ETH —
. . Technische Informatik und

Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

Mahdi Asadpour

Ground truth analysis of anomalies in
traffic feature distributions

Research in Computer Science Il (263-0600-00L)
September 2009

Tutor: Bernhard Tellenbach
Supervisor: Prof. Bernhard Plattner

Abstract

Recently, Traffic Entropy Spectrum (TES) has been proposed as a promising tool to analyze
the changes in traffic distributions, as a basis for detecting anomalies in a network system.
TES employs Tsallis entropy that offers a more detailed view on the changes in the underlying
distributions than the previous one, Shannon entropy.

Evaluation and approach used for the detection of anomalies in TES are incomplete and the
TES method may come with high ratio of false positives or even false negatives, hence need to
be investigated in-depth.

The goal of this work is to make an in-depth analysis of TES by taking its results and cross-
checking them with the output of another program FlowSketches/FlowExtrator, which uses a
different measurement (KL-distance). A program as an extension of FlowSketches is also de-
veloped in this work. It takes the anomaly information, analyzes them, and as the result it gives
out a good possible reason for every anomaly. Finally, this program inserts all the feature infor-
mation into a designed MySQL database for future queries.

Contents

1 Introduction

1.1 Motivation e
1.2 RelatedWork e
1.21 Entropy e
1.2.2 Traffic Entropy Spectrum (TES)
1.3 TheTask e
1.31 Data e
1.4 OVerview e e e

2 Problem and Approaches

2.1 Problem e
2.2 Other Available Tools: FLAME
221 FlowExtractor L
222 FlowSketches e
2.3 Approach e
2.3.1 AnalyzeTES program e
2.3.2 Findingtheanomalies
2.3.3 Pre-processing
234 Analysis.................
2.3.5 Postprocessing
2.3.6 Writingtheresult
24 Summingup

3 Design and Implementation

3.1 DatabaseDesign
3.1.1 Anomaly database table
3.1.2 Attack databasetable
3.1.3 NetScanAttack database table
3.1.4 Attacksinfo databasetable

3.2 Programdesign.
3.21 Mainfunction
3.22 Anomalyclass
3.2.3 Databaseclass
3.2.4 Utilityclass
3.2.5 Base flowchart and summingup . . .

3.3 Installing and Usage the program
331 Install
332 Usage

4 Experimental Result

4.1 First approach: examining an anomaly fromTES

4.2 Second approach: example of false negative
5 Outlook

6 Summary and Conclusion

11
11
11
12
12
12
14
14

15
15
15
16
16
17
18
18
20
21
23
23
24

25
25
25
26
27
28
28
28
29
32
32
33
34
34
36

37
37
41

45

47

CONTENTS

A Implementation details
Main
A.1.1 run function
A.1.2 autoRunning function
Anomaly class
A.2.1 init: first function
A.2.2 init: second function
A.2.3 isInside function
A.2.4 readAnomalies function
A.2.5 printAnomalies function
A.2.6 printTimes function
A.2.7 processAnomalies function
A.2.8 postProcessAnomalies function
A.2.9 analyze function
A.2.10 process function
A.2.11 printAttacks function
A.2.12 printNetScanAttacks function
A.2.13 writeDBScriptUnprocessed function
A.2.14 writeDBScriptProcessed function
A.2.15 writeDBScriptNetScan function
A.2.16 writeDBScript function
A.2.17 setTsallisEntropy function
A.2.18 checkForNetScanAttack function
A.2.19 getNoVictimsByAttacker function
Database class
A.3.1 Database constructor
A.3.2 Database destructor
A.3.3 testDB function
A.3.4 startDB: first function
A.3.5 startDB: second function
A.3.6 startDBTES function
A.3.7 getError function
A.3.8 getMedianTsallisValue function
A.3.9 readDBScriptAnomaly function
A.3.10 readDBScriptAttack function
A.3.11 readDBScriptNetScanAttack function
A.3.12 readDBScriptCreate function
A.3.13 finishDB function
A.3.14 execDBScriptAnomaly function
A.3.15 execDBScriptAttack function
A.3.16 execDBScriptNetScanAttack function
A.3.17 execDBScriptCreate function

A1

A2

A3

A4

Utility class

A.4.1 toString function
A.4.2 fromString function
A.4.3 groplPs function
A.4.4 test function
A.4.5 dottedIP function
A.4.6 readableTime function

B Abbreviations

C Timetable

CONTENTS

D Task Description

D.1
D.2

D.3

D.4

D.5

Introduction
Availabledata
D.2.1 Clusterand NetFlowDataSet.
TheTask e
D.3.1 Identify anomalous peaks in a netflowtrace
D.3.2 Investigation of root cause for (anomalous) peeks
D.3.3 Optional: Improvement and tuning of the anomaly detection approach . .
Deliverables
D.4.1 Documentation structure o
D.4.2 Presentations
General Information

CONTENTS

List of Figures

1.1
2.1

2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1

4.2

4.3

4.4
4.5

A
A2

D.1

TES visualizationtools. 13

A snapshot of TES visualization: for TCP source IP, the incoming traffic (rectan-

gles are not from TES, added for highlighting). 17
Snapshot of (a) Sample running of FlowSketches, (b) Its result, (c) Result from

intermediate step, (d) Outcome of FlowExtrator. 18
Database design: relation and fields oftables. 26
Classdependency. 28
Callgraphof mainfunction. 29
Dependency graph of main function. o oo, 29
Dependency graph of Anomalyclass. 29
Dependency graph of Databaseclass. 32
Dependency graph of Utilityclass. 33
AnalyzeTES flow diagram. 35
A snapshot of TES visualization program, for incoming traffic of source IP ad-

AresSSes. . . . o e 38
A snapshot of TES visualization program, for incoming traffic of destination IP

AddresSSesS. e e 38
A possible anomaly discovered by TES: (a) for the source IP addresses, (b) for

the destination IP addresses. 39

A snapshot from the output result of FlowExtractor (IP addresses are anonymized). 40
A UDP Flooding attack occurred in period that the black rectangle indicates, but

itisnotreflectedby TES. 43
Call graph of Anomaly::process function. 54
Call graph of Anomaly::setTsallisEntropy function. 56
Working cluster structure at TIK L o 72

LIST OF FIGURES

List of Tables

1.1

2.1
2.2

B.1
CA
D.1

Information about the existing NetFlow dataset 14
Considered attacks, partone. 21
Considered attacks, parttwo. 22
List of abbreviationsusedintext. 65
Tasks and weeks used forthem. 67
Facts about our NetFlowdataset 70

10

LIST OF TABLES

Chapter 1

Introduction

In this chapter, we deal with the motivation of doing such a project, related works in this field,
and what tasks should be done as the result.

