
 
 

 

 

 

 

 

 

 

 

Semester Thesis 

 

Improving Keyword Search in ConfSearch 

 
Andrius Paukste 

 

 

 

 

  

Supervisors: 

Kuhn Michael 

Prof. Roger Wattenhofer 

 

 

 

 

 

Zurich 

2009 



2 
 

Abstract 
Confsearch (www.confsearch.org) is a search engine for computer science conferences. It 

offers several search types, one of which is keyword search. The keyword search 

mechanism is based on an analysis of publication titles. The goal of this semester work is 

to improve the keyword search engine. The two main contributions of this work towards 

that goal are integrating a stemming algorithm and finding the best phrase search solution. 

Finally, we evaluate the results and compare it to the existing keyword search engine 

implementation.  



3 
 

 

Table of Contents 

Abstract 2 
1  Introduction 4 

1.1  Problem Description 4 
1.2  Motivating examples 4 

2  Background 9 
2.1  Stemming 9 
2.2  Inverted index 9 
2.3  Phrase search 10 

2.3.1  Stop words in phrase search 10 
2.3.2  Biwords 10 
2.3.3  Positional index 11 

2.4  Tf-idf 9 
2.5  Confsearch 12 

3  Related work 13 
3.1  Stemming 13 
3.2  Phrase search 13 
3.3  Confsearch 13 

4  Phrase search 14 
4.1  Stemming 14 
4.2  Stop words 14 
4.3  Tf-idf extension for phrase search 14 
4.4  Phrase search algorithm 15 

5  Evaluation 18 
Conclusion 20 
References 21 
Appendix A. Implementation description 22 
 

 



4 
 

1 Introduction 

1.1 Problem Description 

A scientific conference is a (typically annual) event, where the academic 

community specialized in a certain field gathers to present and discuss its most recent 

research results. Such conferences play an important role in science as well as in the life 

of every researcher. Experience shows that choosing the right conference to publish a new 

result is not always a simple task. Many factors, such as thematic scope, deadline for 

submission, quality, or location have to be considered. Traditional search engines do a 

rather bad job in finding appropriate conferences. Confsearch (www.confsearch.org) is a 

search engine for computer science conferences. It is based on data of DBLP 

(http://dblp.uni-trier.de), a digital library project containing the publications of a large 

number of computer science conferences. Confsearch currently offers different search 

modes, such as searching for conferences by keyword, by authors, or by other (similar) 

conferences. 

The keyword search mechanism is based on an analysis of publication titles. The 

current implementation has two major shortcomings. First, it treats each keyword 

individually, without accounting for word combinations or phrases (e.g. “social network”, 

“computer science”, etc.). Second, the current algorithm is not able to identify 

semantically identical words, only differing by their grammatical form (e.g. “network” vs. 

“networks” vs. “networking”). 

The following examples will illustrate this problem. 

1.2 Motivating examples 

Example 1. Most of widely knowing web search engines apply semantic word analysis in 

one or another way to improve search quality. In the following example we use the 

phrases “service oriented architectures” and “services oriented architecture”.  Figures 

1.1 and 1.2 show that in some cases the existing confsearch implementation produces 

completely different results for these two phrases. The same queries in one of the popular 

web search engines www.google.com, on the other hand, return almost the same results 

as we can see in Figures 1.3 and 1.4. Even more, Google finds pages where terms are not 

exactly equal to the query terms. 

 



5 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Confsearch search results for the query “service oriented architectures” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Confsearch search results for the query “services oriented architecture” 



6 
 

 
Figure 1.3. Google web search results for the query “service oriented architectures” 

 
Figure 1.4. Google web search results for the query “services oriented architecture” 



7 
 

 

Example 2. The following example shows that without a phrase search algorithm we can 

get results from completely other computer science topic than what was meant by the 

query. If we look at the publications topics in first three conferences we will find a lot of 

words “real”, “time” and “systems”, but only one conference has publication with whole 

phrase “real-time systems” (See Figure 1.5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Confsearch search results for the query “real-time systems” 

 

 

 

 

 

 

 

 



8 
 



9 
 

2 Background 

2.1 Stemming 

Stemming is the process of semantic words analysis with the goal to get a word’s base 

form (stem). Stemming can be very useful to search in text documents. The main benefit 

of using stemming is that we can find documents which contain different forms of a word 

than the search query. For example, if the query is "social network" we become able to 

find documents that contain the phrase "social networks". 

