions is what 
we are interested in. Also this strategy could be used only at the beginning, when the 
most resources are used for suboptimal information dissemination. After a while, the 
network could switch to using another dissemination strategy, probably more suitable 
for the last phase of the propagation, such that an overall good overall propagation 
delay is reached.  

7.3.3. Analysis 

7.3.3.1. Simple vs Search Best Disseminations 
Figure 7.4 - Simple vs Best Search Overall propagation delay shows the overall 
propagation delay for the simple dissemination strategy compared to the overall 
propagation delay of the best search approach.  
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Figure 7.4 - Simple vs Best Search Overall propagation delay 

Both strategies have an identical overall propagation delay. Although the Search Best 
strategy searches for the best propagation in each second, compared to the Simple 
strategy that just randomly chooses the propagation in each second, the speeds are 
identical. This is because of the low mobility of the graph, which allows for complete 
propagating each new setup of the nodes.  

The average number of transmissions however yields a difference.  While the Simple 
strategy achieves the propagation with an average number of transmissions of 16.5, 
the Search Best strategy does it with 15.7 Transmissions on average. This result 
shows that the Simple strategy works almost as good as the Search Best strategy 
(recall the latter is not possible in a realistic scenario because of the generally 
unavailable global information).  

Compared to the peer-to-peer communication this would mean we have a big 
decrease in transmissions number, from 19 (recall that the network has n=20 nodes 
and N-1 unicast communications are required to disseminate content in the network 
given one node as a source) transmissions necessary in the case of peer-to-peer 
communication to infect all nodes, to only 16.5 in the case of the simplest broadcast 
strategy.  

7.3.3.2. Limited Transmissions vs Search Best Disseminations 
Figure 7.5 - Overall propagation delay for Limited Transmissions (1,2,3) vs Search 
Best shows the overall propagation delay for the cases of limited transmissions. Gray 
plots the case of the Search Best strategy as a comparison.  

Identical Propagation Speed 
for Simple and Search Best 
Dissemination strategies 

 

Avg Transmissions No:  

SearchBest – 15.7 

Simple – 16.5 
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Figure 7.5 - Overall propagation delay for Limited Transmissions (1,2,3) vs Search Best 

We can see that in the case of transmissions limited to 1, the overall propagation 
delay slightly drops under the optimum (search best) while for the cases with 2 and 3 
transmissions per node, there is no difference between the overall propagation delays 
and the optimal overall propagation delay.  

From the average number of transmissions point of view, we can see that the case of 
limitation to 1 transmission yields the best result out of the three. 16.05 transmissions 
on average to propagate the information are also better than in the Simple strategy.  

The rise of the average number of transmissions to 16.85 and the fall again to 16.4 in 
the case of limitations to 2 and 3 transmissions shows it is suboptimal to increase the 
maximum allowed number of transmissions, but a high number can take advantage of 
some optimal broadcasting situations rising up.  

In [10] we had a clear decrease of the performances with k=1. In this case the 
decrease seems lower and a possible explanation could be that in a clique it is not 
important which node sends infects all other nodes of the clique, as long as one does 
it.  

Similar results have been shown for the unicast case both empirically (using the same 
traces) and analytically (using a CTMC) in [10].  

7.3.3.3. Delayed Transmissions vs Search Best Disseminations 
Figure 7.6 - Delayed Transmissions vs Search Best Overall propagation delays shows 
the overall propagation delay in case of a Delayed strategy. This delays the broadcast 
of information until the number of uninfected neighbors that would profit from it 
reaches a certain number.  

Avg Transmissions No:  

SearchBest – 15.7 

Limited Transmissions 
1/2/3 – 16.05/16.85/16.4 

 

Maximum one transmission per node 
slightly decreases the propagation 
speed but delivers lower transmission 
power (only 16.05 transmissions 
needed) 
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Figure 7.6 - Delayed Transmissions vs Search Best Overall propagation delays 

As we can see from the graph, the overall propagation delay is highly influenced by 
the number of awaited uninfected neighbors. If this number is two and we only 
broadcast if we have at least two not infected neighbors, the overall propagation delay 
is only slightly higher than the one of the Search Best strategy. If the awaited 
uninfected nodes number rises to 4, the differences rise exponentially.  

Another notable aspect is that while using this strategy, the information will not or 
only in special cases disseminate to the whole network. Hence, if this is a necessary 
condition for the dissemination, this strategy won’t fulfill it. We can also consider 
changing the strategy if the number of infected nodes passes over a certain percentage 
of the total number. This however requires synchronization and extra communication 
between the nodes.  