1.1 Motivation

Network operators (such as ISPs, University networks like SWITCH [6]) may confront with a lot
of unusual behaviors: ranging from a huge amount of requests from local network, to different
calls from outside networks in a big amount. We name these unusual behaviors in a network as
anomalies. These anomalies can span a vast range of events:

o Network abuse, e.g. DOS attacks, IP/Port scans, Worms, etc
e Equipment failures, e.g. Server panic, Router outage, etc

e Unusual user behavior, e.g. Flash crowds, etc

e Unknown events

The operators need to (automatically) detect these anomalies to be able to defend, as soon as
possible. But with the huge traffic of data in network, the real time monitoring and analysis of the
traffic data become a challenging task. So far, two approaches to network anomaly detection
have been proposed:

1. Signature-based approach: that is used for detection based on the anomalies’ signature
known in advance.

2. Statistics-based approach: that does not require prior knowledge and can work even for
new anomalies.

The statistics based approach has attracted considerable attention due to its capability in discov-
ering new anomalies. A very important component of this approach is change detection, which
can be done at different levels: Traffic volume level (contains number of bytes or packets), and
Traffic feature/flow level (usually characterized by source and destination IP addresses, source
and destination port numbers, and protocol number). For the purpose of detecting changes, we
usually build a model for normal user behavior in learning phase, and any inconsistent behavior
with this model is considered as anomaly.

In this work, we focus on the statistics-based approach at traffic flow level (in Cisco NetFlow
format [5]).

1.2 Related Work

Efficient and accurate change detection in network systems is a challenging task and has been
considered in many research papers.

11

12 CHAPTER 1. INTRODUCTION

1.2.1 Entropy

A prominent technique is to use the entropy analysis for network anomaly detection. Entropy
analysis not only reduces the amount of stored information, also allows for a compact visualiza-
tion of changes.

Shannon entropy [17], which has been promisingly employed by several works [12, 15, 20],
reduces the information about a distribution to a single number. Doing so, the nature cause of
an anomaly may be deleted or a certain group of anomalies may be overlooked [20, 18].
Ziviani et al. [20] used non-extensive entropy technique (Tsallis entropy [19]), that offers a more
detailed view on the changes. They also showed that this entropy is better suited to capture the
network traffic characteristics of Denial of Service (DoS) attacks. Equation 1.1 is the discrete
version of Tsallis entropy, and parameter ¢ is a measure of the non-extensitivity of the system
of interest.

1

Silp) = —5 (1= 3 p' (k) (1.1)
k=1

Different values of ¢ in equation 1.1 highlight various activity regions in the feature elements:

1. ¢ < 1:it happens when many elements each with a low activity are captured. This case
mostly highlights anomalies with distributed nature on many elements.

2. ¢~ 1:" it happens when a large number of elements with similar activities are captured.

3. g > 1: it happens when element with high activity are captured. This case mostly highlights
anomalies targeting a few servers with a high traffic volume.

1.2.2 Traffic Entropy Spectrum (TES)

Recently, Tellenbach et al. [18] introduced the Traffic Entropy Spectrum (TES) to analyze the
changes in Tsallis entropy and to use them as a basis for an anomaly detection system. TES
captures and visualizes important characteristics requiring little or no tuning to specific attacks.
In order to calculate TES out of a huge amount of Cisco NetFlow data of SWITCH network,
the compressed NetFlow data is first decompressed and the data from all sources are merged
together. After the merging, a sorter comes into play to sort the incoming flows according to
their starting time. TES then calculates the flow, packet and byte count, as well as the Tsallis
entropy with different ¢ values for available NetFlow features. Finally, the output is written back
to disk for storage and analysis using a database environment. Besides, TES visualization tools
(written in MATLAB) [11] provides a graphical representation of the stored data (see Figure 1.1).
In TES, the same as Tsallis entropy, various ¢ values may highlight different anomalies. TES
though uses different colors and hence patterns to highlight the changes, visually.

1.3 The Task

Evaluation as well as the approach used for the detection of anomalies in TES are incomplete
since they only focused on the exposure of a few large scale anomalies. As Tellenbach et al.
strictly mentioned in [18], the high sensitivity of TES method may come with high ratio of false
positives, which should be investigated with more in-depth evaluation. In such systems, the false
negatives should also be considered as one of important evaluation metrics.

The goal of this work is to make an in-depth analysis of Netflow traffic traces, and to provide the
basis for an accurate and insightful analysis of the TES.

For this purpose, the result of TES on the data has been checked with the output of another base
program FlowSketches/FlowExtrator? [14]. FlowSketches program employs a different measure-
ment KL-distance [2] to detect anomalies. Two approaches are used:

"If ¢ = 1 the Tsallis entropy is equal to the Shannon entropy.
2Through the text we refer to them as FlowSketches, most of the time.

1.3 The Task 13

Basic Metrics Visualization & Anomaly Detection Tool

10 Teallis entropy for Tep-Spe-nZch ol I Rt
T T

—Tsallis entropy

| |
09326308 2 1612556 P 23:25:45 P 0625331 06-Rpr-2008 15:25:18 06-Rpr—2008 20325:06

TES for TopSpe

09:26:08 P 16425256 P 23:25243 P 06225131 P 13:25118 P 20125306

Percentil

Initialization interval Plot Detect Filt

Start 31-Mar-2008 _Kaman (® Interquartile e | B o e i PR o2 R o |

> G _JFercentile B | o - B

SRS 61-pr-2008 00:35:00 OP T i =t Mg (el) I
7N 5 2 e | - |

Figure 1.1: TES visualization tools.

o First: by looking at TES traces, time durations that their ¢ Tsallis value shows abnormal be-

havior, are extracted. Knowing the start-time and end-time of the possible anomalies dis-
covered by TES, we are able to cross-check this finding with the FlowSketches program:
The times are set in the corresponding script to see whether the outcome of FlowSketches
also indicates it as an anomaly or not. If it is, we continue the running of FlowSketches to
extract the corresponding flow feature information (IP, port, etc).

In this way, we can evaluate the false positiveness of TES.
Second: by running the FlowSketches on the data (that have the ¢ Tsallis value set in one
of the fields), we find out the anomalies. Then, we check ¢ Tsallis values to see whether

they are considerable based on the normal patterns or not. In case of multiple ¢ Tsallis
values, we use the arithmetic median of them in that period.

In this way, we can evaluate the false negativeness of TES.

In order to achieve these goals, we generally pursue the following (main) steps/contributions:

1.

By using a GUI-based MATLAB tool (TES visualization), we locate time-wise the (statisti-
cally) anomalous peaks by looking at timeseries and distributions of multiple flow features
(IP addresses, port numbers, flow-, packet- and byte counts).

By using a C++ program named FlowSketches, we automatically extract the anomalous
peaks. Subsequently, by employing a sub-program FlowExtractor, we extract the feature
information for every anomaly.

. Having the outcome of previous steps, we are able to investigate the correctness of de-

tected anomalies, part of it by human/expert involvement and other automatically.

. Then we somehow extend the FlowSketches C++ program by adding a (stand-alone) iden-

tification program AnalyzeTES. This program takes the anomaly information generated in
the previous steps and works on the data. It analyzes the file and puts a good possible
explanation for every anomaly.

. This program finally inserts all the information into a designed MySQL database, with

a proposed data structure. The information at least contain: IP address of victim(s), IP
address of attacker(s), port number of victim(s), port number of attacker(s), total size of
transferred packets in this connection, time duration of that attack, start time of attack, end
time of attack, ¢ Tsallis value and finally the root cause(s) of each peak/anomaly.

14 CHAPTER 1. INTRODUCTION

Table 1.1: Information about the existing NetFlow data set

Coverage March 20083 - today
Bytes/hour 500-2000 MB (compressed)
Total Bytes (02.2008) | approximately 38 TB (compressed)
Archive Jabba (tape-library)
Download speed: 5(script) to 10(framework) MB/s
Completeness A few gaps or corrupt files
(exact number unknown).
An incomplete log already exists.