2.2 Inverted index 

Inverted index store term or term id and set of document id’s where term appears. This 

type of index often used to search for the distinct term in the document. 

 Inverted index creation steps: 

1. Split the document into terms with possible term preprocessing (for example 

stemming). 

2. Store document id for every unique term. 

3. Do steps 1 and 2 for every document. 

 

Example 2.1. Inverted index example 

2.2.1 Tfidf 
Tf-idf (term frequency and inverse document frequency) is used to calculate term weight 

in a document and document collection, also to decide which term is more important. The 

importance is directly proportional to the number of term’s occurrence in the document 

and indirectly proportional to the number of document in the collection where the term 

appears. 

Tf increases tf-idf values for documents where term appears often and idf decreases tf-idf 

values for collections where term appears in a high amount of documents. 

idftftfidf *= , 

∑
=

k
kj

ij
ij n

n
tf

 

Term Document id’s

social 1, 5, 9, 15, … 

web 4, 5, 11, … 

… … 



10 
 

Where jin ,  is number of occurrence term i in document j and ∑
k

kjn  is sum of all terms in 

a document j 

)
N

Tlog(
term

=termidf
 

Where T is total number of documents and Nterm is number of documents where term 

appears. 

 

2.3 Phrase search  
Phrase search is a type of text search that searching for a specified phrase. Search engines 

usually recognize phrase queries from a double or single quotes : “information retrieval”. 

2.3.1 Stop words 

Stop words are used to eliminate unimportant words in document. To decide which word 

is unimportant we can use tf-idf values. For example the sentence “'Barriers and solutions 

to the development of online advertising in China” have five stop words: “and” “to” 

“the” “of” and “in” which are very common to text documents and has low idf value. 

However, stop words are not always beneficial for phrase search. The phrase “usability 

evaluation” has a different meaning than “usability and evaluation”. We let this problem 

for future research and integrate stop words into the phrase search engine, because of 

important benefits to search results in many cases. 

2.3.2 Biwords 
A first approach to phrase search is to mark every pair of consecutive terms in a 

document as a phrase and index them.  

 

Example 2.2. Biwords index example 

 

 

 

To use biwords in phrase search, we first create an index of all biwords in all documents. 

Then we produce biwords from query and search them in the index for all produced 

Biword Document id’s

social web 1, 5, 9, 15, … 

index all 4, 5, 11, … 

… … 



11 
 

biwords. If we have more than two terms in a query we have then to post-process results 

in order to find documents with the whole phrase. 

Example 2.3: The sentence “index all consecutive terms:” produces the following 

biwords: 

  index all 

 all consecutive 

 consecutive terms 

2.3.3 Positional index 
The use of a positional index is second approach to phrase search. Positional index 

extends inverted index concept with positional information.  In a positional index for 

every unique term and document we store position list of the term.  

 

 

 

Figure 2.2. Positional index example. 

 

We calculate a positional index for every term in the document as showed in the 

following example: 

Example 2.2: Positional index with stop words elimination: 

“Retrieval1 evaluation2 with incomplete3 information4” 

Positional indexes are more efficient solution than biword indexes. With the help of a 

positional index we are able to find not only adjacent terms, but also phrases with 

Term    Document id’s and positions 

social   1 5  9 15  … 

 

po
si

tio
ns

 

2 

7 

11 

… 

1 

3 

6 

… 

4 

7 

15 

… 

6 

7 

11 

… 

…
 

web   4 5 11 15 … 

… 

po
si

tio
ns

 

22 

25 

44 

… 

2 

7 

19 

… 

1 

5 

9 

… 

5 

9 

15 

… 

…
 

... 