A very interesting aspect of this approach is the average number of transmissions 
achieved. For the case of delayed 2, we have an average number of transmissions of 
8.5, which is almost half of the one in the Search Best, of course at comparable 
overall propagation delays. Not to forget this is a tradeoff for never having a complete 
dissemination in the network.  

Avg Transmissions No:  

SearchBest – 15.7 

Delayed 2/3/4 – 8.55/5.65/3.1 

 

For the tradeoff of having a slightly 
lower propagation speed and never 
completely propagating the 
information through the entire 
network, we can halften the spent 
dissemination energy, or even better. 
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8. Conclusions 
We set off analyzing real life data captured in a research-office environment during 
one week. Data was made off the beacons send by each device twice per second in a 
broadcasting manner and received by the ones that could hear it.  

First analyses only looked at the node degree and the average node degree of 3.5 
proved to be consistent along the further more complex simulations. The second 
approach introduced a measurement for the quality of each edge in the network, 
allowing us to drop faulty connections based on a threshold. Important insight 
information was provided through the static analyzes of the graph, where the most 
common cliques were identified and analyzed.  

The last step was to make a direct comparison between the two implementations: with 
or without broadcasting. 

The results have shown that for the traces we have analyzed, the broadcasting 
scenario didn’t bring significant improvement to the overall propagation delay, but 
doubled the capacity of our network for concurrent spreading of content. Another 
main conclusion we arrived to, mainly sustained by the theoretical analyzes of the 
different propagation scenarios, is that the graphs mobility and its clique size 
distribution is mainly responsible for the benefits of broadcast compared to the 
normal peer-to-peer data propagation. In a graph with high mobility and high average 
clique size, the broadcast method is the desired one, while in a low-mobility, low 
average clique size graph the peer-to-peer can also be considered, based mainly on 
it’s simplicity in terms of connection protocols.  

In most of the scenarios however, broadcast communication is superior to the peer-to-
peer data propagation, either in terms of propagation time or network capacity for 
concurrent information spreading, or both.  

For further improving the broadcast scenario, different dissemination strategies were 
analyzed. For comparing them, we computed the best propagation time achievable on 
our traces together with the needed transmissions number in order to disseminate in 
the whole network.  

By running simulations, we have proven a plain, random based, broadcasting similar 
in results as the computed best propagation. Also we have shown that applying the 
strategy of limiting the number of transmissions per node doesn’t help much either he 
overall propagation delay or the number of transmissions.  

The best results were obtained by a dissemination strategy that delays the broadcast 
until a certain number of the neighbors could profit from the broadcast. For the 
tradeoff of having a slightly higher overall propagation delay and never completely 
propagating the information through the entire network, we can lower the spent 
dissemination energy from 16.5 to 8.55 transmissions, or even lower if we consider 
longer overall propagation delays. 
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9. Discussion and Future Work 
9.1. Clique Lifetime PDF 

The clique lifetime PDF would be a very interesting insight in the characterization of 
the network. It could also be used to implement different dissemination strategies (as 
discussed in 8.1).  

The cliques of each second were computed as part of this paper and the results show 
tables containing the cliques present in each second. To analyze the lifetime of each 
clique, one should take this clique and search for it in every second in order to count 
the appearances. To have the lifetime PDF of our graph, this has to be computed for 
all possible cliques. Having 20 nodes, combinable in number of 2, 3, 4… 20 nodes per 
clique, makes this task computationally difficult. Other approaches should be 
explored in order to compute the PDF easy enough to use it in ad-hoc networks.  

9.1. Other Traces 
Throughout the paper we have come to the conclusion that the used traces have a 
mainly stationary character. Some of the results (e.g. the small difference between the 
Best Search and Simple content dissemination strategies) were also traced back to this 
property of the network. Also our traces are limited to 20 nodes; sometimes this limit 
doesn’t provide enough granularity to the results.  

In order to prove some of the findings and possible come up with new ideas on how to 
improve dissemination strategies, other traces can also be used (eg. MIT Traces [9]) 
that use a larger number of nodes.  

9.2. Other Dissemination Strategies 
As we have seen, the dissemination strategy that delays the content dissemination 
until a certain number of neighbors can use the broadcasted information proved to be 
a very effective method of propagating the information because of it’s overall 
propagation delay that was only slightly higher than that of the best case and because 
of it very low energy expenditure (half of the best case). The major downside of this 
approach is however that not all nodes in the network are guaranteed to receive the 
information. To avoid this, another strategy (possibly the Simple Dissemination 
Strategy) can be used after a certain threshold has been reached in time or in 
propagation percentage.  