1.3.1 Data

The data used here was captured from the five border routers of the Swiss Academic and Re-
search Network (SWITCH) [6]. SWITCH is a medium-sized operator that connects several uni-
versities and research labs to the Internet. Table 1.1 summarizes some fact about the NetFlow
data set used in this work. The data are stored without any sampling or anonymization.

1.4 Overview

The rest of this report is organized as follows. Chapter 2 describes what the problem is and
also brings the approaches to tackle the problem, step by step. Chapter 3 brings the database
and program design of this work along with little implementation details. In Chapter 4, we see
some experimental result on real SWITCH traffic data. Chapter 5 talks about outlook and some
suggestions for future work. And Chapter 6 summarizes the report and gives a conclusion.
Besides, in the Appendix part: Chapter A briefly mentions the implementation details of the
developed program, and Chapter B brings abbreviation of terms used through the text.

Later, Chapter C shows the timetable of this work, and finally Chapter D presents the original
task description.

Chapter 2

Problem and Approaches

This work tries to evaluate and make an in-depth analysis of TES. In this chapter, we describe
what the problem is, and how we find a solution for it.

2.1 Problem

The evaluation used for the detection of anomalies in TES are incomplete since they only fo-
cused on the exposure of a few large scale anomalies. Also the approach should be examined
by several assessments. In this way, we provide the basis for an accurate and insightful analysis
of the TES, specially to measure how accurate it detects anomalies. As a tool to evaluate this,
we make use of:

1. Human inspection, by looking at detected anomalous traces and compare them with pos-
sible attacks.

2. Automatic inspection, by means of FlowSketches program (we will see later) to automati-
cally find out the anomalous peaks and cross-check with TES result and vice versa.

And to measure and evaluate TES functionality, we take into account these criteria, which are
the main (standard) factors to evaluate such detection systems:

1. False positive: in this context means the system detects the anomaly but it is not really an
anomaly (the detection is not true).

2. False negative: in this context means the system does not detect the anomaly but it is
really an anomaly (the detection is not true).

Besides these criteria, two others “true positive” and “true negative” are also very important,
which in this work we implicitly consider them too but we try to focus on the two mentioned
ones.

2.2 Other Available Tools: FLAME

Along with the TES and its visualization tools, we need to get familiar with FLAME as well as its
sub-modules FlowExtrator and FlowSketches. FLAME (Flow-Level Anomaly Modeling Engine)
[8] is a framework that is able to generate and inject realistic testing traces in order to evaluate
anomaly detection systems. In this way, we have the control on the anomalous traffic and can
examine the accuracy of the underlying system.

As the name speaks for itself, FLAME works at the flow level. A flow is a unidirectional series
of IP packets that have the same internet protocol, the same source and destination IP ad-
dresses and port numbers, and occur at a certain period of time. A flow contains the following
information, which drastically reduce the amount of data to keep for every connection:

e the source IP address,

e the destination IP address,

15

16 CHAPTER 2. PROBLEM AND APPROACHES

e the source port,
o the destination port, and
o the protocol type.
FLAME basically has these major modules:
1. NetflowReader(s): It reads flow records in Netflow (versions 5 and 9) format from flat files.

2. NetflowWriter(s): It takes as input flow records in the internal format and writes them to a
flat file in Netflow (versions 5 and 9) format.

3. FlowMerger: It takes flow records in the internal format from multiple registered pipes and
outputs the records to one pipe.

4. FlowDeleter: It reads flow records in internal format, calls the python script for a delete
decision, and deletes the records satisfy the decision.

5. FlowGenerator: It generates request flows and outputs them in the internal format in in-
creasing order of end time.

Lately, FlowExtrator and FlowSketches have been added to it by [14].

2.2.1 FlowExtractor

The FlowExtractor module [14] extracts flow records according to a configuration script. The
script contains timing information and hash values for a specific feature. As the result of its run-
ning, FlowExtrator gives out a file containing the following feature information for every selected
flow record:

e source IP address

e destination IP address
e source port

e destination port

e protocol

e number of packets

e size in bytes

e start time

e end time

2.2.2 FlowSketches

FlowSketches module/program [14] is an additional part of the FLAME framework. In this pro-
gram, the flow traffic is divided into (configurable) time intervals and then is used for the gen-
eration of sketches. Afterwards, it uses the Kullback-Leibler (KL) distance [2] to compare two
consecutive sketches. KL-distance is a relative entropy and can reveal the changes of network
traffic, enabling us to identify the anomalous flow and its interval.

In order to filter out and identify an anomaly, [14] introduces some utility scripts that they work
on the FlowSketches output and make it ready for the next step (FlowExtrator and etc). There
exists a MATLAB script that uses 99% as a threshold and filters out the highest 1% of the KL-
distances as anomalous traffic. A Perl script then generates an extractor configuration script
that contains the necessary information for the FlowExtractor. (We will work with these scripts
specially in the Chapter 4.)

Another MATLAB script removes the outliers writes the remaining records to a file. And finally, in
the classification step, a scripts groups the anomalies according to their protocol, their entropies
and their structural distribution.

2.3 Approach 17

e Tsallis entropy for Tep=Sipde-On2cO @ [il gt
T T T T

— Tsallis entropy

L L | |
O (72008 3168135 16-Hay-2008 17558145 15-Hay-2008 21357155 21-Hay=2008 01557105 22-Hay-2008 05:56:15 23-Hay-2008 09355125

TES for TepSipde

17-May-2008 13:53:35 18-M1ay-2008 17:56:45 19-TMay-2008 21357355 21-Mlay-2008 01357305 22-Hay-2008 05:56:15 23-Hay-2008 03:55:25

Initialization interval P Percentil Dereti Fil
Star: 17-May-2008 Kalman 1@ Interquartile UREERAN 55 | @ U e R Wor 02 T 025
; (& TES JPercentile | B | 1|

Stop: [~ 16-May-2008 005500 | _Jwinhax _Jaian anomalies |Mavavg 14) 1 20
[I |

Figure 2.1: A snapshot of TES visualization: for TCP source IP, the incoming traffic (rectangles
are not from TES, added for highlighting).

2.3 Approach

In order to evaluate TES, specially to measure how good it finds out the anomalous peak in a
trace, we follow these two approaches:

1. Approach One (Concentrating on false positive): In this approach, we first look at the TES
traces, and extract time durations that their ¢ Tsallis value shows an anomaly pattern. We
acquire and write down the start-time and end-time of the possible anomalies discovered
by TES. Figure 2.1 shows a snapshot of TES visualization platform, and the possible
anomalous peak/pattern.

We then cross-check this finding with the outcome of FlowSketches program at these
times (as will describe later). Taking FlowSketches as our metric, we can examine the
correctness of TES diagnosis, to see how many of these positive alarms (i.e. there exists
an anomaly) by TES are really false. So to speak, TES was mistaken and should have
NOT raised an alarm.

As the result of the first stage of this approach, we gather the start time information about
the anomalous peaks from a specific data, in a certain period. In the next stages, we set
this time and data information in the corresponding script (refer to section 2.3.2).

2. Approach Two (Concentrating on false negative): In this approach, we first run the FlowS-
ketches on the data to find out the anomalies. Figure 2.2 shows a sample running and
result of FlowSketches (followed by FlowExtrator) program.

