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Abstract

Real-time applications are increasingly implemented on multi-processor system-
on-chips. It is a challenge to develop applications for these systems. Many
steps are necessary until an application for a specific multi-processor archi-
tecture can be executed and analyzed.

A testbed is implemented in this semester thesis that allows to execute
process networks in a cycle-accurate Multi-Processor ARM (MPARM) sim-
ulator. As a result, the execution trace is extracted and a basic modular
performance analysis model is created.

The traces allow insight into the execution of a real-time application
on the MPARM platform. A computation and approximation for workload
curves based on simulation results is introduced in this thesis. Workload
curves are used to model the processes in the analysis model.
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Chapter 1

Introduction

1.1 Motivation

Real-time systems are implemented on MPSoC (multi-processor system-on-
chip) today. Multi-processor systems are attractive because they offer higher
performance and lower energy consumption than single-processor systems.

On the other hand, the development and analysis of an application im-
plemented for a MPSoC is difficult. One needs to have a specific run-time
system for the MPSoC in question and the application has to be imple-
mented for that system. Further, a development environment has to be set
up to be able to run or simulate the system to obtain relevant data about
the execution.

An application developer would like to concentrate on modeling his prob-
lem. He will appreciate a development system that allows to analyze the
real-time behaviour of his MPSoC in a easy way.

1.2 Goal

The goal of this project is to provide an environment that facilitates the
analysis of real-time applications on MPSoC by assembling a tool chain
that given a system specification allows to easily obtain system properties
from low-level simulation.

In particular, the goal is to extract the system execution trace, to char-
acterize the task workloads quantitatively and to obtain arrival curves for
each task.

The target platform is Multi-Processor ARM (MPARM), which is a ho-
mogeneous multi-processor platform that integrates up to 26 ARM7 proces-
sors [2]. The real-time operating system running on this platform is RTEMS
(Real-Time Executive for Multi-Processor Systems) [6].
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1.3 Contribution

1.3 Contribution

The described goal is reached by setting up a testbed which allows to exe-
cute a system specified by a DOL specification [8] mapped to the MPARM
architecture, in a cycle accurate simulator.

The execution trace is extracted from simulation and converted to a file
in VCD format (value change dump) [9]. Such a trace can be displayed with
an open source software like GTKWave [3].

Further, workload curves are computed from the simulation results to
characterize the task workload and data is extracted, that allows to compute
the arrival curves for each task.

The testbed is described in detail in the chapter 2.
In chapter 3, the computation of the workload curves is described and

an approximation is introduced that addresses the trade-off between the
tightness and the complexity of the workload curves.

2



Chapter 2

MPSoC Testbed

2.1 Structure of the Testbed

The testbed embeds various tasks in an Apache Ant script [1]. An overview
of the basic structure of the testbed is given in Fig. 2.1. The individual parts
of the testbed that are used for the MPARM simulation and the analysis of
the log file are listed in more detail in Fig. 2.2. In the following sections, a
closer look at the different parts is taken.

functional simulation
SystemC

DOL specification

application architecture mapping

cycle accurate 
simulation on MPARM

simulation platform

analyse log file
write back profiling

analyse log file
generate traces

compute workload curves

MPA model generation
using workload curves

Legend: existing  extended new results

analysis model
as XML file and

Matlab script

process network
with profiling and
workload curves

execution trace
and log files
for each task

Figure 2.1: Basic structure of the testbed.
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2.2 Required Input: DOL Specification

DOL specification

code generation

log file

Legend: existing  extended new results

analysis model as
XML file & Matlab script

using computation 
based on workload curves

process network
with workload curves

execution trace as VCD file

compiler

MPARM binary

MPARM simulation

parser

log files for each task

RTEMS code

code for 
profiling &

tracing

compute workload curves

MPA model generation

Figure 2.2: Detailed steps of the testbed.

2.2 Required Input: DOL Specification

As input for the testbed, a DOL (distributed operation layer) specification
is required as defined in [8]. A DOL specification consists of three XML
files, process network.xml, architecture.xml and mapping.xml as well as the
code files for the defined processes. These files describe the application in
terms of a process network, the hardware architecture and the mapping of
the processes onto the processors.

The process network file defines the processes and the channels that in-
terconnect them. These channels are FIFO queues with a maximum fill size.
For each process, a C or C++ source file is needed. The code has to match
the requirements given from the DOL framework, mainly by defining the re-
quired functions processname init() and processname fire() and by using the
functions DOL read() and DOL write() to communicate over the channels.
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2.3 Functional Simulation

The architecture file describes a hardware architecture by defining the
available processors. A type is assigned to each processor. In this work,
always the same architecture file is used which describes an MPARM [2]
architecture consisting of eight RISC processors, connected over a shared
bus.

The mapping file finally maps each process onto one of the processors.
Additionally, it is possible to define a scheduling policy for each processor.
Only the preemptive fixed priority scheduling policy is taken into account
in the current implementation of the DOL code generation for the MPARM
simulation platform. The same priority is used for each process if no schedul-
ing policy is explicitly defined in the mapping file.

An example for such a DOL specification is given in Fig. 2.3.