Also another approach would be to read a node’s profile, that is to know it’s own 
node distribution, and the delay that is applied to each node should depend on the 
node distribution of the respective node. There is no point for a node to wait until it 
has four nodes in his vicinity, if his PDF shows that he usually has only two.  

A reliable broadcast scheme can use local recovery benefiting from other clique 
members to re-send unreceived packets because of wireless channel errors as done in 
[14]. Another solution is to use a network coding approach as explained in [13].  

The time was not enough to fully address this approach but the first steps show 
promising results. 
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9.3. Network Capacity 
In this paper we have talked about a capacity increase from the unicast to the 
broadcast case. In order to scientifically characterize the capacity of the network in 
both cases also theoretical limits have to be taken into account and compared ([7] and 
[8]).  

9.4. Transmission of Bigger Files 
In all simulations, only content that can be transmitted in one time unit has been 
analized. One can argue that this can be achieved by using UWB USB, yet using the 
current 802.11 technology, the transfer time might take longer. Hence a simulation 
that also considers longer packages has to be run and the results compared to the 
current results for all proposed dissemination strategies.  
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Appendix I 

1. How to reobtain the Plots 
1.1. Impact of Quality Window Length 

Function “connStatusByDurationAndThreshold.m” plots the status of the connection 
for the different duration and threshold parameters.  

Parameters:  

Data – Has to be data in the form of a table having on the first column a 
uniqueSecond (the second in which the other columns are valid), on the second 
column a connID (the id of the connection between two stations in the second 
mentioned by the first column) and on the third column a beaconID ( the id of the 
communication between the two nodes in this second). The last column is not needed 
for any further use. The second column contains the connectionID between the 
stations. From this, the stations have to be recoverable. Furthermore, a certain sort 
must be applied to the number of the stations in the connectionID, first stating the 
smaller station and then the greater one.(eg. Conn 5 – 11 = 0511; Conn 11-5 = 0511; 
Conn 7 – 6 = 0607; Conn 11 – 14 = 1114 etc). In each second, we have to have 4 
connections between two stations in order to talk about a 100% connection. (eg. For 
stations 5 and 11, we need 2 connections from 5 to 11 and 2 connections from 11 to 
5).  

DURATION – Is a value or an array containing the duration of the sliding window 
that will be applied to the data. If it is an array, it has to have the same length as 
THRES 

THRES – the threshold of the connections. All connections with a threshold smaller 
than this value will be filtered out.  

Code:  

%function returns no of connections in each second, respecting the duration 
%and threshold.  
%THRES has to be specified as a real value between [0,1]; 
%the first col in data (seconds) has to start with 0,1... 
  
function countRow = connStatusByDurationAndThreshold(data,DURATION,THRES) 
    %first create the quality col for the duration 
    data=linksAndQuality(data,DURATION); 
    %now filter by keeping everything which has a quality higher than the  
    %threshold 
    data=filterRows(data,4,'>',THRES); 
    %now count the no of connections in each second 
    countRow=zeros(1,length(data)); 
    for(f=1:length(data)) 
        countRow(1,(data(f,1)+1))=countRow(1,(data(f,1)+1))+1; 
    end 
    %crop the countRow vector to the no of seconds we have data for 
    countRow=countRow(1:(max(data(:,1))+1)); 
  
end 
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1.2. Impact of Quality Threshold 
Graph obtained through the same function as 1.1.  

1.3. Edge Quality 
Function “plotConnQuality.m” plots the quality of a connection between two nodes.  

Parameters:  

Data – refer to 1.1.  

connID – the ID of the connection to be plotted. To find out more about the format of 
the ID, refer to 1.1.  

connDuration – the duration of the sliding window. To find out more, refer to 1.1.  

Code:  

%function plots the connection quality in time of a connection between two 
%certain devices (specified by the connID). Quality averaged over 
%connDuration seconds 
  
%the data argument is a table having the cols: second,conn,quality 
  
function data = plotConnQuality(data,connID,connDuration) 
    data=filterRows(data,2,'=',connID); 
    data=linksAndQuality(data,connDuration); 
    %create a seconds array representing all seconds of the transmitted 
    %data 
    seconds=zeros(length(data),1); 
    for(f=1:length(data)) 
        seconds((data(f,1)+1),1)=data(f,4); 
    end 
    seconds = [seconds(:),smoothen(seconds(:),1,60)]; 
    plot(seconds); 
     
end 

1.4. Clique Size Distribution 
Function “cliqueSizeDistribution.m” plots the probability that a random node appears 
in a clique of a certain size.  