12 
 

additional terms inside. For example, we are able to find the phrase “information storage 

and retrieval” when we are looking for “information retrieval”. 

2.4 Confsearch 
Confsearch – conference search engine was developed by members of the Distributed 

Computing Group at the Swiss Federal Institute of Technology (ETH). It provides various 

search types and possibility to add a new conference. 



13 
 

3 Related work 

3.1 Stemming 
[MRS08] propose that the most common and efficient algorithm for stemming English 

language words is Porter’s algorithm The algorithm analyzes the word and returns a 

string that is common to (almost) all the words derived from the same stem. Porter’s 

algorithm was created by Martin Porter who received the Tony Kent Strix for his work.  

Example 3. Porter’s algorithm examples: 

studies         ->  studi 

studying       -> studi 

study        -> studi 

3.2 Phrase search 

[MRS08] report that as many as 10% of all web queries are phrase queries, and many 

more are implicit phrase queries. Most commonly used approach for phrase search is 

positional index. 

3.3 Confsearch 

In [KW] Michael Kuhn and Roger Wattenhofer analyzed scientific conference graph and 

showed that this graph consist at least two layers: thematic and quality. [KW] propose 

that a single author tends to publish in venues of similar quality, therefore we are able to 

separate conferences with similar quality. In confsearch quality layer is used to sort query 

results.  

 



14 
 

4  Phrase search 

4.1 Stemming 
Martin Porter released an official and free to use implementation 

(http://tartarus.org/~martin/PorterStemmer) of the algorithm. We decided to integrate this 

implementation into the confsearch engine. 

4.2 Stop words 
In confsearch, we eliminate words which consist of only one symbol or are in a stop word 

list. 

4.3 Tfidf extension for phrase search 

Above definition of tf-idf is not directly applicable for phrase search. The main idea is 

that we calculate not the number of phrase occurrence in the document, but how exactly 

phrase match query. This is reflected by the weight w of a phrase.  

We propose following tf-idf extension: 

∑
+=

k
k

phrase
phrase n

w
wtf *)1log(  

where ∑=
i phrase

phrase
i

s
w

..1

1  ,  

sphrase= ∑
k

s
..2

k   

and sk is a distance between two terms in a phrase. If distance is less than zero (it 

means we found reverse phrase, for example “retrieval information”) we use -sk 

and add a special constant RWC(reverse weight constant): 

Indexk – Indexk-1   when Indexk > Indexk-1
sk = 

-(Indexk – Indexk-1) + RWC   when Indexk < Indexk-1 

 

Example 4.2. Sphrase calculation with stop words elimination 

Publication title sphrase 

“Towards1 the use of Prosodic2 Information3 for Spoken4 

Document5 Retrieval6” 

6-3=3 

“Retrieval1 evaluation2 with incomplete3 information4” -(1-4)+1=4 

 



15 
 

4.4 Phrase search algorithm 

Base algorithm idea is to find all publications which consist of all terms from query and 

then calculate distance between required terms in order to find better matching 

publications. Our phrase search algorithm is able to find titles where terms are not 

adjacent, such as “information storage and retrieval” when we are looking for 

“information retrieval”, as well as reversed phrases such as “retrieval of incomplete 

information”. Therefore  for each conference we calculate minimal distance between 

phrase terms in publications and then we use this value to sort conferences. Higher rank 

conferences has less distance value. If the conferences has the same value we sort them 

by introduced tf-idf. 

Algorithm steps: 

1. Get indexes for all terms in phrase. 

2. Find publication titles which contains all terms together. 

3. Calculate distance between terms (s) in publications. 

4. Calculate minimal distance (ms) and weight (w) for each conference  

∑=
i is

w
..1

1 , and )min( ..1 ismS =   where is  is phrases  in ititle  

5. Calculate the modified tf-idf values for each conference: 

idftfidftf *=− , 

∑
+=

k
kn

wwtf *)1log( , 

where ∑
k

kn is sum of number of occurrences of all terms in conference titles. 

