
Lightweight Information System Technology

LIST

Simon Umbricht, Christoph Keller

November 17, 2008

Assisted by:
Prof. Dr. Bernhard Plattner

Dr. Vincent Lenders
Bernhard Distl

Dr. Franck Legendre

Abstract
The main goal of this project was to develop a server-based infor-

mation system using infoscreens. These infoscreens will be located near
the entrances of the ETH buildings of D-ITET and D-MAVT. The main
problem with the present solution was that most people would not read in-
formational mail anymore, resulting in a severely obstructed flow of infor-
mation. The solution chosen to alleviate this problem were the mentioned
infoscreens due to their presence, up-to-dateness and manageability.

The design goals were to build a user-friendly, centrally administered
system with relatively low hardware requirements compared to commer-
cially available systems. Furthermore, easy integration into pre-existing
content management systems was a key requirement to facilitate switching
to the new system.

1

Contents

1 Background / Motivation 5

2 System Description 5

3 Display Entities 6
3.1 Hardware . 6

3.1.1 Controlling Unit . 6
3.1.2 Display . 6

3.2 Software . 7
3.2.1 Operating system . 7
3.2.2 Firefox . 7
3.2.3 Infoscreen Firefox extension 8
3.2.4 Display standby . 11
3.2.5 Lockdown, Openup . 11

4 Backend 11
4.1 Data Base Structure . 11

4.1.1 Screen Layouts . 11
4.1.2 Feeds . 13

4.2 Mensa Feed . 13

5 Frontend 14
5.1 Data Management Tools . 14

5.1.1 Feed Management . 14
5.1.2 Content Management . 15

5.2 Standby Configuration . 16

6 PodNet Integration 17

7 Comparison with existing systems 18
7.1 University of Zurich . 18

7.1.1 Hardware . 18
7.1.2 Information System . 19
7.1.3 Pros and Cons . 19

7.2 Main Railway Station Zurich . 19
7.2.1 Hardware . 19
7.2.2 Information System . 19
7.2.3 Pros and Cons . 20

7.3 Comparison . 20

8 Problems 20
8.1 Displays . 20
8.2 Cursor . 21

9 Bibliography 22

10 List of Tables 22

11 List of Figures 22

2

A Setting up the system 23
A.1 Interaction of System’s Components 23
A.2 Display entities . 24
A.3 Operating System . 24
A.4 Gnome . 24
A.5 Security . 24
A.6 Standby . 24
A.7 Database / Web Tools . 24
A.8 Firefox Extension . 25

B User Guide 25
B.1 Screen Regions & Feeds . 25
B.2 Management Tool . 26

B.2.1 Feeds . 26
B.2.2 Display Exceptions . 26
B.2.3 Feed Display Settings . 26
B.2.4 Feed Content . 27

3

1 Background / Motivation

Over the last few years, the AMIV1 experienced an increasing problem in com-
munication. As they provide a lot of events every semester, quite a few E-mails
are sent to inform the students about upcoming events. Unfortunately, these
E-mails are largely ignored if not filtered by the Spam filter. As a result, a few
events have had a very small attendance. To counter this, many possibilities
were discussed. The most promising solution was to build an infoscreen system
with a centralized content management system to distribute the information
and keep the students informed.

After informing the department administration of the D-ITET2 and D-
MAVT3 about this project, the D-ITET wanted to have an additional screen to
distribute their information as well. In return, they offered to pay some of the
costs.

Additionally, the D-ITET is looking for a way to make its main building
ETZ more attractive by bringing in some life and a few neat technical features
that one would expect at the location of a technically focused department. In
that sense the infoscreens would be the first element on the way to achieve this
goal.

2 System Description

The whole system is based on three parts
The first part is made up by the screens. They are the only part that can

actually be seen by the public and they should therefore be as large as possible
but also as low power consuming as possible. Furthermore, they must be con-
figurable remotely in an straightforward fashion. Configuration should mainly
be possible through a web interface rather than via SSH4 or direct database
access.