Then, we extract the ¢ Tsallis value for those times the anomalies occurred (it could be
multiple values). Doing so, we are able to examine whether the ¢ values are considerable
based on the normal patterns or not. In case of multiple ¢ values, we use the “median”’
of them. Therefore, we can measure how many of these negative alarms (i.e. there does
not exist an anomaly) are really false. So to speak, TES was mistaken and SHOULD have
raised an alarm.

Instead of the median value, we could use other metrics such as: the average, the max
and/or even the min among ¢ values in that attack period. The reason we prefer the median
is due to the fact that it is not (very) sensitive to outliers, the observations that are very
different from all the others. While the mean as well as max/min values are affected by
outliers or in some cases are outliers. A disadvantage of using median in comparison to
the others is the bigger computation time it needs.

1The median divides the distribution into halves; half is below it, and half above it.

18 CHAPTER 2. PROBLEM AND APPROACHES

X amahdi@x02: /largefs3/mahdi/refl_DDOS_april/ =RRaN X

mahdi@:02: largefa3 mahdi ref 1 _DI0S_april§ ./ my_sketch,sh

mahdi@x02:/ largefs3/mahdiref 1 _DD0S_april $ FSK: Starting the main processing loop
largefsl/netflow_data/raw/2008_04_12_refl_IDoS/19331_00045460_1206896400, dat. bz2
Sk: inPipe opened (a)
Sk: outPipe opened

amahdi@x02:/largef=3/mahdirefl_D005S_april$ ls sketch_*

sketch_icmp_dstip_in,csv sketch_icmp_srcip_out,csv sketch_top_srcip_in,csv sketch_udp_dstip_out,csv
sketch_icmp_dstip_out,csv sketch_top_dstip_in.csw sketch_top_sroip_out,csv sketch_udp_srcip_in,csv (l))
sketch_icmp_srcip_in,csv sketch_top_dstip_out,csv sketch_udp_dstip_in,csv sketch_udp_srcip_out,csv
amahdi@x021/1argefs3/mahdisref1_DI0S_aprils I

amahdi@x02:/ largefs3/mahdirefl_ID0S_april$ ls anomalies_*

anomalies_icmp_dstip_in_99.txt anomalies_tcp_dstip_in_99.txt anomalies_udp_dstip_in_99,txt
anomalies_icmp_dstip_out_99,txt anomalies_tcp_dstip_out_99,txt anomalies_udp_dstip_out_99,txt ((:)
anomalies_icmp_srcip_in_99.txt anomalies_tcp_srcip_in_99.txt anomalies_udp_srcip_in_99,txt
anomalies_icmp_sroip_out_99,txt anomalies_tcp_srcip_out_99,txt anomalies_udp_srcip_out_99,txt
amahdi@x02:/ largefs3/mahdi/ref 1 _ID0S_april$

amahdi@x02:/largefz3/mahdi refl _DD05S_april$ ls analysis_top_hsips_in_*

analysis_top_hsips_in_1206897900, txt analysis_tcp_hsips_in 1208908700, txt
analysis_top_hsips_in_1206898500, txt analysis_tcp_hsips_in 1208909600, txt ((1)
analysis_top_hsips_in_1206898500_answer,txt analysis_tcp_hsips_in_1206313800, txt
analysis_top_hsips_in_1206838800, txt analysis_top_hsips_in 1206914100, txt

Figure 2.2: Snapshot of (a) Sample running of FlowSketches, (b) Its result, (c) Result from
intermediate step, (d) Outcome of FlowExtrator.

In both of these approaches, we need to extract the feature distributions (IP, port, etc) in order to
point out the exact attack information that TES either could not detect or could detect properly.
In the following, we describe how to do it by using the FlowSketches program step by step,
which is common in two approaches.

2.3.1 AnalyzeTES program

Before we go into details of the approach, let us have a look at AnalyzeTES program: some of
its data structures and functions that we will use in the following. Their detailed explanation will
come at the next chapter (see 3).

e anomlist data structure: contains list of anomalies, the output of FlowSketches program.
e aftacks data structure: keeps data about the possible attacks discovered from anomilist.

e netScanAttacks data structure: keeps the network scan attack data.

e setTsallisEntropy function: sets the ¢ Tsallis value for every anomaly in anomlist.

e processAnomalies function: processes the anomlist and fills the attacks data structure.

e analyze function: analyzes the attacks to find out the attack reason, and even seeks for
network scan attacks. If it could find, it fills the data into netScanAttacks data structure.

e checkForNetScanAttack function: analyze calls this function to check for possibility of net-
work scan attack. If it is, this function handles the data insertion part properly.

e postProcessAnomalies function: Summarizing some of the fields in attacks and
netScanAttacks is the responsibility of this function (specially to convert the IP addresses
into their equivalent CIDR notation).

2.3.2 Finding the anomalies

We run the FlowSketches program on the pre-computed dataset files with the demanded con-
figuration, as an example comes below (bash file sketch.sh):

#!/bin/sh

SKETCHDIR="/home/amahdi/fromevelyn/sketch-1.0/src"
READERDIR="/home/amahdi/work/workspace/Netflowv5Reader/Debug"
MERGERDIR="/home/amahdi/work/workspace/FlowMerger/Debug"
DATAl="/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/19991x.dat.bz2"

2.3 Approach 19

DATA2="/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/19993x.dat.bz2"

START=1208108700

INT=300

LEN=1024

HSH=5

iddssssssssssssssasassssssdsdddsdadadaddddsnanananaiddiddihdiddi

Create pipes

mkfifo pipel

mkfifo pipe2

mkfifo pipe3

SREADERDIR/Netflowv5Reader S$DATAl pipel &

SREADERDIR/Netflowv5Reader $DATA2 pipe2 &

SSKETCHDIR/FlowSketches pipe3 /dev/null -h $SHSH -1 SLEN -i S$SINT \
-s $START &

SMERGERDIR/FlowMerger pipe3 pipe2 pipel

Delete pipes

rm pipel

rm pipe?2

rm pipe3

The output of FlowSketches are files with “sketch_" as prefix for every feature, for example:

sketch_icmp_dstip_in_1.csv, sketch_tcp_dstip_in_1.csv,
sketch_udp_dstip_in_1.csv, sketch_icmp_dstip_out_1l.csv,
sketch_tcp_dstip_out_l.csv, sketch_udp_dstip_out_1l.csv,
sketch_icmp_srcip_in_1l.csv, sketch_tcp_srcip_in_1l.csv,
sketch_udp_srcip_in_1l.csv, sketch_icmp_srcip_out_1l.csv,
sketch_tcp_srcip_out_1l.csv, sketch_udp_srcip_out_1l.csv

Each of these files has the following information:
e Init-values for 5 hash functions (in the above example, HSH = 5)

e Number of records falling into each of 1024 bins (in the above example, LEN = 1024),
each with 5 hash functions (so in total: 1024 = 5120 records)

o KL-distances in forward and backward direction for two consecutive sketches

After this step, collect_anomalies.m MATLAB program is run on the output of previous step. This
MATLAB script extracts the single-bin anomalies and outputs a separate file for every feature
(having the “anomalies_" as prefix), with these information:

e The init-values for the hash functions,

e Followed by a list of collected anomalies, which every line contains the anomaly’s start
time, the interval number and the hash values for the different hash functions.