)
N
Tlog(=idf  

where T is total number of conferences and N  is number of conferences 

where the phrase appears 

 

6. Sort results by ms and then by tf-idf values 

 

Example 4.3 “information retrieval” phrase search 

1. Separate the phrase into a list of k terms: 

“information retrieval” ->“information” + “retrieval” 



16 
 

2. For each term, get indexes and publication ID’s ordered by publication ID. 

Start from first index: 

 

“information” “retrieval” 

Pub ID1 Index1 Pub ID2 Index2 

5 1 6 7 

6 

6 

2 

10 

9 

9 

2 

8 

7 4 10 1 

… … 

 

 

 

3. Now we have to find identical publications. If Publication ID of wordk-1 1 is 

greater than Publication ID of wordk or Publication ID of wordk-1 1 is greater 

than Publication ID of wordk  then read new row of wordk : 

 

 

“information” “retrieval” 

Pub ID1 Index1 Pub ID2 Index2

5 1 6 7 

6 

6 

2 

10 

9 

9 

2 

8 

7 4 10 1 

… … 

 

 

 

4. When publication ID’s of words1..k is equal calculate s: 

 

 

 

 

       

“information” “retrieval” 

Pub ID1 Index1 Pub ID2 Index2

5 1 6 3 

6 

6 

2 

11 

7 

9 

6 

8 

7 4 10 1 

… … 



17 
 

 

 

 

 

 

S1 =3-2=1(perfect mach!) 

S2 =7-11=-(-4)+1=5 

S3 =6-4=2 

 

We found 3 phrases “information retrieval” with distance between terms 1, 2 

and 5 in one conference) 

5. Calculate the weight and minimal step: 

7.1
5
1

2
11 =++=weight

,
1=mS  

6. Calculate the modified tf idf values: 

(We assume that the sum of number of occurrences of all terms in conference 

titles is 80, total number of conferences is 10 and number of conferences 

where the phrase appears is 1) 

80
7.1*)17.1log( +=tf , 

)
1

10log(=idf  

7. Do steps 5 and 6 for all conferences and then sort results by ms and tf-idf  

 



18 
 

5 Evaluation 
To evaluate the quality of the proposed phrase search algorithm we compare the 

original confsearch engine keyword query results to the results of the new phrase search 

engine. To answer which results are better we need some references data that identifies 

conferences which are truly relevant for a given query. Not easy to find such reference. 

One of the sources we can use is Libra Academic Search(url: http://libra.msra.cn/). There 

we can find top conferences in a specific computer science field. Then we use the field 

name as a phrase in confsearch query. For evaluation, we count how many of these 

conferences a given search method returns on the first page (top 20 results), if the name 

of the scientific field is used as a phrase query. 

 

Phrase Quantity in 

original 

confsearch 

engine first 20 

results 

Quantity in new 

phrase search engine 

first 20 results 

(without stemming) 

Quantity in new 

phrase search engine 

first 20 results 

World Wide Web 2 2 3 

Artificial Intelligence 0 1 1 

Graphics 3 2 3 

Real-Time  0 6 9 

Machine Learning 1 1 1 

Programming 

Languages 

5 4 5 

Computer Vision 0 6 5 

Distributed Computing 1 3 1 

Operating Systems 6 6 6 

Overall 18 31 34 

Table 1. The results of comparison with Libra Academic Search Top conference list. 

 

As we see in Table 1 the new phrase search improves the query results. Stemming 

improves results not so dramatically and in two cases we even got better results without 

stemming. Both occasions includes stemmed word base ‘comput’: 

computer -> compute 



19 
 

computing -> compute 

To avoid such cases in future work we can try improve the stemming algorithm or create 

not stemmed words list. 



20 
 

Conclusion 
We integrated stemming into confsearch keyword search engine. We then compared 

different phrase search approaches and proposed an efficient algorithm for phrase search 

in confsearch. The algorithm is based on a modified tf-idf to meet our specific phrase 

search requirements. The new keyword search engine has been evaluated and results 

indicate that stemming and phrase search improves confsearch keyword search quality. 