The second part is the backend. Realized through a database, all the infor-
mation and configurations are stored and managed centrally. As to circumvent
distributing database passwords to the individual screens, the content for each
screen is generated centrally by a PHP script running on a web server. This
way, content is delivered to the screens in the form of RSS feeds which make
the whole system usable for PodNet5 and even for other applications such as
any RSS reader. Every feed on the screen can also be subscribed to as an RSS
feed in another application.
Furthermore, there are some scripts to automatically import content to the
database, such as information stored in another database table.
The last part is the frontend. Many scripts are needed to facilitate the config-
uration. There are some scripts to manage the content of the individual feeds
displayed on the infoscreens, some others to define which feed gets displayed
when and where. Currently, the division of the screen into different screen

1Akademischer Maschinen- und Elektroingenieurverein
2Department of Information Technology and Electrical Engineering
3Department of Mechanical and Process Engineering
4Secure Shell. A network protocol allowing data to be exchanged using a secure channel

between two networked devices
5Podcasting framework for mobile distribution of user-generated content.

http://podnet.ee.ethz.ch

5

regions has to be done by hand in the database as this is by far not a daily
maintenance task.

3 Display Entities

The screens form the main components of this system. They display the data
retrieved from the server and they are based on two physical components. The
first component is a small mini ITX board which acts as the controlling unit of
the screen. The second component is a 22” TFT display.

3.1 Hardware

3.1.1 Controlling Unit

After a hint and a short evaluation, suitable hardware was found. A small mini
ITX board with an AMD Geode chip set from PC-Engines6, alix1c, is now used
for the system. Table 1 shows the hardware specifications of alix1c7.

Table 1: Hardware specifications of the alix1c

CPU 500 MHz AMD Geode LX
DRAM 256 MB SDRAM on board
Storage 4 GB Compact Flash
Power 12V DC, DC-DC converter on board. No

bulky ATX PSU needed.
Expansion miniPCI + 3.3V PCI + LPC + optional I2C
Connectivity 1 Ethernet port (Via VT6105M 10/100)
I/O 2 COM, 4 USB, 1 LPT, audio, VGA
Board size 6.7 x 6.7” (miniITX), low profile
Firmware Award BIOS

The main advantage of this board are its dimensions and the low power
consuming design. The normal power consumption is listed with 0.4 A @ 12 V
with a peak power consumption of 12 W [1]. Furthermore, one big advantage is
the x86 architecture. This allows the use of precompiled x86 software.

3.1.2 Display

The largest possible resolution, the Geode LX chip set can provide, is 1680 x 1050.
One requirement was to have the screen as large as possible. Therefore the 22”
wide screen display were suitable. After evaluating different monitors (see sec-
tion 8.1) the decision was made to use the SAMSUNG SyncMaster 226cw.

Table 2 shows the specifications of the SAMSUNG SyncMaster 226cw 8

6http://www.pcengines.ch
7from [1]
8from [2]

6

Table 2: Specifications of the SAMSUNG SyncMaster 226cw

Screen Size 22” Wide
Resolution 1680 x 1050
Brightness 300 cd/m2

Contrast Ration DC 3000:1
Video Signal input Analog RGB, DVI
Power Consumption 50W (Max)

3.2 Software

3.2.1 Operating system

The operating system used is a specially adapted version of Debian Etch. The
adaptations are basically optimizations for the use with a flash card as storage.
In particular, directories with fast changing content such as /tmp or /var/log/
are set up as ram disks and the noatime flag9 is set for all mounted file systems.
Furthermore, much of the software which is installed by default was removed.

To display the contents in an appealing way, an Xserver and the desktop
environment GNOME is used. A configuration without GNOME was tested,
but did not work satisfyingly as the Firefox browser did not work in full screen
mode as expected.

After startup, the user AMIV is logged in automatically, the standby script
(see section 3.2.4) and Firefox are started with a custom extension (see sec-
tions 3.2.2 and 3.2.3) as default page.

3.2.2 Firefox

To display the information, Firefox is used together with a specially programmed
extension (see section 3.2.3 for a detailed description of the extension). Exten-
sions are simple pieces of code that can be installed by the user to have ad-
ditional functionality, i.e. an integrated download manager or an FTP client.
Using Firefox is an excellent way to keep the programming task manageable;
Firefox offers a fully functional environment, in which interfaces are provided
for virtually any relevant task. Thus, using these interfaces saves a lot of time
compared to programming everything oneself. In order to make full use of these
feautures, a simple HTML page together with JavaScript would not suffice, since
Firefox blocks access to many interfaces for non-trusted code; to be considered
trusted, the code has to run in the context of an extension.

As Firefox’ Gecko rendering engine offers good service for HTML/XML
based documents, the task of displaying the content was left to Gecko. For-
matting the content with HTML and CSS is much easier and less error-prone
than developing another rendering algorithm.

