

Semester Project,

September 2008 – November 2008

Student: Mihai Calin

ETH – ITET Master Studies

Advisor: Dr. Franck Legendre

Supervisor: Prof. Dr. Bernhard Plattner

Task Formulation

Opportunistic content dissemination targets the broadcasting of content to a group of
users using wireless ad hoc communications (e.g., PodNet). Previous works mainly
focused on how the content dissemination process is affected by node collaboration.
The performances [3,10] are significantly improved when nodes collaborate (i.e.,
store-and-forward).

Assuming nodes collaborate, the goal of this thesis is to (i) get insight on the mobility
dynamics to better understand how content spreads and (ii) study the benefit of node
gatherings on content dissemination. Since we target the broadcast dissemination of
content, it is straightforward to use broadcast at the link layer instead of pair-wise
connections as it has been done until now.

The work is split in the following tasks:

T1. Review work on opportunistic content dissemination (i.e., Podnet literature)

T2. Characterize mobility using real-world traces (i.e., CSG traces)

 a- Statistical and structural properties (static topology)

 b- Dynamic properties (clique evolution)

T3. Design dissemination strategies using previous findings

T4. Evaluate and compare the proposed strategys

Abstract

Opportunistic content dissemination targets the broadcasting of content to a group of
users (e.g., PodNet). Previous works mainly focused on how the content
dissemination process is affected by node collaboration. The performances are
significantly improved when nodes collaborate (i.e., store-and-forward). Assuming
nodes collaborate, our primary interest is the benefit of node gatherings on content
dissemination. Since we target the broadcast dissemination of content, it is
straightforward to use broadcast at the link layer instead of pair-wise connections as it
has been done until now. Using real-world traces collected in a research office
environment, we first characterize mobility to get more insights on how the
dissemination process can be enhanced. This is done with a static and dynamic
characterization of the topology. We study how we can take profit of gatherings (or
cliques) to perform link layer broadcasts. From our findings, we design new
broadcasting content dissemination strategies. We evaluate our solutions by replaying
traces and comparing them to the original pair-wise (link layer unicast) approach.
Results show that our approach doubles the overall capacity of the network when
multiple contents are being spread concurrently. We then study different approaches
for optimizing the broadcast content dissemination in terms of overall propagation
delay and energy expenditure. Delaying dissemination until two nodes can profit from
the broadcast lowers the total number of transmissions from 16.5 to 8.55, while
keeping a good overall propagation delay.

Table of Contents
1. Introduction .. 2

1.1. Podcasting .. 2
1.2. PodNet .. 2

2. Problem Statement... 3
2.1. Motivation.. 3
2.2. Approach ... 3

3. Related Work.. 5

4. Terminology.. 6

5. General Trace Analysis ... 7
5.1. First Approach – Node Degree .. 7

5.1.1. The Trace Data .. 7
5.1.2. Node Degree analyzes ... 8
5.1.3. Summary.. 10

5.2. Second Approach – Graphs ... 11
5.2.1. Introduction ... 11
5.2.2. Sliding Quality Window and Quality Threshold ... 11
5.2.3. Summary.. 15

6. Cluster-based Trace Analysis.. 17
6.1. Static View ... 17

6.1.1. Edge Quality Graph ... 17
6.1.2. Small World Example ... 18
6.1.3. Clique Size Distribution .. 19

6.2. Dynamic View.. 21
6.2.1. Clique Stability .. 21

6.3. Summary.. 21

7. Content Dissemination Strategies ... 23
7.1. Propagation Time.. 23

7.1.1. Insight on Dissemination Process.. 23
7.1.2. Unicast vs. Broadcast Dissemination .. 23
7.1.3. Simulation Scenario... 24

7.2. Network Capacity ... 25
7.2.1. Theoretical Considerations .. 25
7.2.2. Simulation Scenario... 25

7.3. Strategies for Broadcast Content Dissemination ... 27
7.3.1. Introduction ... 27
7.3.2. Dissemination Strategies ... 28
7.3.3. Analysis ... 29

8. Conclusions ... 33

9. Discussion and Future Work .. 34
9.1. Clique Lifetime PDF ... 34
9.1. Other Traces .. 34
9.2. Other Dissemination Strategies ... 34
9.3. Network Capacity ... 35
9.4. Transmission of Bigger Files .. 35

10. Bibliography ... 37
 Appendix I……………………………………………………………………. 38

 2

1. Introduction

1.1. Podcasting
A podcast refers to a new episode of data available for download over the internet by
users that have subscribed for it [11]. The data is usually in the form of audio or video
and can represent news bulletins, episodes of a TV-series, a personal blog entry etc.
Although the data can be available for direct downloading, the podcast distinguishes
from other means of transport by the fact that the user subscribes for a podcast and
new episodes are downloaded automatically for him when they are available. The
downloading is done by a program that is usually referred to as Podcatcher and that
runs on the subscribers device; this program requests an RSS from a well-known
address in the Internet. The obtained RSS document will point to, if existing, new
episodes of the podcast.

RSS is a family of formats that contain a summarized text and metadata like
authorship of a frequently changing work (e.g. blog entries, news etc) [12].

Podcasting was developed mainly for users of mobile devices that have no continuous
connection to the Internet. The users would subscribe to a podcast and when they
connect their mobile device to the Internet, this automatically checks and downloads
new episodes of the podcast, if any available. There is still no mechanism for the
podcast provider to push data toward the subscriber, only the latter can check for and
request new episodes.

The main advantage of podcasting represents its asynchronous nature; compared to
streaming, the content provider and the subscriber don’t have to be online at the same
time. The provider can upload a new episode to a web server and the user can
download it at a later time. Moreover, he user can save the episode for watching at a
later time than when it was downloaded.

1.2. PodNet
PodNet suggests a new way of content distribution to subscribers of podcasts.
Compared to the traditional way in which each subscriber has to be connected to the
Internet in order to check and download podcasts, podnet wirelessly implements an ad
hoc podcasting between mobile devices that decouples the sharing from Internet
based platforms. At gatherings of people, like in the bus on the way to work or at a
late party, the devices can connect in an ad hoc manner and share stored information.
If a subscriber didn’t get the chance to connect to the Internet to download the latest
podcasts, it can do so by querying mobile devices in the vicinity for the subscribed
podcasts.

 3

2. Problem Statement
2.1. Motivation

The current implementation of PodNet is disseminating content on a peer-to-peer
base. This means two devices first establish a communication link to each other and
then send the content over this link. Doing this in a wireless scenario raises more
problems than in a wired one, because of the shared communication medium. The
setup of a wireless link for the communication is a big time consumer and this
represents a problem in the case of high mobility networks, where connections have
to be switched quickly.

Being in a wireless environment could be also used in our favor. Because each
transmission is actually a broadcast, we could use that in order to send the information
not only to one partner, but to every station that is in the wireless range. Using this
approach we could disseminate content into a network much faster, especially if the
station population is very dense. Not only could the overall propagation delay fall but
the energy used to propagate the data might be lower on the whole network and also
the network capacity could increase.

Understanding the advantages and disadvantages of both dissemination strategies will
help us find the right tradeoff for the communication parameters to make the system
more robust and also to increase performance in terms of energy expenditure, overall
propagation delay and network capacity.

The goal of this thesis is to analyze and quantify the benefits obtained from
implementing broadcast data dissemination instead of the actual unicast (peer-to-peer)
dissemination. The properties of networks will be analyzed and how they influence
the benefits generated by broadcast dissemination. Also we plan to improve the
standard broadcast dissemination strategy in order to obtain a good tradeoff between
the energy expenditure and overall propagation delay.

2.2. Approach
For analyzing the network properties and study their influence on the broadcast
content dissemination scenario, we will use data from real-world mobility traces that
were collected at ETH Zurich as part of the Semester Project of Jörg Wagner [5].
Nineteen people were asked to wear mobile devices the whole day for a week. Each
device would then record the presence of other devices in its wireless range; the
connection logs of the devices are the starting point of the analysis since they allow us
to read which stations, where and for how long were connected. This traces are
replayed over and over again with different parameters giving us a better insight in
data propagation in a real environment. For more details, refer to 4.1.1.The Trace
Data.

The analysis sets off by looking at the nodes in the network and their properties. The
average node degree will give a good insight about the size of groups that usually
form in our network. We are interested in gatherings of nodes, since here broadcast is
expected to be more effective than unicast. More about this in chapter 4.1.First
Approach – Node Degree. Other questions we are interested in are: how many times
we can talk about gathering of nodes and how long do they last on average? Are the
groups of nodes mainly stable or do the members change continuously? How often do

 4

nodes travel from one gathering to the other and thereby propagate the information to
other groups of nodes? To find answers to these questions, we need to compute the
connections between the nodes not only as node degrees but also as edges in a graph.
This allows us to dynamically analyze the mobility of the nodes in the graph. Also
when talking about connections between two nodes, the duration of a connection and
its quality are essential. Threshold values for the quality will be analyzed and applied
to filter the edges of the graph. More about this in chapter 4.2.Second Approach –
Graphs.

To better understand the properties of the network formed by the traces, we will
compute the cliques present in the network in every second. The identification of and
grouping by cliques seems to simplify the broadcast approach since all nodes that
belong to a clique can use broadcast to reliably transfer information to the clique
members. Also characteristic problems of wireless communications are diminished
through this approach, like the hidden node problem. As information can be
propagated to all nodes of a clique in one hop, cliques can be regarded as entities (or
as single nodes) and the problem of content dissemination reduces to propagating the
information to the clique itself instead of each node.

We will analyze the cliques from both, a static and a dynamic point of view. From the
static point of view, we will see what groups of nodes are mainly connected and can
be seen as unities. From the dynamic point of view, we can extract information about
the PDF of the cliques and use this information to propose improving dissemination
strategies. Also the consistency of cliques in time will be analyzed showing, mainly
giving an insight in the mobility character of the analyzed trace and how this
influences the obtained simulation results. These results are presented in 5.Cluster-
based Trace Analysis.

When the parameters of the network are known, direct simulations by replaying the
traces for different dissemination strategies will give us results that we can
numerically interpret to compare the unicast to the broadcast approach. In chapter
6.1.Propagation Time and chapter 6.2.Network Capacity, we will be able to analyze
the propagation time and the network capacity of both unicast and broadcast
dissemination strategies simulated on the same traces and hence to directly compare
the two approaches.

After analyzing the benefits and faults of unicast and broadcast, dissemination
strategies have to be developed that take advantage of the findings and show how to
approach the node gatherings in order to have a positive effect on the propagation
parameters (overall delay, energy expenditure). This is done in chapter 6.3.Strategies
for Broadcast Content Dissemination. By limiting the maximum number of
transmissions or delaying transmissions until some requirements are fulfilled, we will
try to find the right balance between overall propagation delay and energy
expenditure.

 5

3. Related Work

The topic covered in this paper is building upon results already presented in other
papers in the field of wireless ad hoc podcasting, while enhancing these results
through a new approach – that of broadcast communication between mobile devices.

A starting point of the wireless ad hoc podcasting is [2] and presents protocols for
substituting the client-server paradigm with a peer-to-peer paradigm where mobile
nodes provide each other with contents. Also possibilities of caching and distribution
strategies among the nodes participating in the communication are presented and
analyzed.

The paper [1] is a degree project that analyzes the principles of podcasting and creates
a substituting system based on peer-to-peer communication, rather than on the client-
server architecture, present in traditional podcasting scenarios. A device-independent
C++ software carries out the peer-to-peer synchronization and message exchange
between two neighboring devices. Also a series of tests were run providing future
researches with data gathered in a real life research-office environment. The data is
also used to analyze and simulate the broadcast data communication in this current
paper.

The problem of broadcast in a network can be addressed in terms of cliques in a
graph. Finding maximum cliques in a graph can be a time consuming task, because
there is no better solution than backtracking. Paper [4] presents an interesting
approach of a backtracking algorithm with an early cut of useless branches for
computing maximum cliques in a graph.

Based on real-world mobility traces, [3] analyzes different dissemination strategies
comparing cooperative versus non-cooperative behavior of nodes for storing and/or
forwarding content. In particular, it evaluates how the performance is impacted by
mobility. The main outcome is that node collaboration drastically increases the
performances of content dissemination while the per-device overhead (or load) is very
low and remains on average evenly distributed. [10] models the different
dissemination strategies of [3] using analytical stochastic models (Markov chains)
that agree with the empirical results obtained by replaying the traces.

 6

4. Terminology

Some terms in the paper tend to be ambiguous; a short explanation of the most used
concepts seems in place.

Definition 1 – Station: refers to a mobile phone, ipod, palm or other device with
wireless networking capabilities, able to transmit, receive, store and play any
information that is transmitted through podcasting. The term “node” is also used as
representing a mobile device, but always in connection with a graph.

Definition 2 – Beacon: is the small data package used to create the real life traces. It is
emitted by each mobile device twice per second and all neighboring devices that are
in the wireless range receive it.

Definition 3 – Connection: is a wireless connection between two mobile devices, in
which each device can “hear” the other one. When talking about graphs, it will be
referred to as edge.

Definition 4 – Node: is physically the same as a station; is used in connection to
graphs in order to keep the graphs terminology consistent.

Definition 5 – Clique: is a maximal complete sub graph (MCS) of a graph, meaning
nodes that form a fully connected graph within another graph and has a maximal size.

Definition 6 – Edge: is also referred to as connection in the early stages of the
analysis; represents a possible two-way communication between two nodes of a
graph.

Definition 7 - Not infected: nodes that didn’t yet receive the information that is
currently broadcasted through the network

Definitioin 8 – Infected: nodes that have received the information that is currently
broadcasted through the network

 7

5. General Trace Analysis
5.1. First Approach – Node Degree

In the sequel of this work, our analysis relies on mobility traces that were captured by
Jörg Wagner during his SA [5]. We deal in this chapter with the raw data of the
beacons received from other stations. We cannot yet talk about edges and graphs
because we don’t have enough information about the interaction between the stations.
So for now we only have stations with connections between them.

5.1.1. The Trace Data
In the Related Work chapter we have talked about live traces that are to be analyzed
to provide information about broadcasting benefits. In order to understand how to
decode this data, let’s see how it came to it in the first place.

We use real-world mobility traces that we collected at ETH Zurich. These traces are
then replayed in a simulator developed by Jörg Wagner. The setup used to collect
these traces consists of 20 HP iPAQs probing their neighborhood every half a second
using their integrated IEEE 802.11b chipset operated in ad hoc mode. Nineteen test
users were asked to to carry the devices during five consecutive working days
(Monday-Friday from 11am to 5pm). The test users were researchers, staff members,
and students of a networking research lab, all working on the same floor having a size
of 100 meters x 30 meters. The map in Figure 5.1 – Devices Location shows the users'
desks. The test users were instructed to carry the iPAQs with them throughout the
day. A majority of the test users were researchers and spent most of the time at their
desks. The users became mobile mainly due to lunch and coffee breaks, for going to
the rest room, picking up printouts in the hallway, or meeting each other for
discussions. Only few test users occasionally left the building or the campus for a
limited period.

Figure 5.1 – Devices Location

 8

In order to have reliable data, we first strip the communication done data until 10 AM
and after 17 PM.

5.1.2. Node Degree analyzes

5.1.2.1. Instantaneous Node Degree
To evaluate the stationary regime (if any) of the traces, the
minimum/maximum/average node degree is plotted in Figure 5.2.

Figure 5.2 – Instantaneous Node Degree

It represents the number of beacons each station receives in a certain second during
the five days in which the activity was tracked. Red is the average over all stations,
light gray the maximum over all stations and dark gray the minimum over all stations.

The two following events are notable: on Friday, we can see that the maximum node
degree drops heavily. This shows that no device “hears” beacons from more than two
different stations.

On Wednesday noon, we can see that the minimum node degree rises above zero,
meaning that all devices receive a minimum of three beacons from different stations.
This part of the trace can be interpreted as a meeting of the people carrying the
devices.

5.1.2.2. Averaged Node Degree
Based on the instantaneous node degree presented in 4.1.2.1, the averaged node
degree represents the average node degree of each second in a day. Hence Figure 5.3
shows us the same data plotted in Figure 5.2, but averaged/maximized also over the
five days.

 9

Figure 5.3 – Averaged Node Degree

The plot shows that the node degree is mainly stationary during the day.

For the maximum values (light gray) we can notice the formation of lines at the
values of 7, 8, 9 etc connections. These appear due to the way this plot was obtained:
it’s the maximum value of a certain second, over all nodes and over all five days. The
question would then be why we also have non-integer values? It’s because the plots
were softened with a window of 10 seconds to avoid scattering.

From the plot we can approximate the average node degree to about 3.5. We will see
that this result will be somehow consistent across all measurements of the paper.

5.1.2.3. Node Degree PDF
The PDF of the Node Degree is plotted in Figure 5.4. It shows the PDF in red,
averaged over all devices, and also the max/min of the PDFs of all nodes.

 10

Figure 5.4 – Node Degree PDF

Regardless of the zero values, the PDF reaches a maximum value for node degrees of
3 and 4, proving our assumption from the previous plot.

Also important to note is that the minimum PDF over all devices for node degrees of
4 and 5 is no smaller than approx. 5 meaning that each node has a node degree of 4 or
5 at least 5% of the time.

An explanation for this behavior could be found if we refer to figure 1.1. We an see
that because of the arrangement in the offices, usually groups of 4 to 5 stations are
near to each other, having the possibility to “hear” each other. Having this
explanation, we could also try to interpret it as the nodes not having much mobility.
We will get back to the mobility later on.

5.1.3. Summary
The first section, entitled “First Approach”, mainly deals with the edge degree of the
Graph. It is a first approach, because in the next section we will start over and look at
the connections between our nodes as edges of a graph and not as undirected
connections between pair of nodes. We will continue to use the graphs approach in
further analyzes because of the numerous algorithms already developed for analyzing
graphs. Also Clusters will be introduced in a future section, that are based on graphs.

The results of the first approach will serve as comparison for the results we will
obtain in the next sections. By plotting the instantaneous node degrees for both the
whole week and also averaged over one day we have shown that the node degree of
the graph is mainly stationary.

 11

The most important finding of this section is the average node degree of 3.5. The
bottleneck discussed in subsection 4.1.2.3 also shows that each node has a node
degree of 4 or 5 at least 5% of the time. This result was interpreted as relying on the
arrangement of the stations in offices, usually in groups of 4 or 5.

In the next section we will approach the analysis of the network from graph
perspective. The connections between the nodes will become undirected edges and
parameters for edge computation will be analyzed and optimized.

5.2. Second Approach – Graphs

5.2.1. Introduction
The first approach served to get a quick overview of the traces and the data we are
dealing with. We have seen the node degree is 3.5 on average, which leads to the
assumption that we can compute a connected graph, also with node degree of 3.5.

In the first approach we only analyzed the node degree by the number of received
beacons, but never traced the beacons back to see if it’s an undirected communication.
We also missed a metric for the connection quality such that we can filter faulty
connections through a threshold. All in all we can say that the values are rather
statistical.

In the second approach, we plan to look at the stations as nodes of a connected
graph and to compute the edges based on an undirected communication between the
nodes. Hence we will check in the log of two stations to see if both received the
beacon send by the other and if yes, we will assume the stations are connected. Also a
quality second-based metric will be applied to the edges (explained next). Having the
quality metric, we can easily apply a sliding quality window and a threshold for weak
edges.

5.2.2. Sliding Quality Window and Quality Threshold

5.2.2.1. Link Quality Metric
The quality metric we want to apply is based on the number of beacons that are sent
and received in a second. Remember that each node transmits two beacons per second
to all nodes in its wireless range. So if we have an edge between two nodes, we
calculate the quality of this edge with the following formula:

Basically, if in one second each of the two nodes we’re looking at receives two
beacons from the other node, the quality of the connection is 1.

We have no guarantee that this quality metric is accurate. One station receiving a
number of beacons sent by another stations doesn’t mean sending more data over the
link will also work. But because our traces only report the number of sent and
received beacons, we can only rely on this metric and hope it is different from the
reality by a factor.

Based on this quality metric, we also implement a sliding quality window that
averages the quality of an edge over several seconds. The ideal length of the window
will be discussed next.

 12

5.2.2.2. Sliding Quality window
The sliding quality window computes the quality of the connection in one second as
an average of the qualities of several seconds. This way, short or mainly faulty
connections are suppressed and only strong, long lasting connections are promoted.

If in an ideal environment, we want to consider connections between people walking
by each other, we could make the sliding window 6 seconds and the threshold of 0.5.
This means that the quality of an edge in a second is averaged from the quality of the
same edge in 6 surrounding seconds and we only keep edges having a quality higher
than 0.5.

5.2.2.3. Impact of Quality Window Length
Figure 5.5 shows the impact of different sliding quality windows – for 3, 5 and 7
seconds. It plots the number of edges currently in the graph for each second in the five
days of measurement.

Figure 5.5 – Number of Edges for small Quality Windows

We can see that the impact of the three window durations is rather low; only on
Monday afternoon we see a notable difference between durations 3 and 7 of approx. 5
edges.

The outcome of this test can be interpreted as following: our graph has not a very high
mobility, hence windows of 3 and 7 seconds don’t have a big impact on the number of
edges. On Monday afternoon on the other hand, we can talk about a higher mobility,
where the difference between durations of 3 and 7 is about 10% of the edges.

Running the simulation with higher values for the duration confirms that the graph
has certain mobility, seen for values of eg. 25 seconds. Figure 5.6 shows the impact of

On Monday afternoon we have a
notable difference between the different
node degrees  high mobility

Different window lengths
have little impact on the
number of edges.

 13

sliding window durations 4, 11, 18 and 25 as the number of edges in each second of
Monday and Tuesday, the first two days of the experiment.

Figure 5.6 – Number of Edges for large Quality Windows

On Monday afternoon we again see the big edge difference among the values of the
sliding window, whilst in the rest of the period we see a small difference. The sliding
window length of 25 making a difference to the one of 4 proves that our graph is
sensitive to different sliding window sizes, but the mobility is so low that connections
last usually over 24 seconds.

The special case of Monday afternoon shows us that there is a logarithmic difference
between the edges for values of 4, 11, 18 and 25. Hence, Monday represents a high
mobility state of our setup.

Based on the obtained plots, choosing a sliding window size of 5 seconds seems
appropriate for both the low and high mobility characteristics of our graph.
Furthermore, Monday has both low and high mobility character, so it will be used in
our further analyses rather than the data over the whole week.

5.2.2.4. Impact of Quality Threshold
The quality threshold represents a threshold for the averaged quality values in each
second. Figure 5.7 shows the total number of edges in each second on Monday for
different threshold values (0.5, 0.6, 0.7, 0.8, 0.9).

Plot shows same
characteristics as Figure 5.5
– Number of Edges for
small Quality Windows

 14

Figure 5.7 – Number of Edges for different Quality Thresholds

Obviously, the differences are more pronounced in the case of high mobility (Monday
afternoon) than in the case of low mobility (Monday morning). But a general
tendency is for the plots to center around the value of 0.67, from which the spread is
logarithmically in both ways.

Based on this observation, we choose an ideal quality threshold of 0.67 for our next
computations; the value is not high allowing a lot of edges to appear, but also over the
average of 0.5.

5.2.2.5. Edge Quality
Some interesting results can be obtained by plotting the connection between two
specified nodes. The blue curves are the actual connection qualities between the two
nodes, whilst the green curves are smoothed values such that a tendency can be seen.

After recalling the geographic position of the nodes (Figure 5.1) we can see that
Figure 5.8 Edge between 11 and 17shows nodes (11 and 17) that were together in the
same office. On Tuesday these nodes were not connected at all, while on the other
days we have casual connections.

Figure 5.9 - Edge between 11 and 9 shows the contact between two nodes belonging
to different offices, but separated by only two walls and a short distance.

Figure 5.10 - Edge between 11 and 19 shows the contact between two nodes very far
apart in our layout. The very few connections are distributed over the 5 days and are
mainly very short. Only on Wednesday we can talk about a connection long enough to
have a data transfer under real conditions (green line also rises above 0).

 15

Figure 5.8 Edge between 11 and 17

Figure 5.9 - Edge between 11 and 9

Figure 5.10 - Edge between 11 and 19

5.2.3. Summary
In this section we discussed the interpretation of the network as a graph. The
connections between the nodes were computed as undirected edges of a graph. Also a
quality metric was introduced for each edge of the graph such that faulty edges can be
dropped from the analysis by applying a threshold.

The use of sliding windows helps eliminating very short connections and also helps
identify the quality of alternating connections. A good choice for the sliding window

11 and 17 show long connections of a
good quality  low mobility graph

11 and 9 show only few but long and
strong connections during the week.

11 and 19 show very few connections during
the week. Only on Wednesday the connection
is strong enough to enable a data transfer
under real conditions

 16

length was proved to be 5 seconds. Also connection quality threshold was considered
when computing the edges and experiments show that a threshold of 0.67 is a good
choice for accepting or dropping a possible edge.

The setup of this section also demonstrates that our traces have a rather low mobility,
excepting the Monday afternoon when it rises.

In the next section we will use the obtained results to compute the static and dynamic
edges of the graph. By static, a stationary regime is referred where all edges are taken
and examined, regardless of time. In the dynamic approach, the edges of each second
will be analyzed.

 17

6. Cluster-based Trace Analysis
6.1. Static View

First we are going to analyze the graph from a static point of view, followed by the
dynamic analysis. The static point of view neglects the time evolution of the graph,
watching and analyzing all edges in the same time. It’s useful for PDF and frequent
cliques computation in the graph.

6.1.1. Edge Quality Graph
Having computed the edges of the graph we can now easily represent the edge quality
(Figure 6.1).

Figure 6.1 – PDF of all edges

Weak edges are marked with yellow and strong ones with red. Weak and strong only
refers to how often this edge is present in our graph (meaning the number of seconds
this edge is present to the total number of analyzed seconds) analyzed on the data
from Monday. The graph can also be referred to as the edge PDF, because each edge
is colorized by the probability that the specific edge is present at any chosen time
instant.

Node 12 has an awkward behavior: it has very strong connections to the nodes in the
lower right part of the graph, but not to its neighbors. Because this is the case for all
of the edges starting in 12, we believe that node 12’s position is plotted wrong and it
was rather in the same office with 19 or 14.

Node 6 has no strong connection to any other node (but for 12), but has a very high
node degree. It is connected to most nodes of our graph.

We can see that we have week edges between the lower right and the upper left of our
graph – the main edges between these two clusters would be 10-19, 16-13 and 18-5,
18-15.

 18

6.1.2. Small World Example
Having the PDF of all edges in our graph, we can go further and cut down the edges
based on a strength threshold. A small-world network is a type of mathematical graph
in which most nodes are not neighbors of one another, but most nodes can be reached
from every other by a small number of hops or steps [6]. In Figure 6.2 we see the
cliques computed with only those edges that are present in the graph more than half of
the time.

Figure 6.2 – Cliques Present more than half of the Time

 19

Although the number of computed cliques is 6, we can see that the upper cliques
(green, blue, orange and red) mainly have the same nodes as members; they differ
mostly by one node. This is why we could say we have a single clique involving all
nodes, but not fully connected (missing one or two edges).

Figure 6.3 – Cliques present more than 0.75 of the Time

In this case, only the lower clique is present, but in the same situation as the upper
clique in Figure 6.2 – meaning we again have overlapping cliques and we could talk
about only one clique, not fully connected (missing one edge).

It’s clear now that the nodes 12 actual position is rather near to nodes 19, 1 etc and
not in the same office with 7, because it was connected to nodes 19, 1, 5, 13 more
than 75% of the time.

6.1.3. Clique Size Distribution
We continued the analysis by plotting the clique size distribution – Figure 6.4.

 20

Figure 6.4 – Clique Size Distribution

Although the title suggests it is the PDF of the clique size, it’s actually the PDF of the
size of the clique that holds a node.

This example is going to illustrate it better: if we take a random node, with a
probability of 0.325 it will be a member of a clique of size three. With probability of
0.28 a member of a clique of size two and so on.

If the real clique size distribution were to be represented, the number of cliques of
size two would be greater than that of cliques of size three and so on. The proof can
be expressed as an example: let’s consider the case in which we have 12 nodes with
equal probability of being in a 2-node or a 6-node clique. That means that half of the
nodes will be in a 6-node clique, and the other half in two-node cliques. That gives us
one 6-nodes clique and three 2-node cliques. So the probability of having 2-node
cliques is three times greater than the one of having 6-node cliques.

Cliques of size one were not considered in this graph because of their trivial state –
they have only one member so they don’t have all the properties of a clique.

We can see here the concordance to our first results: we were talking about an average
node degree of 3.5. Starting from that data, that was computing directed edges, we
filtered data by computing the undirected edges. We filtered some more by applying
the quality sliding window and the threshold value of 0.67 and we ended up with
nodes being in cliques with two other nodes (on average). The obtained value of 3
nodes in a clique is a decent value considering the filtering done.

At this point we can already say that broadcast is going to help the communication in
our graph, let’s just evaluate to what extend. From here we will go further and analyze
the graph from the dynamic point of view, starting with the clique stability.

 21

6.2. Dynamic View

6.2.1. Clique Stability
Clique stability is basically the way a clique evolves in time. Figure 6.5 shows the
stability of the clique formed by nodes 2, 3 and 15.

Figure 6.5 – Evolution of the Clique [2 3 15] over one Hour

The plot represents the evolution of this data for one hour from 11AM to 12PM on
Monday. The analyzed nodes (in this case 2, 3, 15) can themselves form a clique of
three nodes or can be contained inside a bigger clique. The ContainedNodes (orange
line) shows the number of analyzed nodes that are currently in a clique. Sometimes all
three are in a clique, but other times only two of them are in the same clique. In the
latter case, we only look at the two that are in the same clique and state the
ContainingClique Size. This ContainingClique Size (gray line) shows the size of the
clique currently holding the analyzed nodes. This can be greater than three if the
analyzed nodes together with other nodes form a clique.

We can see that the average stability time for the nodes in this clique is approx. 100
seconds. This means that once each 100 seconds one of the nodes leaves or rejoins the
original clique. Assuming our time to transmit the data to be 1 second, 100 seconds
characterizes the graph as having a low mobility.

6.3. Summary
In this section we have analyzed the static and the dynamic view of the graph defined
by the edges between the nodes. In the static view, the edge PDF was elaborated
giving us an insight in the communication of the graph. We have seen that the most
communication happens between nodes in the same offices and interoffice
communication is rare. Also we saw that there are usually two groups of nodes that
generate fully or almost fully connected subgraphs (cliques): these are the upper ones
and lower ones, as presented in Figure 6.1 – PDF of all edges.

 22

The computed clique size distribution shows a theoretically very important
measurement. It shows that with the highest probability, a node will appear in a clique
of 3 nodes. This result is in concordance with the result presented in 4.1.2.3, where
the average node degree was proved to be 3.5. After removing directed connections
(one way communication channels), sporadic edges (by applying the sliding window)
and low quality ones (by applying the threshold filter) and ending up having an
probabilistic clique size of 3 is a positive feedback.

The evolution of a clique has also been discussed in this section and the results were
presented in Figure 6.5 – Evolution of the Clique [2 3 15] over one Hour. This states
that a clique is mostly stable for an average of 100 seconds. If we look at a maximal
data transmission time of 1 second, we can again characterize the system as having a
low mobility.

The clique size distribution and the evolution of a clique are important parameters in
determining the theoretical improvements of broadcast content dissemination. The
next section proves in a theoretical approach why we shouldn’t expect a lower
propagation delay of broadcast dissemination vs. unicast dissemination but rather an
increase of the network capacity – with a factor depending on the average clique size
(in our case the factor is two).

The next section will present the experimentally obtained propagation time and
network capacity, which will match the theoretical ones.

 23

7. Content Dissemination Strategies
7.1. Propagation Time

7.1.1. Insight on Dissemination Process
If we analyze the problem theoretically, a graph having a high or low mobility would
profit differently from the broadcast data transmission. Let’s see why.

If we consider a high mobility graph, we can think that in the first second a node
sends data to all other nodes that can hear it. Because the mobility is high, in the next
seconds, all nodes that received the data in the first second are sending it to other
nodes they came across in this second, and these are ideally totally different nodes
than the neighbors of the first second. In contrast to this broadcasting approach,
consider the peer-to-peer connection. In the first second, the first node transmits data
to only another node. In the next second two nodes transmit data to other two nodes.
The overall propagation delay is much higher than in the case of broadcasting,
especially if the average clique size is big.

Let’s consider a low mobility graph. In the first second a node sends data through
broadcast to all nodes that can hear him. In the second second all nodes have the
information, but are still there and not transmitting it to anyone else. Only after a
while the nodes that have the information come across other nodes and transfer the
information to those. The propagation time is slower than in the previous example,
and taken to the extreme case it’s as fast as the case without broadcasting. In the peer-
to-peer case, a clique stays connected very long, so there’s enough time to transmit
the data to all nodes in a peer-to-peer manner.

From these theoretical considerations we can draw the conclusion that broadcasting
lowers the overall propagation delay only if we are in a high mobility graph.
Otherwise there is not much of a difference to the peer-to-peer scenario. Since we
characterized our graph as having a low mobility, we will see if the theoretical results
mirror in the simulation results.

7.1.2. Unicast vs. Broadcast Dissemination
In the case of peer-to-peer (unicast) communication, one node is assumed to have the
information that will be spread throughout the network. The information quantity is
such that it is fully transmittable in a frame of one second. In the peer-to-peer strategy
each node tries to transmit the data to a neighboring node that doesn’t already have it.
This generates a somehow cascade flow of the data in the network.

In the case of broadcast communication, again a node is assumed to have the
information at start. In each second, each node that has the information picks a
random clique he’s a member of and that contain nodes that didn’t yet receive the
data. It then broadcasts the data to all the nodes belonging to this clique. A node can
be a member of several cliques (e.g. Node 19 in Figure 6.3 – Cliques present more
than 0.75 of the Time – he is both a member of the green and purple cliques) so one
clique is randomly chosen.

 24

7.1.3. Simulation Scenario
In this setup we consider two dissemination strategies: peer-to-peer (unicast) and
broadcast. These strategies are simulated over the traces described in 4.1 for the time
window Monday.

If we run the propagation time as a comparison between the broadcast and the peer-
to-peer strategies, we obtain the results in Figure 7.1 and Figure 7.2. The plots
represent the propagation time averaged over 20 runs with a different initial content
provider in each run and only for the traces of Monday.

Figure 7.1 – Propagation Time for Broadcast and Peer-to-Peer Strategies

 25

Figure 7.2 – Propagation Time for Broadcast and Peer-to-Peer Strategies – Detail

As we can see in Figure 7.2, that is basically just a zoomed version of Figure 7.1, the
effect of broadcasting is rather modest. There is an increase in propagation time, but
not to the extent that would justify the implementation.

We can see a relatively high propagation at start until approx 16 nodes are infected in
the graph. Only later between 13.00 and 14.00 the propagation continues and all
nodes get infected. An explanation for this behavior could be the fact that the people
wearing the devices meet at lunch break and so help propagating the content to nodes
barely reachable before.

At this point it has to be said that from an intuitive point of view this rather modest
progress has an explanation in the mobility of the graph. In the case of high mobility,
we could imagine to have much better results with broadcast rather than with peer-to-
peer strategies.

7.2. Network Capacity

7.2.1. Theoretical Considerations
We have already seen that the average clique size is 3 nodes. Let’s briefly think of the
case in which data travels through the graph. In the case of cliques of size 3, one
source node always transmits data to two other nodes in the same time instance, in the
case of broadcasting, whilst in the case of peer-to-peer, a node transmits only to
another node at a time hence half of the dissemination rate. These being the
theoretical results, we can see that Figure 7.3 confirms the results through the
simulation over our graph.

7.2.2. Simulation Scenario
Again we compare the results of a peer-to-peer and a broadcast dissemination
strategies, this time from the propagation capacity point of view. For both strategies, a
random node in the graph is considered to have enough buffered information, such

 26

that it doesn’t run out of content that waits to be sent out. Hence, we consider that
there is always content to be disseminated.

In the case of peer-to-peer communication, each node transmits data to the
neighboring nodes that don’t already have the information. When all neighbors
received the information, a node proceeds to sending the next chunk. Inside a clique
the data transmission is done cascade like in sequential seconds.

In the case of broadcast communication, a node searches for the biggest clique he’s a
member of and that contain nodes that didn’t jet receive the information. It sends the
information to all nodes of the clique, even to those already having it, through
broadcasting. When all cliques a node is member of received the information, the
node proceeds to sending the next chunk of data.

Assuming n nodes in a clique and a channel capacity C, we can say the amount of
data that is transferred is C in the unicast case and (n-1)C in the broadcast case. We
can also represent these considerations by comparing the unicast case with a perfect
time division multiplexing scheme such that the capacity is shared between the n-
modulo(n,2) nodes with a possible modulo(n,2) idle node. For the broadcast case, the
full capacity is used and all nodes receive C such that the total amount of data
transferred is (n-1). Hence, the capacity ratio of broadcast vs. unicast is [(n-1)C]/C =
(n-1). If we apply the numerical evaluation to our case, then we have to look at the
average clique size, which is around three (Figure 6.4 – Clique Size Distribution),
which gives us a doubling of the dissemination capacity. In terms of energy
expenditure, these formulas also apply i.e., we have (n-1) transmissions with the
broadcast case vs n transmissions in the unicast case. Given that the unicast case
requires N-1 transmissions in total to spread the content to the all network, we could
expect less required transmissions in the broadcast case. Further analysis of this issue
is out of the scope of this thesis and is discussed in the Discussion Section.

In both cases, we measure the quantity of information that is transmitted in each
second through the network

 27

Figure 7.3 – Propagation Capacity for Broadcast and Peer-to-Peer Strategies

7.3. Strategies for Broadcast Content Dissemination

7.3.1. Introduction
Chapter 7 has shown that broadcast is a better choice than peer-to-peer
communication especially from the network capacity (and energy expediture) point of
view. Also, although it has not been pointed out, the nature of the wireless
broadcasting of transmitting information to all communication partners using the
same amount of energy encourages us to look closer at this possibility and to analyze
further advantages that can be obtained through different dissemination strategies.

First we will show the simple way of broadcasting information in the network, based
on random transmissions to random cliques. Next we are going to compute the best
solution for propagating the content in our network; it’s an unrealistic approach since
global knowledge is needed to search for the best way to transmit information in each
second, but it will give us a good upper bound for comparing the other strategies.
Next we will use the idea of limiting the number of transmissions of each node. This
should help us lower the number of average transmissions by, hopefully, keeping the
overall propagation delay constant. The last approach, which will also yield the most
interesting results, will be to postpone the transmission of data until a certain number
of nodes are in the vicinity that would profit from the information.

To the concepts used in this chapter, some notes have to be made. The terms of
infected and not infected will appear more often, because of their simple way of
explaining the concept we are dealing with. If we see the information as a disease that
travels from a node to another one, at any moment of time we can break the nodes
into two groups: infected and not infected, simply meaning nodes that have already

 28

received the information (infected) and others that didn’t (not infected). As soon as a
not infected node comes in the range of an infected one (and the latter transmits it’s
information to the first one) we can say that the first node becomes infected, meaning
it now also has the information and can potentially transmit it to other not infected
nodes.

7.3.2. Dissemination Strategies

7.3.2.1. Simple Dissimination
This approach is the most easily to realize in terms of implementation at node-level.
Each infected node transmits the information to one of the cliques he’s a member of
and that contain uninfected nodes. The choosing of the clique is done randomly but if
an infected node is a member of at least one clique that contains uninfected nodes, it
will get the chance to transmit the information. Recall that a node can be a member of
more than one clique (see Figure 6.3 – Cliques present more than 0.75 of the Time:
node 19 is both a member of the purple and the green cliques).

While broadcasting in a real network, infected stations concurrently transmit
information to the uninfected nodes in their vicinity. In order to avoid data collisions,
the infected nodes first synchronize to the nodes that they will infect, setting the
communication parameters. On our traces we cannot simulate the concurrency
because of the software limitations, so a sequential algorithm is used instead. In the
case of the Simple Dissemination, the order in which the nodes transmit is chosen
randomly while in the case of the Best Search Dissemination the order is computed
through a greedy algorithm to maximize the infected nodes and minimize the number
of transmissions.

For more information, see the Appendix.

7.3.2.2. Search Best Dissemination
In the Search Best approach broadcasting the data in the network relies on global
knowledge and can therefore be considered unrealistic for propagation scenarios. In
each second, all nodes are analyzed and the best transmission order is chosen to
assure a maximum spread of the information per number of broadcast transmissions.

In more clear terms, in each second the node is searched that can infect most other
nodes with a broadcast transmission. These nodes are infected and the next best node
is chosen to transmit. This goes on until no node can infect any other nodes. Also we
assume that one node can not only infect nodes of one clique with one broadcast, but
can infect all nodes of the cliques he’s a member of with only one broadcast. This is a
realistic approach as long as we consider longer synchronization times between the
nodes of the different cliques (longer synchronization times = avoiding the hidden
terminal problem).

For more information, see the Appendix.

7.3.2.3. Limited Transmissions Dissemination
We have seen that in the case of peer-to-peer communication, nodes improve the
tradeoff between overall propagation delay and number of transmissions by limiting
the maximal number of transmissions per node. It is interesting to see if we have the
same case in the broadcast scenario. This idea also forces an even distribution of the
number of transmissions per node (global fairness).

 29

The main goal is to lower the number of overall transmissions since more nodes are
forced to transmit information and also these new nodes might have more optimal
conditions for broadcasting. On the other side, a node could have the opportunity for
an optimal broadcast but has already reached the maximum number of transmissions.
In this case, the optimal state would be wasted.

For more information, see the Appendix.

7.3.2.4. Delayed Transmission Dissemination
The Delayed Transmission Dissemination relies on the simple fact that broadcasting
to a low number of nodes wastes energy. If we delay one nodes transmission until that
node has at least a certain number of uninfected neighbors, we can propagate the
information with a lower number of transmissions. On the downside, waiting for
several nodes to join until a transmission is done, rises the overall propagation delay.

The tradeoff between overall propagation delay and number of transmissions is what
we are interested in. Also this strategy could be used only at the beginning, when the
most resources are used for suboptimal information dissemination. After a while, the
network could switch to using another dissemination strategy, probably more suitable
for the last phase of the propagation, such that an overall good overall propagation
delay is reached.

7.3.3. Analysis

7.3.3.1. Simple vs Search Best Disseminations
Figure 7.4 - Simple vs Best Search Overall propagation delay shows the overall
propagation delay for the simple dissemination strategy compared to the overall
propagation delay of the best search approach.

 30

Figure 7.4 - Simple vs Best Search Overall propagation delay

Both strategies have an identical overall propagation delay. Although the Search Best
strategy searches for the best propagation in each second, compared to the Simple
strategy that just randomly chooses the propagation in each second, the speeds are
identical. This is because of the low mobility of the graph, which allows for complete
propagating each new setup of the nodes.

The average number of transmissions however yields a difference. While the Simple
strategy achieves the propagation with an average number of transmissions of 16.5,
the Search Best strategy does it with 15.7 Transmissions on average. This result
shows that the Simple strategy works almost as good as the Search Best strategy
(recall the latter is not possible in a realistic scenario because of the generally
unavailable global information).

Compared to the peer-to-peer communication this would mean we have a big
decrease in transmissions number, from 19 (recall that the network has n=20 nodes
and N-1 unicast communications are required to disseminate content in the network
given one node as a source) transmissions necessary in the case of peer-to-peer
communication to infect all nodes, to only 16.5 in the case of the simplest broadcast
strategy.

7.3.3.2. Limited Transmissions vs Search Best Disseminations
Figure 7.5 - Overall propagation delay for Limited Transmissions (1,2,3) vs Search
Best shows the overall propagation delay for the cases of limited transmissions. Gray
plots the case of the Search Best strategy as a comparison.

Identical Propagation Speed
for Simple and Search Best
Dissemination strategies

Avg Transmissions No:

SearchBest – 15.7

Simple – 16.5

 31

Figure 7.5 - Overall propagation delay for Limited Transmissions (1,2,3) vs Search Best

We can see that in the case of transmissions limited to 1, the overall propagation
delay slightly drops under the optimum (search best) while for the cases with 2 and 3
transmissions per node, there is no difference between the overall propagation delays
and the optimal overall propagation delay.

From the average number of transmissions point of view, we can see that the case of
limitation to 1 transmission yields the best result out of the three. 16.05 transmissions
on average to propagate the information are also better than in the Simple strategy.

The rise of the average number of transmissions to 16.85 and the fall again to 16.4 in
the case of limitations to 2 and 3 transmissions shows it is suboptimal to increase the
maximum allowed number of transmissions, but a high number can take advantage of
some optimal broadcasting situations rising up.

In [10] we had a clear decrease of the performances with k=1. In this case the
decrease seems lower and a possible explanation could be that in a clique it is not
important which node sends infects all other nodes of the clique, as long as one does
it.

Similar results have been shown for the unicast case both empirically (using the same
traces) and analytically (using a CTMC) in [10].

7.3.3.3. Delayed Transmissions vs Search Best Disseminations
Figure 7.6 - Delayed Transmissions vs Search Best Overall propagation delays shows
the overall propagation delay in case of a Delayed strategy. This delays the broadcast
of information until the number of uninfected neighbors that would profit from it
reaches a certain number.

Avg Transmissions No:

SearchBest – 15.7

Limited Transmissions
1/2/3 – 16.05/16.85/16.4

Maximum one transmission per node
slightly decreases the propagation
speed but delivers lower transmission
power (only 16.05 transmissions
needed)

 32

Figure 7.6 - Delayed Transmissions vs Search Best Overall propagation delays

As we can see from the graph, the overall propagation delay is highly influenced by
the number of awaited uninfected neighbors. If this number is two and we only
broadcast if we have at least two not infected neighbors, the overall propagation delay
is only slightly higher than the one of the Search Best strategy. If the awaited
uninfected nodes number rises to 4, the differences rise exponentially.

Another notable aspect is that while using this strategy, the information will not or
only in special cases disseminate to the whole network. Hence, if this is a necessary
condition for the dissemination, this strategy won’t fulfill it. We can also consider
changing the strategy if the number of infected nodes passes over a certain percentage
of the total number. This however requires synchronization and extra communication
between the nodes.

A very interesting aspect of this approach is the average number of transmissions
achieved. For the case of delayed 2, we have an average number of transmissions of
8.5, which is almost half of the one in the Search Best, of course at comparable
overall propagation delays. Not to forget this is a tradeoff for never having a complete
dissemination in the network.

Avg Transmissions No:

SearchBest – 15.7

Delayed 2/3/4 – 8.55/5.65/3.1

For the tradeoff of having a slightly
lower propagation speed and never
completely propagating the
information through the entire
network, we can halften the spent
dissemination energy, or even better.

 33

8. Conclusions
We set off analyzing real life data captured in a research-office environment during
one week. Data was made off the beacons send by each device twice per second in a
broadcasting manner and received by the ones that could hear it.

First analyses only looked at the node degree and the average node degree of 3.5
proved to be consistent along the further more complex simulations. The second
approach introduced a measurement for the quality of each edge in the network,
allowing us to drop faulty connections based on a threshold. Important insight
information was provided through the static analyzes of the graph, where the most
common cliques were identified and analyzed.

The last step was to make a direct comparison between the two implementations: with
or without broadcasting.

The results have shown that for the traces we have analyzed, the broadcasting
scenario didn’t bring significant improvement to the overall propagation delay, but
doubled the capacity of our network for concurrent spreading of content. Another
main conclusion we arrived to, mainly sustained by the theoretical analyzes of the
different propagation scenarios, is that the graphs mobility and its clique size
distribution is mainly responsible for the benefits of broadcast compared to the
normal peer-to-peer data propagation. In a graph with high mobility and high average
clique size, the broadcast method is the desired one, while in a low-mobility, low
average clique size graph the peer-to-peer can also be considered, based mainly on
it’s simplicity in terms of connection protocols.

In most of the scenarios however, broadcast communication is superior to the peer-to-
peer data propagation, either in terms of propagation time or network capacity for
concurrent information spreading, or both.

For further improving the broadcast scenario, different dissemination strategies were
analyzed. For comparing them, we computed the best propagation time achievable on
our traces together with the needed transmissions number in order to disseminate in
the whole network.

By running simulations, we have proven a plain, random based, broadcasting similar
in results as the computed best propagation. Also we have shown that applying the
strategy of limiting the number of transmissions per node doesn’t help much either he
overall propagation delay or the number of transmissions.

The best results were obtained by a dissemination strategy that delays the broadcast
until a certain number of the neighbors could profit from the broadcast. For the
tradeoff of having a slightly higher overall propagation delay and never completely
propagating the information through the entire network, we can lower the spent
dissemination energy from 16.5 to 8.55 transmissions, or even lower if we consider
longer overall propagation delays.

 34

9. Discussion and Future Work
9.1. Clique Lifetime PDF

The clique lifetime PDF would be a very interesting insight in the characterization of
the network. It could also be used to implement different dissemination strategies (as
discussed in 8.1).

The cliques of each second were computed as part of this paper and the results show
tables containing the cliques present in each second. To analyze the lifetime of each
clique, one should take this clique and search for it in every second in order to count
the appearances. To have the lifetime PDF of our graph, this has to be computed for
all possible cliques. Having 20 nodes, combinable in number of 2, 3, 4… 20 nodes per
clique, makes this task computationally difficult. Other approaches should be
explored in order to compute the PDF easy enough to use it in ad-hoc networks.

9.1. Other Traces
Throughout the paper we have come to the conclusion that the used traces have a
mainly stationary character. Some of the results (e.g. the small difference between the
Best Search and Simple content dissemination strategies) were also traced back to this
property of the network. Also our traces are limited to 20 nodes; sometimes this limit
doesn’t provide enough granularity to the results.

In order to prove some of the findings and possible come up with new ideas on how to
improve dissemination strategies, other traces can also be used (eg. MIT Traces [9])
that use a larger number of nodes.

9.2. Other Dissemination Strategies
As we have seen, the dissemination strategy that delays the content dissemination
until a certain number of neighbors can use the broadcasted information proved to be
a very effective method of propagating the information because of it’s overall
propagation delay that was only slightly higher than that of the best case and because
of it very low energy expenditure (half of the best case). The major downside of this
approach is however that not all nodes in the network are guaranteed to receive the
information. To avoid this, another strategy (possibly the Simple Dissemination
Strategy) can be used after a certain threshold has been reached in time or in
propagation percentage.

Also another approach would be to read a node’s profile, that is to know it’s own
node distribution, and the delay that is applied to each node should depend on the
node distribution of the respective node. There is no point for a node to wait until it
has four nodes in his vicinity, if his PDF shows that he usually has only two.

A reliable broadcast scheme can use local recovery benefiting from other clique
members to re-send unreceived packets because of wireless channel errors as done in
[14]. Another solution is to use a network coding approach as explained in [13].

The time was not enough to fully address this approach but the first steps show
promising results.

 35

9.3. Network Capacity
In this paper we have talked about a capacity increase from the unicast to the
broadcast case. In order to scientifically characterize the capacity of the network in
both cases also theoretical limits have to be taken into account and compared ([7] and
[8]).

9.4. Transmission of Bigger Files
In all simulations, only content that can be transmitted in one time unit has been
analized. One can argue that this can be achieved by using UWB USB, yet using the
current 802.11 technology, the transfer time might take longer. Hence a simulation
that also considers longer packages has to be run and the results compared to the
current results for all proposed dissemination strategies.

 37

10. Bibliography

[1] Clemens Wacha – Wireless Ad Hoc Podcasting with Handhelds (Diplomarbeit)

[2] Vincent Lenders, Gunnar Karlsson, Martin May – Wireless Ad Hoc Podcasting

[3] Franck Legendre, Vincent Lenders, Martin May, Gunnar Karlsson –
Narrowcasting: An Empirical Performation Evaluation Study

[4] Coen Bron, Joep Kerbosch – Algorithm 457 – Finding all Cliques of an
Undirected Graph (H) – 1971 Technological University Eindhoven

[5] Jörg Wagner – SA: Analysis of Dynamics in Mobile Ad-Hoc Networks –
September 2005

[6] Watts, Duncan J.; Strogatz, Steven H. (June 1998) - Collective dynamics of 'small-
world' networks - Nature 393: 440–442. doi:10.1038/30918

[7] J. Li, C. Blake, D. S.J. De Couto, H.I. Lee, and R. Morris - Capacity of ad hoc
wireless networks - Proceedings of ACM Mobicom 2001

[8] K. Jain, J. Padhye, V. Padmanabhan and Lili Qiu - Impact of Interference on
Multi-Hop Wireless Network Performance - Proceedings of ACM Mobicom 2003

[9] MIT Reality Mining Traces, http://crawdad.cs.dartmouth.edu/

[10] Olafur Ragnar Helgason, Franck Legendre, Vincent Lenders, Martin May and
Gunnar Karlsson - Performance of Opportunistic Content Distribution - Submitted to
Infocom'09

[11] Wikipedia – Podcasting - http://en.wikipedia.org/wiki/Podcasting

[12] Wikipedia – RSS - http://en.wikipedia.org/wiki/Rss

[13] S. Deb, M. Effros, T. Ho, D. R. Karger, R. Koetter, D. S. Lun, M. Medard, and
N. Ratnakar - Network coding for wireless applications: A brief tutorial - in Proc.
International Workshop on Wireless Ad-hoc Networks, London, UK, May 2005.

[14] Majid Ghaderi, Don Towsley and Jim Kurose - Reliability Gain of Network
Coding in Lossy - Wireless Networks, Infocom'08 mini-conference.

 1

Appendix I

1. How to reobtain the Plots
1.1. Impact of Quality Window Length

Function “connStatusByDurationAndThreshold.m” plots the status of the connection
for the different duration and threshold parameters.

Parameters:

Data – Has to be data in the form of a table having on the first column a
uniqueSecond (the second in which the other columns are valid), on the second
column a connID (the id of the connection between two stations in the second
mentioned by the first column) and on the third column a beaconID (the id of the
communication between the two nodes in this second). The last column is not needed
for any further use. The second column contains the connectionID between the
stations. From this, the stations have to be recoverable. Furthermore, a certain sort
must be applied to the number of the stations in the connectionID, first stating the
smaller station and then the greater one.(eg. Conn 5 – 11 = 0511; Conn 11-5 = 0511;
Conn 7 – 6 = 0607; Conn 11 – 14 = 1114 etc). In each second, we have to have 4
connections between two stations in order to talk about a 100% connection. (eg. For
stations 5 and 11, we need 2 connections from 5 to 11 and 2 connections from 11 to
5).

DURATION – Is a value or an array containing the duration of the sliding window
that will be applied to the data. If it is an array, it has to have the same length as
THRES

THRES – the threshold of the connections. All connections with a threshold smaller
than this value will be filtered out.

Code:

%function returns no of connections in each second, respecting the duration
%and threshold.
%THRES has to be specified as a real value between [0,1];
%the first col in data (seconds) has to start with 0,1...

function countRow = connStatusByDurationAndThreshold(data,DURATION,THRES)
 %first create the quality col for the duration
 data=linksAndQuality(data,DURATION);
 %now filter by keeping everything which has a quality higher than the
 %threshold
 data=filterRows(data,4,'>',THRES);
 %now count the no of connections in each second
 countRow=zeros(1,length(data));
 for(f=1:length(data))
 countRow(1,(data(f,1)+1))=countRow(1,(data(f,1)+1))+1;
 end
 %crop the countRow vector to the no of seconds we have data for
 countRow=countRow(1:(max(data(:,1))+1));

end

 2

1.2. Impact of Quality Threshold
Graph obtained through the same function as 1.1.

1.3. Edge Quality
Function “plotConnQuality.m” plots the quality of a connection between two nodes.

Parameters:

Data – refer to 1.1.

connID – the ID of the connection to be plotted. To find out more about the format of
the ID, refer to 1.1.

connDuration – the duration of the sliding window. To find out more, refer to 1.1.

Code:

%function plots the connection quality in time of a connection between two
%certain devices (specified by the connID). Quality averaged over
%connDuration seconds

%the data argument is a table having the cols: second,conn,quality

function data = plotConnQuality(data,connID,connDuration)
 data=filterRows(data,2,'=',connID);
 data=linksAndQuality(data,connDuration);
 %create a seconds array representing all seconds of the transmitted
 %data
 seconds=zeros(length(data),1);
 for(f=1:length(data))
 seconds((data(f,1)+1),1)=data(f,4);
 end
 seconds = [seconds(:),smoothen(seconds(:),1,60)];
 plot(seconds);

end

1.4. Clique Size Distribution
Function “cliqueSizeDistribution.m” plots the probability that a random node appears
in a clique of a certain size.

Parameters:

Cliques – a cell table having on the first column the second in which the cliques are
present. On the next columns, if available each column contains an array with the
elemens that form a clique. There are so many cells filled as many cliques there are in
this second.

Nodes – number of nodes in the graph.

Code:

%input: cliques: a cell table having on the first column the second and on
%the next columns arrays representing a clique that is present in that
%second
%nodes: number of nodes in the graph

%output: an normalized array representing the pdf of the clique size

 3

function result = cliqueSizeDistribution(cliques,nodes)
 result=zeros(1,nodes);
 for(f=1:length(cliques))
 %if this row has no cliques, skip it
 if(isempty(cliques{f,1}))
 continue;
 end
 g=2;
 while(~isempty(cliques{f,g}))
 result(length(cliques{f,g}))=result(length(cliques{f,g}))+1;
 g=g+1;
 end
 end
 %normalize
 resSum=sum(result);
 for(f=1:length(result))
 result(f)=result(f)/resSum;
 end
 result=result(2:7);
 plot(result);
end

1.5. Clique Stability
Function “plotCiqueEvolution.m” plots the evolution of a clique regarding the
number of original elements that are part of the clique in time.

Parameters:

Data – same as “cliques” of 1.4

Clique – an array containing the elements of the clique that is to analyze.

Code:

% input:
% data: a table having: on the first col the current second. On the next
% cols the cliques present in that second. The table cells that contain no
% clique are empty
% clique: the clique to search for in each second

% output: function plots and returns two functions:
% ContainingCliqueSize: the size of the clique that contains most of the
% elements of the specified clique
% NodesContained: no of nodes from the provided clique that appear in the
% selected clique

function [ccs, nc] = plotCliqueEvolution(data,clique)
 ccs = zeros(1,length(data));
 nc = zeros(1,length(data));
 %the position in data of the maximal clique
 position = zeros(1,length(data));
 for(f=1:length(data))
 %if this row has no values, skip it
 if(isempty(data{f,1}))
 continue;
 end
 %in each clique of this second search for the nodes of the provided
 %clique and take the biggest that contains most of our nodes
 appearancesMax=0;
 lengthMax=0;
 posOfClique=0;
 g=2;
 while(~isempty(data{f,g}))
 appearances = 0;
 %for every node in the provided clique

 4

 for(h=1:length(clique))
 %check if it appears in the selected (g) clique
 appearances = appearances + sum(data{f,g}==clique(h));
 end
 %now check if this is the clique that is mostly similar to the
 %provided one
 if(appearances>appearancesMax || ...
 (appearances==appearancesMax &&
length(data{f,g})>lengthMax))
 appearancesMax=appearances;
 lengthMax=length(data{f,g});
 posOfClique=g;
 end
 g=g+1;
 end
 %save the results
 ccs(f)=lengthMax;
 nc(f)=appearancesMax;
 position(f)=posOfClique;
 end
 hold('off');
 hold('all');
 myPlot=plot(ccs);
 set(myPlot(1),'DisplayName','Containing Clique Size');
 myPlot=plot(nc);
 set(myPlot(1),'DisplayName','Contained Nodes');
 xlabel('Seconds');
 ylabel('Clique Size / Nodes No');
 legend('show');
 title({'Cliques with nodes ' clique});
end

1.6. Propagation Time
Function “propagationTime.m” and function “propagationTime2.m”, both plot the
propagation time for the peer-to-peer strategy and the broadcast strategy, respectively.

Parameters:

Cliques – refer to 1.4 for details.

Code:

PropagationTime.m

function propagation = propagationTime(cliques)
%calculate the time the information arrives from one station to all
%others, in case of no broadcast, based on the cliques formed
propagation=zeros(20,length(cliques));
for(a=1:20)
 a
 infectedNode=a;
 nodes=zeros(2,20);
 nodes(1,:)=[1:20];
 nodes(2,infectedNode)=1;
 f=1;
 %while we still have data and not all nodes are infected
 while f<=length(cliques) && sum(nodes(2,:))<20
 %if it's an empty row, continue
 if(isempty(cliques{f,1}))
 f=f+1;
 continue;
 end
 %in each clique determine the infected and uninfected nodes. For

 5

 %each infected one, infect an uninfected node. A node can only
 %infect one other node.
 %the array of nodes that already infected other nodes, marked with
 %1s
 jobDone=zeros(1,20);
 g=2;
 while(~isempty(cliques{f,g}))
 cliqueNodes=nodes(:,cliques{f,g});
 %if all nodes are already infected skip
 if(sum(cliqueNodes(2,:))==length(cliqueNodes(2,:)))
 g=g+1;
 continue;
 end
 %if no node is infected, skip
 if(sum(cliqueNodes(2,:))==0)
 g=g+1;
 continue;
 end
 %so we have infected and uninfected nodes in this clique,
 %infect as much as you can

 %remove nodes from cliqueNodes that already infected other
 %nodes
 h=1;
 while(h<length(cliqueNodes(1,:)))
 if(jobDone(cliqueNodes(1,h))==1)
 cliqueNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %how many nodes can we infect
 infect=min(sum(cliqueNodes(2,:)==1),sum(cliqueNodes(2,:)==0));
 infect2=infect;
 %infect them
 h=1;
 while h<length(cliqueNodes(1,:)) && infect2>0
 if(cliqueNodes(2,h)==0)
 nodes(2,cliqueNodes(1,h))=1;
 infect2=infect2-1;
 %write it in the propagation
 propagation(a,f)=sum(nodes(2,:));
 end
 h=h+1;
 end
 %save infectors not to infect other nodes
 h=1;
 while h<length(cliqueNodes(1,:)) && infect>0
 if(cliqueNodes(2,h)==1)
 jobDone(cliqueNodes(1,h))=1;
 infect=infect-1;
 end
 h=h+1;
 end

 g=g+1;
 end

 f=f+1;
 end

end

%arrange the data in propagation
for(f=1:20)
 value=propagation(f,1);
 for(g=1:length(propagation(f,:)))
 if(propagation(f,g)==0)

 6

 propagation(f,g)=value;
 else
 value=propagation(f,g);
 end
 end
end
end

propagationTime2.m

function propagation = propagationTime2(cliques)
%calculate the time the information arrives from one station to all
%others, in case of broadcast, based on the cliques formed
propagation=zeros(20,length(cliques));
for(a=1:20)
 a
 infectedNode=a;
 nodes=zeros(2,20);
 nodes(1,:)=[1:20];
 nodes(2,infectedNode)=1;
 f=1;
 %while we still have data and not all nodes are infected
 while f<=length(cliques) && sum(nodes(2,:))<20
 %if it's an empty row, continue
 if(isempty(cliques{f,1}))
 f=f+1;
 continue;
 end
 %in each clique , if there's an infected node, instantaneously
 %infect all others
 nodesToBeInfected=[];
 g=2;
 while(~isempty(cliques{f,g}))
 cliqueNodes=nodes(:,cliques{f,g});
 %if there is an infected node, infect all others
 if(sum(cliqueNodes(2,:))>0)
 for(h=1:length(cliqueNodes(2,:)))
 nodes(2,cliqueNodes(1,h))=1;
 propagation(a,f)=sum(nodes(2,:));
 end
 end
 g=g+1;
 end

 f=f+1;
 end

end

%arrange the data in propagation
for(f=1:20)
 value=propagation(f,1);
 for(g=1:length(propagation(f,:)))
 if(propagation(f,g)==0)
 propagation(f,g)=value;
 else
 value=propagation(f,g);
 end
 end
end
end

 7

1.7. Propagation Capacity
Function “propagationVolume.m” and function “propagationVolume2.m”, both plot
the propagation capacity for the peer-to-peer strategy and the broadcast strategy,
respectively.

Parameters:

Cliques – refer to 1.4 for details.

Code:

propagationVolume.m

%determines the no of seconds a station receives information from other
%stations in case of no broadcasting (1 to 1 communication).

%input: cliques: a cell having on the first column the seconds, and on the
%next succesive columns the cliques that are present in that second

%output: an array representing the no of seconds that that node received
%data

function volume = propagationVolume(cliques)
volume=zeros(1,length(cliques));

f=1;
while f<=length(cliques)
 %if it's an empty row, continue
 if(isempty(cliques{f,1}))
 f=f+1;
 continue;
 end
 %in each row, compute the number of communication seconds each node
 %has. This is the no of nodes in a clique/2. All nodes of a clique
 %that was analyzed are not analyzed in another clique of the same
 %second
 ignoredNodes=zeros(1,20);
 g=2;
 while(~isempty(cliques{f,g}))
 notIgnored=0;
 for(h=1:length(cliques{f,g}))
 if(ignoredNodes(cliques{f,g}(h))==0)
 notIgnored=notIgnored+1;
 ignoredNodes(cliques{f,g}(h))=1;
 end
 end
 volume(f)=volume(f)+floor(notIgnored/2);

 g=g+1;
 end

 f=f+1;
end

end

propagationVolume2.m

function volume = propagationVolume(cliques)
volume=zeros(1,length(cliques));

 8

f=1;
while f<=length(cliques)
 %if it's an empty row, continue
 if(isempty(cliques{f,1}))
 f=f+1;
 continue;
 end
 %in each row, compute the number of communication seconds each node
 %has. This is the no of nodes in a clique - 1. All nodes of a clique
 %that was analyzed are not analyzed in another clique of the same
 %second
 ignoredNodes=zeros(1,20);
 g=2;
 while(~isempty(cliques{f,g}))
 notIgnored=0;
 for(h=1:length(cliques{f,g}))
 if(ignoredNodes(cliques{f,g}(h))==0)
 notIgnored=notIgnored+1;
 ignoredNodes(cliques{f,g}(h))=1;
 end
 end
 if(notIgnored>1)
 volume(f)=volume(f)+notIgnored-1;
 end

 g=g+1;
 end

 f=f+1;
end

end

1.8. Dissemination Strategies
Functions “broadcastSimple.m”, “broadcastSearchBest.m”, “broadcastDelayed.m”,
and “broadcastLtdTx.m” provide in a similar way the results for the different
dissemination strategies.

Parameters:

Cliques – same as in 1.4.

minUninfNodes – minimum number of infected nodes that have to be in the same
clique to trigger an infecting broadcast

maxTx – maximum number of transmissions per node

Code:

broadcastSimple.m

function [infection,txNo] = broadcastSimple(cliques)
infection=zeros(20,length(cliques));
txNo=0;
for(f=1:20)
 txNoPerNode=zeros(1,20);
 f
 %array of infection status
 nodes=[1:20;zeros(1,20)];
 nodes(2,f)=1;
 %for each second in cliques
 g=1;
 while g <= length(cliques)

 9

 %if there's no clique in this second, continue
 if(isempty(cliques{g,2}))
 g=g+1;
 continue;
 end
 %get the nodes that are infected
 infNodes=nodes;
 h=1;
 while h <= length(infNodes(1,:))
 if(infNodes(2,h)==0)
 infNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %randomize the order of the nodes
 infNodes=infNodes(:,randperm(length(infNodes(1,:))));
 %find out how many cliques we have in this second
 h=0;
 while(~isempty(cliques{g,2+h}))
 h=h+1;
 end
 noOfCliques=h;
 %for each randomly picked infected node, randomly find a clique
 %containing it and that also contains non-infected nodes.
 for h=1:length(infNodes(1,:))
 %create a vector to randomly access the cliques
 cliqueAccess=randperm(noOfCliques);
 for k=1:length(cliqueAccess)
 %is our selected node (infNodes(1,h)) part of this clique?
 %and
 %do we also have nodes that are not infected?
 if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ...
 sum(nodes(2,cliques{g,1+cliqueAccess(k)})) < ...
 length(cliques{g,1+cliqueAccess(k)}))
 %infect the nodes in this clique
 nodes(2,cliques{g,1+cliqueAccess(k)})=1;
 txNo=txNo+1;

txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1;
 break;
 end
 end
 end
 %all nodes possible to infect in this second were infected. Save
 %the new infected count
 infection(f,g)=sum(nodes(2,:));
 g=g+1;
 end
 txNoPerNode;
end

%arrange the data in infection
for(f=1:20)
 value=infection(f,1);
 for(g=1:length(infection(f,:)))
 if(infection(f,g)==0)
 infection(f,g)=value;
 else
 value=infection(f,g);
 end
 end
end

infection=sum(infection)./20;
txNo=txNo/20

broadcastSearchBest.m

 10

function [infection,txNo] = broadcastSearchBest(cliques)
infection=zeros(20,length(cliques));
txNo=0;
for(f=1:20)
 f
 %array of infection status
 nodes=[1:20;zeros(1,20)];
 nodes(2,f)=1;
 %for each second in cliques
 g=1;
 while g <= length(cliques)
 %if there's no clique in this second, continue
 if(isempty(cliques{g,2}))
 g=g+1;
 continue;
 end
 %find out how many cliques we have in this second
 h=0;
 while(~isempty(cliques{g,2+h}))
 h=h+1;
 end
 noOfCliques=h;
 %get the nodes that are infected
 infNodes=nodes;
 h=1;
 while h <= length(infNodes(1,:))
 if(infNodes(2,h)==0)
 infNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %for every node in infNode, we infect its neighbours and remove it
 while(~isempty(infNodes))
 %make the 2nd row of infNodes 0, because it will stand for how
many
 %noes this node can infect
 infNodes(2,:)=0;
 %for each node calculate how many nodes it would infect by
 %broadcasting to all cliques he's a member of
 for h=1:length(infNodes(1,:))
 %take every clique of this second
 for k=2:noOfCliques+1
 %if the current infected node is part of this clique
 if(sum(cliques{g,k}==infNodes(1,h))>0)
 %add to infNodes the number of uninfected nodes in
this
 %clique
 infNodes(2,h)=infNodes(2,h)+...
 (length(cliques{g,k})-
sum(nodes(2,cliques{g,k})));
 end
 end
 end
 %take the node that would infect most other nodes
 maxInfection=max(infNodes(2,:));
 %if the max is 0, it means that all nodes that are infected and
 %unanalyzed in this second cannot infect any other node. So we
 %break the while cycle.
 if(maxInfection==0)
 break;
 end
 %else find the node that infects most other nodes
 h=1;
 while(infNodes(2,h)~=maxInfection)
 h=h+1;
 end
 choosenNode=infNodes(1,h);
 %remove this node from the infNodes
 infNodes(:,h)=[];

 11

 %infect all nodes that are neighbours with this node
 for(h=2:noOfCliques+1)
 %if the choosen node is a member of this clique
 if(sum(cliques{g,h}==choosenNode)>0)
 %infect all nodes of this clique
 nodes(2,cliques{g,h})=1;
 end
 end
 %increment the counters
 txNo=txNo+1;
 end

 %all nodes possible to infect in this second were infected. Save
 %the new infected count
 infection(f,g)=sum(nodes(2,:));
 g=g+1;
 end
end

%arrange the data in infection
for(f=1:20)
 value=infection(f,1);
 for(g=1:length(infection(f,:)))
 if(infection(f,g)==0)
 infection(f,g)=value;
 else
 value=infection(f,g);
 end
 end
end

infection=sum(infection)./20;
txNo=txNo/20
end

broadcastDelayed.m

function [infection,txNo] = broadcastDelayed(cliques,minUninfNodes)
infection=zeros(20,length(cliques));
txNo=0;
for(f=1:20)
 txNoPerNode=zeros(1,20);
 f
 %array of infection status
 nodes=[1:20;zeros(1,20)];
 nodes(2,f)=1;
 %for each second in cliques
 g=1;
 while g <= length(cliques)
 %if there's no clique in this second, continue
 if(isempty(cliques{g,2}))
 g=g+1;
 continue;
 end
 %get the nodes that are infected
 infNodes=nodes;
 h=1;
 while h <= length(infNodes(1,:))
 if(infNodes(2,h)==0)
 infNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %randomize the order of the nodes
 infNodes=infNodes(:,randperm(length(infNodes(1,:))));

 12

 %find out how many cliques we have in this second
 h=0;
 while(~isempty(cliques{g,2+h}))
 h=h+1;
 end
 noOfCliques=h;
 %for each randomly picked infected node, randomly find a clique
 %containing it and that also contains non-infected nodes.
 for h=1:length(infNodes(1,:))
 %create a vector to randomly access the cliques
 cliqueAccess=randperm(noOfCliques);
 for k=1:length(cliqueAccess)
 %is our selected node (infNodes(1,h)) part of this clique?
 %and
 %do we also have more than minUninfNodes nodes that are not
infected?
 if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ...
 length(cliques{g,1+cliqueAccess(k)})-...
 sum(nodes(2,cliques{g,1+cliqueAccess(k)})) >=
minUninfNodes)
 %infect the nodes in this clique
 nodes(2,cliques{g,1+cliqueAccess(k)})=1;
 txNo=txNo+1;

txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1;
 break;
 end
 end
 end
 %all nodes possible to infect in this second were infected. Save
 %the new infected count
 infection(f,g)=sum(nodes(2,:));
 g=g+1;
 end
 txNoPerNode;
end

%arrange the data in infection
for(f=1:20)
 value=infection(f,1);
 for(g=1:length(infection(f,:)))
 if(infection(f,g)==0)
 infection(f,g)=value;
 else
 value=infection(f,g);
 end
 end
end

infection=sum(infection)./20;
txNo=txNo/20

broadcastLtdTx.m

function [infection,txNo] = broadcastLtdTx(cliques,maxTx)
infection=zeros(20,length(cliques));
txNo=0;
for(f=1:20)
 txNoPerNode=zeros(1,20);
 f
 %array of infection status
 nodes=[1:20;zeros(1,20)];
 nodes(2,f)=1;
 %for each second in cliques
 g=1;
 while g <= length(cliques)
 %if there's no clique in this second, continue

 13

 if(isempty(cliques{g,2}))
 g=g+1;
 continue;
 end
 %get the nodes that are infected
 infNodes=nodes;
 h=1;
 while h <= length(infNodes(1,:))
 if(infNodes(2,h)==0)
 infNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %from these, remove the nodes that reached their maximum txs
 h=1;
 while h<=length(infNodes(1,:))
 if(txNoPerNode(infNodes(1,h))==maxTx)
 infNodes(:,h)=[];
 else
 h=h+1;
 end
 end
 %randomize the order of the nodes
 infNodes=infNodes(:,randperm(length(infNodes(1,:))));
 %find out how many cliques we have in this second
 h=0;
 while(~isempty(cliques{g,2+h}))
 h=h+1;
 end
 noOfCliques=h;
 %for each randomly picked infected node, randomly find a clique
 %containing it and that also contains non-infected nodes.
 for h=1:length(infNodes(1,:))
 %create a vector to randomly access the cliques
 cliqueAccess=randperm(noOfCliques);
 for k=1:length(cliqueAccess)
 %is our selected node (infNodes(1,h)) part of this clique?
 %and
 %do we also have nodes that are not infected?
 if(sum(cliques{g,1+cliqueAccess(k)}==infNodes(1,h))>0 && ...
 sum(nodes(2,cliques{g,1+cliqueAccess(k)})) < ...
 length(cliques{g,1+cliqueAccess(k)}))
 %infect the nodes in this clique
 nodes(2,cliques{g,1+cliqueAccess(k)})=1;
 txNo=txNo+1;

txNoPerNode(1,infNodes(1,h))=txNoPerNode(1,infNodes(1,h))+1;
 break;
 end
 end
 end
 %all nodes possible to infect in this second were infected. Save
 %the new infected count
 infection(f,g)=sum(nodes(2,:));
 g=g+1;

 end
 txNoPerNode;
end

%arrange the data in infection
for(f=1:20)
 value=infection(f,1);
 for(g=1:length(infection(f,:)))
 if(infection(f,g)==0)
 infection(f,g)=value;
 else
 value=infection(f,g);

 14

 end
 end
end

infection=sum(infection)./20;
txNo=txNo/20

	report_v3
	Appendix I