 

 

 

 



21 
 

References 
[MRS08] Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze. An 

Introduction to Information Retrieval Cambridge UP, 2008 

[TH08] Thomas Hoffman. Information Retrieval slides, 2008 

 < http://www.systems.ethz.ch/education/courses/hs08/information-

retrieval/course-materials/index > 

[KW] Michael Kuhn, Roger Wattenhofer. The Layered World of Scientific 

Conferences 

[KW1] Michael Kuhn, Roger Wattenhofer. Semester Thesis: “Improving Keyword 

Search in ConfSearch” 

[W1] Wikipedia, the free encyclopedia. Stemming [viewed: 2008-10-15].

 <http://en.wikipedia.org/wiki/Stemming> 

[W2] Wikipedia, the free encyclopedia. Full text search [viewed: 2008-10-15].

 < http://en.wikipedia.org/wiki/Full_text_search> 

[H08] Ruud Hein. How Search Really Works: "The" Index (2) [viewed: 2008-11-

25]. <http://www.searchenginepeople.com/blog/how-search-really-works-the-

index-2.html> 

 

 

 



22 
 

Appendix A. Implementation description 
 
1. Clases: 
 
Class name: SearchResult 
Description: Simple class with four attributes, used to hold search results (output for 

ProceedSearch) and to communicate between methods 
Example: ArrayList<SearchResult> rez; 

Attributes:  public int PlaceID  //Conference ID 
 public double Weight //Conference weight 
 public double TfIdf //Calculated Tf-Idf 
 public int Step //Minimal phrase step 

Methods: none 
 
 
2. Methods of class PositionalIndexCreateEngine: 
 
Method name: IndexKeywords 
Description: Main method for positional index creation. Creates positional index 

from publications table. Select publications where yea r=> 
yearStart  and year <= yearend 
Index starts from 1 for every publication  

Input parameters:  Connection con,  // Valid connection 
 Connection con1, // Another valid 
connection required for synchronized read/write 
operations 
 int yearStart,  // Minimal year value 
of title  
 int yearEnd,  // Maximum year value 
of title  
 boolean useStemming // If True we use 
stemming 

Output parameters: void 
 
 
3. Methods of class PositionalIndexSearchEngine: 
 
Method name: ProceedSearch 
Description: Main method for phrase search. Manages all others methods: 

getPhrases, pIndexSearch, mergeResults,and  calculateTfIdfb 
Example: 
ProceedSearch("social network", con, true), con) 

Input parameters:  String query, // Phrase(with '' or "") or 
keyword query 
 Connection con,  // Valid connection 
 boolean useStemming // If True we use 
stemming 

Output parameters: ArrayList<SearchResult> 
  
 
Method name: getPhrases 
Description: Returns phrases (ArrayList<String>) separated by “ or ‘ from 

string 



23 
 

Input parameters:  String query, // Phrase(with '' or "") or 
keyword query 
 boolean useStemming // If True we use 
stemming 

Output parameters: ArrayList<String> 
 
 

 

 

 

 

 

 

Example 1. Positional index creation 
PositionalIndexCreateEngine pc = new PositionalIndexCreateEngine(); 
pc.IndexKeywords(con, con1,2000,2009, useStemming); 
 

 

Example 1. Positional index searching 
PositionalIndexSearchEngine ps = new PositionalIndexSearchEngine(); 
ps.ShowResults(ps.ProceedSearch("social network", con, true), con); 

 

Method name: pIndexSearch 
Description: Returns search results in stack for the phrase (few terms) or single 

term 
Input parameters:  String[] terms,  

 Connection conn 
Output parameters: Stack<SearchResult> 

Method name: mergeResults 
Description: Merges several search results, when we are searching for several 

terms or phrases 
Input parameters:    Stack<SearchResult>[] rez // Output 

from pIndexSearch() 
Output parameters: ArrayList<SearchResult> 

Method name: calculateTfIdf 
Description: Calculates tf-idf for search results 
Input parameters:  ArrayList<SearchResult> places,  

 Connection con 
Output parameters: ArrayList<SearchResult> 