Parameters:  

Cliques – a cell table having on the first column the second in which the cliques are 
present. On the next columns, if available each column contains an array with the 
elemens that form a clique. There are so many cells filled as many cliques there are in 
this second.  

Nodes – number of nodes in the graph.  

Code:  

%input: cliques: a cell table having on the first column the second and on 
%the next columns arrays representing a clique that is present in that 
%second 
%nodes: number of nodes in the graph 
  
%output: an normalized array representing the pdf of the clique size 
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function result = cliqueSizeDistribution(cliques,nodes) 
    result=zeros(1,nodes); 
    for(f=1:length(cliques)) 
        %if this row has no cliques, skip it 
        if(isempty(cliques{f,1})) 
            continue; 
        end 
        g=2; 
        while(~isempty(cliques{f,g})) 
            result(length(cliques{f,g}))=result(length(cliques{f,g}))+1; 
            g=g+1; 
        end 
    end 
    %normalize 
    resSum=sum(result); 
    for(f=1:length(result)) 
        result(f)=result(f)/resSum; 
    end 
    result=result(2:7); 
    plot(result); 
end 

1.5. Clique Stability 
Function “plotCiqueEvolution.m” plots the evolution of a clique regarding the 
number of original elements that are part of the clique in time.  

Parameters:  

Data – same as “cliques” of 1.4 

Clique – an array containing the elements of the clique that is to analyze.  

Code:  

% input:  
% data: a table having: on the first col the current second. On the next 
% cols the cliques present in that second. The table cells that contain no 
% clique are empty 
% clique: the clique to search for in each second 
  
% output: function plots and returns two functions: 
% ContainingCliqueSize: the size of the clique that contains most of the 
% elements of the specified clique 
% NodesContained: no of nodes from the provided clique that appear in the 
% selected clique 
  
function [ccs, nc] = plotCliqueEvolution(data,clique) 
    ccs = zeros(1,length(data)); 
    nc = zeros(1,length(data)); 
    %the position in data of the maximal clique 
    position = zeros(1,length(data)); 
    for(f=1:length(data)) 
        %if this row has no values, skip it 
        if(isempty(data{f,1})) 
            continue; 
        end 
        %in each clique of this second search for the nodes of the provided 
        %clique and take the biggest that contains most of our nodes 
        appearancesMax=0; 
        lengthMax=0; 
        posOfClique=0; 
        g=2; 
        while(~isempty(data{f,g})) 
            appearances = 0; 
            %for every node in the provided clique 
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            for(h=1:length(clique)) 
                %check if it appears in the selected (g) clique 
                appearances = appearances + sum(data{f,g}==clique(h)); 
            end 
            %now check if this is the clique that is mostly similar to the 
            %provided one 
            if(appearances>appearancesMax || ... 
                    (appearances==appearancesMax && 
length(data{f,g})>lengthMax))  
                appearancesMax=appearances; 
                lengthMax=length(data{f,g}); 
                posOfClique=g; 
            end 
            g=g+1; 
        end 
        %save the results 
        ccs(f)=lengthMax; 
        nc(f)=appearancesMax; 
        position(f)=posOfClique; 
    end 
    hold('off'); 
    hold('all'); 
    myPlot=plot(ccs); 
    set(myPlot(1),'DisplayName','Containing Clique Size'); 
    myPlot=plot(nc); 
    set(myPlot(1),'DisplayName','Contained Nodes'); 
    xlabel('Seconds'); 
    ylabel('Clique Size / Nodes No'); 
    legend('show'); 
    title({'Cliques with nodes ' clique}); 
end 
         
         
 

1.6. Propagation Time 
Function “propagationTime.m” and function “propagationTime2.m”, both plot the 
propagation time for the peer-to-peer strategy and the broadcast strategy, respectively.  

Parameters:  

Cliques – refer to 1.4 for details.  