Figure 2.3: Example of a DOL specification for the MPARM architecture.

The input sources for the MPSoC system testbed can be specified with
the attribute -Dsource=/path/to/source/dir when calling the ant script.
The specified source folder has to contain the three files process network.xml,
architecture.xml and mapping.xml as introduced above as well as a folder
named src containing the source files for the processes.

After the sources are copied, the three XML files are validated against
the DOL schemata and the process network is flattened.

2.3 Functional Simulation

As the first step in the testbed, the application is compiled and executed on
the host machine using a functional simulation.

In the functional simulation, only the application, the process network
and the source files, are taken in to account.

This simulation is done with the DOL framework [8] and SystemC [7].
In the DOL framework, the code generation is implemented. The resulting
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2.4 MPARM Simulation

application is compiled and executed. During the execution, some profiling
information is written to a log file. This information is extracted and back
annotated to the process network XML file again using the DOL framework.

The functional simulation is executed because some of the profiling data
is later used to generate the basic MPA model, namely the amount of data
transferred over each channel and the token production and consumption
rates of processes.

2.4 MPARM Simulation

The low level simulation is done with a cycle-accurate MPARM simulator.
The operating system RTEMS is used [6]. RTEMS is a real-time operating
system for multi-processor systems.

The code generation is done with the DOL framework. The application
dol.Main reads in the process network, the architecture and the mapping.

Then, the source code is generated for the target architecture. All nec-
essary sources that are needed in this process are located in the packet
dol.visitor.rtems.

We want to find out which process is running at which time. For that,
a function is implemented that is called from the operating system on each
context switch. The current clock count and the process id of the process
that starts running is logged in this function, such that it can be determined
which process is running at any point in time from the logging of these
context switches.

The clock count is logged at further points in the simulation, to get
information of the different processes. On the begin and at the end of each
firing, reading and writing of each process the clock count is logged.

The necessary commands to log this information are included in the
code generation if the compiler flag WORKLOAD EXTRACT is set (which
is done by default).

This output is logged to the file log.txt during the simulation.

2.4.1 Logging in the MPARM Simulator

The standard printf cannot be used to log data in the MPARM simulation
because printf is rather computation-intensive and would have a considerable
effect on the execution. Instead, two of the debug functions available in the
MPARM simulator, SHOW DEBUG and SHOW DEBUG INT, are used.

These two functions allow to dump messages to the shell from which
MPARM has been started. The function SHOW DEBUG allows to log
strings, the function SHOW DEBUG INT logs integers in hexadecimal for-
mat. On each output line, additionally a text like ”Processor 0 - “ is
prepended, indicating the number of the processor that printed this mes-
sage.
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2.5 Parsing of the Log File

It is still useful to use printf in some situations. But the text printed by
printf is forwarded to a serial UART device and not the shell from which
MPARM has been started. It may be useful to redirect the output of printf
to the shell, if the application in question uses the printf to print out some
results. This redirection is done by redefining printf to use the function
sprintf to generate the message string and the function SHOW DEBUG to
print it to the shell.

The compiler flag PRINT TO DEBUG has to be set to use this redirec-
tion. It is turned off by default.

The two debug functions SHOW DEBUG and SHOW DEBUG INT are
written in assembly code and it takes about 50 cycles to log a string of length
11 and an integer. About 5000 cycles would be necessary to log the same
information as a formatted string including an integer using the function
printf.

The only draw back is that the parsing of the log file will be more com-
plicate by using multiple SHOW DEBUG and SHOW DEBUG INT com-
mands to log one message because then the different parts are logged on
separate lines and a single message may be interleaved with messages from
other processors.

2.5 Parsing of the Log File

The log files are parsed in several steps. In a first step, the logged messages
are filtered out and ordered correctly. In a second step, the logged messages
are analysed and the results are generated.

2.5.1 Parsing the Log File

Each logged message spreads over two or three lines in the log file because
of the used logging technique, as mentioned above. So in the first step, the
lines in the log file that belong to the same logged message are recombined
and a new log is created, where each message is exactly one line.

The messages contain a time stamp, the processor number, the message
type and additional optional information.

The recombined messages are written back to the file log.parsed.txt.
One would expect, that the messages are logged in the sequence as they

are raised during the simulation, meaning that the time stamps of the mes-
sages in the log file should be always increasing. But this is actually not true.
While the messages coming from one processor are always logged in the file
in the sequence as they are raised, it happens that messages from different
processors are not logged exactly in the sequence of their time stamps.

It is necessary to process the messages in the correct sequence for the
further processing of the log file. The messages in the log file are sorted
according to their time stamps to bring them into the correct sequence.
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2.6 Traces

This is done with the unix command sort. The sorted log file is stored in
log.parsed.sorted.txt.

Now all messages are listed in sequence and ready to be analysed in this
log file.

2.5.2 Analysing the Log Messages

Now, the different logged messages are evaluated. As results, two trace files
are generated, as well as different log files for each process.

In the traces, the processes and the channels are displayed. They are
explained in more details in the next section.

For each firing, the execution demand is computed and logged to the file
processname load.txt. The execution demand of a firing is computed as the
number of cycles between the corresponding start and end fire entries in the
log minus the time when the process was not running in this interval. This
data will be used to compute the workload curves.