Sample output of collect_anomalies.m program is:

1804289383 846930886 1681692777 1714636915 1957747793
1187557500 1 801 589 267 949 800 0.564833 0.466312
1187558100 3 999 371 723 1005 39 0.354194 0.18411
1187558400 4 47 577 52 930 303 0.662444 0.265222

In the sequel, the generate.pl script is executed (Usage: perlgenerate.pl). It reads the anomalies
and then generates configuration script extract.sh (along with the Python script analysis1.py),
which is something like the following:

#!/bin/sh

SKETCHDIR="/home/amahdi/fromevelyn/sketch-1.0/src"
READERDIR="/home/amahdi/work/workspace/Netflowv5Reader/Debug"
Create pipes

mkfifo pipel

20 CHAPTER 2. PROBLEM AND APPROACHES

Start programs

SREADERDIR/Netflowv5Reader /largefsl/netflow_data/raw/ \
2007_08_31_epfl_ddos/19991_00040078_1187557200.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040079_1187560800.dat .bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040080_1187564400.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040081_1187568000.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040082_1187571600.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040083_1187575200.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040084_1187578800.dat .bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040085_1187582400.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040086_1187586000.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040087_1187589600.dat .bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040088_1187593200.dat.bz2 \
/largefsl/netflow_data/raw/2007_08_31_epfl_ddos/ \
19991_00040089_1187596800.dat .bz2
SSKETCHDIR/FlowExtractor pipel /dev/null analysisl.py
Delete pipes

rm pipel

After running the extract.sh script, the output of FlowExtractor are text files with “analysis_
as prefix. Every file contains several records, each of them with the following information (as
mentioned before): source IP address, destination IP address, source port, destination port,
protocol, number of packets, size in bytes, start time, and end time.

Following is a sample output of FlowExtractor program (for privacy purposes, the IP addresses
are anonymized):

3422584391 2164804241 8 0 1 1 64 1187557192734 1187557192734
1782954186 2164804241 8 0 1 1 64 1187557196968 1187557196968
2490984179 2164804241 8 0 1 1 64 1187557196960 1187557196960
1746457941 2164804241 8 0 1 1 64 1187557200677 1187557200677

We then run the remove_outliers.m MATLAB script on the outcome to remove outliers if any.

2.3.3 Pre-processing

Having the output of FlowExtrator program (files with prefix “analysis_"), the program initiates
as follows:

1. It first reads the files and stores them in appropriate data structure (anomlist).

2. Then it cross-checks every timestamp in the anomalies with TES database, maintaining
the corresponding Tsallis ¢ values from the pre-computed .db files (by calling setTsallisEn-
tropy function).

3. It computes and hereafter uses the median ¢ among the extracted ¢ Tsallis values in the
duration of start time and end time of that anomaly.

The program then goes through analysis on the data. Before going into attack identification,
it should pre-process the data as such it categorizes every anomaly information based on its
destination IP address. This IP actually represents the victim, which is the principal part of every
attack. At this stage, the program summarizes the information like the following:

2.3 Approach 21
Table 2.1: Considered attacks, part one.
Attack Description
DOS Denial of Service Attack (distributed or single-source)
which affects destination address, source address.
ICMP Flooding Consuming the victim’s bandwidth

by sending a huge amount of echo ICMP requests.

Reflector - SMURF

Sending broadcast ICMP packets to a whole subnet,

so that all (or at least most) of the machines in that subnet
then send a reply to the victim.

Solution: blocking ICMP broadcast at the router.

TCP SYN Flooding

Exploiting the three-way handshake part of the TCP protocol

by sending many SYN packets to one host.

For detection: the number of TCP flows,

average number of packets in each TCP flow,

average number of bytes in each TCP flow,

number of unique IP addresses seen (all per minute) can be used.
Solution: SYN cookies

UDP Flooding

Sending a very large number of UDP packets to one

or several random ports of a victim. These packets will
eventually consume all of the available bandwidth and thus
lead to a Denial of Service (DoS).

Detection: the number of UDP flows per minute is analyzed.

DNS Reflector

Sending a flood of DNS requests with a spoofed

IP address (the one of the victim) to one or more DNS servers,
which results in a flood of DNS responses sent to the victim.
Detection: Checking the high rate of

DNS requests from the same (spoofed) IP address to a

DNS server inside the network, or an unusual high number

of UDP flows with source port 53 (of DNS)

2.3.4 Analysis

Group of attackers to this victim are being put together.
The total number of packets in this anomaly are summed up.
The total packets size of this anomaly is computed.

The duration of this anomaly is calculated as well.

In the analysis phase (mainly in processAnomalies and analyze functions), it checks for different
well-known anomalies on the summarized data. It considers the attacks listed in Tables 2.1 and
2.2, all taken from [13, 18].
For the attacks to be accurately identified, we should define appropriate thresholds, accordingly.
The thresholds are highly dependent on the type of underlying network (i.e. small, medium, big),
a specific time (i.e. high season, low season), and a lot of other factors. Mostly, using an outlier
based approach and tuning the values by experiment give us a good outcome. Although coming
up with a constant and general threshold is not an easy job, we realize that the following values
somehow well fit with our medium level network?:

e nolpsThreshold = 20 x 50: Threshold for the maximum number/size of attacker IP ad-
dresses to store in the fields. The value 20 x 50 = 1000 means 50 IPs each of which
with size 20 characters (i.e. representation of IPs in string dotted format with a comma as

delimiter).

2All of the thresholds are configurable and could be changed in the program.

22 CHAPTER 2. PROBLEM AND APPROACHES
Table 2.2: Considered attacks, part two.
Attack Description
Blaster Worm Exploiting an RPC (Remote Procedure Call) vulnerability
on TCP destination port 135.
Witty Worm Exploiting a vulnerability in ISS
network security products, using UDP source port 4000 and
random destination port.
Alpha Flows Unusually large volume point to point flow. Source address and
destination address (possibly ports) are affected in this attack.
Flash Crowd Unusual burst of traffic to single destination, from a
distribution of sources. Destination address,
destination port are affected.
Port Scan Probing many destination ports on a small set of
destination addresses.
Network Scan Probing many destination addresses on a small set of

destination ports. Destination address, destination port
are affected.

Outage Events Traffic shifts due to equipment failures or maintenance.
Mainly source and destination address are affected.

Point to Multi-point | Traffic from single source to many
destinations. Source address,
destination address are affected.

DDoS 1 [18] A short (10 minutes) DDoS attack on a router and a host with
8 million spoofed source addresses. Destination port is TCP 80.
DDoS 2 [18] A long (13 hours) DDoS attack on a host with 5 million spoofed

source addresses. Destination port is TCP 80.

Havi

portScanThreshold = 4 x 50: Threshold for the maximum number of port scans to be
counted as Port Scan attack. The 4 x 50 = 200 is the average size in string: at minimum,
if an attacker tries 50 different ports each with length 4 in string format.

longDurationThreshold = 10 x 60 x 60 x 1000: Threshold for the maximum duration of an
anomaly for a special kind of attack. We put a limit of almost 10 x 60 x 60 x 1000 = 10A
(hours) in this respect.

trafficThreshold = 500 x 2048: Threshold for the maximum traffic between the attackers
and a victim. This value is in bytes: 500 packets each of which having size in average 2
Kbyte.

ipScanningThreshold = 100: Threshold for the number of network scanning made by an
attacker to be counted as Network Scan attack. It seems that 100 IPs per attacker be a
reasonable threshold.

ng the above mentioned thresholds, we identify the attacks as follows (based on the knowl-

edge given in Tables 2.1 and 2.2):

Alpha Flows: it checks if it is one attacker in the entry (of the attacks data structure)
and the traffic between the attacker and the victim is more than the threshold (i.e. the
trafficThreshold).