Code:  

PropagationTime.m 

function propagation = propagationTime(cliques) 
%calculate the time the information arrives from one station to all 
%others, in case of no broadcast, based on the cliques formed 
propagation=zeros(20,length(cliques)); 
for(a=1:20) 
    a 
    infectedNode=a; 
    nodes=zeros(2,20); 
    nodes(1,:)=[1:20]; 
    nodes(2,infectedNode)=1; 
    f=1; 
    %while we still have data and not all nodes are infected 
    while f<=length(cliques) && sum(nodes(2,:))<20 
        %if it's an empty row, continue 
        if(isempty(cliques{f,1})) 
            f=f+1; 
            continue; 
        end 
        %in each clique determine the infected and uninfected nodes. For 
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        %each infected one, infect an uninfected node. A node can only 
        %infect one other node. 
        %the array of nodes that already infected other nodes, marked with 
        %1s 
        jobDone=zeros(1,20); 
        g=2; 
        while(~isempty(cliques{f,g})) 
            cliqueNodes=nodes(:,cliques{f,g}); 
            %if all nodes are already infected skip 
            if(sum(cliqueNodes(2,:))==length(cliqueNodes(2,:))) 
                g=g+1; 
                continue; 
            end 
            %if no node is infected, skip 
            if(sum(cliqueNodes(2,:))==0) 
                g=g+1; 
                continue; 
            end 
            %so we have infected and uninfected nodes in this clique, 
            %infect as much as you can 
  
            %remove nodes from cliqueNodes that already infected other 
            %nodes 
            h=1; 
            while(h<length(cliqueNodes(1,:))) 
                if(jobDone(cliqueNodes(1,h))==1) 
                    cliqueNodes(:,h)=[]; 
                else 
                    h=h+1; 
                end 
            end 
            %how many nodes can we infect 
            infect=min(sum(cliqueNodes(2,:)==1),sum(cliqueNodes(2,:)==0)); 
            infect2=infect; 
            %infect them 
            h=1; 
            while h<length(cliqueNodes(1,:)) && infect2>0 
                if(cliqueNodes(2,h)==0) 
                    nodes(2,cliqueNodes(1,h))=1; 
                    infect2=infect2-1; 
                    %write it in the propagation 
                    propagation(a,f)=sum(nodes(2,:)); 
                end 
                h=h+1; 
            end 
            %save infectors not to infect other nodes 
            h=1; 
            while h<length(cliqueNodes(1,:)) && infect>0 
                if(cliqueNodes(2,h)==1) 
                    jobDone(cliqueNodes(1,h))=1; 
                    infect=infect-1; 
                end 
                h=h+1; 
            end 
  
            g=g+1; 
        end 
  
        f=f+1; 
    end 
  
end 
  
%arrange the data in propagation 
for(f=1:20) 
    value=propagation(f,1); 
    for(g=1:length(propagation(f,:))) 
        if(propagation(f,g)==0) 
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            propagation(f,g)=value; 
        else 
            value=propagation(f,g); 
        end 
    end 
end 
end 
  
  
propagationTime2.m 

function propagation = propagationTime2(cliques) 
%calculate the time the information arrives from one station to all 
%others, in case of broadcast, based on the cliques formed 
propagation=zeros(20,length(cliques)); 
for(a=1:20) 
    a 
    infectedNode=a; 
    nodes=zeros(2,20); 
    nodes(1,:)=[1:20]; 
    nodes(2,infectedNode)=1; 
    f=1; 
    %while we still have data and not all nodes are infected 
    while f<=length(cliques) && sum(nodes(2,:))<20 
        %if it's an empty row, continue 
        if(isempty(cliques{f,1})) 
            f=f+1; 
            continue; 
        end 
        %in each clique , if there's an infected node, instantaneously 
        %infect all others 
        nodesToBeInfected=[]; 
        g=2; 
        while(~isempty(cliques{f,g})) 
            cliqueNodes=nodes(:,cliques{f,g}); 
            %if there is an infected node, infect all others 
            if(sum(cliqueNodes(2,:))>0) 
                for(h=1:length(cliqueNodes(2,:))) 
                    nodes(2,cliqueNodes(1,h))=1; 
                    propagation(a,f)=sum(nodes(2,:)); 
                end 
            end 
            g=g+1; 
        end 
  
  
        f=f+1; 
    end 
  
end 
  
%arrange the data in propagation 
for(f=1:20) 
    value=propagation(f,1); 
    for(g=1:length(propagation(f,:))) 
        if(propagation(f,g)==0) 
            propagation(f,g)=value; 
        else 
            value=propagation(f,g); 
        end 
    end 
end 
end 
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1.7. Propagation Capacity 
Function “propagationVolume.m” and function “propagationVolume2.m”, both plot 
the propagation capacity for the peer-to-peer strategy and the broadcast strategy, 
respectively.  

Parameters:  

Cliques – refer to 1.4 for details.  

Code:  

propagationVolume.m 

%determines the no of seconds a station receives information from other 
%stations in case of no broadcasting (1 to 1 communication).  
  