Further, various log files are generated for each process. They each con-
tain all the time stamps of one type of event, as indicated by their name.
They can be used for example to compute the arrival curve for this process.
The files are processname start fire.txt, processname end fire.txt, process-
name start read.txt, processname end read.txt, processname start write.txt
and processname end write.txt.

2.6 Traces

The trace files are exported as VCD files. VCD stands for value change
dump and is an IEEE standard [9]. The traces can be displayed using for
example the application GTKWave [3].

Two different trace files are generated. They both contain the same
information, but have different graphical representations. In Fig. 2.4 and
2.5, an example is shown for both representations.

The example shows three processes (generator, square and consumer)
running on one processor. They communicate over the channels 1 and 2.

The trace file contains an entry for each process and each channel.
For the processes, the trace indicates when they are activated and deac-

tivated, the start and end of each firing, the start and end of each reading
as well as the start and end of each writing.

In the first representation (stored in trace1.vcd), the start and end of the
firing, reading or writing are marked with peaks. Upward peaks stand for
start, downward peaks stand for end. The peaks have different sizes. The
largest peaks stands for the firing, the medium peak for the reading and the
small peak for the writing.
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2.6 Traces

1460 ns 1470 ns 1480 ns

generator

channel 1

square

channel 2

consumer

firing

read

write

context switch

Figure 2.4: Example trace file with the first representation.

In the second representation (stored in trace2.vcd), each event type is
assigned a different bit. On the start event, the bit is set, on the end event
it is cleared.

In both cases, the activation is indicated with the highest bit set, and
the deactivation of a process, with the clearing of the highest bit.

The first representation is more compact, because all information about
a process is combined in one trace. The second representation is handy if it
is preferred to split the firing, read and write into separate traces.

For each channel, the fill level of the queue is displayed at each point
in time. The exact moment, when a read or a write to a queue happens in
the simulation is somewhere between the logged start and end time of the
reading or writing of the corresponding process.

The software tries to mark the reads and writes to the channel at the
most reasonable time. This means that in the normal case the channel is
increased and decreased on the time of the end write and end read. The
time of the start read and start write are not used because the read and
write commands are blocking, meaning that the read blocks if the channel
queue is full and the write blocks if the channel queue is empty.

But there is a case where the update of the channel at the end read or
end write is not reasonable, when using fixed priority scheduling. This is, if
for example, a process with high priority is blocked because it wants to read
from an empty queue. If another process is running on the same processor
and writes a token to this channel, it will be preempted by the process with
higher priority immediately after writing a token to the queue, but before
the end write was logged.
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2.7 Workload Curve Computation

1460 ns 1470 ns 1480 ns

firing

read

write
channel 2

running

reading

writing

firing
consumer

running

reading

writing

firing
square

running

reading

writing

firing
generator

channel 1 read
context switch

Figure 2.5: Example trace file with the second representation.

If the channel is not increased in the trace until the logged end write, the
channel will be decreased to a fill level of minus one token by the process
with higher priority. The opposite may happen with a process with high
priority that is blocked by writing to a channel with a full queue.

These unreasonable fill levels are avoided by using an earlier time of the
read and write to the channel in these cases. The fill level of the queues
are updated in such cases at the time of the context switches that happens
because a process with higher priority is no longer blocked.

The channels are identically displayed in both trace files.

2.7 Workload Curve Computation

As the next step in the testbed, the workload curve is computed for each
process from the corresponding file processname load.txt, which contains
the execution demand for each processed event by this process.

The workload curves are computed using Matlab with the function work-
loadcurve.m which was implemented for this task and which will be ex-
plained in the chapter about workload curves.

The workload curves are written back to the process network as profiling
data, to be used for the generation of the modular performance analysis
model [5].
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2.9 Examples

2.8 MPA Model

As the last step in the testbed, a basic modular performance analysis model
(MPA) is created from the given DOL specification and the computed work-
load curves.

In the analysis model, each processor is modeled by a resource and one
additional resource is added to model the bus. Each process is modeled as
a greedy processing component (GPC) and is mapped to the corresponding
resource. Each channel is also described as a GPC bound to the resource
modeling the bus. The scheduling is taken into account, too.

The MPA model is exported into the XML file dolanalysismodel.xml.
This file is finally transformed into a Matlab script for the MPA Matlab
toolbox. In particular, two different Matlab models are built, one using the
workload curves (dolanalysismodel.m), and one using just the worst-case /
best-case execution demand (dolanalysismodel iwl.m).

2.9 Examples

In this section, the process network given in Fig. 2.3 is executed as an ex-
ample to show the resulting execution trace and the generated MPA model.

The example is executed with two different scheduling policies.
In the first case, equal priorities are used for all processes. The resulting

trace is shown in Fig. 2.6. As can be seen in the trace, context switches
happen whenever a process is blocked either by reading from an empty queue
or writing to a full queue.

