
Institut für
Technische Informatik und
Kommunikationsnetze

Autonomic Identifier Allocation for ANA
(AIA)

Mathias Fischer

Semester Thesis
Winter Semester 2008

January 7, 2009

SA-2008-23

Supervisor: Prof. Dr. B. Plattner
Advisors: Ariane Keller, Theus Hossmann, Dr. Martin May

Computer Engineering and Networks Laboratory, ETH Zurich

2

3

Abstract

In new networking architectures autonomy is very important – novel
networks should be able to organise and configure themselves autonomously.
One of the most important parts of configuring applications and proto-
cols is identifier allocation, because for most applications having a unique
identifier is crucial, in order to be able to communicate with each other.
In this semester thesis we designed and implemented an autonomous and
distributed system that is able to provide unique identifiers to all kinds
of applications and protocols in the Autonomic Networking Architecture
(ANA) framework. It generates random identifiers based on a regular
expression provided by the requesting application, and checks them for
uniqueness in a specified scope. The use of ‘Autonomic Identifier Allo-
cation’ simplifies configuration and therefore the set up of networks and
brings an important portion of autonomy to the ANA project.

4

CONTENTS 5

Contents

1 Introduction 7

2 Related Work 8
2.1 Zeroconf . 8
2.2 Bonjour . 8
2.3 Unique Identifier Allocation Protocol 9
2.4 Zeroconf Mobile Muti-Hop Ad-Hoc Networks 9

3 ANA 10
3.1 Goal . 10
3.2 Architecture . 10
3.3 The Compartment API . 11
3.4 Terminology . 12

4 Design and Implementation 13
4.1 Initiation . 13
4.2 Identifier Generation . 13
4.3 Allocation Process . 14
4.4 Disjoint Compartments . 15
4.5 Duplicate Identifiers . 17
4.6 Implementation of Function Flow 18
4.7 XRP Messages . 20
4.8 API . 21

5 Validation and Evaluation 22
5.1 Developement and Test Environment 22
5.2 Validation . 22
5.3 Evaluation . 26

6 Future Work 28
6.1 Improved Identifier Generation 28
6.2 Duplicate Identifiers . 28
6.3 Publishing AIA . 29

7 Summary 30

A How To 33
A.1 Starting and Using AIA . 33
A.2 API Usage . 34

B Definition of Task 37

C Project Plan 41

6 CONTENTS

7

1 Introduction

The ANA (Autonomic Network Architecture) [1] project1 aims at exploring
novel ways of organising and using networks beyond legacy Internet technology.
ANA is designed to provide a networking system that is more flexible than the
fixed network stack of today’s Internet. The ANA project states that a new
architecture should be designed in a way that its functionality is scalable –
an architecture should allow both different functionality and different ways of
implementing a given functionality.
One of ANA’s key properties is autonomy. According to the project, novel
networks should be able to organise themselves. This minimises the effort of
administrators to set up complicated networks. A very important part of con-
figuring a network and its applications and protocols is identifier allocation. For
most applications it is crucial to have unique identifiers, in order to be able to
communicate with each other. IP needs unique IP addresses, Ethernet needs
unique MAC addresses, even a chat application needs unique user names in
order to work properly.
Even though ANA aims to be autonomous and despite the importance of unique
identifiers, ANA lacks of a system that is able to automatically allocate iden-
tifiers. Identifiers, for example IP addresses, need to be configured manually.
This task can become very complicated as a network grows and hosts join and
leave the network.
In this semester thesis we designed and implemented an autonomous and dis-
tributed system that is able to provide its identifier allocation functionality to
all kinds of applications and protocols. It generates different types of identi-
fiers and checks them for uniqueness in a specified scope. This system is called
Autonomic Identifier Allocation or short AIA.
The remainder of this thesis is organized as follows: In Section 2 we will write
about the most important related projects. Section 3 will explain important
ANA abstractions and structures that are important to understand AIA. The
design and implementation of Autonomic Identifier Allocation will be described
in Section 4. In Section 5 we will show some validation and evaluation tests. In
Section 6 finally, we will describe where this work can be further improved and
what points would be interesting to have a deeper look into.

1See Section 3 for a detailed description of the ANA project.

8 2 RELATED WORK

2 Related Work

In this section, the most important projects dealing with autonomic name and
address allocations will be described. First, we will describe Zeroconf [2], proba-
bly the most famous project in this area of which Bonjour [3] is a specific imple-
mentation. The Unique Identifier Allocation Protocol [4] is a system that checks
different types of identifiers, provided by an application, for their uniqueness.
Finally, IP Address Configuration Algorithm for Zeroconf Mobile Muti-hop Ad-
Hoc Networks [5], describes a distributed algorithm for Ad-Hoc networks that
is based on agents that maintain a list of all assigned IP addresses.

2.1 Zeroconf

Zeroconf [2] is a working group which aims at developing a technique to connect
computers and devices in a local network without the need of manual configu-
ration. It consists of three main parts:

• automatic allocation of IP addresses without DHCP

• automatically resolve and distribute host names

• automatic service discovery

The first part of Zeroconf is described in the Dynamic Configuration of IPv4
Link-Local Addresses [6] which is based on ARP (Address Resolution Protocol)
[7]. According to this document, a host basically chooses an address out of
the 169.254/16 network (without the reserved 256 first and 256 last addresses)
and claims that this is its new address. This is done by sending ARP probes
– broadcast ARP messages with source address set to 0.0.0.0 and destination
set to the newly chosen IP address. If another host already uses this address it
responds with an ARP reply message what causes the claiming host to give up
and choose another address. Once an address claim was successful, that means
for a given time no ARP messages for the same IP have been received, ARP
announcements are broadcasted over the network to make sure all hosts know
the newly chosen address. ARP announcement messages are similar to ARP
probes but with source and destination address set to the new IP address.
If a host receives an ARP message whose source IP address is equal to its own
address there must be a conflict. Conflicts can occur during the process of
finding an IP address because Zeroconf first choses a random IP and only then
checks whether this address is still available. On the other hand, conflicts can
also occur after all host already had assigned an address, due to the connection
of previously disjoint networks.
After a successful claim, a host doesn’t give up its new address straight away if a
conflict occurs – it tries to defend the address by sending an ARP announcement
message. To avoid deadlocks where two or more hosts try to defend the same
IP address, a host gives up its IP address if it sees multiple conflicts during a
certain time period.

2.2 Bonjour

Bonjour [3] (formerly known as Rendezvous) is a Zeroconf implementation by
Apple. The address allocation part basically works similar to [6]. Bonjour is

2.3 Unique Identifier Allocation Protocol 9

only needed if the host fails to receive an address from a DHCP server. On
Apple OS-X, if Bonjour address allocation is used, not one but ten addresses
are claimed in series and the first of them working is taken. Even if Bonjour sets
a link-local address, DHCP is tried every five minutes. Since modern operating
systems are able to detect whether an Ethernet interface is connected, Bonjour
address allocation can be triggered by plugging a cable.

2.3 Unique Identifier Allocation Protocol

The Unique Identifier Allocation Protocol [4] is a by now expired internet draft.
It proposes a protocol which offers a service to applications which assures that
a requested name is only allocated if it’s not already in use by another instance
of the application in the network. It supports multiple types of identifiers (e.g.
network addresses or host names). The identifier, however, is chosen by the ap-
plication itself. The Unique Identifier Allocation Protocol checks the availability
of the identifier and returns whether it’s still available. An availability check is
done by claiming an identifier and waiting for hosts denying this claim. If none
of the hosts deny the claim during a specified period of time, the identifier is
still available.

2.4 Zeroconf Mobile Muti-Hop Ad-Hoc Networks

In [5], the authors propose an agent-based addressing algorithm for ad-hoc net-
works. Each node can either be bound (having an address) unbound (having no
address) or an agent. A node in the unbound state waits for an agent to send a
Verify-Packet with the network’s full address list. A Verify-Packet is basically a
periodic request from the agent to all nodes to verify their address. If no address
list is received for a certain period of time, the node decides to switch to the
agent state. Otherwise the node sends an Address-Request to the agent. Nodes
that are already bound to an address have to confirm their address after each
received Verify-Packet. The agent therefore gets aware of all used addresses and
is able to provide addresses to requesting nodes.

10 3 ANA

3 ANA

Before describing the Autonomic Identifier Allocation system in Section 4, we
will provide some explanations of ANA, its functionality and important abstrac-
tions used.

3.1 Goal

The ANA (Autonomic Network Architecture) [1] project aims at exploring and
implementing new ways of networking. Its ultimate goal is the flexible and
autonomous formation of network nodes as well as whole networks. In today’s
internet architecture, IP is the most important protocol – at the same time it
is the main technologic bottleneck – there are many protocols that run on IP
and many technologies IP can run on, but all devices that are connected to the
internet need to communicate through the Internet Protocol. The ANA project
claims that a new architecture should be designed in a way that its functionality
is scalable – both horizontally (different functionality) and vertically (different
ways of integrating abundant functionality).
ANA is a project participated by numerous universities and research institutes.
Its objective is to provide an architectural framework which allows the imple-
mentation of the full range of network technologies, such as small local area
networks, mobile ad-hoc networks or even global scale networks like the Inter-
net. An important part of ANA is autonomy – it is the intention of the project to
facilitate the self-* features of autonomic networking such as self-management,
self-organisation and self-configuration.

3.2 Architecture

ANA mainly consists of two parts, the MINMEX – a core which has to be pro-
vided by every ANA node, and the playground where the actual network func-
tionality is implemented. The playground consists of multiple so called bricks
which provide some functionality to the network, e.g. encryption, compression
or connection management. Multiple bricks can be conceptually grouped to
functional blocks – which provide a service to the network. For example the
functional block IP consists of multiple bricks for forwarding, routing or check-
sum calculation. All bricks communicate via the MIMNEX core using the ANA
compartment API.
Functional blocks which are part of the same node or share the same network
protocol are in the same compartment. A network compartment can be seen as
an abstraction similar to a subnet or a virtual network. A node compartment is
basically the set of all functional blocks (and their interconnection) of a single
node.
The compartment abstraction allows the decomposition of communication net-
works into smaller and manageable units. In addition a compartment hides its
internal implementation, it only provides some specified functionality to func-
tional blocks.
In order to allow for dynamic rebinding of the information flow between func-
tional blocks, Information Dispatch Points (IDPs) have been introduced. Com-
munication between functional blocks happens always via IDPs. The Infor-
mation Dispatch Table (IDT) stores the association between bricks and IDPs.

3.3 The Compartment API 11

Ethernet
Compartment

node A

z

y

“ip” z
“wired+eth01” y

KVR:

ETH

IP

Figure 1: ANA abstractions at the example of a node with ETH and IP func-
tional blocks, Ethernet segment and the KVR.

Compartments are identified by keywords which describe their service. The Key
Value Repository (KVR) stores the association between these keywords and the
corresponding IDPs.
The abstraction of a communication service provided by a compartment is called
information channel. Information channels only exist inside the bounds of a
compartment. Figure 1 shows a node with an Ethernet compartment, two
functional blocks and the KVR storing the associations of IDPs and keywords.

3.3 The Compartment API

Compartments require some kind of registration function allowing bricks to be-
come a member of the compartment. A similar function is needed to leave the
compartment. Compartments that use identifiers to name or address their mem-
bers need to manage the identifier space themselves. A compartment which uses
identifiers also needs to provide a function which is able to resolve an identifier
and obtain and return the information how to to communicate with this entity.
Further compartments typically include routing functionality in order to find
a communication path between any information source and destination within
the compartment.
In ANA a context describes the region in which a service is available, this can
be restricted to a certain subnet, to the local node (context ".") or to the
maximum reachable context (context "*").
The following primitives implement the registration and the resolution function-
ality, respectively:

publish The primitive IDPp = publish(IDPc,context,service,timeout) re-
quests from a compartment (identified by IDPc) that a certain service
(service) becomes reachable via the compartment in a certain context
(context), it returns an IDP (IDPp) by which the service can be accessed.
The timeout parameter specifies the maximum time allowed for this ac-
tion.

12 3 ANA

resolve The primitive IDPi = resolve(IDPc,context,service,timeout) is
asking a compartment (again identified by IDPc) for an information chan-
nel to a certain service (service) in a given context (context), it returns
the IDP (IDPi) of the information channel requested. The timeout pa-
rameter specifies the maximum time allowed for this action, after that
time resolve returns without having found the service.

3.4 Terminology

According to the ANA Blueprint [8] names, addresses and identifiers can be
distinguished as follows:

Identifier An identifier is a finite sequence of symbols of a given alphabet, that
is used to identify a certain entity of a set, an identifier therefore can be
either a name or an address.

Name A name is a globally unique identifier used for recognition of a given
entity. Usually names aim at being easily recognisable by humans, for
example a chat user name.

Address An address is an identifier that is not only used for identification but
also for routing and forwarding purposes. An IP address for example does
not only identify a host but also contains information how a route can be
found to it.

The abstractions and terms introduced in this section are very important for
the further understanding of the functionality of AIA, which is described in the
following section.

13

4 Design and Implementation

This section shows the design and implementation of AIA. One of the basic ques-
tions about the design of AIA is how the allocation of an identifier is triggered,
what will be described in the first subsection. Once AIA has been triggered,
an identifier has to be generated - how this is done is shown in the next sub-
section. The centrepiece of this thesis - the allocation process - is explained in
Subsection 4.3. We will also show how AIA is extended such that addresses can
even be allocated in disjoint compartments. Further, we will have a look at the
problem that the same identifier could be allocated to multiple instances of an
application. After pointing out the most important functions and threads in
AIA and how the program control flows between them, we will explain intro-
duced messages and what they are used for. In the end of this section the API
will be described.

4.1 Initiation

Since ANA aims to be scalable in functionality, it doesn’t make sense to imple-
ment a protocol that only assigns IP addresses within Ethernet Compartments.
It should be possible to assign arbitrary identifiers in an arbitrary compartment.
This generic property is definitely one of the most important points about the
design of an identifier allocation mechanism for ANA.
The mentioned projects in Section 2 follow different paradigms how an address
(or more general: identifier) allocation process is initiated. Bonjour [3] for
example is initiated when a cable is plugged and no IP address could be found
using a DHCP server. UIAP [4] on the other hand leaves the initialization to the
client application. In this case, the next question is whether the name allocation
process also needs to generate an appropriate identifier or whether this is left
to the application.
Since a generic allocation process doesn’t know anything about the structure
of the address space of the compartments, the identifier should be chosen by
the application or protocol that needs an identifier. On the other hand, we do
not want too much functionality of the allocation and generation process being
placed in the applications themselves.
In order to achieve a generic identifier allocation process, that still doesn’t need
the applications to generate an identifier we decided to let the application de-
scribe its identifier space with a regular expression. Further the application has
to define the compartment in which an identifier needs to be unique. And finally
it can specify a timeout which is the maximum time AIA should try to find an
available identifier before giving up.

4.2 Identifier Generation

As mentioned above, the generation of identifiers is based on regular expressions
[9] given by the application. Regular expressions are already used by the cfinder
[10] brick to identify identifiers belonging to a certain brick. Regular expres-
sions can describe any kind of address or name space – even an address space’s
structure, like subnetting in the example of IP addresses, can be implemented –
since some parts of the IP address can be kept fixed whereas other parts can be
described as being variable. It is even possible to provide a list of allowed names

14 4 DESIGN AND IMPLEMENTATION

in the form of a regular expression. Some examples for name spaces described
by regular expressions:

IPv4 (([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\\.){3}
([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])

Zeroconf address range 169\\.254\\.
([1-9]|([1-9][0-9])|(1[0-9][0-9])|(2[0-4][0-9])|25[0-4])\\.
([0-9]|([1-9][0-9])|(1[0-9][0-9])|(2[0-4][0-9])|25[0-5])

MAC address (([0-9]|[A-F]):){5}([0-9]|[A-F])

List (alpha|beta|gamma|delta)

The actual generation of an identifier is done by calling a Perl script. Perl is very
mighty in terms of regular expressions and there is a module that does exactly
what’s needed for the generation of identifiers based on regular expressions:
It provides a function that generates a string that matches a given regular
expression. In order to be able to call this function, the following two Perl
modules need to be installed:

• Parse::RandGen::Regexp

• YAPE::Regex

The Perl script is called with the popen command which opens a UNIX pipe to
a command line program. It is called as follows:

regen.pl regex

where regex is a Perl regular expression, or in other words a string representing
a regular expression enclosed by backslashes. For example:

regen.pl /10\.0\.0\.[0-9]/

4.3 Allocation Process

Once an identifier is requested from an application or a protocol, the identifier
allocation process is triggered (See Section 4.8 for a more detailed explanation
of the API). The centrepiece of AIA is given by the following steps depicted by
Figure 2:

1. AIA randomly generates an identifier based on the regular expression given
by the requesting application or protocol (requesting brick).

2. The compartment in which the identifier needs to be unique is called un-
derlying compartment. The underlying compartment is described by a
keyword, therefore it’s also possible to request an identifier that is unique
among multiple compartments connected to the node of the requesting
brick. AIA resolves the generated identifier in the underlying compart-
ments. In other words, this means that the compartments are asked to
look for a service named with that given identifier in the whole compart-
ment. (See Section 3.3 for a more detailed explanation of the Compart-
ment API).

4.4 Disjoint Compartments 15

(2) resolve(10.0.0.3)

(4) 10.0.0.3

(3) [timeout]

AIA IP

Ethernet

(5) publish(10.0.0.3)

(1) getIdentifier(10.0.0.\d)

Figure 2: Diagram of the allocation process at the example of IP on an Ethernet
segment. First IP requests an identifier based on a regular expression (1). After
AIA generates a matching identifier, it tries to resolve it in the Ethernet com-
partment (2). If the resolve request times out (3), AIA can return the identifier
to IP (4), which can publish it in the Ethernet compartment (5).

• If the resolve request is successful, the identifier was found in the
compartment. That means that there is already a service using that
identifier and it therefore cannot be returned to the application.
→ Go to step 1.

• If the resolve request times out (the timeout for resolve is specified
by AIA), the compartment is not able to find a service with the given
name. Therefore the generated identifier can safely be returned to
the requesting application.

Once an unused identifier could be found and returned to the requesting brick,
the application can publish a service named by that identifier in one of the
underlying compartments.
If AIA was not able to find an available identifier after a certain number of tries
or within the time specified by the requesting brick, it returns NULL instead of
the identifier. A maximum number of tries is specified to prevent AIA from
testing the same identifier over and over again.

4.4 Disjoint Compartments

Zeroconf [2] for example only assigns IP addresses in the same Ethernet segment.
However, it is undoubtedly useful to be able to have an IP address that is
unique among multiple underlying segments. This does particularly make sense
if multiple underlying networks implement different technologies between which

16 4 DESIGN AND IMPLEMENTATION

AIA

Ethernet Ethernet Ethernet

IP

Ethernet

AIA

resolve

forward

resolve

Figure 3: Diagram of forwarding procedure. AIA sends a forward request to all
reachable AIA bricks.

AIA

EthernetEthernet

publishpublish

Figure 4: Diagram of AIA publishing itself into multiple underlying compart-
ments. Afterwards this AIA brick is reachable in both compartments.

broadcast messages, and therefore also resolve requests, are not forwarded. It’s
also useful to assign unique IP addresses among multiple Ethernet segments
that are connected to the same node but not yet bridged. If later switching
functionality is introduced, the IP addresses are already unique among both
segments.
With the above mentioned procedure it’s only possible to verify the uniqueness
of an identifier in compartments that are available on the local node. In order
to be able to verify the uniqueness among compartments that are not directly
connected to the local node, the basic procedure of AIA needs to be extended,
see Figure 3 for a scheme showing the forwarding procedure.
If an AIA brick publishes itself in all underlying compartments (see Figure 4),it
is from then on reachable by all nodes connected by the underlying compart-
ments. In addition to only check local underlying compartments for an identi-
fier’s uniqueness, an identifier is forwarded to all reachable AIA bricks where it
is checked in all available underlying compartments as well. These AIA bricks
forward the request to all reachable AIA bricks again – therefore basically a
flooding of AIA forward messages is implemented. In order to distinguish the
forward messages belonging to a certain request, they carry a sequence number.
And in order to stop the forwarding procedure after a certain time, the messages
also carry a hop count. With each hop the timeout value is decreased.

4.5 Duplicate Identifiers 17

network
compartmentapplication 1 application 2

IP

Ethernet

IP

Ethernet

resolve

publish

[timeout]
resolve

publish

[timeout]

Figure 5: Scheme showing how duplicate identifiers are allowed.

Since the set of underlying compartments is only known after an application re-
quested an identifier, AIA cannot be previously published. This leads to the fact
that a node or an AIA brick, respectively can only accept a forwarded request if
it was previously used to find an identifier in the same compartment. In other
words, in order to achieve unique identifiers throughout all compartments, the
interconnecting nodes where compartments are joining, need to request iden-
tifiers before other nodes. See Section 6.3 for another possible approach of
publishing AIA into compartments.

4.5 Duplicate Identifiers

Since the identifier is in a first phase generated and tested by AIA and then
in a second phase published by the application, it is possible that the same
identifier gets allocated multiple times. Figure 5 shows how it can happen, that
duplicate identifiers are allowed. It shows two different nodes connected by the
same underlying compartment. If the two instances of AIA on these two nodes
happen to generate the same identifier at the same time, both of them try to
resolve this identifier in the underlying compartment. If before, no such identifier
existed both resolve request will lead to a timeout and both instances of AIA
will allow their requesting applications to publish this identifier, what will lead
to a name conflict. Knowing that this problem might occur, we will analyse
what factors are important and how the probability of duplicate identifiers can
be decreased.
The problem of duplicate identifiers can only occur if two (or more) requests
for the same identifier in the same compartment are made at the same time.
Therefore three factors are important:

Identifier Space Utilisation Since identifiers are generated randomly, the
probability that the same unused identifier is generated twice depends
on the usage of the identifier space. If enough identifiers are still avail-
able, the probability that the same identifier is generated multiple times
is rather small.

Timeout Since the timeout value defines the duration of a resolve request, a

18 4 DESIGN AND IMPLEMENTATION

lower timeout decreases the probability of two timeouts happening at the
same time. However, a timeout value that is too low, can lead to the
problem that a resolve request doesn’t find a service even though it would
exist.

Request Rate Two resolve requests only happen at the same time, if two
identifier requests were made at the same time for the same compartment.
Hence, the probability of the problem happening depends on the rate at
which identifier requests are made for a given compartment.

For further possibilities to decrease the probability of duplicate identifiers, please
refer to Subsection 6.2 in the Future Work Section, since this problem is not
handled in the current implementation of AIA.

4.6 Implementation of Function Flow

Figure 6 and the following list explain the implemented control and message
flow between the components of AIA:

• As mentioned above, a new identifier is triggered by a REQUEST from a
requesting application.

• The callback function handleAIARequest, upon receiving a request calls
findCompartments which looks up all compartments that match the de-
scription given by the application. The local AIA brick is published in
all found compartments if this not already done by a previous request.
Further in all found underlying compartments, a broadcast AIA IDP is
resolved. If this was already done before, a KEEPALIVE message is sent to
it in order to prevent it from being deleted or to detect a possible deletion.
The AIA broadcast IDP is not created permanently, it is therefore deleted
by the MINMEX if not used for certain time.

• The callback function then calls the Perl script regen.pl that generates
an identifier out of the given regular expression.

• This random identifier is passed to the function sendAIAForward which
launches a checkerThread for each available underlying compartment and
a forwarderThread for the AIA broadcast IDP in each underlying com-
partment.

• checkerThread simply tries to resolve the generated identifier in the un-
derlying compartment and sends the respective SIGNAL to waiterCallback
– this can either be a ID_USED or a TIMEOUT signal.

• forwarderThread sends a FORWARD to the AIA broadcast IDP, which
reaches all AIA bricks that are published in the respective underlying com-
partment. Once done, forwarderThread also sends a respective SIGNAL
to waiterCallback.

• The function waiterCallback blocks until it received a TIMEOUT signal
from all checkerThreads and all forwarderThreads or until one of these
threads sent an ID_USED signal. If the identifier is already used, a new
identifier is generated and the procedure is started over again. If all

4.6 Implementation of Function Flow 19

anaThread

resolve

anaThread

analock

receive

popen
function call

function call

function call
function call

SIGN
AL

KEEPALIVE
BACKW

A
RD

FO
RW

A
RD

/KEEPA
LIVE

BACKW
A

RD

FO
RW

A
RD

/KEEPA
LIVE

FORWARD

SIGNAL

REQUEST

REPLY

handleA
IA

Request

U
nderlying Com

partm
ent

A
IA

 Broadcast

regen.pl

getIdenti�er

handleA
IA

Forw
ard

sendA
IA

Forw
ard

�ndCom
partm

ents

w
aiterCallback

checkerThread
forw

arderThread
answ

er_receiver

Underlying
Compartment

AIA Requesting
Brick

Figure 6: The control and message flow between components of AIA.

20 4 DESIGN AND IMPLEMENTATION

threads send a TIMEOUT signal, handleAIARequest sends a REPLY mes-
sage with the found identifier back to the requesting brick.

• requestReply can be used to send a message to an IDP and in the same
time request an answer from it, i.e. the function blocks until a reply is
received (or the timeout is reached). But since requestReply doesn’t work
as expected to send FORWARD messages to a broadcast IDP and receive an
answer, the service answer_receiver is used by the forwarderThread to
receive answers from other nodes, it is published (and therefore available)
in all underlying compartments.

• If a node receives a FORWARD message, handleAIAForward calls the func-
tion findCompartments in order to update the list of underlying compart-
ments, and then calls sendAIAForward in order to check the availability
of the identifier and forward the the request. If waiterCallback receives
the signal that the identifier is used, it sends a BACKWARD message back to
the node that sent the FORWARD request (via answer_receiver), otherwise
it simply doesn’t do anything in order to let the request time out.

4.7 XRP Messages

XRP (eXtensible Resolution Protocol) [11] is the standard format for messages
between ANA bricks. An XRP message consists of a command (i.e. a message
type) and multiple arguments (i.e. values). The following list shows the XRP
commands we defined to support the functionality of AIA. Note that the last
part of the XRP command name can also be found in Figure 6.

XRP CMD AIA REQUEST is the request that is made out of the request-
ing application. The function getIdentifier which generates a REQUEST
is provided by aia.h to simplify utilisation. A REQUEST contains the de-
scription of the underlying compartments and the regular expression.

XRP CMD AIA REPLY is a reply to a request from an application. A
reply can either carry the identifier string or the message that no identifier
could be found.

XRP CMD AIA FORWARD is a forwarding message between two AIA
nodes. It consists of a sequence number (in order to distinguish requests),
a hop count, the identifier that needs to be checked and the description of
the underlying compartments.

XRP CMD AIA BACKWARD is the reply to a forwarding message. A
reply to a forward is only sent if the identifier could be found, otherwise
the forward request will be let timing out. Therefore a BACKWARD messages
always consist of the ID_USED flag.

XRP CMD AIA SIGNAL is used to inform the callbackWaiter function
that a checkerThread or forwarderThread has finished. It’s either a
TIMEOUT or an ID_USED signal.

XRP CMD AIA KEEPALIVE is sent to the AIA broadcast IDP in order
not to let it disappear because it wasn’t used for too long or to detect
that it was already deleted. Non-permanently published IDPs are deleted

4.8 API 21

by the MINMEX if not used for a certain time. A received KEEPALIVE
message is simply ignored.

4.8 API

AIA provides an API to all other bricks in order to request an identifier. After
having imported aia/aia.h the API basically only consists of a single function
call:

char* getIdentifier(char* regex,
struct service_s* description,
struct timespec* timeout);

This function returns a string with the found unique identifier or NULL if none
could be fount. It takes the following arguments:

• char* regex A string with the regular expression that matches all (and
only) valid identifiers.

• struct service_s* description A service_s struct that describes the
compartments in which the identifier has to be unique.

• struct timespec* timeout Maximum time AIA can try to find an iden-
tifier before giving up, without having found one. Note that this timeout
doesn’t correspond with the timeout parameter of a resolve request which
is set by AIA.

In the Section A.2 in the appendix we will shortly describe how we adopted the
IP configuration and the chat application bricks to use AIA.

22 5 VALIDATION AND EVALUATION

ssh

ssh

internet access

eclipse

make, gcc

virtualBox

ANA

minerva

et
h1

ssh

ANA

apollo jupiter

et
h1

ssh

ANA

pc-10083

et
h1

et
h0

et
h0

et
h0

ana-net

ana-shared ana-shared ana-shared ana-shared

• • •

• • •

Figure 7: Diagram of the Test Environment

5 Validation and Evaluation

5.1 Developement and Test Environment

To be able to test AIA on a network environment without the need of setting
up a network with multiple machines, we decided to use multiple virtual ma-
chines running on a single host machine using VirtualBox2. For fast and simple
compilation and distribution of the new ANA binaries, a folder from the host
operating system is shared among all the guest systems. Since all the operat-
ing systems are exactly the same (Ubuntu 8.04), we are able to compile the
source on the host system and distribute the binaries afterwards. For simpler
shell script execution we further installed an ssh server on all guest systems and
redirected a certain port to each one of them. See Figure 7 for a detailed view
of the test environment.

5.2 Validation

To evaluate correct functionality of AIA, we set up three test scenarios. Figures
8 and 9 show scenarios I and II, respectively. Figure 10 shows scenario III.
Figures 8 and 9 show three nodes that are connected by a single compartment
in scenario I and two nodes connected to an intermediate node in scenario II,
respectively. Figure 10 shows three nodes, where each of them is connected to
the two others by a separate compartment. For scenarios I and II, there are
three cases each. As seen in the figure, AIA is present in one, two or all nodes,
for the other nodes, fixed manually configured identifiers are used.

5.2.1 Scenario I: Single Compartment

Scenario I (Figure 8) is used to test the functionality of AIA in a single com-
partment. AIA is requested to provide identifiers to chat applications published
in an Ethernet segment.

2http://www.virtualbox.org/, VirtualBox OSE.

5.2 Validation 23

Ethernet Ethernet

AIA

Ethernet

Ethernet Ethernet

AIA AIA

Ethernet

Ethernet Ethernet

AIA AIA AIA

Ethernet

(I.a)

(I.b)

(I.c)

node A node B node C

node A node B node C

node A node B node C

Figure 8: Diagram of testing scenario I, three nodes connected by a single
Ethernet compartment. AIA is only used in the nodes with an AIA brick.

First, two of three nodes are configured manually, that means chat names
alpha and beta are given to the chat applications. On the third node, AIA
is asked to find an available identifier specified by the simple regular expression
(alpha|beta|gamma), assuming correct functionality, only identifier gamma is
valid. The test is done multiple times and AIA always returns gamma, what
shows correct functionality for the first case of scenario I.

24 5 VALIDATION AND EVALUATION

Ethernet Ethernet

AIA

AIA

Ethernet Ethernet

AIA

Ethernet Ethernet Ethernet Ethernet

AIA

AIA

Ethernet Ethernet Ethernet Ethernet

AIA

(II.a)

(II.b)

(II.c)

node A node B node C

node A node B node C

node A node B node C

Figure 9: Diagram of testing scenario II, two nodes connected by two Ethernet
compartments via an intermediate node. AIA is only used in the nodes with an
AIA brick.

A similar test was done for the case where only one node is assigned a fixed
chat name - alpha. For the same regular expression as above, the remaining
two nodes always chose one of the remaining two identifiers beta or gamma.

The last case for this scenario is a set up of three nodes all using AIA to find a
chat name in a single Ethernet compartment. During multiple tests, the three
available chat names are always assigned to the three nodes, with none of them
being used multiple times. Hence correct functionality could be shown for AIA
assigning identifiers in a single compartment.

5.2 Validation 25

Ethernet Ethernet

AIA

AIA

AI
A

Ethernet

Ethernet Et
he

rn
et

Et
he

rn
et

node A

node B node C

Figure 10: Diagram of testing scenario III, three nodes connected in a circle by
Ethernet segments.

5.2.2 Scenario II: One Intermediate Node

With the second validation scenario (Figure 9), correct functionality of checks
in multiple compartments and the forwarding mechanism are tested. For the
first case only the connecting node (in the middle) will use AIA, the other nodes
have fixed user names assigned (again alpha and beta). AIA successfully finds
the only available user name for the middle node.
AIA also works if one or both of the remaining nodes request an identifier.
However, for the leftmost and rightmost node (See Figure 9) to have distinct
identifiers, the intermediate node needs to request an identifier first, in order to
publish itself in the underlying compartment and to be reachable by other AIA
bricks. This is already mentioned in Section 4.4, where we also refer to Section
6.3 for an alternative way to publish AIA.

5.2.3 Scenario III: A Circle of Three Compartments

For the last and most complicated scenario IP over Ethernet is used rather
than the chat application. Three tests have been done with different regular
expressions. First, the ordinary Zeronconf [2] address range was used, where all
six interfaces received a distinct IP address with the first generated identifier.
Later, the test was done with ten and then six available addresses. In both
cases AIA was able to allocate an available IP address to all Ethernet interfaces.

26 5 VALIDATION AND EVALUATION

0

75

150

225

300

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Ti
m

e
(S

ec
on

ds
)

Number of Identi�ers allocated

Size of Namespace:

All identi�ers were
found afer 10 tries.

AIA returned without
having found an
identi�er for all
requests.

25
50
75

100

Figure 11: Graph of the first evaluation, time needed to allocate a given number
of identifiers.

However in the last case the timeout needed to be increased, since it might take
a lot of time to find an IP – especially for the last interface where only one IP
is still available.

5.3 Evaluation

The evaluation of AIA was done for two quantities. First the performance –
the time to find an available identifier – of AIA was measured. The second
evaluation was made for the optimal number of tries. In order to simplify the
test setup, all identifiers were allocated for dummy services published on a single
node.
For the first evaluation, we measured the time it took for AIA to find a certain
number of identifiers depending on different sizes of the identifier space. Figure
11 is the graph of the measurements for four differently sized identifier spaces.
The x-axis shows the number of identifiers tried to allocate, the y-axis shows
the time it took. The graph shows that the time needed to find a given number
of identifiers increases linearly. This is the case because for this measurement
all identifiers have been published locally, that means finding an identifier being
used is much faster than making sure that it doesn’t exist, therefore a second
try doesn’t take much more time than a single one. Filled circles show the
measurement where AIA was not able to allocate the full number of identifiers.
In this cases the time is even less than usually since after ten unsuccessful tries,
AIA gives up and returns an error. Note that the slope of the lines in Figure
11 correspond to the maximum of the timeout values specified for resolve and
forwarding requests. In this case the timeout for a forwarding request is three
seconds, AIA is waiting for the timeout to happen before returning the identifier.
Therefore the time to check one identifier is bound by this timeout.
The second evaluation deals with the previously mentioned maximum number of
tries before AIA gives up finding an identifier. Figure 12 shows the utilisation of
the identifier space on the x-axis, where 100% are 100 identifiers. On the y-axis
the percentage of identifiers found after a given number of tries is shown. The
measurement was done for one, two, five and ten tries. The graph shows that

5.3 Evaluation 27

0

25

50

75

100

10 20 30 40 50 60 70 80 90 100

Number of tries: 1 2 5 10

Percentage of Identi�er Space used

Pe
rc

en
ta

ge
 o

f I
de

nt
ife

rs
 fo

un
d

af
te

r a
 g

iv
en

 n
um

be
r o

f t
rie

s

Figure 12: Graph of the second evaluation, percentage of identifiers allocated
after a given number of tries.

already a large percentage of unique identifiers can be found with one single
try, but as the utilisation of the identifier space increases, less identifiers can
be found. After five tries, almost all identifiers can be found, at leas up to an
utilisation of around 70%. After ten tries, all identifiers could be found up to
an utilisation of 80%.
This experiment shows that ten tries is a reasonable choice. Although the API
doesn’t provide the ability of changing this value, the user has some influence
on it by changing the AIA timeout value. Regardless of the number of tries
already done, AIA stops after the specified timeout.

28 6 FUTURE WORK

6 Future Work

6.1 Improved Identifier Generation

The current implementation of AIA, or the Perl script in particular, randomly
generates a string that matches the given regular expression. However, it might
be preferable that an identifier that’s generated for a certain instance of an
application is partially reproducible. This could be done by using the identifier
or some other unique information from the underlying compartment as a seed.
For example it would be desirable that the IP address that belongs to a certain
Ethernet interface is similar every time AIA is used to generate an IP address,
in this case the Ethernet MAC address could be used as a seed. However, it
shouldn’t generate exactly the same identifier each time, since AIA is based on
the idea that if an identifier is not available anymore another one is generated,
and so on. This wouldn’t work if always the same identifier was generated.

6.2 Duplicate Identifiers

Even though, we argue in Section 4.5 that the probability of duplicate identifiers
is quite low if certain properties are fulfilled, it would be desirable to further
decrease the danger of duplicate identifiers. Some possible improvements could
include:

Detection Mechanism Applications and protocols could be asked to provide
a mechanism that can detect duplicate identifiers, and in case of a conflict
resend the identifier request to get a new identifier. However it should be
prevented that both instances of the application re-request a new identifier
and the possibility of duplicate identifiers is still around.

Verification It’s possible to provide another API function in aia.h called
verifyIdentifier, which would just check whether an identifier is re-
ally unique after it was published. This functionality could be wrapped
in a modified publish function:

anaLabel_t publishIdentifier(char* regex,
struct service_s* service_of_underlying_compartment,
struct service_s* service_to_publish,
struct context_s* context_where_to_publish,
struct timespec* timeout_for_aia);

This function could request an identifier, publish it and afterwards verify
its uniqueness.

Improved Identifier Generation As mentioned in Section 6.1, identifiers
could be generated influenced by a seed coming from the identifier of
the underlying compartment. Therefore the probability that the same
identifier is generated on two different nodes is further decreased.

6.3 Publishing AIA 29

6.3 Publishing AIA

In the current implementation, AIA is only published in underlying compart-
ments on a given node once AIA was requested to find an identifier in these
compartments. This makes sense as long as nodes connecting multiple com-
partments are not very often, and preferably request identifiers first.
It would be possible to regularly publish AIA in all compartments available on
a node. As long as AIA is only used for few types of compartments this might
be an overhead. However, if AIA was used to find identifiers for many different
compartments, this way of publishing AIA might be a better choice.

30 7 SUMMARY

7 Summary

In this semester thesis, we designed and implemented a generic and distributed
identifier allocation system, which is able to provide unique identifiers to any
kind of application or protocol. With this Autonomic Identifier Allocation, the
ANA project gains on autonomy.
IP networks can now be set up much easier by using the zeroconf option of
ipconfig. Nodes can join existing networks without the need of manual con-
figuration or a centralised server providing addresses. But AIA cannot only be
used to allocate IP addresses, it provides an API that can be used by every brick
within ANA. Identifiers can be allocated uniquely in a compartment that is built
over different underlying compartments thanks to the forwarding functionality
built into AIA.
However, there is the danger of duplicate identifiers. It has been showed, that
this danger can be kept low as long as the address space is used rather sparely
and as long as identifiers request do not occur too frequently. In fact, while
evaluating and verifying AIA, I never encountered the problem of duplicate
identifiers even though also multiple requests have been started at the same
time.
The contributions of this thesis to the ANA project can be summarised as
follows:

• Before starting with the work on an own identifier allocation systems, I
studied and compared different existing projects dealing with automatic
distributed identifier allocation.

• The main part of the work on this thesis consisted of the design of AIA.
Many options and possibilities of an identifier allocation systems have
been considered. Whereas the decision was made for a system as generic
as possible.

• In order to be able to efficiently work on the thesis I set up an environment
of multiple virtual machines building a virtual network.

• Once planned, the project was implemented in C in the ANA framework.
The result is a properly working generic application.

• The chat and the ipconfig applications were changed to use AIA’s func-
tionality if needed.

• The project was verified and evaluated in different scenarios with AIA
used for different applications.

I hope that in the future many bricks will use the functionality provided by AIA
and that autonomic identifiers are only the first step of completely autonomously
configured systems or even networks.

REFERENCES 31

References

[1] ANA Autonomic Network Architecture. http://www.ana-project.org,
(7.1.2009).

[2] Zeroconf working group. http://www.zeroconf.org/, (7.1.2009).

[3] Apple Inc. Bonjour. http://developer.apple.com/networking/bonjour,
(7.1.2009).

[4] A. White and A. Williams. Unique identifier allocation protocol. Internet-
Draft draft-white-zeroconf-uiap-01, Internet Engineering Task Force, Oc-
tober 2002. Expired on May 1, 2003.

[5] Mesut Günes and Jörg Reibel. Ein dynamisches Adressierungsverfahren für
mobile Ad-Hoc Netze. In Mobile Ad-Hoc Netzwerke, 1. deutscher Workshop
über Mobile Ad-Hoc Netzwerke WMAN, volume 11 of LNI, pages 59–78. GI,
2002.

[6] S. Cheshire, B. Aboba, and E. Guttman. Dynamic configuration of IPv4
link-local addresses. RFC 3927, Internet Engineering Task Force, May 2005.

[7] D. C. Plummer. An ethernet address resolution protocol. RFC 826, Net-
work Working Group, November 1982.

[8] Stefan Schmid Christophe Jelger. ANA Blueprint, 2008. http://www.ana-
project.org/deliverables/2007/ana-d1.456-final.pdf, (7.1.2009).

[9] Perldoc (perldoc.perl.org). perlre - perl regular expressions.
http://perldoc.perl.org/perlre.html#Regular-Expressions, (7.1.2009).

[10] Christophe Jelger. The compartment finder. In Developmentof
autonomic applications, pages 12–16, 2008. http://www.ana-
project.org/deliverables/2007/ana-d4.3-final.pdf, (7.1.2009).

[11] Richard Gold, Per Gunningberg, and Christian Tschudin. A virtualized
link layer with support for indirection. In FDNA ’04: Proceedings of the
ACM SIGCOMM workshop on Future directions in network architecture,
pages 28–34, New York, NY, USA, 2004. ACM.

32 REFERENCES

33

A How To

A.1 Starting and Using AIA

All AIA code is located in the directory ./C/bricks/aia/, this also includes
some scripts that start AIA with a set of standard bricks, especially the scenarios
mentioned in Section 5. However, in this section we will provide a step by step
guide to start AIA for certain scenarios. All commands should be executed
from the ANA root directory. But before AIA can be loaded, ANA has to be
compiled with AIA. Thus the config.txt file needs to be changed:

• The line USER_PROCESS_BRICKS should contain at least:
ip eth-vl

• The line USER_PLUGIN_BRICKS needs to contain at least:
vlink ip chat cfinder aia gatesPlug eth-vl

After having added all needed bricks to the config file, ANA needs to be compiled
using make.

A.1.1 Chat Over Ethernet

The following commands start a chat application that runs over Ethernet. In
order to be able to use the text user interface for the chat, two console windows
are needed. On the first one enter:

start MINMEX
sudo ./bin/minmex

On the second console, start vlink, Ethernet, AIA and the chat application with
the following commands:

load vlink brick
./bin/mxconfig load brick ./so/vlink.so
create new vlink
./bin/vlconfig create 1
add interface eth1 to vlink
./bin/vlconfig add_if vlink1 eth1
switch on vlink1
./bin/vlconfig up vlink1
load Ethernet brick
./bin/mxconfig load brick ./so/eth-vl.so
load AIA brick
./bin/mxconfig load brick ./so/idalloc.so
load chat brick with AIA functionality
./bin/mxconfig load brick ./so/agnostic_chat.so aia

eth1 has to be replaced by the name of the Ethernet interface of your machine.
The chat application should be started on multiple machines and can then be
used in the first console window.

34 A HOW TO

A.1.2 Zeroconf (AIA for IP Addresses in Ethernet Compartments)

AIA can be used to allocate IP adresses from the Zeroconf range in Ethernet
compartments. This is done as follows:

start MINMEX
sudo ./bin/minmex &
load vlink brick
./bin/mxconfig load brick ./so/vlink.so
create new vlink
./bin/vlconfig create 1
add interface eth1 to vlink
./bin/vlconfig add_if vlink1 eth1
switch on vlink1
./bin/vlconfig up vlink1
load cfinder brick
./bin/mxconfig load brick ./so/cfinder.so
load gates plugin
./bin/mxconfig load brick ./so/gatesPlug.so
start Ethernet as a standalone process
sudo ./bin/eth-vl -n unix://<SOCK_FILE> &
load AIA brick
./bin/mxconfig load brick ./so/idalloc.so
load IP bricks
./bin/mxconfig load brick so/ip_enc.so
./bin/mxconfig load brick so/ip_sum.so
./bin/mxconfig load brick so/ip_fwd.so
start ipconfig as standalone process with zeroconf option
sudo ./bin/ip_cfg -n unix://<SOCK_FILE> -e eth01 -z &

Where <SOCK_FILE> stands for the newest of the files in the /tmp/ directory
named like anaControl_gatesPlug_*.

A.2 API Usage

Section 4.8 describes the API of AIA. In this section we will describe how the
API is used at the example of the ipconfig and the chat application.

A.2.1 Ipconfig

In order to automatically allocate IP addresses to Ethernet interfaces as in [6],
we adopted the IP configuration brick to use AIA. In this case ipconfig allocates
IP addresses from the network 169.254.0.0/16 like Zeroconf. But in contrast
to Zeroconf, IP addresses are unique among all ethernet compartments that
are connected to the requesting node by a node that previously assigned IP
addresses with AIA. See Section 4.4 for a more detailed description of unique
identifiers in disjoint compartments.

ip_cfg -e <ethernet interface> -z

A.2 API Usage 35

A.2.2 Chat

As an example that AIA cannot only be used for IP addresses, we also provide a
modified version of the chat application which can be used to find unique names
throughout a set of compartments. If the chat application is started without a
user name passed as argument, AIA is automatically used to find a chat name
that is unique in the eth01 compartment.
In addition when calling the chat application, it can also be specified which
protocol needs to be used an in which compartment the user name needs to be
unique.

agnostic_chat [aia [<interface> [<compartment>]]]

For example:

// find a user name in eth01
agnostic_chat
agnostic_chat aia
agnostic_chat aia eth01

// find a user name in eth01 but
// unique in all ethernet compartments
agnostic_chat aia eth01 wired

// find a user name in IP
agnostic_chat aia ip

// find a user name in the compartment identified by the IP
// 10.0.0.1 but unique in all IP compartments
agnostic_chat aia 10.0.0.1 ip

36 A HOW TO

37

B Definition of Task

Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis

Zeroconf for ANA network compartments
Mathias Fischer

Advisor: Ariane Keller, ariane.keller@tik.ee.ethz.ch
Co-Advisors: Theus Hossmann, hossmann@tik.ee.ethz.ch

Dr. Martin May, may@tik.ee.ethz.ch
Professor: Prof. Dr. Bernhard Plattner, plattner@tik.ee.ethz.ch

September 2008 - Januar 2008

Introduction

This semester thesis is in the context of the ANA project. The goal of the ANA
project is to explore novel ways of organizing and using networks beyond legacy
Internet technology. The ultimate goal is to design and develop a novel network
architecture that can demonstrate the feasibility and properties of autonomic
networking. One area where autonomic features can be applied successfully
is addressing. In this semester thesis we develop an autonomic configuration
protocol for network compartments.

Assignment

This assignment aims to outline the work to be conducted during this thesis.
The assignment may need to be adapted over the course of the project.

Objectives

The objective of this semester thesis is to design and implement a protocol that
autonomously configures ANA network compartments and assigns addresses to
individual nodes. Since in todays network the IPv4 protocol is in widespread
use we will focus on IPv4 but the protocol should be generic enough to work
with any other addressing scheme.

38 B DEFINITION OF TASK

Tasks

This section gives a brief overview of the tasks the student is expected to perform
towards achieving the objective outlined above. The binding project plan will
be derived over the course of the first three weeks depending on the knowledge
and skills the student brings into the project.

Familiarization

• Study the available literature on ANA [1, 2].

• Study the available literature on zero configuration protocols [3, 4].

• Study the available literature on IP/RIP on ANA [5].

• In collaboration with the advisor, derive a project plan for your semester
thesis. Allow time to study related work and to develop, implement and
validate your protocol. At the end of your semester thesis you will need
some time to write your documentation and prepare the presentation.

Protocol Design

• List all elements that need to be configured.

• Derive a protocol that works for IPv4 nodes that belong all to the same
underlaying compartment. Keep in mind that it should work for other
network compartments as well.

• Optional: Generalize your protocol to work with other network compart-
ments.

• Optional: Enhance your protocol to work within the whole network.

Software Design

• The software should be as generic as possible.

• Divide your protocol into network compartment specific and unspecific
bricks.

• Think about possible test scenarios for the functional verification.

Implementation and Validation

• Implement the core functionality of your protocol.

• Optional: Implement additional functionality of your protocol.

• Optional: In several iterations optimize your implementation.

• Validate the correct operation of your implementation.

• Provide a simple validation script, that determines whether your Bricks
work correctly.

39

• Check the resilience of the implementation, including its configuration
interface, to uneducated users.

• Document your code with doxygene [8] according to the ANA guidelines.

• Adhere to the Linux coding style guide [6].

• Optional: Try whether your implementation works also in the Linux kernel
space.

Deliverables

• Provide a ”project plan” which identifies the mile stones.

• Mid semester: Intermediate presentation. Give a presentation of 10 min-
utes to the professor and the advisors. In this presentation, the student
presents major aspects of the ongoing work including results, obstacles,
and remaining work.

• End of semester: Final presentation of 15 minutes in the CSG group meet-
ing, or, alternatively, via teleconference. The presentation should carefully
introduce the setting and fundamental assumptions of the project. The
main part should focus on the major results and conclusions from the
work.

• End of semester: Final report describing the semester thesis.

• Use the default ANA layout for all your figures.

• Any software that is produced in the context of this thesis and its doc-
umentation needs to be delivered before conclusion of the thesis. This
includes all source code and documentation. The source files for the final
report and all data, scripts and tools developed to generate the figures of
the report must be included. Preferred format for delivery is a CD-R.

Organization

• Student and advisor hold a weekly meeting to discuss progress of work
and next steps. The student should not hesitate to contact the advisor at
any time. The common goal of the advisor and the student is to maximize
the outcome of the project.

• The student is encouraged to write all reports in English; German is ac-
cepted as well. The final report must contain a summary, the assignment
and the time schedule. Its structure should include the following sections:
Introduction, Background/Related Work, Design/Methodology, Valida-
tion/Evaluation, Conclusion, and Future work. Related work must be
referenced appropriately.

• The source code will be published under the ISC license.

40 B DEFINITION OF TASK

References

[1] ANA Core Documentation: All you need to know to use and develop ANA
software. Available in the ANA svn repository.
[2] ANA Blueprint: First Version Updated. Available from the ANA wiki
[3] Inside AppleTalk, Gursharan S. Sidhu, Richard F. Andrews, Alan B. Op-
penheimer,
developer.apple.com/MacOs/opentransport/docs/dev/Inside AppleTalk.pdf (04.09.08)
[4] Zero Configuration Networking (Zeroconf), http://www.zeroconf.org (04.09.08)
[5] Stephan Dudler: New Protocols and Applications for the Future Internet,
Master Thesis [MA-2007-39], ETH Zurich
[6] Available on your Linux box: file:///usr/src/linux/Documentation/CodingStyle
[7] https://www.ana-project.org/wiki
[8] http://www.stack.nl/∼dimitri/doxygen/

41

C Project Plan

Environment
(Computer, Virutal Machine, IDE)

Reading
ANA

Reading
(Zeroconf)

Documentation
(Report)

Presentation
(Preparation)

Design
(Protocol)

Implementation

Veri�cation/Testing

1 2 3 4 5 6 7 8

Environment
(Computer, Virutal Machine, IDE)

Reading
ANA

Reading
(Zeroconf)

Documentation
(Report)

Presentation
(Preparation)

Design
(Protocol)

Implementation

Veri�cation/Testing

9 10 11 12 13