%input: cliques: a cell having on the first column the seconds, and on the 
%next succesive columns the cliques that are present in that second 
  
%output: an array representing the no of seconds that that node received 
%data 
  
function volume = propagationVolume(cliques) 
volume=zeros(1,length(cliques)); 
  
f=1; 
while f<=length(cliques) 
    %if it's an empty row, continue 
    if(isempty(cliques{f,1})) 
        f=f+1; 
        continue; 
    end 
    %in each row, compute the number of communication seconds each node 
    %has. This is the no of nodes in a clique/2. All nodes of a clique 
    %that was analyzed are not analyzed in another clique of the same 
    %second 
    ignoredNodes=zeros(1,20); 
    g=2; 
    while(~isempty(cliques{f,g})) 
        notIgnored=0; 
        for(h=1:length(cliques{f,g})) 
            if(ignoredNodes(cliques{f,g}(h))==0) 
                notIgnored=notIgnored+1; 
                ignoredNodes(cliques{f,g}(h))=1; 
            end 
        end 
        volume(f)=volume(f)+floor(notIgnored/2); 
  
        g=g+1; 
    end 
  
    f=f+1; 
end 
  
end 
  
propagationVolume2.m 

function volume = propagationVolume(cliques) 
volume=zeros(1,length(cliques)); 
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f=1; 
while f<=length(cliques) 
    %if it's an empty row, continue 
    if(isempty(cliques{f,1})) 
        f=f+1; 
        continue; 
    end 
    %in each row, compute the number of communication seconds each node 
    %has. This is the no of nodes in a clique - 1. All nodes of a clique 
    %that was analyzed are not analyzed in another clique of the same 
    %second 
    ignoredNodes=zeros(1,20); 
    g=2; 
    while(~isempty(cliques{f,g})) 
        notIgnored=0; 
        for(h=1:length(cliques{f,g})) 
            if(ignoredNodes(cliques{f,g}(h))==0) 
                notIgnored=notIgnored+1; 
                ignoredNodes(cliques{f,g}(h))=1; 
            end 
        end 
        if(notIgnored>1) 
            volume(f)=volume(f)+notIgnored-1; 
        end 
  
        g=g+1; 
    end 
  
    f=f+1; 
end 
  
end 
  

1.8. Dissemination Strategies 
Functions “broadcastSimple.m”, “broadcastSearchBest.m”, “broadcastDelayed.m”, 
and “broadcastLtdTx.m” provide in a similar way the results for the different 
dissemination strategies.  

Parameters:  

Cliques – same as in 1.4.  

minUninfNodes – minimum number of infected nodes that have to be in the same 
clique to trigger an infecting broadcast 

maxTx – maximum number of transmissions per node 

Code:  

broadcastSimple.m 

function [infection,txNo] = broadcastSimple(cliques) 
infection=zeros(20,length(cliques)); 
txNo=0; 
for(f=1:20) 
    txNoPerNode=zeros(1,20); 
    f 
    %array of infection status 
    nodes=[1:20;zeros(1,20)]; 
    nodes(2,f)=1; 
    %for each second in cliques 
    g=1; 
    while g <= length(cliques) 
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        %if there's no clique in this second, continue 
        if(isempty(cliques{g,2})) 
            g=g+1; 
            continue; 
        end 
        %get the nodes that are infected 
        infNodes=nodes; 
        h=1; 
        while h <= length(infNodes(1,:)) 
            if(infNodes(2,h)==0) 
                infNodes(:,h)=[]; 
            else 
                h=h+1; 
            end 
        end 
        %randomize the order of the nodes 
        infNodes=infNodes(:,randperm(length(infNodes(1,:)))); 
        %find out how many cliques we have in this second 
        h=0; 
        while(~isempty(cliques{g,2+h})) 
            h=h+1; 
        end 
        noOfCliques=h; 
        %for each randomly picked infected node, randomly find a clique 
        %containing it and that also contains non-infected nodes.  
        for h=1:length(infNodes(1,:)) 
            %create a vector to randomly access the cliques 
            cliqueAccess=randperm(noOfCliques); 
            for k=1:length(cliqueAccess) 
                %is our selected node (infNodes(1,h)) part of this clique? 
                %and 
                %do we also have nodes that are not infected? 
                if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ... 
                        sum(nodes(2,cliques{g,1+cliqueAccess(k)})) < ... 
                            length(cliques{g,1+cliqueAccess(k)})) 
                        %infect the nodes in this clique  
                        nodes(2,cliques{g,1+cliqueAccess(k)})=1; 
                        txNo=txNo+1; 
                        
txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1; 
                        break; 
                end 
            end 
        end 
        %all nodes possible to infect in this second were infected. Save 
        %the new infected count 
        infection(f,g)=sum(nodes(2,:)); 
        g=g+1; 
    end 
    txNoPerNode; 
end 
  