Flash Crowd: it checks if it is an ICMP entry, just one single attacker IP and port, and the
total size of traffic exceeds the trafficThreshold.

ICMP Flooding: if it is an ICMP incoming entry.
ICMP Reflection: if it is an ICMP outgoing entry.

Blaster Worm: if it is a TCP incoming entry from attacker to victim port of 135.

2.3 Approach 23

e DDoS 2 (A long DDoS): if it is a TCP incoming entry with victim port 80, and the duration
of attack is more than the longDurationThreshold.

e DDoS 1 (A short DDoS): the same as above, but without fulfilling the threshold.

e Port Scan: if it is @ TCP incoming entry with number of victim ports more than the
portScanThreshold.

o TCP Reflection: if it is a TCP outgoing entry.

e UDP Flooding: if it is an ICMP incoming entry (as a general detection in this case).
o Witty Worm: if it is an ICMP incoming entry, with attacker port 4000.

e DNS Reflector: if it is an ICMP outgoing entry, with attacker port 53 (for DNS).

o UDP Reflection: if it is an ICMP outgoing entry and not a DNS reflector attack, it is most
probably a UDP Reflection attack.

Based on this sort of checking, it then puts a good possible explanation as the “reason” field of
the attacks data structure. Also if it is a network scan attack (as the result of calling checkFor-
NetScanAttack function), the necessary data are filled into the netScanAttacks data structure
as well. Detecting network scan attack is a bit different, the next section argues about it.

Network Scan Attack

In network scan attack usually one attacker scans a range of victims or so to speak IP ad-
dresses. So if we process as before (grouping based on victim IP address), it is hard to observe
anomalous traffic since each of the victims just receives one request/probe from the attacker
and nothing more. But if we categorize them from the attacker’s point of view and gather all of
the victims in one field and attacker in another field, this huge number of (scanned) victims can
reveal anomalous behavior.

Therefore, in order to check the possibility of network scan attack we proceed as follows: We
put attacker in one side and gathers all of the victims in another side, all in netScanAttacks data
structure (reverse of what we do in other attacks).

2.3.5 Post-processing

Before releasing the result, a post-processing phase is performed by calling postProces-
sAnomalies function. Since the attack field of attacks data structure may contain a large number
of (sequential) IP addresses, a good idea is to summarize them in CIDR notation [10]. In this
way, for example, all of the 256 IP addresses from 192.168.0.0 to 192.168.0.255 can be re-
written in condensed form of “192.168.0.0/24".

2.3.6 Writing the result
The program then inserts the detected attacks and list of anomalies into:
1. The output script files: it generates scripts based on MySQL standard definition, which
later on can be executed on a real database (providing facile import/export from/to

database).

2. The MySQL database: it instantly connects to a database and inserts the data into the
designed tables.

Chapter 3 brings more details.

24 CHAPTER 2. PROBLEM AND APPROACHES

2.4 Summing up

We first locate the time and duration of anomalous peaks in TES visualization tools for a specific
time series. By a program, we also extract the corresponding ¢ Tsallis values for detailed view on
the anomalies. Then by running FlowSketches on the raw traffic data, we automatically extract
the anomalous peaks from the specific time series or even from other time points. Subsequently,
by feeding the output to FlowExtractor program with correct parameters, we take out the feature
information (including source IP address, destination IP address, and so on) for every anomaly.
We consider the result of this step as our base metrics to evaluate and examine TES output.
The C++ program AnalyzeTES is then run on the FlowSketches/FlowExtrator output and it iden-
tifies the attacks occurred in the anomalous peaks. The detected attacks are investigated based
on their TES pattern (as well as ¢ Tsallis values) to see whether TES marked this one as attack
or not (if not, it means false negative). Also the other way around, a detected anomalous peak
in TES is also cross-checked with the detected attacks and if it is not among them, so it means
false positive by TES. Of course, expert investigation is also crucial in some conflicts, due to the
fact that FlowSketches output could not be taken as a one-hundred percent true result.

In order to store data in an efficient manner, we design a MySQL database, including various
tables and necessary relations. Again the AnalyzeTES is in charge of maintaining the database,
and when the result is ready, is in charge of inserting all the detailed data into the corresponding
tables. We try to develop all capabilities in just one programming language and one stand-alone
program, avoiding the need for different programs to be installed or managed. The information in
the database tell almost everything about an anomaly and attack, from IP address of victim(s),
IP address of attacker(s), port number of victim(s), port number of attacker(s), total size of
transferred packets, time duration of that attack, start time of attack, end time of attack, ¢ Tsallis
value and finally the root cause(s) of each peak/anomaly.

Chapter 3

Designh and Implementation

In this chapter, we bring the database design as well as program design. The program design
section briefly introduces main points of C++ implementation, and leaves the details for the
Appendix A.

3.1 Database Design

In order to store the (raw) anomaly data, the (processed) discovered attacks, and related infor-
mation, the standard way is to use Database Management Systems (DBMS). Afterwards, we
simply query the database, and we can extract the knowledge in a very efficient and fast man-
ner. Accordingly, we choose MySQL DBMS [4] and design at least 4 tables as follows. Figure
3.1 depicts an overall view of tables in MySQL Workbench 5.1" software.

3.1.1 Anomaly database table

We need one table to store the unprocessed anomalies for further queries. Definition of Anomaly
table in MySQL format comes below:

CREATE TABLE IF NOT EXISTS '‘mydb‘. ‘Anomaly‘ (
‘idAnomaly ‘' INT NOT NULL AUTO_INCREMENT ,
‘srcip' CHAR(15) NOT NULL ,

‘dstip' CHAR(15) NOT NULL ,
‘srcport' INT NOT NULL ,
‘dstport' INT NOT NULL ,
‘proto' INT NOT NULL ,
‘packets' INT NOT NULL ,
‘size' INT NOT NULL ,
‘stime‘ TIMESTAMP NOT NULL ,
‘etime‘ TIMESTAMP NOT NULL ,
‘g' DOUBLE NULL ,

PRIMARY KEY (‘idAnomaly'));

This table contains these columns for each anomaly, respectively:
e idAnomaly: an auto incremental number as the primary key of this table

e srcip: source IP address of this anomaly

dstip: destination IP address

srcport: source port number

dstport: destination port number

e proto: the standard protocol number (e.g. 6 for TCP protocol)

TURL: http://wb.mysql.com/

25

26 CHAPTER 3. DESIGN AND IMPLEMENTATION

| Attack v] AnomalyInfo v
id_AFtack INT idAnomalyInfo INT
+ victim CHAR(15) attackTitle VARCHAR(20)

» attackerTp VARCHAR(200) 1 description VARCHAR({100)

» attackerPort VARCHAR(100) T T T T T detection VARCHAR(100)

» victimPort VARCHAR(100) | prevention VARCHAR(100)

» proto INT } v
\

> totalPackets INT PRIMARY |
 totalSize INT e \
» duration INT(13)

» stime TIMESTAMP
» etime TIMESTAMP | Anomaly v

»q DOUBLE :
» reason VARCHAR(100) idAnomaly INT
» srcip CHAR(15)

-~ reasonMo INT
» dstip CHAR(15)

v
PRIMARY » srcport INT
attackDetails :l NetScanAttack v dstport INT
idNetScanAttack INT proto INT
» attacker CHAR(15) » packets INT
» victims VARCHAR(200) size INT
s number INT stime TIMESTAMP
stime TIMESTAMP » etime TIMESTAMP
etime TIMESTAMP q DOUBLE
v v
| PRIMARY [PRIMARY

Figure 3.1: Database design: relation and fields of tables.

packets: number of packets

size: the size of traffic data in byte

stime: start time of that anomaly

etime: end time of that anomaly

qg: q Tsallis value of the anomaly

3.1.2 Attack database table

We summarize the processed and discovered attacks in another table, Attack. Definition of
Attack table in MySQL comes below:

CREATE TABLE IF NOT EXISTS ‘mydb'‘.‘Attack' (
‘idAttack' INT NOT NULL AUTO_INCREMENT ,
‘victim' CHAR(15) NOT NULL ,
‘attackerIp' VARCHAR(200) NOT NULL ,
‘attackerPort ' VARCHAR(100) NOT NULL ,
‘victimPort ' VARCHAR(100) NOT NULL ,
‘proto' INT NOT NULL ,

‘totalPackets' INT NOT NULL ,
‘totalSize' INT NOT NULL ,

‘duration' INT (13) NOT NULL ,

‘stime' TIMESTAMP NOT NULL ,

‘etime' TIMESTAMP NOT NULL ,

‘g' DOUBLE NOT NULL ,

‘reason' VARCHAR (100) NOT NULL ,
‘reasonNo‘' INT NULL ,

PRIMARY KEY (‘idAttack?') ,

INDEX ‘attackDetails' (‘reasonNo‘' ASC) ,

3.1 Database Design 27

CONSTRAINT ‘attackDetails’
FOREIGN KEY (‘reasonNo‘')
REFERENCES ‘mydb‘. ‘AnomalyInfo' (‘idAnomalyInfo‘)
ON DELETE NO ACTION
ON UPDATE NO ACTION) ;

The columns for every attack are, respectively:
o idAttack: an auto incremental number as the primary key of Attack table
e victim: IP address of victim

e attackerlp: IP address(es) of attacker(s), which may be represented in CIDR format (if they
are serial)

o attackerPort: port number(s) of attacker(s)

e victimPort: port number of victims

e proto: the protocol number (TCP, UDP, ICMP)

o totalPackets: the total number of packets transmitted in this attack
o totalSize: the total size in byte of the traffic data

e duration: the duration period of this attack

o stime: start time of attack

o etime: end time of attack

e reason: an explanation about the type of this attack

e reasonNo: reason number, which refers to the corresponding row in Attacksinfo table (its
definition comes later)

3.1.3 NetScanAttack database table

As mentioned before, the network scan attack is a bit different from other attacks and hence we
have to create a new table for them, named NetScanAttack. It is worth mentioning that this table
is a replication of Attack table; means the corresponding data of this table is also available in
the Attack table (with different fields, of course). Although we could simply remove them in the
insertion phase, we tend to keep them for further analysis and double checking, if necessary.
Definition of NetScanAttack table in MySQL is as follows:

CREATE TABLE IF NOT EXISTS ‘mydb‘.‘NetScanAttack' (
‘idNetScanAttack' INT NOT NULL AUTO_INCREMENT ,
‘attacker' CHAR(15) NOT NULL ,

‘victims' VARCHAR (200) NOT NULL ,
‘number ' INT NOT NULL ,

‘stime' TIMESTAMP NOT NULL ,
‘etime' TIMESTAMP NOT NULL ,
PRIMARY KEY (‘idNetScanAttack?'));

In this table, the following columns for every network scan attack are defined (respectively):
¢ idNetScanAttack: an auto incremental number as the primary key of NetScanAttack table
e attacker: IP address of attacker

e victims: IP addresses of victims, which may be represented in CIDR format (if they are
serial)

e number: number of victims
o stime: start time of attack

e etime: end time of attack

28 CHAPTER 3. DESIGN AND IMPLEMENTATION

database h

anomalky.h database.cpp

anomaly.cpp main.cpp

Figure 3.2: Class dependency.

3.1.4 Attacksinfo database table

We summarize the attack information (as also mentioned in tables 2.1 and 2.2) in the table
Attackslinfo. It helps the user to figure out how to tackle and even battle the attack, for instance
by looking at the prevention field. The data could be updated gradually if new attacks or new
countermeasures are found.

Definition of Attackslinfo table in MySQL format is as follows:

CREATE TABLE IF NOT EXISTS ‘mydb‘.‘AnomalyInfo‘' (
‘idAnomalyInfo' INT NOT NULL AUTO_INCREMENT ,
‘attackTitle' VARCHAR (20) NOT NULL ,
‘description' VARCHAR(100) NULL ,

‘detection' VARCHAR (100) NULL ,
‘prevention' VARCHAR (100) NULL ,
PRIMARY KEY (‘idAnomalyInfo'));

And respectively, the columns have these meanings:
e idAnomalylnfo: an auto incremental number as the primary key of Attacksinfo table

o attackTitle: a title for every attack, e.g. 'Alpha Flows’

description: a (concise) description of that attack, e.g. ’large volume point to point flow’

detection: describes how to detect this kind of attack

prevention: describes how to prevent the attack, even pointing out to the related security
patches.

3.2 Program design

AnalyzeTES has been developed to mainly fulfil these requirements: 1-to process the anoma-
lies and discover well-known attacks out of them, 2-to store the outcome into the designed
databases. All the programming code has been implemented in C++, even the interface for the
database part (using MySQL C API [3]). Doing this way is more efficient and easier to use,
integrate, and maintain.

The program contains these classes: Anomaly, Database and Utility, each of which handles the
different major part of the AnalyzeTES. Figure 3.2 shows the dependency of these classes. In
the following we just introduce some of the functions and their functionality. The more detailed
information are available in Appendix A.

3.2.1 Main function

As always, the C++ code starts with a main function. It first validates the input arguments and
if they are correctly feeded (we will see the input arguments in section Usage 3.3.2), then calls
the appropriate functions (with the right settings), accordingly.

3.2 Program design

29
Database: execDBScriptAttack
| Anomaly:postPracessAnomalies
Database::execDBScriptCreate
‘Anomaly printAtiacks
‘ Database execDBEScriptNatScanAtrack |
Anomaly”processAnomalies
(o
T~ Anomaly setTsallisEntropy Database: getError
‘ _| Anoraly:wiriteDBScript ‘ l Database: getMedianTsalisValue ‘
| Anomaly. writeDBScripthetScan ‘ T Database: statDBTES H Database: startDB
-I Database: readDBEScriptCreate I

Anomaly. writeDBScriptProcessed

| Anomaly:wiiteDBScriptUnprocessed ‘

Figure 3.3: Call graph of main function.

unistd.h string h -anomaly.h
—
h

f \\
AN S e N

mysal.h iostream string

wector algorithm fstream

sstream stdlibyh list math.h

Figure 3.4: Dependency graph of main function.

Figure 3.3 sketches the call graph of main function: It calls either run or autoRunning function,

and the procedure goes on (mainly) with process function from Anomaly class, that we will see
later on.

The dependency graph of main function is depicted in Figure 3.4, indicating which files (and
hence libraries) it uses.

3.2.2 Anomaly class

Anomaly class contains data structures and functions to load anomaly outputs from FlowS-
ketches/FlowExtrator program, and process and analyze the data to identify possible attacks.
Figure 3.5 represents the dependency of this class to other classes in the program.

For usage of this class, we should call init and process functions as below:

#include "anomaly.h"
Anomaly anom;

//Just for testing purposes, and not necessary.

anomaly.cpp

map time.h

fstream list iostream mysglh string sstream stdlib h vector algorithm " mathh

Figure 3.5: Dependency graph of Anomaly class.

30 CHAPTER 3. DESIGN AND IMPLEMENTATION

anom.test () ;

//Initializes some global and constant values,

// like thresholds and inside IP address

anom.init () ;

//OR Initializes the input filename to process, and whether
// it is incoming or outgoing traffic.

anom.init (filename, incoming);

//Calls all of the process from scratch, from reading the
// files to the attack identification and writing back to the database.
anom.process () ;

Briefly speaking:
e The manager is the process function.

e As input, it gets the output file of FlowSketches and cross-check every timestamp with
the TES database in order to extract ¢ Tsallis values from the pre-computed .db files
(setTsallisEntropy function). It computes and hereafter uses the median ¢ in the duration
of start time and end time of that anomaly.

o [t then goes through analysis on the data:

1. Firstit categorizes, based on the destination IP (victim), gathers every attacker, sums
up the total packets and sizes, sets duration of anomalies and the like (proces-
sAnomalies function).

2. Subsequently, it checks for different well-known anomalies on the data and puts a
good possible explanation as the “reason” field (analyze function and also checkFor-
NetScanAttack function for Network Scan attack).

3. Finally, it inserts the data (detected attacks and so on) into the database or the output
script file (configurable).

The mentioned functions work on the following data structures.

Info struct

Info is a data structure for keeping the raw anomaly list, acquired in previous phases. It contains
all information the previous steps have generated so far, in a more comprehensive and human-
understandable format:

struct Info {
string srcip;
string dstip;
uintl6_t srcport;
uintl6_t dstport;
uintl6_t proto;
uintl6_t packets;
uintl6_t size;
uint64_t stime;
uint64_t etime;
double qg;
bi
In this structure: srcip stands for source IP address and dstip for destination IP address, all
converted into dotted-notation format. srcport and dstport are source and destination ports,
respectively. proto represents the protocol number, which is one of the following constant values:

enum PROTO {TCP = 6, UDP = 17, ICMP = 1};

packets shows the number of packets and size field shows the size in bytes. stime and etime
respectively stands for start time and end time of that anomaly.

Finally, the ¢ field here refers to “median” ¢ Tsallis value at time period of stime to etime.
anomlist is a Standard Template Library (STL) list of Info data structure.

3.2 Program design 31

Processedinfo struct

Processedinfo is a data structure for keeping all the processed data: after the anomlist is pro-
cessed, the knowledge extracted from it stores here. It contains the information about the attack,
in particular the attackers IP addresses, and some aggregated information about the feature dis-
tributions.

struct ProcessedInfo {
string attackerlIp;
string attackerPort;
string victimPort;
uintl6_t proto;
int totalPackets;
uint32_t totalSize;
uint64_t duration;
uint64_t stime;
uint64_t etime;
double g;
string reason;

}i

In this data structure: attackerI P contains a list of attackers’ IP addresses to a particular victim
(the IP address of this victim is not stored here, but in attacks variable) in dotted-notation,
separated by a comma. attacker Port is the list of attackers’ port numbers, separated by comma
as well. proto is one of these standard protocol numbers: TCP = 6, UDP = 17, ICMP = 1.
total Packets represents the total number of packets from the group of attackers to this victim,
and total Size is the total size in bytes of those packets. duration shows the time period that this
attack happened, and stime and etime are start time and end time of that attack, respectively. ¢
is the median ¢ Tsallis value in this period, and finally reason contains an explanation about the
type of this attack.

attacks variable is a STL map of this Processedinfo structure along with the victim in string
dotted-notation format. In this way, both the victim and the attack’s information are being kept
together.

NetScanAttackNode struct

NetScanAttackNode is a data structure for keeping the network scan attack data to put together
the attacker and its target victims.

struct NetScanAttackNode {
string victims;
int nj;
uint64_t stime;
uint64_t etime;

bi

In this data structure: victims field contains a list of victims’ IP addresses targeted by a particular
attacker (which the IP address of this victim is not stored here, but in netScanAttacks variable)
in dotted-notation, separated by a comma (which later will be converted into CIDR notation, if
possible). n is the number of all victims, stime and etime are start time and end time of that
network scan attack, respectively.

netScanAttacks variable is a STL map of this NetScanAttackNode structure along with the at-
tacker IP address in string dotted format. In this way, both the attacker and the victims’ informa-
tion are being kept together.

KnownAttackNode struct

Along with the data structures mentioned so far, for the sake of simplicity, just the victim and the
attackers and the reason of this attack are also stored in KnownAttackNode structure as defined
below.

32 CHAPTER 3. DESIGN AND IMPLEMENTATION

database cpp

database h

iostreamn string list sstream fstream vector stlib h sl
Figure 3.6: Dependency graph of Database class.

struct KnownAttackNode {
string reason;
string victim;
string attackers;

bi

Actually this data structure summarizes the findings, and makes easier to address and refer to
them whenever it is needed.

Here reason means the identified type of this attack, victim contains the victim’s IP address,
and the attackers is the list of attackers to this particular victim.

3.2.3 Database class

Database class contains data structures and functions to connect to a MySQL [4] database and
executes the following tasks:

1. Creating tables for the list of anomalies and the discovered attacks.
2. Inserting anomalies into anomaly table, and inserting attacks into attack table.
3. Responding different queries about the stored data.

Database class handles all considerations of working with a MySQL database, and eases its
calling and error checking. Figure 3.6 sketches the dependency graph of this class.

For usage, we can call for instance the readDBScriptCreate and then execDBScriptCreate as
below:

#include "database.h"

Database db;

//reading information from the input file 'table.txt’
db.readDBScriptCreate ("tables.txt");

//creating the tables by executing the script taken from file
// to database

db.execDBScriptCreate();

Briefly speaking, it contains some function to read the data that should be stored in a database
from input files, such as: readDBScriptAnomaly, readDBScriptAttack, and readDBScriptCreate.
And some to execute a query on the database, mainly in these functions: execDBScriptAnomaly,
execDBScriptAttack, and execDBScriptCreate.

3.2.4 Utility class

Utility class contains utility functions to work with IP addresses, port numbers, and timestamps:
1. Converting string values to integers,
2. Converting time in epoch to human readable, and

3. Converting a range of IP addresses into CIDR notation.

3.2 Program design 33

utility.cpp

l

utility h

Y

lostream string sstream math.h stdlib.h
Figure 3.7: Dependency graph of Utility class.

Mostly, it is used by Anomaly class (see section 3.2.2). