

Lego Mindstorms
NXT Camera
Semester thesis by Leo den Hartog

1. Advisor: Wolfgang Haid
2. Advisor: Matthias Woehrle

Professor: Prof. Dr. Lothar Thiele

8/31/2008

2

Lego Mindstorms NXT Camera 3

Abstract

In this semester thesis, an embedded camera is integrated into the
Lego Mindstorms set. Two different cameras are evaluated and the
CMUCam3 is chosen. The camera is connected to the Lego
Mindstorms NXT through a self-made connection board. A
communication protocol is established and implemented on the
different interfaces. The system as a whole is evaluated through a
prototype robot, which was programmed to recognize one or two
balls of specific colors. All requirements are met and the system
described in this semester thesis is fully functional.

4

Lego Mindstorms NXT Camera 5

Contents

1. Introduction .. 7

1.1. Overview .. 7

1.2. Goals .. 8

1.3. Requirements .. 8

1.4. Related work ... 8

2. System Overview ... 9

2.1. Lego Mindstorms background .. 9

2.2. Lego Mindstorms NXT brick ... 10

2.3. Connection board and communication protocol .. 10

2.4. Camera .. 11

2.5. Conclusion ... 11

3. Evaluation of Cameras .. 13

3.1. CMUCam3 ... 14

3.2. LeanXcam .. 15

3.3. Decision ... 15

4. Implementation ... 17

4.1. Components .. 17

4.1.1. Connection board ... 17

4.1.2. Communication protocol .. 17

4.1.3. Image processing ... 18

4.2. Facts ... 19

4.2.1. I2C Protocol ... 19

4.2.2. RS-232 Protocol ... 19

4.2.3. NXT – I2C ... 20

4.2.4. PIC – I2C .. 22

4.2.5. PIC – RS-232 .. 25

4.2.6. CMUCam3 – RS-232 ... 27

4.2.7. CMUCam3 – Image processing ... 28

4.3. Implementation ... 29

4.3.1. Connection board ... 29

6

4.3.2. Communication protocol .. 30

4.4. Debugging ... 31

5. Evaluation ... 33

5.1. Object recognition .. 34

5.1.1. Implementation ... 34

5.1.2. Problems and Conclusion ... 35

5.2. Evaluation – Move to red ball ... 36

5.3. Evaluation – Distinguish red and blue ball ... 36

6. Conclusion .. 37

6.1. Future Work ... 37

7. Appendix ... 39

A. Code ... 39

A.1. CMUCam3 firmware .. 39

A.2. Connection board firmware... 42

A.3. NXT Evaluation – Move to red ball .. 47

A.4. NXT Evaluation – Distinguish red and blue ball .. 50

B. Assignment ... 53

8. References .. 59

Lego Mindstorms NXT Camera 7

1. Introduction

For several years, the Computer Engineering and Network Laboratory at the ETH has
been working with students on building and programming small robots using the Lego
Mindstorms set. Several projects have been realized on the system [1], but they were
always limited due to the lack of a camera. Although there exists an ultrasound sensor for
distance measurements and a simple light sensor that can detect differences in
brightness, a camera with image processing functionalities has not been implemented.
The main idea of this semester thesis is to integrate a third-party camera into the Lego
Mindstorms set in a way that it can be used in the same way as the existing sensors. This
would greatly improve the potential of the existing set for future projects.
The reason to choose this semester thesis is that it included all aspects from a hardware
implementation up to the very interesting topic of computer vision. After years of
theoretical courses it felt right to complete a practical project from the design concept all
the way to the final implementation and deployment.

1.1. Overview

This semester thesis is about integrating a commercial, embedded camera into the Lego
Mindstorms set. For this, a connection board was built to enable the camera to
communicate with the NXT, the Lego Mindstorms Processor, as shown in Fig.1. A
microcontroller on the board is used to connect the different interfaces of the NXT and
the camera and establish a simple communication protocol. Both interfaces have been
adapted in a way that the camera is implemented as a fully functional, additional sensor
to the existing set, without adding any additional constraints to the design flexibility.

Evaluation of the system has been done by enabling a robot to detect a ball with a certain
color on a white table and point the camera directly at it. For the evaluation, a library on
the camera for object recognition based on color has been implemented and the
functionality of the connection board has been fully proven. The evaluation has shown
that through solely adapting the cameras existing libraries, it is feasible to perform all
basic robotic tasks with the designed solution.

 Lego Mindstorms NXT Connection board Camera

 I2C RS-232

Figure 1: Concept

8

1.2. Goals

The goal of this semester thesis is the implementation of a camera into the Lego
Mindstorms set to enable NXT-based robots to perform object recognition. The project
should enhance the Lego Mindstorms set and implement the camera in a way that it fits
into the existing set. Further should it be possible to easily program the camera to
perform all basic image processing tasks for maximized flexibility in future projects.
According to the assignment [Appendix B], this consists of three main goals:

• Design and implementation of the hardware interface between the camera

platforms and the NXT

• Design and implementation of the software libraries for obtaining data from the
camera (both on the camera platforms and the NXT)

• Implementation of software libraries for typical tasks to be performed by the
camera when used in conjunction with the NXT

1.3. Requirements

The camera has to be implemented into the set on the same programming environment
as is used today. Additional libraries can be integrated, but no changes should be made
that narrow the present design flexibility regarding programming and use of sensors. No
additional constraints regarding power consumption should be tolerated. Sensors already
in use with the Lego Mindstorms set should not be influenced by the integration of the
camera.
It should be possible to easily program the camera, in order to be able to adapt any
existing library to the needs of a specific application. Some basic image processing tasks
should already be implemented or at least should it be feasible to integrate other libraries
into an existing camera framework.

1.4. Related work

An existing integration of a camera into the Lego Mindstorms set is the vision subsystem
[21]. It connects a preprogrammed camera to a sensor port and enables objet tracking
based on color. It would fulfill the needs for the evaluation, but because it is not feasible
to change the image processing functionalities it does not meet the requirements for
programmability.
One open-source implementation of a camera into robotics is the Surveyor SRV-1 [22]. It
applies a fully programmable camera to a small robot and controls the robot through its
own processor.

Lego Mindstorms NXT Camera 9

2. System Overview

The main task is to implement the camera into the system in a way, that further projects
can use it similar to all other sensors. Due to the limited processing power and insufficient
communication bandwidth of the I2C port on the Lego Mindstorms set, all image
processing needs to be done on the camera. Other connection possibilities, like
Bluetooth, RS485 or USB, are available on the NXT, but because I2C is the Lego
Mindstorms standard protocol for digital sensors, the camera should optimally be
connected in a similar way. This implies creating a hardware bridge from the I2C port to a
port compatible with the camera. In order to be flexible in the design of the
communication protocol, the connection board should be self-made rather than bought as
an existing solution. By adapting the interface on the camera as well as on the Lego
Mindstorms system, this hardware setup allows an implementation of a simple message
protocol through the connection board.
The different tasks of programming the interfaces as well as the firmware for the
hardware bridge are independent, which has the beneficial effect, that every subtask can
be handled and evaluated separately.

2.1. Lego Mindstorms background

Lego Mindstorms has been used at the Computer Engineering and Networks Laboratory
for several years in a PPS project for first year students. On top of that, a few semester
theses [2,3] have been written on evaluating or enhancing the existing system sold by
Lego.
The core of the Lego Mindstorms set is a programmable Lego brick called NXT, depicted
in Fig.2, which is battery powered and connects to the PC via Bluetooth or USB. It has
three ports for connecting motors and another four ports to which sensors can be
connected. The NXT can be programmed via the standard LabView software by Lego,
but due to the very open design there exist also various other programming environments
for the NXT. The PPS uses a programming language called NXC (Not eXactly C) [1],
which is a high level, C-like language for the original NXT firmware. The connection
between the PC and the NXT Brick is handled by a program called BricxCC, which also
compiles NXC programs.

Figure 2: Lego Mindstorms NXT Brick

10

In addition to the NXT, Lego sells various sensor types and motors compatible with the
NXT. All original sensors can be interfaced by LabView as well as NXC, which allows an
easy integration into the system. For further details on the sensors, the reader is referred
to a Semester Thesis by Claudia Frischknecht and Thomas Other [2].

2.2. Lego Mindstorms NXT

The NXT supports several different protocols, of which we choose I2C [23] for maximal
flexibility and most stable implementation. Another option would be the RS-485 port, but
the NXT driver of that port is not yet implemented in the NXT set. Since I2C is the Lego
Mindstorms standard protocol for communication with digital sensors, this facilitates
further work.
The software library of the NXT should be adapted in a way to allow access to the
camera with simple commands similar to using existing sensors. From the latter concern,
we conclude that the only reasonable choice for a programming platform is NXC, which is
presently used in the PPS, rather than switching the entire system to a different
programming environment. The newest version of NXC has even implemented the
standard functions for I2C communication, since it is also used by the software to
communicate with the digital ultrasonic sensor. So the communication interface on the
NXT side is a matter of initializing an I2C port and sending the packets with the
appropriate I2C -address and the right setting for the amount of bytes expected of the
answer.

2.3. Connection board and communication protocol

The connection board is used to connect the camera to the NXT and to implement a
communication protocol that can be designed independent of existing protocols. One way
to implement this hardware bridge is through the use of a microcontroller, which supports
both protocols and can be programmed to relay the packets between the two. Through
LEDs and possibly an interface that can connect to a PC, the board should be able to
offer some debugging possibilities for initial programming.
Due to hardware constraints, all image processing is done on the camera, so only a very
limited amount of data needs to be sent. Therefore the communication protocol should be
kept rather simple. The idea is to implement a protocol, that implements a basic request
and answer functionality, possibly with single byte packages. With the NXT as the core of
the system, it polls the camera for data rather than receiving a constant data stream,
which is more efficient for processed image information. Due to the I2C requirement of an
address byte, the request will consist of at least two bytes, but the microcontroller can
interpret the address byte and cut it off. This design allows for all basic tasks to be
accomplished, assuming that the library on the camera is adapted accordingly and all
communication is initiated by the NXT brick.

Lego Mindstorms NXT Camera 11

2.4. Camera

The camera should enable the Lego Mindstorms set to perform basic image processing
functionalities like object recognition. For that the camera should be easily programmable
and its image processing functions should be adaptable to the Lego Mindstorms set. A
variety of libraries should already exist on the camera, so the major task is to integrate a
communication concept in a way that is adaptable for all the libraries. All image
processing is done on the camera, so the camera should have the processing power to
perform those tasks locally. For best use in the Lego Mindstorms project, the camera
should be based on an open-source system, in order to be able to adapt all functions to
the specific environment. The transmission should be done through a protocol, which can
be implemented into the communication board. So the general implementation would
need to react to requests from the NXT by sending information, decoded into packets
according to the communication protocol.
For our evaluation task, we need a library on the camera that can recognize objects
based on color and send the coordinates of the objects to the NXT. Color tracking is
implemented in most standard graphic libraries, so it could be easily integrated into any
framework if not available by default.

2.5. Conclusion

After evaluating two different cameras, the CMUCam3 [5] and the LeanXcam [6], we
decided to use the CMUCam3, a camera developed for use in embedded systems. The
choice was made for the CMUCam3 mainly because it has several graphic libraries
already implemented. The LeanXcam [6] generally is performance-wise the superior
camera, but it lacked support for general graphics applications and it does not support an
appropriate communication protocol. The evaluation is discussed in detail in chapter 3.
In order to be able to connect the CMUCam3 to the NXT, a bridge between a RS-232
port on the camera and an I2C port on the NXT is needed. The solution was a connection
board with a PIC16F690 microcontroller at its core, which was programmed to handle the
translation between the protocols. The communication protocol between the camera and
the NXT brick was kept deliberately simple. The NXT has been adapted to send requests
to the camera, coded into one byte instructions. To interpret these packets, the software
of the CMUCam3 has been adapted to send the coordinates of recognized objects, also
in the form of one byte packages, to the NXT on request. The standard graphics library
on the CMUCam3 is able to perform all general image processing tasks. The final
implementation of the system is explained in chapter 4.
Finally, the system was evaluated through a simple robot, which was intended to
recognize one or more balls of different colors. The implementation enables color tracking
on the base of predefined RGB-colors through the adaption of an existing library for the
communication protocol. This test was designed to act as an example for the further use
of the camera as well as a measurement for the overall performance of the system, which
is discussed in chapters 5. Finally, the semester thesis is concluded in chapter 6.

12

Lego Mindstorms NXT Camera 13

3. Evaluation of Cameras

The main requirements for the cameras are the possibilities of easily programming the
camera and the feasibility of integrating it into the Lego Mindstorms system. There are of
course some constraints regarding size, power consumption and prize, which led to the
choice of the two cameras evaluated in this chapter.
The goal of this semester thesis is to integrate a camera into a robotics system, aimed at
building small to medium sized robots. This only makes sense, if the camera can operate
autonomously regarding processing as well as power. Power sources are available either
through the NXT with 4.3V or through several different battery kits ranging from 3V up to
12V. Regarding processing power, it is important to keep as much of the calculation on
the camera rather than on the NXT. The NXT’s processor is already very limited, and
there is no sense in starting time expensive image processing on it, so the camera must
be completely capable of handling the images itself.
Because none of the later cameras have the I2C protocol implemented by default, they
need to be connected through a connection board to the NXT. So for use with the Lego
Mindstorms set, the cameras need to have a port which is able to connect to a
microcontroller as discussed in the design concept of the connection board.

Camera CMUCam3 LeanXcam

Designed by Carnegie Mellon University Super Computing Systems

Operating system Individual Firmware Linux Microcontroller OS

Framework C-based, GCC C-based, GCC

Debugging Leds, RS-232, local emulation RS-232, Ethernet, JTAG

I2C (only master, Ethernet Communication RS-232, unshifted RS-232

Resolution 352x288 pixels 752x480 pixels

Frame Rate 26 fps 60 fps

Color depth 8 bit 10 bit

Processor ARM7TDMI Blackfin ADSP-BF537

RAM 64 KB 64 MB SDRAM

Power supply 6-15 V; 150 mA 4.5 V; 700 mA

Table 1: Camera comparison

14

3.1. CMUCam3

The CMUCam3 [5,8] is a low-cost, embedded camera using a complete open-source
system. It has been specifically designed for the use in small embedded systems as for
example robotics. For programming, it can be connected to a PC through a RS-232 port
and has as other ports one unshifted RS-232 (0V - 5V) and four servo ports, intended to
control motors. A direct connection with the NXT is impossible, a separate connection
board is necessary. The CMUCam3 works on 6V to 15V and needs at least 150mA,
therefore an external power supply is required for use with the NXT brick.

 Figure 3: CMUCam3 ‐ front

The CMUCam3 works on an ARM7TDMI processor with 64kb RAM and has a maximum
resolution of 352x288 pixels, the standard image processing libraries work on 176x144
pixel though. In contrast to its non-programmable predecessor, which functioned as a
preconfigured black-box with a standard interface, the CMUCam3 is designed in a
complete open-source environment, in order to be able to adapt the camera to specific
tasks. The software development framework of the camera consists of a C-based
programming environment with several libraries already implemented. The collection of
libraries includes functions such as face recognition, color tracking, free space
localization and many more, which are all extensively tested through the wide spread use
of the CMUCam3. The framework also includes tools for emulating the camera locally,
with which debugging based on previously recorded images is possible. All functions
needed for object recognition based on color are implemented in the standard graphic
library, although only at a resolution of 176x144 pixels. Still, for basic object-recognition
that resolution is sufficient.

Figure 4: CMUCam3 ‐ Sample Image

Lego Mindstorms NXT Camera 15

3.2. LeanXcam

The LeanXcam targets the same applications as the CMUCam3, but in a much more
advanced configuration [6]. It runs a fully functional Linux on a Blackfin ADSP-BF537
processor with 64 MB SDRAM, which illustrates the difference to the CMUCam3 already
quite impressively. Initial configuration of the camera is done via a RS-232 interface, but
in normal operation it is intended to use an Ethernet port. On top of that, a special
version we obtained for testing purposes is equipped with an I2C -Port working in master
mode. Since the NXT brick also runs I2C only in master mode, that interface would only
make sense with a special driver emulating a slave mode on the camera. A different
option would be to make the RS-232 port accessible under Linux. In continuous capture
mode, the LeanXcam uses up to 700mA at a voltage level of 4.5V. The NXT brick is not
able to deliver that current, so the LeanXcam has to be powered externally.

 Figure 5: LeanXcam

On the LeanXcam, a C-based framework for implementing specific functions exists. The
interface is configured through an Apache web server running on the camera and all
preprogrammed libraries operate on an html interface. Since the LeanXcam is still in a
development phase, no image processing libraries are implemented. Up to date, the only
library available downloads pictures from the camera and outputs them on a webpage.
Programming and debugging can be done in a pre-configured sandbox, which runs a
regular Linux distribution, has the compiler and framework set up and is able to emulate
all functions of the camera locally.

3.3. Decision

Programming some simple image processing functions in any C-based environment is
nowadays a pretty straightforward task, therefore the missing libraries on the LeanXcam
are not a problem. Connecting the cameras to the NXT brick is the big issue to be
considered. For the CMUCam3, a RS-232 to I2C converter is needed. This is feasible
with a PIC Microcontroller and has already been done before [8]. For the LeanXcam, on
the other hand, a complete I2C driver including a port sensing capability would have to be
implemented in order to connect the LeanXcam to the NXT brick. Thus we decided to
use the CMUCam3 for this semester thesis. It includes all necessary functions on a
simple platform that can be easily adapted to different applications.

16

Lego Mindstorms NXT Camera 17

4. Implementation

The implementation is done according to the design concept of chapter 2 as shown in
Fig.6. In section 4.1, the main components are explained, with the specific facts of the
individual implementations in section 4.2. The technical details on the connection board
and the communication protocol are in section 4.3. In section 4.4, there is a description of
the debugging environment used.

 Lego Mindstorms NXT PIC16F690 MAX232 CMUCam3

 I2C unshifted shifted

 RS-232 RS-232

Figure 6: Components

4.1. Components

4.1.1. Connection board

One main concern is the implementation of the two protocols, I2C and RS-232 on the PIC
microcontroller. On the camera and NXT side, initialization and transmitting is
implemented in the high-level programming language C, but on the PIC, all functions
need to be programmed in assembler. Further on, debugging is quite difficult on low-level
programming languages, because it has to be done on signal level rather than by a
logical debugger. The protocols are integrated on the PIC, so no analog signal decoding
is necessary, but due to several problems in the implementation, programming the
firmware for the PIC is a major task of this semester thesis.

4.1.2. Communication protocol

The main idea of the communication protocol is to keep it as simple as possible. In the
concept, the constraints for the communication protocol are defined as a basic request
and answer communication. Due to some delays in the transmission, several errors
might emerge, like packet loss and sequence errors, which are of course not handled by
the most basic version of a single byte request and answer protocol. Furthermore, there
are some issues with the need of I2C to include addresses in master-slave
communication, which need to be addressed in the microcontroller.

18

4.1.3. Image processing

Although the CMUCam3 includes several standard libraries for image processing,
integrating them into the Lego Mindstorms system is a main task. The camera was
designed to act as the core of a robotics system itself, so all information needs to be
further processed to adjust to the communication protocol. The main idea is to only send
information to the NXT brick similar to the information that would be sent from the
camera to the motors. This information needs to be processed on the camera according
to the communication protocol and the use in the specific implementation for use with the
NXT. So for the camera to be integrated, libraries would need to be modified to output
information at a different level of the processing stages of the existing libraries.

Lego Mindstorms NXT Camera 19

4.2. Facts

4.2.1. I2C Protocol

The I2C [23] uses two lines for data transmission, SDA for data and SCL as clock, and
needs a common ground level. I2C is a communication between a master and possible
many slaves. One data line (SCL) is reserved as clock, which the master controls and
keeps at high level. Every communication is initiated by the master through the clock
level, whilst sending data parallel on the other data line (SDA). Depending on the data
sent, it expects an answer and releases control of the clock. Figure 7 depicts a
transmission of a three byte package.

Figure 7 [14]: I2C Address and Data reception

4.2.2. RS-232 Protocol

The RS-232 protocol [24] is a communication protocol with a packet size of one byte.
Communication is established through two unidirectional wires and a common ground
level. One data wire is used for transmission (TX), the other for receiving (RX). A sender
keeps its TX line at a low level and initiates a communication through an initial high start
bit. The start bit is followed by 8 data bits and completed through a low stop bit, in Fig.8,
such a data packet is shown. The sampling rate is fixed at a value between 2’400 and
115’200 bits/s. The voltage levels used high and low differ between the unshifted (low: 0
V; high +5 V) and the shifted version (low: -12 to -3 V; high: +3 to + 15 V). A standard
serial connection to a PC uses shifted RS-232.

 Figure 8 [17]: RS‐232 Data packet

20

4.2.3. NXT – I2C

According to the design concept and semester thesis goals, all functionality on the NXT
brick should be integrated into the existing framework. The TIK Lego Mindstorms project
uses the NXC programming language for all of their applications, so the communication
interface should be primarily integrated into that system. The NXC language has
implemented some I2C functionality in its newest version, so the main task was to
implement an appropriate function for all communication tasks. In accordance with the
communication concept, the communication function is set up to send one request byte
and expects one byte as answer. The I2C address is hardwired into the setup, to minimize
errors.

03: #define I2C_PORT S1

08: int err;
09: byte send[] = {0x40, 0xfe};
10: byte recv[] = {1};

74: SetSensorType(I2C_PORT, SENSOR_TYPE_LOWSPEED);
75: SetSensorMode(I2C_PORT, IN_MODE_RAW);
76: ResetSensor(I2C_PORT);

Listing 1: Initialization of I2C communication:

In Listing 1, line 3 defines on what port the camera is connected, where S1 refers to input
port 1. Two variables are needed for communication, a third one is initialized for error
checking purposes (Lines 8-10). Afterwards the I2C Port is initialized and reset to be ready
for use.

20: sub sendrecvi2c (byte data)
21: {

24: send[1] = data;

26: while (I2CCheckStatus(I2C_PORT) != 0);
27: err = I2CWrite(I2C_PORT, 1, send);

29: while (I2CCheckStatus(I2C_PORT) != 0);

33: while (I2CBytesReady(I2C_PORT) < 1);
34: I2CRead(I2C_PORT, 1, recv);

38: Wait(500);
39: }

Listing 2: Communication interface

Lego Mindstorms NXT Camera 21

The communication function, shown in List.2, is called sendrecvi2c(byte data) and takes a
single byte as input. On Line 24, it writes the input into the send buffer. Afterwards it
checks if the port is ready and transmits the send buffer as soon as it is ready (Line 26-27).
Then it checks whether the buffer is cleared on the receiving end and then waits for an
answer to be transmitted to the buffer (lines 29-33). On line 34, the answer is written into
the receive buffer.
This function can be implemented into any NXT program that does not use input port 1 for
different purposes. The function is completely independent of what is actually sent. It can
be used for receiving coordinates of an object, like in the code used for the evaluation of
the whole system in chapter 5, but theoretically also for low-level commands like directions
if an application requires all calculation to be done on the camera.

22

4.2.4. PIC – I2C

On the PIC, two specific ports, RB4 and RB6, are assigned to I2C communication. They
are initialized by configuring both ports as digital output.

08: #define NODE ADDR 0x40 ; I2C address,64 decimal

27: ;Switch to Register Bank 1
28: bsf status,rp0

34: ;Set Port B0-B3 and B7 to output and B4-B6 to input
35: ;B4 and B6 used for I2C; B5 is RS-232 RX, B7 is TX
36: movlw b'01110000'
37: movwf TRISB
38: ;Switch to Register Bank 2
39: bcf status,rp0
40: bsf status,rp1
41: ;Set all ports to digital
42: movlw 0x00
43: movwf ANSEL
44: movlw 0x00
45: movwf ANSELH
46:
47: ;Osccon
48: movlw B'01110001'
49: movwf OSCCON
50: ;Comparator off
51: clrf CM1CON0
52: clrf CM2CON0
53: ;ECCP off
54: clrf CCP1CON
55:
56: ;Switch to Register Bank 1
57: bsf status,rp0
58: bcf status,rp1

63: ;ADC off
64: bcf ADCON0, 0

77: ;Set i2c address
78: movlw NODE_ADDR ; set Node Address
79: movwf SSPADD

82: ;Switch to Register Bank 0
83: bcf STATUS,RP0

91: ;initialize i2c
92: movlw b'00111001' ; Setup SSP module for 7-bit
93: movwf SSPCON ; address, slave mode
94: movlw b'00110110' ; Setup SSP module for 7-bit
95: movwf SSPCON ; address, slave mode

Listing 3: Initialization of the I2C protocol

Lego Mindstorms NXT Camera 23

Listing 3 shows the initialization of the I2C protocol. In line 8, the I2C slave address of the
PIC is set to 0x40. Lines 27 to 45 again initialize the port, with B4 being the data line
(SDI) and B6 the clock (SCL). Both ports have to be configured as input because the
PIC functions as slave, therefore the master controls both lines. In the event of a
transmission, the ports are switched automatically. In lines 45 to 64, some general
settings are disabled, for details on the individual setting refer to the PIC data sheet [14].
The I2C address is fixed by writing it to the SSPADD register. It is very important, that
this is done before I2C initialization. After that, the I2C protocol is initialized. The reason
for the first, seemingly useless, initialization is a bug in the PIC, which writes the address
only to the appropriate register if initialized this way, no matter what mode is used later
on [19].

150: Waitrxi2c
151: ;Write Status on output for debugging purposes
152: bsf STATUS,RP0 ;Bank 1
153: movf sspstat,w
154: bcf STATUS,RP0 ;Bank 0
155: movwf PORTC

157: ;Wait for received byte on I2C
158: btfsc PIR1,sspif
159: goto i2cnew
160: ;Repeat Loop
161: goto Waitrxi2c

164: i2cnew
165: banksel SSPSTAT
166: movf SSPSTAT,W ; Get the value of SSPSTAT
167: bcf STATUS,RP0 ;Bank 0
168: andlw b'00101101' ; Mask out unimportant bits
169: banksel Temp ; Put masked value in Temp
170: movwf Temp ; for comparision checking.

172: State1 ; Handle address byte
173: movlw b'00001001'
174: xorwf Temp,W
175: btfss STATUS,Z ; Address received?
176: goto State2 ; No, handle data byte
177: banksel SSPBUF
178: movf SSPBUF,W ; Get the addr and throw it away
179: bcf pir1,sspif
180: ;Repeat Loop
181: goto Waitrxi2c

184: State2 ; Handle data byte
185: banksel SSPBUF
186: movf SSPBUF,W ; Get the byte into W

198: bsf STATUS,RP0 ;Bank 1
199: btfsc SSPSTAT, 2 ;Check if answer is exp.
200: goto WriteI2C
201: bcf STATUS,RP0 ;Bank 0
202: goto Waitrxi2c

Listing 4: Receive function

24

204: WriteI2C
205: banksel SSPSTAT
206: btfsc SSPSTAT,BF ; Is the buffer full?
207: goto WriteI2C ; Yes, keep waiting.
208: banksel SSPCON ; No, continue.
209: DoI2CWrite
210: bcf SSPCON,WCOL ; Clear the WCOL flag.

212: movwf Delay0
213: movlw h'03'
214: movwf Delay1
215: DelayLoopSend2
216: decfsz Delay0,f
217: goto DelayLoopSend2
218: movlw h'20'
219: movwf Delay0
220: decfsz Delay1,f
221: goto DelayLoopSend2

224: movf rx_data,w
225: movwf SSPBUF ; Write the byte in WREG
226: btfsc SSPCON,WCOL ; Collision?
227: goto DoI2CWrite
228: bsf SSPCON,CKP ; Release the clock.

254: bcf pir1,sspif

Listings 4 and 5 are the I2C send and receive functions of the PIC. For debugging
purposes, the Status register is put on the output port (Lines 150-155) in the waiting loop
(157-161), in order to be able to check all status bits through an oscilloscope. In lines
164 to 170, the status register is saved in a temp variable, because if an address byte is
received, the status differs from a data byte, so the two states can be distinguished
(Lines 172-176). If the received byte is an address, the data is discarded (Lines 177-
180), otherwise it is saved in the buffer w (Lines 184-186). After the data byte is
received, lines 198 to 202 check whether an answer is expected or not. This is actually
unnecessary for the communication protocol between NXT and CMUCam3, but is
implemented here for completeness reasons. If an answer byte is expected, the code
first checks for a buffer overflow, then takes control of the clock. Afterwards it delays
communication through a loop for about 200ms, in order to write the register rx_data
without problems on the SSPBUF, which is used for sending through the I2C protocol. If
the send command was successful, the program releases the clock and returns;
otherwise it tries to resend the data.

Listing 5: Send function

Lego Mindstorms NXT Camera 25

4.2.5. PIC – RS-232

Due to the design of the PIC16F690, initialization is similar to the I2C protocol. Some
lines, particularly the port initialization, are a repetition from chapter 4.2.4., but because
they are important to both protocols, they are stated here as well.

27: ;Switch to Register Bank 1
28: bsf status,rp0

34: ;Set Port B0-B3 and B7 to output and B4-B6 to input
35: ;B4 and B6 used for I2C; B5 is RS-232 RX, B7 is TX
36: movlw b'01110000'
37: movwf TRISB

38: ;Switch to Register Bank 2
39: bcf status,rp0
40: bsf status,rp1
41: ;Set all ports to digital
42: movlw 0x00
43: movwf ANSEL
44: movlw 0x00
45: movwf ANSELH

56: ;Switch to Register Bank 1
57: bsf status,rp0
58: bcf status,rp1

67: ;Uart settings BAUD RATE: 19200
68: movlw 0
69: movwf SPBRGH
70: movlw d'12'
71: movwf SPBRG
72: ;Uart mode 8bit, no parity
73: movlw b'00100110'
74: movwf TXSTA
75: movlw b'00000111'
76: movwf ADCON1

83: ;Switch to Register Bank 0
84: bcf STATUS,RP0
85: ;Uart mode 8bit, no parity on reception
86: movlw b'10010000'
87: movwf RCSTA

Listing 6: UART initialization

Whilst programming, the ANSEL settings in line 42-45, List.6 posed some problems,
because if improperly set, no digital input can be received and the port acts virtually
deaf. These settings in interaction with the port settings (lines 36-37) determine the basic
operation mode of the port, specific applications like UART communication are activated
later. Baud rate and Transmission settings (lines 67-76) are set according to the
calculation explained in detail in the USART-sheet [18] by Microchip.

26

The following code examples for RS-232 transmission are general functions for sending
and receiving through an UART communication port.

264: Waittx
265: btfss PIR1,TXIF
266: goto Waittx
267: movf tx_data,w
268: movwf TXREG

Listing 7: RS‐232 sending

The data to be sent in the send function, shown in List.7, is stored in the tx_data and
send by writing into the TXREG register. Lines 265-266 check for the port to be ready.

272: ser in
273:
274: uart_ready
275: btfss pir1,rcif
276: goto ser_in
277:
278: ;catch overflow error
279: btfsc rcsta,oerr
280: goto overerror
281: ;catch framing error
282: btfsc rcsta,ferr
283: goto frameerror
284: ;Write data to receive register
285: movf rcreg,w
286: movwf rx_data
287: goto received
288:
289: overerror
290: bcf rcsta,cren ;pulse cren off...
291: movf rcreg,w ;flush fifo
292: movf rcreg,w ; all three elements.
293: movf rcreg,w
294: bsf rcsta,cren ;turn cren back on.
295: ;this pulsing of cren
296: ;will clear the oerr flag.
297: goto ser_in
298:
299: frameerror
300: movf rcreg,w ;reading rcreg clears ferr
301: goto ser_in

 Listing 8: RS‐232 receiving

In the receive loop (List.8), two errors are caught. Overrun errors are caused by too
much input and framing errors, which appear when the stop bit is not seen at the
expected time, due to wrong settings or bad transmissions.

Lego Mindstorms NXT Camera 27

4.2.6. CMUCam3 – RS-232

Because the idea of the communication protocol was to only accept one byte requests
and answer in one byte packages, the communication interface is kept very simple. The
camera waits for a character to be received and answers accordingly. The UART
communication settings, the general protocol for the RS-232 port, of course need to be
the configured in the same way as the connection board:

• Baud rate: 19’200 bits/s
• Parity bit: None
• Data bits: 8
• Stop bits: 1
• Flow Control: Off

Listings 9 to 11 show the code for communication with the connection board. The full
code is attached in appendix A.1.

13: // initialize variables for communication
14: uint32_t val;
15: char input;

23: // configure uarts
24: cc3_uart_init (0, CC3_UART_RATE_19200,
25: CC3_UART_MODE_8N1, CC3_UART_BINMODE_TEXT);

27: // Make stdout and stdin not buffered
28: val = setvbuf (stdout, NULL, _IONBF, 0);
29: val = setvbuf (stdin, NULL, _IONBF, 0);

Listing 9: Initialization of the serial port

62: //wait for receive
63: input = getchar();

Listing 10: Sensing on received byte

56: uint16 t red x, red y;

67: if (input=='a')
68: {

95: printf("%c",my_x);

101: }

Listing 11: Sending answer byte according to input

The input is coded as a character rather than a binary variable for simpler handling in the
code. Tables for ASCII-codes [12] translate 8-bit commands easily into characters.

28

4.2.7. CMUCam3 – Image processing

As mentioned in the evaluation, the CMUCam3 framework is a C-based programming
environment, which is available as a pre-configured version for cygwin [9]. The camera
can be adapted for specific use through individualization of the firmware. The concept of
the CMUCam3 is, different than its predecessors, to create a complete open-source
firmware, than can be adapted for different applications. The CMUCam3 framework uses
the Code sourcery G++ compiler [10] and has many firmware samples already included
into the distribution [11]. A different way of usage is the installation of a firmware
emulation of the CMUCam2 on the CMUCam3. The previous versions of the camera had
pre-programmed functionalities, which could be accessed through the standardized
interface that is shown in Fig. 10. This is a valuable tool for debugging all problems
related to brightness settings and color fine-tuning.

 Figure 10: Screenshot CMUCam2 tool

Lego Mindstorms NXT Camera 29

4.3. Implementation

4.3.1. Connection board

An adequate microcontroller is the PIC16F690 [14], because it supports both RS-232 and
I2C and is sold in a package that includes an interface to a PC. In order to be able to use
the shifted RS-232 port on the camera as well as a standard serial port on a PC, the RS-
232 port of the PIC needs to be wired through a level shifter, like a MAX232 [13], to
adjust the voltage levels from unshifted (low: 0V; high +5V) out of the PIC to shifted (low:
-12V to -3V; high: +3V to + 15V). The camera would have a unshifted RS-232 port, but
for debugging purposes it is more suitable to use the port which also connects to the PC.

 Figure 11: PIC16F690 Diagram, I2C on ports RB4 & RB6, RS‐232 on ports RB5 & RB7

The connection board is powered through the CMUCam3, which has a voltage-controlled
output port of 5V (see Figure 12), which is within the voltage range the PIC can handle.

 Figure 12 [7]: CMUCam3 ‐ layout

According to the datasheets and the design concept requirements, the connection board
has been setup in the manner shown in the circuit diagram in Fig. 13. On the prototype
board, several LED’s have been connected to the ports (used and unused ones) in order
to be more flexible in debugging.

30

Figure 13: Circuit diagram

4.3.2. Communication protocol

In accordance with the concept, the communication protocol is kept as simple as
possible. The PIC expects a I2C packet of two bytes, first is always the constant address
of the connection board (0x40), secondly the data is transmitted. The connection board
relays the data to the camera and expects a single byte answer. This answer is
responded to the NXT’s request. The round trip time for a request and answer cycle is
about 80ms on the NXT side.

~400ms

~600ms

Figure 14: Communication protocol

Lego Mindstorms NXT Camera 31

The connection board cannot wait for the camera to answer a request of the NXT,
because that would cause a Timeout in the protocol. This means that for every request,
the answer of the request before is received, as is shown in Fig. 14. The delay on the
camera side (~400ms) is due to the image processing, which is a rather extensive
calculation. On the NXT side, this delay needs to be taken into account through the use
of a waiting loop (~600ms) to make sure the CMUCam3 has enough time to answer the
previous request. Delaying the answer in the I2C protocol leads to the abortion of the
communication by the PIC, therefore this issue needs to be handled in the NXT code for
communication, similar to the examples in the evaluations (5.3. & 5.4.). On initialization
of the system, the camera sends a dummy answer (Ans 0) to the communication board
in order to fill the buffer and avoid an abortion of the communication on the first request.

4.4. Debugging

In order to be able to fully understand all operations, the PIC Programming has been
done completely in Assembler. Microchip MPLAB IDE 8.10 [15] acted as programming
environment, with MPLINK set up to compile to files. The connection board is connected
to the PC via the PICKIT interface and the firmware of the PIC is flashed through PICKIT
2 [16]. All assembler code shown in this semester thesis is invariant to upper and lower
case, so if the code is reused for different projects, this needs to be taken into account in
the compiler.
For debugging purposes, the connection board can also be powered through the PICKIT
in order to be more flexible with power supply. Further an oscilloscope has been
connected to a unused output port of the PIC to monitor several operation and data
transfer bits whilst debugging by redirecting important status registers to the output.
Figure 15 shows an example of an RS-232 transmission on an oscilloscope.

‐ unshifted TX line

‐ shifted RX line

Vo
lta

ge
 le
ve
l [
5V

 p
er
 s
qu

ar
e]

‐ shifted TX line

Time [200 μs per square]

Figure 15: Sample RS‐232 communication on oscilloscope

32

Lego Mindstorms NXT Camera 33

5. Evaluation

In the goals of this semester thesis, the evaluation target has been defined as enabling a
Lego Mindstorm robot to recognize objects. In order to approach that target, we defined a
white surface of ~3m x 3m surrounded by walls of ~0.4m as evaluation environment. The
robots starting point is somewhere in the middle, pointed at a random direction, as is
shown for example in Fig. 16.

 Figure 16: robot in test environment

The robot used for the following tests, is a simple robot with two separate motors at the
back and a single wheel up front, which can rotate, in order to enable the robot turn around
its own axis on spot. Figure 17 is an image of the robot with the camera to the left, the
connection board in the middle and the NXT to the right.

 Figure 17: Picture of robot used for evaluation

34

5.1. Object recognition

5.1.1. Implementation

Basic image processing functions are implemented in the standard graphic libraries of
the cc3 framework.

31: // Initialize Camera
32: cc3_camera_init ();
33: cc3_camera_set_colorspace (CC3_COLORSPACE_RGB);
34: cc3_camera_set_resolution (CC3_CAMERA_RESOLUTION_LOW);
35: cc3_camera_set_auto_white_balance (true);
36: cc3_camera_set_auto_exposure (true);

43: // setup an image structure
44: cc3_pixbuf_load ();
45: img.channels = 3;
46: img.width = cc3_g_pixbuf_frame.width;
47: // image will hold just 1 row for scanline processing
48: img.height = 1;
49: img.pix = cc3_malloc_rows (1);

 Listing 12: Initialization of image processing

104: // This tells the camera to grab a new frame into the
105: // fifo and reset any internal location information.
106: cc3_pixbuf_frame_set_coi(CC3_CHANNEL_GREEN);
107: cc3_pixbuf_load ();

109: min_green = 0;
110: my_x = 0;
111: my_y = 0;
112: y = 0;
113: while (cc3_pixbuf_read_rows (img.pix, 1)) {
114: // read a row into the image memory from the camera
115: for (uint16_t x = 0; x < img.width; x++) {
116: uint8_t green = ((uint8_t *) img.pix)[x];
117: if (green > min_green) {
118: min_green = green;
119: my_x = x;
120: my_y = y;
121: }
122: }
123: y++;
124: }
125: // printf ("Found min green value %d at %d, %d\n",
min_green, my_x, my_y);

Listing 13: Find coordinates of small red ball

Lego Mindstorms NXT Camera 35

Lines 104 to 112 in List.13 set up the frame buffer and initialize the channel green. From
line 113 to 124, the darkest green spot in the image is searched and saved into the three
variables:

• Min_green: Brightness
• my_x: X-coordinate of brightest spot
• my_y: Y-coordinate of brightest spot

With brightness, it is only referred to brightness in the green-channel, therefore meaning
the intensity of green at the individual pixel in a range of 0 to 255. The X- and Y-
coordinates are absolute pixel values with x ranging from 1 to 176 and y ranging from 1
to 144.

5.1.2. Problems and Conclusion

With this color tracking library, it is feasible to track a red ball across a white background.
One big problem that aroused is the relatively high red part of any lighting setting.
Therefore if a precise tracking of any object should be done, the threshold for
distinguishing between background noise and an actual object needs to be carefully
adjusted to the specific setting. The best way to evaluate the thresholds is through the
CMUCam2 tool by looking at the images produced by the different color channels. (see
figure 17)

Figure 18: Picture of ball through color channels blue/green/red

36

5.2. Evaluation – Move to red ball

The evaluation is done in two steps: First the robot is set in the test environment,
explained in Chapter 5, and programmed to center the camera on the red ball and move
towards it. The code is shown in Appendix A.3., the NXT sends requests for the x-
coordinate of the red ball and acts according to the answers is receives.
If the robot cannot see the ball, it is programmed to turn 20 degrees clockwise. As soon
as the ball is visible, it switches to smaller rotations according to the relative coordinates
received from the camera. As soon as the ball is in a centered position, the robot moves
forward and reiterates the process.
The robot is able to find the ball without problems, as long as the camera is adjusted to a
downward angle, so that only objects inside the evaluation environment are in sight.
Some dark spots on the white surface were minor concerns at first, but adjusted to
tighter brightness thresholds, the evaluation worked fine.
Message transmission round trip time is 1200ms, the according action afterwards has a
duration of 80 to 300ms, so one movement takes the robot about 1500ms. With the
designed rotation of 20 degrees clockwise if the ball is out of sight, execution time of the
evaluation depends gravely on the initial setup. As soon as the ball is in sight, it is
immediately found and centered. For a setup with a difference of 120 degrees clockwise,
the robot is able to center the ball within 20s, which adds up to 13 movements.

5.3. Evaluation – Distinguish red and blue ball

The second evaluation was designed to localize two different objects and act according
to their position. The robot is programmed to find one of the balls and center it, this time
without moving towards it. On pressing the button attached to the NXT, it should look for
the other ball. Every time the button is pressed, the NXT should switch its target.
With the code displayed in Appendix A.4., the robot is able to distinguish the two balls
and easily center them. The only problem that came up was the background noise of the
lighting settings in the test environment. Optimally, the red ball would have been traced
through the blue channel and the blue ball vice versa, but because the light in the test
setting had a very low blue spectrum, the blue channel could not be used very well for
color tracking. The problem was solved by adjusting the green channel to the red ball
with very narrow margins.
Execution times for the second evaluation were the same as for the one with just one
ball. Message round trip time as well as movement pattern were identical, so only the
initial setup of the evaluation environment has an impact on the performance.

Lego Mindstorms NXT Camera 37

6. Conclusion

All major goals of the original assignment have been reached. The concept has clearly
proven to be working and a prototype has been built and tested. The communication board
is fully functional and provides the necessary functions specified by the design concept. A
library for object localization exists and can be used by further project without major
interference with the existing Lego Mindstorms set. With the examples of the evaluations
performed, the adaption to a future project is a simple task, smoothly fitting into the present
system used by the PPS. The evaluation of a self-localization feature is solely a task of
adjusting an existing library on the camera to the communication protocol.

6.1. Future Work

There are several directions, future work could focus on. One interesting topic is certainly
the integration of the LeanXcam into the Lego Mindstorms set. This semester thesis has
solved a lot of aspects, so the main focus could be on programming a driver or adapting a
solution provided by the manufacturer in a final release.
Another important topic is the collection of libraries. As the CMUCam3 starts to be used in
different types of projects, it would be of great benefit to collect the different firmwares
used for different tasks and make them available to the public at a consolidated place. One
approach would be to keep the homepage [20] accompanying this semester thesis up to
date with any enhancements or additions to the code supplied by this thesis.
A last thing that should not be forgotten is the newly gained availability of a fully functional
RS-232 port on the NXT. Especially older sensors only have RS-232 as a communication
interface, so there are possibilities of easily integrating different types of sensors to the
existing Lego Mindstorms set using the same design of the connection board.

38

Lego Mindstorms NXT Camera 39

7. Appendix

A. Code

A.1. CMUCam3 firmware

#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include <time.h>
#include <stdlib.h>
#include <ctype.h>
#include <cc3.h>
#include <cc3_ilp.h>

int main (void)
{
 // initialize variables for communication
 uint32_t val;
 char input;

 cc3_image_t img;

 // init filesystem driver
 cc3_filesystem_init ();

 // configure uarts
 cc3_uart_init (0, CC3_UART_RATE_19200, CC3_UART_MODE_8N1,
 CC3_UART_BINMODE_TEXT);

 // Make it so that stdout and stdin are not buffered
 val = setvbuf (stdout, NULL, _IONBF, 0);
 val = setvbuf (stdin, NULL, _IONBF, 0);

 //initialize camera
 cc3_camera_init ();
 cc3_camera_set_colorspace (CC3_COLORSPACE_RGB);
 cc3_camera_set_resolution (CC3_CAMERA_RESOLUTION_LOW);
 cc3_camera_set_auto_white_balance (true);
 cc3_camera_set_auto_exposure (true);

 cc3_led_set_state (0, false);
 cc3_led_set_state (1, false);
 cc3_led_set_state (2, false);

 // setup an image structure
 cc3_pixbuf_load ();
 img.channels = 3;
 img.width = cc3_g_pixbuf_frame.width;
 // image will hold just 1 row for scanline processing
 img.height = 1;
 img.pix = cc3_malloc_rows (1);

40

 // printf ("Now we will use image data...\n");
 val = 0;
 int y;
 uint16_t my_x, my_y;
 uint8_t min_green, min_red, min_blue;
 uint16_t red_x, red_y;
 uint16_t blue_x, blue_y;

 while (1) {
 cc3_led_set_state (0, true);

 //wait for receive
 input = getchar();

 cc3_led_set_state (1, true);

if(input=='a')
 {
 // This tells the camera to grab a new frame into the fifo
and reset
 // any internal location information.
 cc3_pixbuf_frame_set_coi(CC3_CHANNEL_RED);
 cc3_pixbuf_load ();

 min_red = 255;
 red_x = 0;
 red_y = 0;
 y = 0;

 while (cc3_pixbuf_read_rows (img.pix, 1)) {
 // read a row into the image picture memory from the
camera
 for (uint16_t x = 0; x < img.width; x++) {
 uint8_t red = ((uint8_t *) img.pix)[x];
 if (red < min_red) {
 min_red = red;
 red_x = x;
 red_y = y;
 }
 }
 y++;
 }
 // printf ("Found min green value %d at %d, %d\n",
min_green, my_x, my_y);

 if(min_red<27)
 {
 printf("%c",red_x);
 }
 else
 {
 printf("%c",250);
 }
 }
else if(input=='b')
 {

Lego Mindstorms NXT Camera 41

 // This tells the camera to grab a new frame into the fifo
and reset
 // any internal location information.
 cc3_pixbuf_frame_set_coi(CC3_CHANNEL_GREEN);
 cc3_pixbuf_load ();

 min_green = 255;
 my_x = 0;
 my_y = 0;
 y = 0;
 while (cc3_pixbuf_read_rows (img.pix, 1)) {
 // read a row into the image picture memory from the
camera
 for (uint16_t x = 0; x < img.width; x++) {
 uint8_t green = ((uint8_t *) img.pix)[x];
 if (green < min_green) {
 min_green = green;
 my_x = x;
 my_y = y;
 }
 }
 y++;
 }
 // printf ("Found min green value %d at %d, %d\n",
min_green, my_x, my_y);
 if(min_green<17)
 {
 printf("%c",my_x);
 }
 else
 {
 printf("%c",250);
 }
 }
 else if(input=='c')
 {
 // This tells the camera to grab a new frame into the fifo
and reset
 // any internal location information.
 cc3_pixbuf_frame_set_coi(CC3_CHANNEL_BLUE);
 cc3_pixbuf_load ();

 min_blue = 255;
 blue_x = 0;
 blue_y = 0;
 y = 0;
 while (cc3_pixbuf_read_rows (img.pix, 1)) {
 // read a row into the image picture memory from the
camera
 for (uint16_t x = 0; x < img.width; x++) {
 uint8_t blue = ((uint8_t *) img.pix)[x];
 if (blue < min_blue) {
 min_blue = blue;
 blue_x = x;
 blue_y = y;
 }

42

 }
 y++;
 }
 // printf ("Found min green value %d at %d, %d\n",
min_green, my_x, my_y);
 if(min_blue<20)
 {
 printf("%c",blue_x);
 }
 else
 {
 printf("%c",250);
 }
 }
 else
 {
 printf("%c",249);
 }
 }
 free (img.pix); // don't forget to free!

 return 0;
}

A.2. Connection board firmware

; Leo den Hartog
; Semester Thesis
; Version 1.0
; 08-08-26

#include <p16F690.inc>
 __config (_INTRC_OSC_NOCLKOUT & _WDT_OFF & _PWRTE_OFF &
_MCLRE_OFF & _CP_OFF & _BOR_OFF & _IESO_OFF & _FCMEN_OFF)
#define NODE_ADDR 0x40 ; I2C address, 64 decimal

 cblock 0x20
Delay0
Delay1
Delay2
Delay3
rx_data
tx_data
testoutput
temp
 endc

 bcf status,rp0
 clrf sspcon
 clrf pir1
 clrf pir2

;Switch to Register Bank 1

Lego Mindstorms NXT Camera 43

 bsf status,rp0
;Set Port A0-A5 to input and A6-A7 to output
 movlw b'00111111'
 movwf TRISA

 movwf WPUA ;Weak-PullUp an
;Set Port B0-B3 and B7 to output and B4-B6 to input
;B4 and B6 used for I2C; B5 is RS-232 RX, B7 is TX
 movlw b'01110000'
 movwf TRISB
;Switch to Register Bank 2
 bcf status,rp0
 bsf status,rp1
;Set all ports to digital
 movlw 0x00
 movwf ANSEL
 movlw 0x00
 movwf ANSELH

;Osccon
 movlw B'01110001'
 movwf OSCCON
;Comparator off
 clrf CM1CON0
 clrf CM2CON0
;ECCP off
 clrf CCP1CON

;Switch to Register Bank 1
 bsf status,rp0
 bcf status,rp1
;Set Port C0-C7 to output
 movlw b'00000000'
 movwf TRISC

;ADC off
 bcf ADCON0, 0

;Uart settings BAUD RATE: 19200
 movlw 0
 movwf SPBRGH
 movlw d'12'
 movwf SPBRG
;Uart mode 8bit, no parity on transmission
 movlw b'00100110'
 movwf TXSTA
 movlw b'00000111'
 movwf ADCON1

;Set i2c address
 movlw NODE_ADDR ; set Node Address
 movwf SSPADD

 clrf pie1
;Switch to Register Bank 0

44

 bcf STATUS,RP0
;Uart mode 8bit, no parity on reception
 movlw b'10010000'
 movwf RCSTA
;Disable interrupts
 bcf INTCON, GIE
 bcf INTCON, PEIE
;initialize i2c
 movlw b'00111001' ; Setup SSP module for 7-bit
 movwf SSPCON ; address, slave mode
 movlw b'00110110' ; Setup SSP module for 7-bit
 movwf SSPCON ; address, slave mode

 movlw h'20'
 movwf Delay0
 movlw h'20'
 movwf Delay1
 movlw h'20'
 movwf Delay2
 movlw h'20'
 movwf Delay3
DelayLoopStart
 decfsz Delay0,f
 goto DelayLoopStart
 movlw h'20'
 movwf Delay0
 decfsz Delay1,f
 goto DelayLoopStart
 movlw h'20'
 movwf Delay1
 decfsz Delay2,f
 goto DelayLoopStart
 movlw h'20'
 movwf Delay2
 decfsz Delay3,f
 goto DelayLoopStart

 movlw 0
 movwf TXREG

 movf rcreg,w
 movf rcreg,w
 movf rcreg,w

 clrf porta
 clrf portb
 clrf portc
 clrf rx_data

 movlw b'01100001'
 movwf testoutput

 movlw b'01101100'
 movwf rx_data

Lego Mindstorms NXT Camera 45

;START PROGRAM

MainLoop
 goto Receivei2c
 goto MainLoop

Receivei2c

Waitrxi2c
;Write Status on output for debugging purposes
 bsf STATUS,RP0 ;Bank 1
 movf sspstat,w
 bcf STATUS,RP0 ;Bank 0
 movwf PORTC

;Wait for received byte on I2C
 btfsc PIR1,sspif
 goto i2cnew
;Repeat Loop
 goto Waitrxi2c

i2cnew
 banksel SSPSTAT
 movf SSPSTAT,W ; Get the value of SSPSTAT
 bcf STATUS,RP0 ;Bank 0
 andlw b'00101101' ; Mask out unimportant bits
 banksel Temp ; Put masked value in Temp
 movwf Temp ; for comparision checking.

State1 ; Handle address byte
 movlw b'00001001'
 xorwf Temp,W
 btfss STATUS,Z ; Address received?
 goto State2 ; No, handle data byte
 banksel SSPBUF
 movf SSPBUF,W ; Get the addr and throw it away
 bcf pir1,sspif
;Repeat Loop
 goto Waitrxi2c

State2 ; Handle data byte
 banksel SSPBUF
 movf SSPBUF,W ; Get the byte into W
 movwf txreg
 bcf pir1,sspif

Waiting
 btfss PIR1,sspif
 goto Waiting
Waiting2
 bsf STATUS,RP0 ;Bank 1
 btfsc SSPSTAT, 2 ;Check if answer is exp.
 goto WriteI2C
 bcf STATUS,RP0 ;Bank 0
 goto Waitrxi2c

46

WriteI2C
 banksel SSPSTAT
 btfsc SSPSTAT,BF ; Is the buffer full?
 goto WriteI2C ; Yes, keep waiting.
 banksel SSPCON ; No, continue.
DoI2CWrite
 bcf SSPCON,WCOL ; Clear the WCOL flag.

 movlw h'0f'
 movwf Delay0
 movlw h'03'
 movwf Delay1
DelayLoopSend2
 decfsz Delay0,f
 goto DelayLoopSend2
 movlw h'20'
 movwf Delay0
 decfsz Delay1,f
 goto DelayLoopSend2

 movf rx_data,w
 movwf SSPBUF ; Write the byte in WREG
 btfsc SSPCON,WCOL ; Collision?
 goto DoI2CWrite
 bsf SSPCON,CKP ; Release the clock.
 movlw h'20'
 movwf Delay0
 movlw h'20'
 movwf Delay1
 movlw h'20'
 movwf Delay2
 movlw h'02'
 movwf Delay3
DelayLoopSend
 decfsz Delay0,f
 goto DelayLoopSend
 movlw h'20'
 movwf Delay0
 decfsz Delay1,f
 goto DelayLoopSend
 movlw h'20'
 movwf Delay1
 decfsz Delay2,f
 goto DelayLoopSend
 movlw h'20'
 movwf Delay2
 decfsz Delay3,f
 goto DelayLoopSend
 goto ReceiveLoop
received
 bcf pir1,sspif
 movf rcreg,w
 movf rcreg,w
 movf rcreg,w
 bsf STATUS,RP0 ;Bank 1

Lego Mindstorms NXT Camera 47

 bcf SSPSTAT, 2
 bcf STATUS,RP0 ;Bank 0,
 goto MainLoop

SendLoop
Waittx
 btfss PIR1,TXIF
 goto Waittx
 movf tx_data,w
 movwf TXREG

ReceiveLoop
ser_in

uart_ready
 btfss pir1,rcif
 goto ser_in

;catch overflow error
 btfsc rcsta,oerr
 goto overerror
;catch framing error
 btfsc rcsta,ferr
 goto frameerror
;Write data to receive register
 movf rcreg,w
 movwf rx_data
 goto received

overerror
 bcf rcsta,cren ;pulse cren off...
 movf rcreg,w ;flush fifo
 movf rcreg,w ; all three elements.
 movf rcreg,w
 bsf rcsta,cren ;turn cren back on.
 ;this pulsing of cren
 ;will clear the oerr flag.
 goto ser_in

frameerror
 movf rcreg,w ;reading rcreg clears ferr
 goto ser_in

 end

A.3. NXT Evaluation – Move to red ball

#include "NXCDefs.h"

#define I2C_PORT S1
#define MOVE_TIME 300
#define TURN_TIME 75
#define BIG_TURN_TIME 250

int err;

48

byte send[] = {0x40, 0xfe};
byte recv[] = {1};

sub turn_right()
{
 OnFwd(OUT_A, 60);
 OnRev(OUT_C,55);
 Wait(TURN_TIME);
 Off(OUT_AC);
}

sub sendrecvi2c (byte data)
{
 ClearScreen ();
 send[0] = 0x40;
 send[1] = data;

 while (I2CCheckStatus(I2C_PORT) != 0);
 err = I2CWrite(I2C_PORT, 1, send);

 while (I2CCheckStatus(I2C_PORT) != 0);
 TextOut (0, LCD_LINE4,"Clear");

 while (I2CBytesReady(I2C_PORT) < 1);
 I2CRead(I2C_PORT, 1, recv);
 TextOut (0, LCD_LINE5,"Read");
 NumOut(60, LCD_LINE5, recv[0]);

 Wait(500);
}

sub turn_left()
{
 OnFwd(OUT_C, 60);
 OnRev(OUT_A,55);
 Wait(TURN_TIME);
 Off(OUT_AC);
}

sub turn_big_right()
{
 OnFwd(OUT_A, 60);
 OnRev(OUT_C,55);
 Wait(BIG_TURN_TIME);
 Off(OUT_AC);
}

sub turn_big_left()
{
 OnFwd(OUT_C, 60);
 OnRev(OUT_A,55);
 Wait(BIG_TURN_TIME);
 Off(OUT_AC);
}

Lego Mindstorms NXT Camera 49

sub straight()
{
 OnFwd(OUT_AC, 60);
 Wait(MOVE_TIME);
 Off(OUT_AC);
}

task main()
{
SetSensorType(I2C_PORT, SENSOR_TYPE_LOWSPEED);
SetSensorMode(I2C_PORT, IN_MODE_RAW);
ResetSensor(I2C_PORT);
SetSensor(IN_2,SENSOR_TOUCH);

while(true)
{

 sendrecvi2c(0x62);

 Wait(100);
 sendrecvi2c(0x62);

 if(recv[0]>247)
 {
 TextOut (0, LCD_LINE2,"Error");
 turn_big_right();
 }
 else if(recv[0]>90)
 {
 TextOut (0, LCD_LINE2,"Turn Right");
 turn_right();
 }
 else if(recv[0]<75)
 {
 TextOut (0, LCD_LINE2,"Turn Left");
 turn_left();
 }
 else
 {
 TextOut (0, LCD_LINE2,"Ball found and centered");

 straight();
 }
 Wait(100);

if(SENSOR_2)
{
 break;
}

}
ClearScreen ();
TextOut (0, LCD_LINE2,"Done");
Wait(10000);

}

50

A.4. NXT Evaluation – Distinguish red and blue ball

#include "NXCDefs.h"

#define I2C_PORT S1
#define MOVE_TIME 300
#define TURN_TIME 75
#define BIG_TURN_TIME 250

int err;
byte send[] = {0x40, 0xfe};
byte recv[] = {1};
int tosend = 97;

sub turn_right()
{
 OnFwd(OUT_A, 60);
 OnRev(OUT_C,55);
 Wait(TURN_TIME);
 Off(OUT_AC);
}

sub turn_left()
{
 OnFwd(OUT_C, 60);
 OnRev(OUT_A,55);
 Wait(TURN_TIME);
 Off(OUT_AC);
}
sub turn_big_right()
{
 OnFwd(OUT_A, 60);
 OnRev(OUT_C,55);
 Wait(BIG_TURN_TIME);
 Off(OUT_AC);
}

sub turn_big_left()
{
 OnFwd(OUT_C, 60);
 OnRev(OUT_A,55);
 Wait(BIG_TURN_TIME);
 Off(OUT_AC);
}
sub straight()
{
 OnFwd(OUT_AC, 60);
 Wait(MOVE_TIME);
 Off(OUT_AC);
}

sub sendrecvi2c (byte data)

Lego Mindstorms NXT Camera 51

{

 send[0] = 0x40;
 send[1] = data;

 while (I2CCheckStatus(I2C_PORT) != 0);
 err = I2CWrite(I2C_PORT, 1, send);

 while (I2CCheckStatus(I2C_PORT) != 0);
 TextOut (0, LCD_LINE4,"Clear");

 while (I2CBytesReady(I2C_PORT) < 1);
 I2CRead(I2C_PORT, 1, recv);

 Wait(500);
}

task main()
{
SetSensorType(I2C_PORT, SENSOR_TYPE_LOWSPEED);
SetSensorMode(I2C_PORT, IN_MODE_RAW);
ResetSensor(I2C_PORT);
SetSensor(IN_2,SENSOR_TOUCH);

while(true)
{

if(SENSOR_2)
{
 ClearScreen ();

if(tosend==97)
{
tosend=98;
TextOut (0, LCD_LINE1,"Search Red ball");
}

else
{
TextOut (0, LCD_LINE1,"Search Blue ball");
tosend=97;
}

}

 sendrecvi2c(tosend);

 Wait(100);
 ClearScreen ();
 sendrecvi2c(tosend);
 TextOut (0, LCD_LINE5,"Read");
 NumOut(60, LCD_LINE5, recv[0]);

 if(recv[0]>247)

52

 {
 TextOut (0, LCD_LINE2,"Error");
 turn_big_right();
 }
 else if(recv[0]>90)
 {
 TextOut (0, LCD_LINE2,"Turn Right");
 turn_right();
 }
 else if(recv[0]<75)
 {
 TextOut (0, LCD_LINE2,"Turn Left");
 turn_left();
 }
 else
 {
 if(tosend==97)
 {
 TextOut (0, LCD_LINE2,"Blue ball found and centered");
 }

 else
 {
 TextOut (0, LCD_LINE2,"Red ball found and centered");
 }

 }
 Wait(100);

}
ClearScreen ();
TextOut (0, LCD_LINE2,"Done");
Wait(10000);
}

Semester Thesis at the
Department of Information Technology and

Electrical Engineering

for

Leo Den Hartog

Lego Mindstorms NXT Camera

Advisors: Wolfgang Haid
Matthias Woehrle

Professor: Prof. Dr. Lothar Thiele

Handout Date: 09. 06. 2008
Due Date: 11. 08. 2008

1 Introduction

Lego Mindstorms NXT is a versatile robotics platform that is widely used for
teaching purposes at schools and universities. The Computer Engineering and
Networks Lab at ETH offers a course on Mindstorms NXT for first and second
semester students, too [7]. The core of the Mindstorms NXT platform is a
programmable unit, referred to as the NXT, see Fig. 1.

Figure 1: NXT: The programmable unit of the Lego Mindstorms NXT platform.

Unfortunately, the visual capabilities of the standard Mindstorms NXT platform are
very limited because only a simple light-dependent transistor is available as a sensor
for visual input. This severely narrows the scope of robotic applications because
other available sensors, like the ultrasound distance sensor and touch sensors, cannot
compensate for the missing visual capabilities. To overcome this problem, we aim
to equip the NXT with a video camera, thereby opening up a huge range of new
applications.

2 Project Goals

The goal of this project is to couple a video camera with the Mindstorms NXT,
enabling NXT-based robots to orient themselves in their environment, extract
information from the environment, and react to it. In this project, two existing
camera platforms will be evaluated, namely the low-cost vision (LCV) platform
developed by Supercomputing Systems AG Zurich, see Fig. 2(a), and the CMUCam3
developed at the Robotics Institute of Carnegie Mellon University, see Fig. 2(b).
Both platforms are fully programmable embedded computer vision systems. This
allows to analyze the video stream within the vision system and communicate only
the results of the analysis to the connected system, that is, the NXT.
More concretely, the project will be split up into three main tasks:

• Design and implementation of the hardware interface between the camera
platforms and the NXT

• Design and implementation of the software libraries for obtaining data from the
camera (both on the camera platforms and the NXT)

• Implementation of software libraries for typical tasks to be performed by the
camera when used in conjunction with the NXT

1

(a) LCV Camera Platform. (b) CMUCam3 Camera Platform.

Figure 2: Camera Platforms.

• Evaluation of the system

The biggest challenge in the project will be to develop an elaborate concept and
implement it using existing resources and not to come up with a large circuit or write
lots of new code. The criteria to consider are online and offline reconfigurability,
reusability, and debugging facilities:

• Configurability: Cameras can be used in robots for numerous purposes: object
detection, object tracking, feedback for robot control, system calibration, etc. An
example is, for instance, a robot which approaches an object (object detection
and tracking) and uses then a vision-controlled arm to lift it (feedback for robot
control). Configurability refers to the possibility to use a camera for these different
purposes without reprogramming it.

• Usability: When the application scenario changes, the robot needs to be
reprogrammed. It is desirable that new vision algorithms can be easily
implemented or existing ones easily modified. There are many hardware and
software components available for the Mindstorms NXT platform. Solutions
based on widely-used “standard” components are preferable. It should be noted
that target programmers are first and second semester students with limited
programming skills.

• Debugging Facilities: Testing and debugging of an entire embedded system is
much more involved compared to testing and debugging of software. The setup
is usually time-consuming, the used tools are not as familiar as the ones used in
software development, and the employed testing and debugging techniques and
approaches are different. Testing and debugging of algorithms should be possible
on a standard PC. A vital part of vision algorithms is the processing of an actual
image. The work should consider facilitating the design and implementation by
providing a method to easily simulate the processing of a given image and output
the result for inspection. An effortless method to acquire images from the camera
should be implemented.

2

3 Tasks

The project will be split up into several subtasks, as described below.

3.1 Familiarization with the Environment

In the beginning of the project the focus is on getting acquainted with the available
hardware and software environment. In terms of hardware, the three systems used in
this project (NXT, LCV, CMUCam3) need to be analyzed with respect to their basic
system design and the available input and output interfaces. In terms of software, the
three systems need to be analyzed with respect to available programming languages,
the firmware and compiler support for these languages, the available APIs for
the NXT (especially concerning the support of connected hardware devices), and
development environments.
In addition to the familiarization with the hardware used in this project, a literature
search about related projects should be carried out.

3.2 Definition of Requirements and Hardware/Software Design
Concept

Based on the insights gained in the first project phase, a list of requirements is
defined. Tailored towards these requirements, a hardware/software design concept
is compiled specifying in detail the implementation of the system. The following
aspects need to be taken into consideration:

Hardware

• selection of appropriate interfaces for communication between LCV/ CMUCam3
and NXT

• design of connection board for coupling LCV/CMUCam3 and NXT

• power supply for camera and connection board on mobile NXT-based robots

Software

• selection of programming language (candidates are NXC [4], Lejos [1], pbLua [5],
Matlab [2] and possibly others)

• selection of external graphics libraries, if necessary

• specification of software libraries for communication between LCV/ CMUCam3
and NXT

3.3 Implementation

During the implementation phase, the system is implemented according to the design
concept. In particular, a prototype version of the connection board is assembled and
the necessary software libraries are written.

3

3.4 Evaluation

To evaluate the system, the following two capabilities should be demonstrated:

1. Self-Localization: A robot will be placed into a (predefined) area which is
clearly marked (using black electrical tape on a white surface, for instance).
By analyzing the visual input, the robot derives its position within this area.

2. Object-Localization: Different objects of known size, color and shape are placed
into the visual field of a robot. By analyzing the visual input, the robot derives
the position of the objects relative to its own position.

Based on these two capabilities, finally a complete robot is implemented. The task
is to develop a robot that could take part in one of the disciplines typically found
in robot competitions, such as “Robot Sumo” or “Puck Collect” [3, 6].

3.5 Documentation

Documentation is a vital part of this project, especially due to two reasons: First, the
camera will be used in classroom. Students should be able to understand the system
by just reading the documentation. Second, there is a large interest in Mindstorms
NXT related topics on the one hand, but rather little good documentation on the
other hand. In order to make a lasting contribution to the community, besides
offering a good technical solution a good documentation needs to be provided.

The project documentation is expected to consist of three parts:

• Report: The report describes the background of the work, the technical details of
the implementation, and the results. This report addresses a technically skilled
audience that is interested in replicating or extending the work.

• Tutorial: The tutorial explains how the camera set-up for the NXT looks like
(when using a camera with pre-installed software) and how the camera can be
used by the NXT. In addition, the tutorial explains what is necessary to modify
or write new programs. The tutorial is addressed at the first and second semester
students attending the Mindstorms NXT class offered at our lab and thus should
include an introductory example application.

• Web Page: The web page presents the main results of the project in a concise
form. The web page will be integrated in our lab’s Mindstorms NXT page [7]
(HTML only).

4 Project Organization

The guidelines for semester and master projects carried out at the Computer
Engineering and Networks Lab are available at:
https://www.tik.ee.ethz.ch/intranet/download/students/student thesis guidelines ge.pdf.

4

 https://www.tik.ee.ethz.ch/intranet/download/students/student__thesis_guidel ines_ge.pdf

Supercomputing Systems AG provides the documentation of the LCV platform
under a non-disclosure agreement. Publishing the documentation or technical details
about this platform is not permitted. The own work carried out using the platform
is not affected by the non-disclosure agreement.

There will be a weekly meeting to discuss the project’s progress. A revision of the
working document should be provided the day before.

Two hardcopies of the report are to be turned in. All copies remain the property of
the Computer Engineering and Networks Laboratory.

A copy of the developed software needs to be handed in on CD or DVD at the end
of the project.

References

[1] P. Andrews, J. Stuber, L. Griffiths, B. Bagnall, M. P. Scholz, T. Rinkens,
J. A. B. na Moral, and J. Solorzano. Lejos — Java for Lego Mindstorms.
http://lejos.sourceforge.net/.

[2] L. Atorf, A. Behrens, A. Knepper, R. Schwann, B. Neumann, R. Schnitzler,
J. Balle, T. Herold, and A. Telle. RWTH-Mindstorms NXT Toolbox for
MATLAB. http://www.mindstorms.rwth-aachen.de/.

[3] D. Calkins and S. Davalos. RoboGames. http://www.robogames.net/.

[4] J. Hansen. Next Byte Codes & Not eXactly C.
http://bricxcc.sourceforge.net/nxc/.

[5] R. Hempel. pbLua Home Page. http://www.hempeldesigngroup.com/lego/pbLua/.

[6] InnoC.at. RobotChallenge. http://www.robotchallenge.at/.

[7] M. Woehrle and W. Haid. PPS Lego Mindstorms.
http://www.tik.ee.ethz.ch/tik/education/lectures/PPS/mindstorms/.

Zürich, June 2, 2008

5

http://lejos.sourceforge.net/
http://www.mindstorms.rwth-aachen.de/
http://www.robogames.net/
http://bricxcc.sourceforge.net/nxc/
http://www.hempeldesigngroup.com/lego/pbLua/
http://www.robotchallenge.at/
http://www.tik.ee.ethz.ch/tik/education/lectures/PPS/mindstorms/

Lego Mindstorms NXT Camera 59

8. References

[1] TIK Lego Mindstorms, www.tik.ee.ethz.ch/mindstorms/
[2] NXC, http://bricxcc.sourceforge.net/nbc/
[3] Lego Mindstorms NXT, 2006, Claudia Frischknecht and Thomas Other
[4] Bluetooth Anbindung für Lego Mindstorms, 2002, Andres Erni and Stefan Reichmuth
[5] CMUCam3, http://www.cmucam.org/
[6] LeanXcam Datasheet, Super computing systems
[7] CMUCam3 Datasheet, 2006, Carnegie Mellon University
[8] PIC-NXT Interface, http://www.extremenxt.com/picnxt.html
[9] cygwin, http://www.cygwin.com/

 [10] Code sourcery G++, http://www.codesourcery.com/
 [11] cc3 distribution, http://www.cmucam.org/wiki/Downloads/cc3.zip?format=raw
 [12] ASCII-code, http://en.wikipedia.org/wiki/ASCII
 [13] MAX232 Data Sheet, 2002, Texas Instruments
 [14] PIC16F690 Data Sheet, 2006, Microchip

[15] MPLAB IDE 8.10, Microchip
[16] PICKIT 2 v2.11, Microchip
[17] RS-232 Transmission, http://en.wikipedia.org/wiki/RS-232
[18] USART, 2001, Microchip
[19] PIC16F690 Errata, 2007, Microchip
[20] “Lego Mindstorms NXT Camera” webpage, 2008,

 http://www.tik.ee.ethz.ch/tik/education/lectures/PPS/mindstorms/camera
[21] Vision Subsystem v2 for NXT, http://www.mindsensors.com
[22] Surveyor SRV-1, http://www.surveyor.com
[23] I2C Standard, http://www.i2c-bus.org/
[24] RS‐232 Standard, ANSI/EIA/TIA‐232‐F‐1997

http://www.tik.ee.ethz.ch/mindstorms/
http://bricxcc.sourceforge.net/nbc/
http://www.cmucam.org/
http://www.extremenxt.com/picnxt.html
http://www.cygwin.com/
http://www.codesourcery.com/
http://www.cmucam.org/wiki/Downloads/cc3.zip?format=raw
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/RS-232
http://www.tik.ee.ethz.ch/tik/education/lectures/PPS/mindstorms/camera
http://www.mindsensors.com/
http://www.surveyor.com/
http://www.i2c-bus.org/

	Semester Thesis 0.70.pdf
	1. Introduction
	4. Implementation
	5. Evaluation
	6. Conclusion
	7. Appendix
	8. References

	assignment
	1 Introduction
	2 Project Goals
	3 Tasks
	3.1 Familiarization with the Environment
	3.2 Definition of Requirements and Hardware/Software Design Concept
	3.3 Implementation
	3.4 Evaluation
	3.5 Documentation

	4 Project Organization

	Semester Thesis 0.70
	1. Introduction
	4. Implementation
	5. Evaluation
	6. Conclusion
	7. Appendix
	8. References