Firefox’ integrated XML parser was also a great help, as it has the ability to
perform all the XML related tasks needed to put together a final XML document
containing the whole structure and content to be displayed on the screens. It
allows parsing an XML document directly from a specified URL and the interface

9prevents setting of access time after a file access

7

for reading out parts the document’s tree structure is very easy to use. Copying
certain parts of the tree from one document to another facilitates the assembly
of the document to be displayed; subtrees of an RSS feed (corresponding to
individual display items on the screen) can be inserted into the XML document
using just a few commands.

Furthermore, the extension Full Fullscreen10 is used to start Firefox in full
screen mode without any frames and bars visible.

3.2.3 Infoscreen Firefox extension

This custom Firefox extension is responsible for a multitude of different tasks
linked to display all the content optimally. The main reason why using a cus-
tom extension to render the content was favored over a plain HTML is, that
extensions have full access over a broad palette of tools offered by Firefox only
to “privileged code”. The one tool the extension heavily relies on is Firefox’
XML parser, which is used to parse the (XML compliant) RSS feeds as well as
a server-generated, XML based configuration file (see below).

In a predefined interval of 1 minute, the extension fetches an XML document
from the server (generated by a PHP script) that includes the information, which
feeds are to be displayed and in which screen region. Additionally, the document
also contains an XML node specifying the whole screen layout, i.e. it contains
the whole XUL11 structure that makes up the division of the screen into screen
regions. This is achieved by nested hbox and vbox tags (container boxes with
horizontal/vertical alignment for their child nodes. See Fig. 1 for an example
employing boxes); each box serves as a container for other boxes (such as to
divide the box) or feed content to be displayed. Each screen region also has
a display type associated to it that defines how the content is to be displayed.
Currently there are the following different self-defined display types:

• MainScreen: All items contain a title, a description, a box with date,
location and a link, and optionally an image to be placed below the title.
(Fig. 2)

• CalendarScreen: The Items are ordered by date and grouped by day. Only
the date/time and the title of the items are shown. Items that don’t
contain a valid date in the future are discarded. (Fig. 3)

• TickerScreen: Designated area for a few short messages including title and
description. (Fig. 4)

New display types can be created by writing a new class inherited from the
class GenericScreen. Thus, a change of screen layout or the list of feeds involved
will take at most a minute to propagate from the database to the screens.

The content of all the feeds are parsed and item-wise inserted into the afore-
mentioned XUL structure. In the probable case that there are more items to
be displayed that there is space on the screens, some kind of filtering needs to
take place to pick items to be displayed while ensuring fairness and avoiding
starvation12. As many items as possible are selected in a “priorized random”

10see https://addons.mozilla.org/en-US/firefox/addon/1568 for details
11XML User interface Language, the Mozilla’s XML based language to create user interfaces
12Starvation is the case where an item never gets displayed because of the presence of

higher-priority items

8

Figure 1: Example employing hbox and vbox

Figure 2: MainScreen

fashion, meaning that items with higher priority have a higher chance of being
selected.

The detailed algorithm chosen is best explained using an example: There are
four items A, B, C and D with priorities 10, 10, 20 and 5 respectively. Summing
up all the priorities results in 45, thus a floating point random number between
0 and 45 is used to select a first item. Item A is selected if the random number
is between 0 and 10, B if it’s between 10 and 20, and so on. Let us assume that
there is only space enough for two items on the screen and C is selected in the
first round. Now, a second round takes place with only items A, B and D and

9

Figure 3: CalendarScreen

Figure 4: TickerScreen

a random number between 0 and 25, according to the scheme described before.
This algorithm ends as soon as there are no more items to be displayed or there
is no item that could still fit on the screen. The surplus items are removed and
will be considered for display again the next time the algorithm is invoced. The
frequency of these content updates can be set seperately for each display region.

10

3.2.4 Display standby

Since it is a waste of power to always run the display 24/7, a small script is
running to turn off the display at a configured time and turn it on again at a
different time. (See standby.php for more details). The configuration is saved
in an MySQL database and can be changed with a config tool (see section 5.2).

3.2.5 Lockdown, Openup

Two scripts are used to secure the boxes from outside attacks and give back con-
trol for configuration/debugging purposes. By running lockdown, the keyboard
and mouse are basically deactivated on the xserver. Furthermore, the cursor is
changed to a transparent one and Ctrl-Alt-Backspace is deactivated as well.
openup reverses these changes. As these scripts copy around configuration files,
they need to be run as user root. Furthermore, they copy predefined configura-
tion files to the places they are in use, so this has to be taken into account when
changing configuration files on the board itself. To open the locked system there
are ways. The system can be unlocked either through ssh or one can us one of
the console terminals by pressing e.g. Ctrl-Alt-F1.

4 Backend

4.1 Data Base Structure

4.1.1 Screen Layouts

The screen layouts are defined and assigned to the screens through the database
tables infoscreen_screenLayouts and infoscreen_screens described in Tab. 4
and Tab. 3 respectively.

Every layout has a numeric ID that can be assigned to a screen using the
table infoscreen_screens. To facilitate the management of these entries, a
regular expression is used to link the layout IDs to the screen names describing
location and type of the screen. The AMIV’s screen in the foyer of the ETZ
building could therefore be named etz_foyer_amiv and to use layout 3 for all
AMIV screens in ETZ, setting the regular expression ^etz_.*_amiv for layout
3 would do the job.

As a screen is typically made up of 2 to approximately 5 screen regions, there
needs to be a flexible solution that allows a dynamic number of screen regions
that is still manageable. Different screen layouts allow separate screens to be
split up differntly. For maximum flexibility, a nested box model has been chosen
where several entries sharing the same layout ID make up one screen definition.
Each entry corresponds to one box in the screen layout (see Fig. 1) as well as
one node in the XUL tree structure that is displayed. These nodes serve as a
parent node under which more nested boxes or display items can be attached.
Nesting is achieved in the following way:

• One root node (with parent node set to NULL) is allowed per screen
layout. This represents the whole screen and acts as the container for
further subnodes.

• Each node specifies an orientation (horizontal or vertical; hbox or vbox
respectively), telling in which direction its child elements are to be placed.

11

If a region is to be split horizontally as to accommodate two or more
regions side by side, horizontal would be the choice here

• The node ID is a name describing the content or type of the respective
screen region. As it is used primarily to build up the screen layout struc-
ture it can be chosen freely but must be unique. This ID is also used later
on to specify in which screen region a feed is to be displayed (displayID
in Tab. 6)

As this does not represent a regular maintenance task, there is currently no
web frontend to change the screen layouts. With the information provided in this
section and database access it should however be easily manageable manually.

Table 3: Screen Layout Assignments (infoscreen screens)

Field name Data type Description
layoutId int(5) ID of the screen layout to be

applied to location
locationRegexp varchar(40) Regular Expression specifying,

which displays to assign the
layout to

Table 4: Screen Layout Definitions (infoscreen screenLayouts)

Field name Data type Description
layoutId int(5) Layout ID, to which the screen

region belongs. This ID is NOT
unique

nodeId varchar(40) Name of the region’s top level
node.

parentNodeId varchar(40) Name of parent’s node, or
NULL for top level nodes (one
per layout)

displayType varchar(30) Type/class of the display re-
gion

refreshTime int(10) Time in seconds between two
content updates

orient h/v Orientation for the placement
of child elements

height int(5) Height of the region, in pixels
width int(5) Width of the region, in pixels
order int(5) Ordering of elements between

sibling regions with same par-
ent

12

4.1.2 Feeds

The table infoscreen_feeds stores some meta data about those feeds that are
locally managed using the tools described in section 5.1.1. This information is
used to export an RSS compliant feed from the database content. Ready-made
RSS feeds that are imported from some external source (e.g. a list of diploma
theses or any other information channel that is provided by someone else) on
the other hand have no entry here, as they cannot be managed.

In order to be displayed, every feed needs to be entered in the table
infoscreen_feedDisplay, which specifies which feed should be displayed when
and where. To provide some flexibility, regular expressions are used for the
where (see section 4.1.1). The when is determined by a general policy (dis-
play or don’t display) together with time-dependent exceptions to the policy.
All exceptions are kept in the table infoscreen_displayExceptions shown in
Tab. 7. To illustrate this, consider the mensa menu, which is only of interest
during lunch time; the key idea is not to display it, except for Monday–Friday,
11:00–13:00. In this case the policy would be not to display it and for each week
day there would be one exception. This would of course also work for feeds that
are to be displayed always except for certain times.

Tab. 8 shows the structure of an individual feed item.

Table 5: Feed Definitions for locally managed feeds (infoscreen feeds)

Field name Data type Description
id varchar(30) Feed ID
title varchar(50) Feed title
link varchar(150) Link to a web site for more in-

formation
editor varchar(100) Editor responsible for manage-

ment of the content. Preferably
xxx@yyy.zzz (Name)

4.2 Mensa Feed

One item that should be displayed around lunch time is the current menu from
the mensa. There already exist RSS menu feeds for every mensa. Mainly, there
are two different kinds of feeds. One provides a list of every menu within the
next two weeks for a specific mensa. Another provides the menu of the day.
Unfortunately, in the daily feed, every menu has its own RSS item. This would
obstruct the whole screen; having only one item for all the menus would be
much more compact. Therefore a new feed generator was needed. It can be
seen on
http://www.amiv.ethz.ch/infoscreen/mensa.php?mensa=...

The three mensae Gloriabar, Tannenbar and Clausiusbar are configured, but
more can be included very easily. The script parses the feed from the official
mensa website http://www.gastro.ethz.ch/meals/rssfeeds, takes the four
main menus and puts them into one RSS item.

13

Table 6: Feeds to be displayed (infoscreen feedDisplay)

Field name Data type Description
id int(5) Unique ID number purely for

manageability reasons
feedURI varchar(150) URI describing where the feed

can be found
displayID varchar(40) ID of the display region, where

the feed is to be displayed. This
has to be a nodeID from Tab. 4

priority float Priority of the feed, used to
give higher (global) priority
to certain feeds as a whole,
whereas (local) priority can be
modified on per item basis

displayByDefault int(1) Whether or not a feed should
be displayed per default.
Whenever an exception occurs
(see below), this behavior is
inverted

displayExceptionsID int(5) ID of the set of exceptions that
should be considered for this
feed

active int(1) 1 if the feed is active and should
be diplayed, 0 otherwise

locationRegexp varchar(40) Regular Expression specifying,
on which displays to show the
feed

Table 7: Display Exceptions (infoscreen displayExceptions)

Field name Data type Description
id int(5) Unique ID number purely for

manageability reasons
exceptionID int(5) ID of the set of exceptions.

This is NOT unique
weekday int(1) 1=Monday, . . . , 7=Sunday
from time Daytime, from when the excep-

tion is active
until time Daytime, until when the excep-

tion is active

5 Frontend

5.1 Data Management Tools

5.1.1 Feed Management

Feeds can be created, edited and deleted using the interface depicted in Fig. 5
and Fig. 6. The only data relevant are those listed in Tab. 5.14

Table 8: Feed Content (infoscreen feedContent)

Field name Data type Description
id int(10) Unique ID of the feed item
reference int(10) ID of the item in source table

if the item has been imported.
This is to prevent multiple im-
ports of the same item

feed varchar(30) Name of the feed to which the
item belongs

datetime timestamp Date/time indication for the
item (e.g. an event)

location varchar(100) Location indication for the
item

title varchar(50) Title
description text Description/content of the

item
url varchar(100) URL indication for the item
image varchar(150) URL of an image to be dis-

played
active int(1) 1 if the item is active and

should be displayed, 0 other-
wise

showDetails int(1) 1 to show also the details, 0 to
show only in calendar (if feed
is mapped to calendar screen
region). By this means, cer-
tain content items can be only
listed on the calendar without
the item’s details showing up
in another screen region, which
has also subscribed to the same
feed

created timestamp Creation time
updated timestamp Time of last update (this is set

automatically)
showFrom timestamp Date/time from when to show

the item
showUntil timestamp Date/time until when to show

the item
priority decimal(5,2) A priority between 0.00 and

999.99

5.1.2 Content Management

Content can be managed easily through the web interface by selecting the name
of a feed on the left side (clicking the + behind the name creates a new feed
item for the respective feed). Feed items can be added, edited and deleted with

15

Figure 5: Feed Management Tool

Figure 6: Feed Management Tool Details

a simple click. To display the detailed description for an item, simply click on
its row and a description box will pop up beneath. For detailed information,
please refer to the user manual in Appendix B. Fig. 7 and Fig. 8 show this tool.

Figure 7: Content Management Tool

5.2 Standby Configuration

The configuration tool for the standby times is a very simple and easy to under-
stand tool. It basically allows to set the times for the standby for each screen
separately. One can also change the times for a whole set of screens, for example
every screen in the ETZ Foyer. There is also a reset mechanism which allows to
reset the times to their saved default value. Fig. 9 and Fig. 10 shows this config
tool.

16

Figure 8: Content Management Tool Details

Figure 9: Standby Configuration Tool

6 PodNet Integration

The system was designed to be fully compatible with PodNet by taking the
following measures:

• Information is introduced into the system in the form of RSS compatible

17

Figure 10: Standby Configuration Tool Details

feeds with the addition of some optional fields, such as time and location.

• The use of HTML as formatting solution was abandoned in order to ensure
maximum compatibility and readability with mobile browsers.

• Images are to be loaded from a URI instead of directly including them
into the corresponing RSS items.

Besides the points mentioned, the system was already compatible with PodNet
by design. To distribute the PodNet feeds, a miniPCI WLAN card is attached
on one board and the PodNet software is running on this system.

7 Comparison with existing systems

Information systems are quite popular and can therefore be seen at many places
in the daily life. All these systems have different requirements, target different
groups of people and use thus different approaches. To have a comparison to
this system, two other systems are reviewed.

7.1 University of Zurich

The University of Zurich is running a system of screens on its whole campus.
These screens can be found at many places such as foyers, mensae and libraries.
The system is used to distribute all kinds of information such as upcoming
seminars, readings or special lectures. Also the election of the students repre-
sentation was advertised through this system and the results were announced.
Despite this system, not many students took part at this election. And asked
about these screens, they did not know about their existence.

7.1.1 Hardware

The system is built from a large plasma screen about 1 meter in diameter.
Furthermore it contains a controlling unit to generate the picture. This unit is
placed in a case at the backside of the screen. The size can only be estimated
but it cannot be much larger than a standard ATX board.

18

7.1.2 Information System

The look of the information system is very smooth and well designed. It is built
of a few nicely animated objects and is arranged as follows:

• At the top left corner, there is an animated logo of the university

• At the top right corner, there is a watch

• At the right side, there is an agenda. One item of this agenda is high-
lighted for about 20 seconds and the detailed information about this item
is displayed in the main window

• At the left side, there is the main window with the detailed information

7.1.3 Pros and Cons

Pros:

• Large screen

• Nice animations

• Detailed informations

Cons:

• High power consumption

• Heat production that requires a fan (possibility for defects)

• First look is a bit messy

7.2 Main Railway Station Zurich

At the railway station there are mainly two different content types displayed.
The most screens are used to provide current timetables. As such a system will
be used as well at the ETZ building using an existing system from the VBZ13

these timetables are not further regarded.
The second system is used to inform about problems on the railway system all
over Switzerland and the resulting delays. As this system is completely dynamic,
is can be compared to the AMIV system.

7.2.1 Hardware

As these screens are mounted at about 3.5 meter height. This leads to the need
of a large plasma screen. Unfortunately, the controller hardware could not be
inspected because of the height.

7.2.2 Information System

If there are no problems at the track system only a map of Switzerland can be
seen and a text says that there is no problem. If there is a problem, a marker
marks the location of the problem and a text box, connected to the marker by
an arrow, informs about the problem and the effects on the passengers

13Verkehrsbetriebe Zürich

19

7.2.3 Pros and Cons

Pros:

• Large screen

• Well displayed information

• Simple but effective

Cons:

• High power consumption

7.3 Comparison

The comparison seems to be quite unfair because the AMIV system is compared
against two professionally built systems. As the requirements and parameters
differ, the comparison is possible though.
Advantages of the AMIV system:

• Low power consumption as a low power consuming board is used

• No fans used

• Standardized file format

Drawbacks of the AMIV system:

• Small screen

• No animations, because of low graphic power

8 Problems

8.1 Displays

The first display purchased was one from ASUS, Asus VW222U. Unfortunately,
this display did not work properly with the alix1c board. It worked with ev-
ery other computer without any problems. But connected at the alix1c, the
resolution was 1280 x 1024 according to the OSD information. The strange
thing was that even though the resolution was not suited for the display, the
proportions of the images looked correct. For example the AMIV sign was per-
fectly shaped. At the login screen, there was a dotted line. On this line one
could see some kind of beats. Several different configurations and drivers were
tested with the Xserver without any progress. After testing the board on a
different screen and making sure that the wanted resolution was possible, the
most probable cause of the problem was a weak ADC14 in the screen and a weak
DAC15 on the board respectively. This caused the screen to display the image
incorrectly. To test several other screens, one board was taken to a store and 6
different screens were tested with permission of the staff. After this evaluation,
a different screen was ordered which worked well.

14Analog to Digital Converter
15Digital to Analog Converter

20

8.2 Cursor

While testing the system it was discovered, that even with deactivated mouse
(mouse device set to /dev/null), a cursor was displayed in the middle of the
screen. There exist a few commands for the xserver config to fix this problem
but GNOME ignored these. One further solution was to use a transparent
cursor. Two different cursor packages with transparent cursors were found on
the Internet. But it was not very simple to install them as one had absolutely
no installation instructions and the other one was packed in a old installation
packaging format. After several attempts it finally worked. The last thing to
do was now to find the place the configuration was saved to be able to put this
in the lockdown-script. Now a section in this script changes the entry in the
corresponding file such that in the locked infoscreen, no cursor is seen.

21

9 Bibliography

References

[1] http://www.pcengines.ch/alix1c.htm

[2] http://www.samsung.com/us/consumer/detail/spec.do?group=computersperipherals
&type=monitors&subtype=lcd&model cd=LS22MEXSFV/XAA&fullspec=F

10 List of Tables

1 Hardware specifications of the alix1c 6
2 Specifications of the SAMSUNG SyncMaster 226cw 7
3 Screen Layout Assignments (infoscreen screens) 12
4 Screen Layout Definitions (infoscreen screenLayouts) 12
5 Feed Definitions for locally managed feeds (infoscreen feeds) . . . 13
6 Feeds to be displayed (infoscreen feedDisplay) 14
7 Display Exceptions (infoscreen displayExceptions) 14
8 Feed Content (infoscreen feedContent) 15
9 Standby Configuration (infoscreen configs) 25

11 List of Figures

1 Example employing hbox and vbox 9
2 MainScreen . 9
3 CalendarScreen . 10
4 TickerScreen . 10
5 Feed Management Tool . 16
6 Feed Management Tool Details 16
7 Content Management Tool . 16
8 Content Management Tool Details 17
9 Standby Configuration Tool . 17
10 Standby Configuration Tool Details 18
11 Interaction of System’s Components 23

22

A Setting up the system

A.1 Interaction of System’s Components

To be able to set up a system correctly, one needs to know how its components
interact and how the role of each component is defined. To aid in understanding
this, a short summary of each component together with a schematic of the
system as a whole shall be provided here. Please note that the directivity of the
arrows in Fig. 11 indicate the flow of information and are thus not random.

Figure 11: Interaction of System’s Components

• The MySQL Database stores settings and content of self-managed feeds.

• The Feed generating Scripts turn the feed content and other informa-
tion such as settings stored inside the database into RSS feeds.

• The LIST Screens access settings and feed content from the feed gener-
ating scripts and other feed sources, render and display them on an LCD
display.

• The Management Scripts serve to change settings and add feed content
to the database.

23

A.2 Display entities

The easiest way to set up the display entities is using the available ISO image
with Debian Etch pre-installed. It is completely set up and configured. If for
any reason, the image is not used, a few hints for the set up of the system are
provided in the following sections.

A.3 Operating System

The operating system can be set up as usual. If using a flash card as storage,
it is recomended to use ram disk for folders such as /var/log to prevent killing
the card with unnecessary write cycles.

A.4 Gnome

Gnome has to be configured to automatically log in as the user used to run
the applications. This setting is made inside the display manager (e.g. GDM).
Furthermore, the standby script has to be automatically running when the user
is logged in. First, the script standby.php needs to be stored somewhere on
the system. Then, the user account needs to be configured to start the script.
This can be done in the user configuration tool of gnome.

A.5 Security

For the security of the system, there are mainly two components. The first
component is the firewall, which should be set up to disallow as much as possible.
A sample configuration is provided in the file firewallconfig.sh which should
be copied to the folder /etc/init.d/

The second component are the two scripts openup and lockdown. These two
scripts should be copied to the folder /usr/local/bin.

A.6 Standby

To run the standby script, there are a few things to be done on the server.

• The two files config.php and config.inc.php need to be stored on the
server.

• A table called infoscreen_configs needs to be created in the central
database. (See Tab. 9)

A.7 Database / Web Tools

For storing feeds and settings, a MySQL database needs to be set up and it has
to be reachable by means of network connection by all screens. The best way to
do this is creating a new database account on a centrally managed server and
running the SQL statements included in the file list_setup.sql.

To get the initial screen layout set up, please refer to section 4.1.1 for in-
structions.

The database location and credentials need to be entered in the file database.inc.php
which resides on a web server together with all the settings and the management
tools.

24

Table 9: Standby Configuration (infoscreen configs)

Field name Data type Description
ID varchar(30) a descriptive ID containing the

location and use of the screen
(e.g. etz foyer amiv)

IP varchar(15) For future use. To auto-
matically store the entity’s IP
adress

startstandby int(4) Time to start the standby (e.g.
2100 for 9 PM)

endstanby int(4) Time to end standby
defaultstart int(4) A default value for the start-

standby. This value is used
when the settings are reset

defaultend int(4) A default value for the end-
standby. This value is used
when the settings are reset

A.8 Firefox Extension

The extension is installed by simply opening the .xpi file inside Firefox and
then entering the following settings in the extension’s settings dialog (reachable
via Tools → Add-ons → Infoscreen → Preferences).

• Device ID: A text string that represents a profile for the device. This can
be unique, e.g. etz_amiv_foyer to describe just one device or non-unique
to describe a class of devices. In the unique case, regular expressions can
be used later on to select certain devices such as etz_.*_foyer for all
devices in the ETZ Foyer.

• Feed List URL: URL of the script feedList.php that resides on the
web server

B User Guide

B.1 Screen Regions & Feeds

To clarify these two terms, the concept of screen regions and feeds should be
explained briefly:

Feeds are not much more than just a collection of “news items” in one file.
Each item can have a title, some additional text and many more fields such as
date and location. A feed is just a text file which is usually assembled from
database content by a programmed script. On the internet, feeds are mostly
advertised by giving the URL (address) of the corresponding script.

A Screen Region represents a certain area on the visible screen. Screens
are usually subdevided into 2-5 independent regions, where each region can have
its own content and type (e.g. calendar, ticker). What is displayed in a screen

25

region is specified as a list of feed URLs (http://...) that indicate where to get
the information from.

B.2 Management Tool

The management tool can be reached by entering the complete URL of the file
index.php (on the web server) inside any web browser.

About all the tool’s functionality lies in the buttons add, edit and delete.
These operations can act on feeds, display exceptions, feed display settings and
feed content; each of these areas is accessible by selecting the corresponding
category in the left-hand navigation column.

The following should give an overview of what data are needed for the respec-
tive areas and which are the common links in between. This should be enough
to administrate the system. If, however, more detailed/technical information is
sought, section 5.1 and the tables in section 4.1 might prove helpful.

B.2.1 Feeds

Feeds need the following information:

• ID: A unique short ID that internally stands for the feed (e.g. amiv_events)

• Title: Name of the Feed

• Link: An optional Link URL where more information than just the feed
content can be found, such as an organisation’s web page

• Editor: Name and E-Mail address of the person responsible for the feed
content

B.2.2 Display Exceptions

• Rule Nr.: A common integer number for all exceptions belonging to-
gether. So if there is a rule that treats every day of the week differently,
there are 7 exceptions which carry the same rule number. This number is
needed in the next section

• Weekday: On which day the exception should trigger

• From, To: Timestamps in the form HH:MM or HH:MM:SS indicating
the time span during which the exception applies

B.2.3 Feed Display Settings

• Feed URI: Address of the feed or the script that generates it. If set up
correctly, a drop-down menu can be used to select locally managed feeds

• Active: A feed can be disabled temporarily by removing this check mark

• Priority: A priority factor which is multiplied with each item’s priority.
This can be used to prioritize a feed as a whole

• Exception Nr., show if exception doesn’t apply: The number of
the exception that should be looked at (if any) and what is the standard
behavior if the exception does not apply (show the feed or ignore it)

26

• Display ID: Select the screen region on which the feed should be displayed
(see App. A for information on the set-up of screen regions)

• Show on (RegExp): Regular Expression to specify on which screens the
feed is to appear. This can be a screen ID in the form of a text string
or a regular expression. To keep it simple, .* may be used to match any
characters or [^_]* to match any characters except _.

B.2.4 Feed Content

• Feed: ID of the feed an item belongs to. This can be used to move items
between feeds

• Active: An item can be disabled temporarily by removing this check
mark

• Priority: A priority factor which is multiplied with the feed’s priority.
This can be used to prioritize individual items differently

• Show from / until: Used to limit the time span in which an item will be
displayed. These fields take the form YYYY-MM-DD HH:MM and can
also be left blank

• Location: An optional location to be displayed along the item (only on
the MainScreen)

• Title: Title/heading of the item

• URL: An optional URL to be displayed along the item (only on the
MainScreen)

• Desription: More text to describe the item in more detail (only on the
MainScreen and TickerScreen)

• Picture: Allows uploading of one picture to be displayed on the left side
of the item. If too large, this picture is scaled down to a maximum of 200
by 200 pixels while keeping the aspect ratio constant

27