%arrange the data in infection 
for(f=1:20) 
    value=infection(f,1); 
    for(g=1:length(infection(f,:))) 
        if(infection(f,g)==0) 
            infection(f,g)=value; 
        else 
            value=infection(f,g); 
        end 
    end 
end 
  
infection=sum(infection)./20; 
txNo=txNo/20 
      
broadcastSearchBest.m 
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function [infection,txNo] = broadcastSearchBest(cliques) 
infection=zeros(20,length(cliques)); 
txNo=0; 
for(f=1:20) 
    f 
    %array of infection status 
    nodes=[1:20;zeros(1,20)]; 
    nodes(2,f)=1; 
    %for each second in cliques 
    g=1; 
    while g <= length(cliques) 
        %if there's no clique in this second, continue 
        if(isempty(cliques{g,2})) 
            g=g+1; 
            continue; 
        end 
        %find out how many cliques we have in this second 
        h=0; 
        while(~isempty(cliques{g,2+h})) 
            h=h+1; 
        end 
        noOfCliques=h; 
        %get the nodes that are infected 
        infNodes=nodes; 
        h=1; 
        while h <= length(infNodes(1,:)) 
            if(infNodes(2,h)==0) 
                infNodes(:,h)=[]; 
            else 
                h=h+1; 
            end 
        end 
        %for every node in infNode, we infect its neighbours and remove it 
        while(~isempty(infNodes)) 
            %make the 2nd row of infNodes 0, because it will stand for how 
many 
            %noes this node can infect 
            infNodes(2,:)=0; 
            %for each node calculate how many nodes it would infect by 
            %broadcasting to all cliques he's a member of 
            for h=1:length(infNodes(1,:)) 
                %take every clique of this second 
                for k=2:noOfCliques+1 
                    %if the current infected node is part of this clique 
                    if(sum(cliques{g,k}==infNodes(1,h))>0) 
                        %add to infNodes the number of uninfected nodes in 
this 
                        %clique 
                        infNodes(2,h)=infNodes(2,h)+... 
                            (length(cliques{g,k})-
sum(nodes(2,cliques{g,k}))); 
                    end 
                end 
            end 
            %take the node that would infect most other nodes 
            maxInfection=max(infNodes(2,:)); 
            %if the max is 0, it means that all nodes that are infected and 
            %unanalyzed in this second cannot infect any other node. So we 
            %break the while cycle.  
            if(maxInfection==0)  
                break; 
            end 
            %else find the node that infects most other nodes 
            h=1; 
            while(infNodes(2,h)~=maxInfection) 
                h=h+1; 
            end 
            choosenNode=infNodes(1,h); 
            %remove this node from the infNodes 
            infNodes(:,h)=[]; 
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            %infect all nodes that are neighbours with this node 
            for(h=2:noOfCliques+1) 
                %if the choosen node is a member of this clique 
                if(sum(cliques{g,h}==choosenNode)>0) 
                    %infect all nodes of this clique 
                    nodes(2,cliques{g,h})=1; 
                end 
            end  
            %increment the counters 
            txNo=txNo+1; 
        end 
         
      
        %all nodes possible to infect in this second were infected. Save 
        %the new infected count 
        infection(f,g)=sum(nodes(2,:)); 
        g=g+1; 
    end 
end 
  
%arrange the data in infection 
for(f=1:20) 
    value=infection(f,1); 
    for(g=1:length(infection(f,:))) 
        if(infection(f,g)==0) 
            infection(f,g)=value; 
        else 
            value=infection(f,g); 
        end 
    end 
end 
  
infection=sum(infection)./20; 
txNo=txNo/20 
end 
 

broadcastDelayed.m 

function [infection,txNo] = broadcastDelayed(cliques,minUninfNodes) 
infection=zeros(20,length(cliques)); 
txNo=0; 
for(f=1:20) 
    txNoPerNode=zeros(1,20); 
    f 
    %array of infection status 
    nodes=[1:20;zeros(1,20)]; 
    nodes(2,f)=1; 
    %for each second in cliques 
    g=1; 
    while g <= length(cliques) 
        %if there's no clique in this second, continue 
        if(isempty(cliques{g,2})) 
            g=g+1; 
            continue; 
        end 
        %get the nodes that are infected 
        infNodes=nodes; 
        h=1; 
        while h <= length(infNodes(1,:)) 
            if(infNodes(2,h)==0) 
                infNodes(:,h)=[]; 
            else 
                h=h+1; 
            end 
        end 
        %randomize the order of the nodes 
        infNodes=infNodes(:,randperm(length(infNodes(1,:)))); 
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        %find out how many cliques we have in this second 
        h=0; 
        while(~isempty(cliques{g,2+h})) 
            h=h+1; 
        end 
        noOfCliques=h; 
        %for each randomly picked infected node, randomly find a clique 
        %containing it and that also contains non-infected nodes.  
        for h=1:length(infNodes(1,:)) 
            %create a vector to randomly access the cliques 
            cliqueAccess=randperm(noOfCliques); 
            for k=1:length(cliqueAccess) 
                %is our selected node (infNodes(1,h)) part of this clique? 
                %and 
                %do we also have more than minUninfNodes nodes that are not 
infected? 
                if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ... 
                        length(cliques{g,1+cliqueAccess(k)})-... 
                        sum(nodes(2,cliques{g,1+cliqueAccess(k)})) >= 
minUninfNodes) 
                        %infect the nodes in this clique  
                        nodes(2,cliques{g,1+cliqueAccess(k)})=1; 
                        txNo=txNo+1; 
                        
txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1; 
                        break; 
                end 
            end 
        end 
        %all nodes possible to infect in this second were infected. Save 
        %the new infected count 
        infection(f,g)=sum(nodes(2,:)); 
        g=g+1; 
    end 
    txNoPerNode; 
end 
  
%arrange the data in infection 
for(f=1:20) 
    value=infection(f,1); 
    for(g=1:length(infection(f,:))) 
        if(infection(f,g)==0) 
            infection(f,g)=value; 
        else 
            value=infection(f,g); 
        end 
    end 
end 
  
infection=sum(infection)./20; 
txNo=txNo/20 
 

broadcastLtdTx.m 

function [infection,txNo] = broadcastLtdTx(cliques,maxTx) 
infection=zeros(20,length(cliques)); 
txNo=0; 
for(f=1:20) 
    txNoPerNode=zeros(1,20); 
    f 
    %array of infection status 
    nodes=[1:20;zeros(1,20)]; 
    nodes(2,f)=1; 
    %for each second in cliques 
    g=1; 
    while g <= length(cliques) 
        %if there's no clique in this second, continue 
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        if(isempty(cliques{g,2})) 
            g=g+1; 
            continue; 
        end 
        %get the nodes that are infected 
        infNodes=nodes; 
        h=1; 
        while h <= length(infNodes(1,:)) 
            if(infNodes(2,h)==0) 
                infNodes(:,h)=[]; 
            else 
                h=h+1; 
            end 
        end 
        %from these, remove the nodes that reached their maximum txs 
        h=1; 
        while h<=length(infNodes(1,:)) 
            if(txNoPerNode(infNodes(1,h))==maxTx) 
                infNodes(:,h)=[]; 
            else 
                h=h+1; 
            end 
        end 
        %randomize the order of the nodes 
        infNodes=infNodes(:,randperm(length(infNodes(1,:)))); 
        %find out how many cliques we have in this second 
        h=0; 
        while(~isempty(cliques{g,2+h})) 
            h=h+1; 
        end 
        noOfCliques=h; 
        %for each randomly picked infected node, randomly find a clique 
        %containing it and that also contains non-infected nodes.  
        for h=1:length(infNodes(1,:)) 
            %create a vector to randomly access the cliques 
            cliqueAccess=randperm(noOfCliques); 
            for k=1:length(cliqueAccess) 
                %is our selected node (infNodes(1,h)) part of this clique? 
                %and 
                %do we also have nodes that are not infected? 
                if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ... 
                        sum(nodes(2,cliques{g,1+cliqueAccess(k)})) < ... 
                            length(cliques{g,1+cliqueAccess(k)})) 
                        %infect the nodes in this clique  
                        nodes(2,cliques{g,1+cliqueAccess(k)})=1; 
                        txNo=txNo+1; 
                        
txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1; 
                        break; 
                end 
            end 
        end 
        %all nodes possible to infect in this second were infected. Save 
        %the new infected count 
        infection(f,g)=sum(nodes(2,:)); 
        g=g+1; 
  
    end 
    txNoPerNode; 
end 
  
%arrange the data in infection 
for(f=1:20) 
    value=infection(f,1); 
    for(g=1:length(infection(f,:))) 
        if(infection(f,g)==0) 
            infection(f,g)=value; 
        else 
            value=infection(f,g); 
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        end 
    end 
end 
  
infection=sum(infection)./20; 
txNo=txNo/20 
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