Different properties can be easily seen in the trace: For example, the
mutual exclusion of the processes sink and source running on the same pro-
cessor. Or that the process in the middle executes whenever possible, but
occupies the third processor only 50% of the time. We can further see, that
the fill level of the last channel is never greater than two. So the queue size
of the last channel could be reduced to two without any loss in performance.

In the second case, different priorities are chosen for the processes. The
resulting trace is shown in Fig. 2.7. The process source has higher priority
than the process sink on the first processor, and the process square 1 has
higher priority than the process square 3 on second processor. Process square
2 is the only process running on the third processor, so no scheduling is
needed.

The effect of the scheduling is clearly visible. The first three processes
fire whenever they are not in a blocking write. The first three queues are
filled up with tokens at the beginning. From then on, as soon as a token is
read out of one of these first three queues, the process writing to that queue
is activated and writes a new token to the queue.

We can further see, that the fill level of the last channel is never greater

11



2.9 Examples

than one. So the queue size of the last channel could be reduced like in the
first example without any loss in performance.

The MPA model that is generated for the example using preemptive
fixed priority is shown in Fig. 2.8. To give a feeling for the generated files,
dolanalysismodel.xml, containing the MPA model in an XML file, as well as
dolanalysismodel.m, containing the generated Matlab script, are displayed,
too.
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2.9 Examples
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Figure 2.6: Execution trace using cooperative scheduling.
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Figure 2.7: Execution trace using preemptive fixed priority scheduling.
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dolanalysis.xml

dolanalysis.m

Figure 2.8: MPA model for example process network.
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Chapter 3

Workloads

3.1 Introduction

It is important to have good estimation methods to characterize the be-
haviour of a given system in the design process of real-time embedded sys-
tems. Such systems are often characterized with a process network that
contains multiple processes interconnected by channels. These processes ex-
ecute iteratively and read a token from one or more incoming channels and
write a token to outgoing channels in each iteration. These tasks may be
mapped to the same processing unit or to different ones in a multi-processor
environment. Typical examples of such systems are multimedia applications.

The performance analysis of such systems is used in the design space
exploration to find good implementations and to verify that certain system
properties are within some requested limits.

For this, mainly three classes of methods exist: Analysis, simulation and
statistics. In this work, we set up a testbed where the execution times of
the individual tasks of a specified system can be obtained using low-level
simulation as introduced in chapter 2. This information will then be used
to calibrate an analytic performance analysis model.

In the analytic performance analysis of real-time systems, one is usually
interested in finding lower and upper bounds of various system properties
such as the workload that an event stream imposes on a certain processing
unit or the overall delay and required buffer sizes for the channels.

The obtained list of execution times from the simulation has to be trans-
formed into an abstract representation of the workload that such an event
stream imposes onto a processor. This abstract representation is used in the
analytic performance analysis to describe the workload of a process for an
incoming event stream. This abstraction is done by computing a lower and
an upper bound for the execution demand for the different processes.

The analysis then leads to guaranteed bounds under the assumption
that we have obtained a representative sample of execution times in the
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3.2 Workload Curves

simulation.
We will use the modular performance analysis toolbox (MPA) [5] for the

analytic performance analysis.
The main question addressed next is how the obtained execution de-

mands are used to formulate some lower and upper bounds for the execution
demands of the tasks. A simple way to do this, is just to take the observed
worst-case and best-case execution demand for each task. But this may lead
to over-pessimistic bounds, because in many situations most of the events
for a given task will be between the worst- and best-case and not at the
lower or upper bounds. Further, it may be that consecutive events have
some dependencies between each other, e.g. that the worst-case can strictly
not happen more than twice in a row. This is taken into account in a more
complex model using workload curves.

Workload curves offer for each number of consecutive events a lower and
an upper bound for the workload that these events cause on the processor
used. The workload curve will always start with the worst-case and best-case
for one event, like the simple solution. But for a number of e consecutive
events, data dependencies lead to tighter bounds than e times the worst-case
and best-case.

The workload curves can be computed from the observed execution
times, as described later.

As a drawback, using these workload curves increases the complexity of
the performance analysis. Instead of two values one now has to deal with a
whole set of values, one pair for every number of consecutive events. Thus,
a way to approximate the workload curves is needed.

This leads to a trade off between the tightness of the bounds that can
be obtained and the complexity of the performance analysis.

In the following section, workload curves are introduced formally and an
approximation that bounds the workload curve is defined.

3.2 Workload Curves

Given an event stream s, which is translated into a workload stream w.
Let W (e) be a counter which accumulates the total workload imposed to a
processing unit by e consecutive events of the event stream.

Definition 1 (Workload Curve [10]). For any workload stream w, the lower
workload curve γl and the upper workload curve γu satisfy the relation:

γl(u− v) ≤W (u)−W (v) ≤ γu(u− v) ∀u, v ∈ R and 0 ≤ v ≤ u

Therefore, any sequence of e consecutive events on the workload stream w,
will impose a total workload of at least γl(e) and at most γu(e).

17



3.2 Workload Curves

According to that definition we can compute the workload curves from
the observed workload stream w by choosing the maximum and minimum
of workload imposed for an certain number of consecutive events.

γu(e) = max
t∈[0,∞)

{W (t+ e)−W (t)} e ∈ [0,∞) (3.1)

γl(e) = min
t∈[0,∞)

{W (t+ e)−W (t)} e ∈ [0,∞) (3.2)

In our case, W (·) is a staircase function such that W (x) = W (bxc). This
leads to workload curves which are staircase functions too:

γu(e) = max
n∈N0

{W (n+ dee)−W (n)} e ∈ [0,∞) (3.3)

γl(e) = min
n∈N0

{W (n+ bec)−W (n)} e ∈ [0,∞) (3.4)

It follows that the function W (·) only has to be evaluated at integer points
for the computation of the workload curves.

3.2.1 Sub- and Superadditivity

From the definition of the workload curves follows that the upper work-
load curve is a subadditive and the lower workload curve is a superadditive
function.

γu(u+ v) ≤ γu(u) + γu(v) (3.5)

γl(u+ v) ≥ γl(u) + γl(v) (3.6)

These inequalities can be formulated slightly differently, as in lemma 1.

Lemma 1. The value of the upper workload curve at k times x is upper
bounded by k times the value at x. Equally holds that the value of the lower
workload curve at k times x is lower bounded by k times the value at x:

γu(k · x) ≤ k · γu(x) k ∈ N0 (3.7)

γl(k · x) ≥ k · γl(x) k ∈ N0 (3.8)

Proof. This can be shown for the upper workload curve with the subaddi-
tivity property by induction.
Basis:

k = 1 γu(1 · x) = 1 · γu(x)

Step:

γu((k + 1) · x) = γu(k · x+ x) (subaddiditivity)
≤ γu(k · x) + γu(x) (induction)
≤ k · γu(x) + γu(x)
= (k + 1) · γu(x)
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3.4 Approximation

The proof for the lower workload curve follows analogously by changing
the inequality and using the property of superadditivity.

3.3 Computation

The execution demands of the events can be extracted from the low level
simulation of a given application as explained in chapter 2. This list will be
used to compute the workload curves.

The computation can be done according to equations (3.3) and (3.4).
The maximum and minimum execution demand is searched for each number
of consecutive events in the observed event stream.

An important remark is, that if the workload curves are computed us-
ing an event stream containing n events, the workload curves can only be
computed up to n consecutive events. In this case, the computed workload
curves are not defined for e ≥ n consecutive events, and it is further not
possible to extend them as introduced in the next section.

If the generated workload curves have to offer valid bounds for an event
stream that contains any number of consecutive events, then it is necessary
to use an infinite event stream to compute the workload curves. This means
that the observed finite event stream has to be extended to infinity. A
reasonable way to do that is to simply repeat the finite event stream.

Workload curves computed from a periodic event stream will be periodic
too, so it is only necessary to compute the first period to get the full workload
curves.

The following simple example shows the justification for doing this. The
workload curves should be computed for a very short event stream with the
loads [1, 10, 1]. If the workload curves are computed just for these three
values, the resulting workload curve will have the values [10, 11, 12] for the
upper and [1, 11, 12] for the lower workload curve. If we first extend the event
stream by repetition, the resulting workload curves will have the values
[10, 11, 12, 22, 23, 24, . . . ] for the upper and [1, 2, 12, 13, 14, 24, . . . ] for the
lower workload curve.

The problem of the computation without repetition is, that the lower
workload curve has an invalid lower bound for two consecutive events. The
same happens with the upper workload curve if a stream with the loads
[10, 1, 10] is used.

3.4 Approximation

In the last section, the computation of the workload curves was introduced
and it was argued why the observed event stream has to be periodically
extended in order to compute the workload curves correctly.
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3.4 Approximation

In this section a way is introduced to bound the workload curves with
linear functions. Later, the fully computed workload curve and the linear
approximation will be combined to a approximation for the workload curves.
There are two reasons why this approximation is preferred over the fully
computed workload curves.

First, there exists a trade-off between the complexity of the represen-
tation and the tightness. The representation of the workload curve is less
complicate the more of the values are replaced by a linear approximation.

In a real example, an event stream with hundreds or thousands of events
may be used to compute the workload curves, but the workload curves can
often be reasonably accurate approximated linearly for more than a few
consecutive events.

The second reason is that the workload curves should not be computed
for too many consecutive events because the workload stream obtained from
simulation may not be representative for many consecutive events. The ex-
treme case happens if the workload curve is fully computed. In a periodic
extended event stream of n events are the best-case and worst-case work-
load for n consecutive events equal, just because only one observation of n
consecutive events exists in the obtained event list.

Therefore, the workload curves should be computed only up to a fraction
of the number of events in the list to get reliable workload curves.

Next, the approximation of the upper workload curve is introduced in
details.

3.4.1 Linear Approximation of the Upper Workload Curve

The upper workload curve is approximated with the linear function γ̃u(·).

Definition 2. The linear approximation of the upper workload curve for a
chosen x ≥ 0 is defined as:

γ̃u(e) := gu · e+ du =
γu(x)
x
· e+ du

The approximation is constructed by selecting a point x of the exact
workload curve and computing the gradient gu = γu(x)/x. After that,
du is chosen such that the approximation is an upper bound for the exact
workload curve within [0, x):

du = max
0≤v<x

{γu(v)− gu · v)} (3.9)

Because the workload curve is a staircase function, only a finite set of points
has to be checked to compute du.

An example is shown in Fig. 3.1.
It is shown next that the exact workload curve is upper bounded by the

constructed linear approximation. For that the following lemma is defined.
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3.4 Approximation

v x y e[events]

load [cycles]
γ̃u(e)

γu(e)

Figure 3.1: Approximation of the upper workload curve.

Lemma 2. γ̃u(e) is a valid bound for γu(e) for all e ∈ [0, x):

γ̃u(e) ≥ γu(e) ∀e ∈ [0, x)

This holds by construction as du is computed such that γ̃u(e) is greater
or equal to γu(e) for e smaller than x in (3.9).

Theorem 1. The linear approximation γ̃u(·) is a valid upper bound for the
upper workload curve γu(·)

γ̃u(e) ≥ γu(e) ∀x ≥ 0

Proof.
for e = k · x+ v′ k =

⌊ e
x

⌋
, v′ ∈ [0, x)

γ̃u(e) = γ̃u(k · x+ v′) (definition 2)

=
γu(x)
x
· (k · x+ v′) + du

=
γu(x)
x
· k · x+

γu(x)
x
· v′ + du (definition 2)

= k · γu(x) + γ̃u(v′) (lemma 2)
≥ k · γu(x) + γu(v′) (lemma 1)
≥ γu(k · x) + γu(v′) (subadditivity)
≥ γu(k · x+ v′)
= γu(e)
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3.4 Approximation

3.4.2 Linear Approximation of the Lower Workload Curve

The approximation of the lower workload curve is analog to the approxima-
tion of the upper workload curve.

Definition 3. The linear approximation of the lower workload curve for a
chosen x ≥ 0 is defined as:

γ̃l(e) := gl · e+ dl =
γl(x)
x
· e+ dl

The approximation is constructed by selecting a point x of the workload
curve and computing the gradient gl = γl(x)/x. After that, dl is chosen
such that the approximation is a lower bound for the lower workload curve
within [0, x).

dl = min
0≤v<x

{
γl(v)− gl · v)

}
(3.10)

Analog to lemma 2 follows by construction:

Lemma 3. γ̃l(e) is a valid bound for γl(e) for all e ∈ [0, x):

γ̃l(e) ≤ γl(e) ∀e ∈ [0, x)

And finally the approximation:

Theorem 2. The approximation γ̃l(·) is a valid lower bound for the lower
workload curve γl(·)

γ̃l(e) ≤ γl(e) ∀x ≥ 0

Proof.
for e = k · x+ v′ k =

⌊ e
x

⌋
, v′ ∈ [0, x)

γ̃l(e) = γ̃l(k · x+ v′) (definition 3)

=
γl(x)
x
· (k · x+ v′) + du

=
γl(x)
x
· k · x+

γl(x)
x
· v′ + du (definition 3)

= k · γl(x) + γ̃l(v′) (lemma 3)

≤ k · γl(x) + γl(v′) (lemma 1)

≤ γl(k · x) + γl(v′) (superadditivity)

≤ γl(k · x+ v′)

= γl(e)
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3.5 Implementation

3.4.3 Final Approximation

The introduced linear approximations γ̃u(·) and γ̃l(·) offer reasonable bounds
for larger numbers of consecutive events. For very few consecutive events,
the exact workload curves are much tighter than the linear approximation.
Considering that, a combination of both is chosen as the final approxima-
tion of the workload curves. For our approximation, the exact computed
workload curve is used up to a certain point and then extended to infinity
with the linear approximation.

Definition 4. The final approximation of the workload curves are defined
as a combination of the exact workload curves and the linear approximations
for some chosen x ≥ 0, x′ ≥ 0 and x′′ ≥ 0.

γ̄u(e) :=

{
γu(e) if 0 ≤ e < x

γ̃u(e) = gu · e+ du = γu(x′)
x′ · e+ du if e ≥ x

(3.11)

γ̄l(e) :=

{
γl(e) if 0 ≤ e < x

γ̃l(e) = gl · e+ dl = γu(x′′)
x′′ · e+ dl if e ≥ x

(3.12)

3.5 Implementation

The computation of workload curves based on an event stream is imple-
mented in the Matlab script workloadcurve.m. This script takes an ar-
ray with the loads of the events in the event stream, and two integers,
start approx and limit as input.

The parameter start approx corresponds to the value x in the defined
approximation (4). It marks the point from where on the linear approxima-
tion will be used in the resulting workload curves instead of the computed
staircase workload curve.

This parameter addresses the trade off between the complexity and the
tightness of the computed workload curves. The run time to evaluate an
MPA model will depend on it.

The parameter limit corresponds to the maximum value of the three
parameters x, x′ and x′′ in the approximation (4). It marks how far the
exact workload curve will be computed in order to search for the best linear
approximation. x′ and x′′ are chosen such that the gradient gu is minimized
and the gradient gl is maximized to get the optimal linear approximation
for large numbers of consecutive events.

The fraction limit divided by the number of events in the event stream
corresponds to the number of independent observations of limit consecutive
events in the event stream. This fraction should be high enough to get
reliable workload curves.
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3.7 Arrival Curves

If the last parameter is omitted, the same value as for the second pa-
rameter is used such that the workload curves will be computed exactly to
the point where the approximation starts.

The function returns the upper and lower workload curves as two strings,
which evaluate each to an rtccurve, as defined in the RTC toolbox. Further
the four parameters of the two approximations (du, gu, dl, gl) are returned,
too.

3.6 Example

As an example, the workload curve of the source process of the example
process network introduced in the last chapter in Fig. 2.3 is shown.

In this process network, containing five processes mapped to three pro-
cessors, data is generated at the source, squared in each calculation process
and consumed in the sink.

Per event, four floats or 16 bytes are processed and transmitted over the
channels. 1000 events were processed in the simulation. The first 20 and last
20 are not taken into account to compute the workload curves, to remove
the effect of the start and end phase of the execution.

In Fig. 3.2, the resulting workload curves for the source process is shown.
The curve just using best-case / worst-case is shown in red, two approxima-
tions using once 4 steps of the workload curve and once 8 in green and blue
as well as the full workload curve in black.

3.7 Arrival Curves

Incoming event streams are often characterised by arrival curves [4]. From
the simulation, the timestamps for each start or end fire, read or write is
extracted in a separate text file. It would be useful if the arrival curves
for the different tasks could be computed from such a list of timestamps
observed in a simulation.

It turns out that arrival curves can be obtained from a list of timestamps
using the same computation as for the workload curves. Only two parts of
the computation have to be changed. First the list of timestamps has to be
converted in a list of time difference. Then the function workloadcurve.m
can be called to get the curves. At last, the computed curves have to be
inverted to get the arrival curves. The inversion is necessary, because arrival
curves measure events per cycles and workload curves measure cycles per
event.

The computation of arrival curves based on a list of timestamps is im-
plemented in the script arrivalcurve.m.
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3.7 Arrival Curves
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Figure 3.2: Example workload curves.
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Chapter 4

Conclusion

4.1 Testbed

For any DOL application mapped to the MPARM architecture, detailed re-
sults about the execution can be obtained within minutes. The DOL spec-
ification can be executed with the implemented testbed in a cycle-accurate
MPARM simulator.

The user gets back an execution trace that allows detailed insight into
the execution of the application on the MPARM architecture without the
need to adjust anything in the application code.

Further, a basic modular performance analysis model is created from the
application specification and the results from the simulation.

4.2 Workload Curves

It is shown in this work how workload curves can be computed from the
execution demand of a number of consecutive events. The introduced ap-
proximation offers a way to extend the workload curves to infinity and to
limit the complexity of the computed workload curves.

The computation is implemented in the Matlab scripts workloadcurve.m
and arrivalcurve.m. Further, the greedy processing component (GPC) of
the RTC toolbox [5] was adapted to work with workload curves.

4.3 Future Work

The generated MPA model should be verified and compared to the results
from simulation in future work using a reasonable real-time application as
a test case.

More system properties like delays of the events or the utilization of
the processors could be extracted from the simulation results in order to
compare these with the analytic results from the MPA.
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4.3 Future Work

Further, a graphical user interface, for example a web front end, could
be implemented and the testbed be set up on a server machine to offer easy
access to the testbed.
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Appendix A

Presentation Slides

MPSoC Testbed for Analyzing Execution of 
Process Networks

Andreas Huber
Advisors: Wolfgang Haid, Kai Huang

Professor: Prof. Dr. Lothar Thiele
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APPENDIX A. PRESENTATION SLIDES

2Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Motivation & Problem

 Real-time systems are implemented on multi-processor 
system-on-a-chip (MPSoC)
 High performance

 Low power

 MPSoC are difficult to develop and analyze
 Runtime system

 Writing application

 Setting up development environment

 Running application & getting relevant data

 One would like to concentrate on modeling and analyzing 
the real-time behaviour of a MPSoC

3Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Goal

 Provide an environment which facilitates real time 
performance analysis of MPSoC

Approach

  Set up MPSoC testbed
 Automate steps from application specification to simulation results 

(e.g. traces, workload curves)

 Automate generation of a basic modular performance analysis 
model
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APPENDIX A. PRESENTATION SLIDES

4Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Outline

1. Introduction
2. Testbed Overview
3. Traces
4. Workload Curves
5. Conclusion

5Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Testbed - Overview
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Testbed  Input: DOL Specif ication–

7Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Testbed  Input: DOL Specif ication–
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Testbed  MPARM Simulation–

9Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Testbed  MPARM Simulation–

 Determine 
running process
 Callback on context 

switches

 Keep influence of 
logging as small 
as possible
 Lightweight print in 

ASM for logging of 
timestamps

 Printf: 5000 cycles

 ASM: 50 cycles
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Execution Trace

 File in VCD format
 Display e.g. with GTKWave

 Processes & Channels

channel

process

channel

activation
read write

start fire

end fire

read

write

11Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Execution Trace:
Example with Equal Priorit ies
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Introduction to Workload Curves & MPA

 Cycle-accurate simulation takes several minutes for 
generating traces, too long for design space exploration

 Use analytic approach
 MPA modular performance analysis

 Worst-case / best-case performance analysis

 Abstractions
 Data flow by arrival curves

 Resource availability by
service curves

13Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

GPC & Workload Curves

 GPC: greedy processing component
 Part of RTC toolbox (real time calculus)

 Models processes

 Workload curve (W) relates arrival curve to service curve
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14Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Workload Curves

 Upper and lower bound for the total workload imposed by 
e consecutive events
 Same abstraction as for arrival or service curves

 Computed from loads observed in the simulation

 Used to model a task in the analysis
 Relate processor cycles to processed events

 Goal: tighter bounds than with only best-case / worst-case 
execution time

15Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Workload Curves  Approximation–

 Approximation
 Trade-off between

complexity and tightness

 Construction
 Compute:

 exact workload curve

 gradient of approx

 offset of approx

 Proof
 Valid bound

 Tighter bound
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Workload curves - Example

MPA model with best-
case/worst-case:

Delay: 483 sµ
Backlog: 40 kByte

MPA model with 
workloadcurve (8):

Delay: 383 sµ
Backlog: 36 kByte

17Computer Engeneering Group / Andreas Huber / huberan@ee.ethz.chDonnerstag, 18. Dezember 2008

Conclusions & Future Work

 Testbed
 For any DOL application mapped to the MPARM architecture, 

detailed results about the execution can be obtained within minutes.

 Traces allow insight into the execution of an application in the 
MPARM simulator.

 A basic MPA analysis model is created from the application and the 
results from the simulation.

 Future work
 Compare MPA model with results from simulation
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Appendix B

Testbed Readme

The paths set in the beginning of the testbed script (testbed/build.xml)
have to be modfied in order to run the script on a different machine. This
paths point to the different project libraries that were used in the testbed.
These are in particular:

• dol
• analysismodel
• perfanalysis
• mparm
• mparmlog
• matlab

The input sources can be specified when the testbed is run with the
attribute -Dsource=/path/to/source/dir. The specified source folder has
to contain the three files process network.xml, architecture.xml and map-
ping.xml as well as a folder named src containing the source files for the
processes.

When the testbed is executed, the directories source, build, log and result
are created in the directory where the script is located.

Following results are generated and stored in the result directory when
executing the testbed:

• trace1.vcd
• trace2.vcd
• process network flattened annotated workload.xml
• dolanalysismodel.xml
• dolanalysismodel.m
• dolanalysismodel iwl.m
• log/log.txt
• log/log.parsed.sorted.txt
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APPENDIX B. TESTBED README

And for each process:

• log/processname load.txt
• log/processname start fire.txt
• log/processname end fire.txt
• log/processname start read.txt
• log/processname end read.txt
• log/processname start write.txt
• log/processname end write.txt.

If the testbed is executed with the attribute -Dresult=/path/to/result/dir
set, these results are copied to the specified folder.
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Appendix C

Created and Modified Code
Files

Here follows an overview of the code files that were created or modified in
this thesis.

C.1 Testbed

The testbed was written as an Apache Ant script.

• testbed/build.xml

C.2 DOL Framework

The code files in the package dol.visitor.rtems of the DOL framework were
modified to include the necessary log statements in the code generation for
the MPARM platform:

• dol/visitor/rtems/RtemsMakefileVisitor.java
• dol/visitor/rtems/RtemsModuleVisitor.java:
• dol/visitor/rtems/RtemsPropertiesVisitor.java
• dol/visitor/rtems/RtemsVisitor.java
• dol/visitor/rtems/lib/process wrapper template.c
• dol/visitor/rtems/lib/rtems process wrapper.c
• dol/parser/xml/mapschema/Xml2Map.java

C.3 Log Parser and Analyser

The application to parse and analyse the log file from the simulation was
written in this work, using Java. The created files are located in the package
mparmlog.
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C.5 Matlab Scripts

• Parser.java
• Analyser.java
• LogException.java
• ValueChangeDump.java
• ValueChangeDumpException.java
• Profiler.java

C.4 MPA Model

The analysis model was adapted to work with workload curves. And the
used visitors were adapted.

The following files in the analysismodel project were modified:

• analysismodel/UserInterface.java
• analysismodel/datamodel/analysis/pn/Task.java
• analysismodel/datamodel/mpa/MpaCommand.java
• analysismodel/datamodel/mpa/MpaGpc.java
• analysismodel/util/AnalysisModelParser.java
• analysismodel/visitor/AnalysisModelMpaVisitor.java
• analysismodel/visitor/AnalysisModelXmlVisitor.java
• analysismodel/visitor/MpaDataMatlabVisitor.java
• schema/analysismodel.xsd

The following files in the perfanalysis project were modified:

• perfanalysis/ActionControl.java
• perfanalysis/util/DolConverterMparm.java

C.5 Matlab Scripts

The computation of workload curves from a list of task workloads and the
computation of arrival curves from a list of timestamps were implemented.
The computation for the greedy processing component was adapted to work
with workload curves.

• workloadcurve.m
• arrivalcurve.m
• rtcgpcwl.m
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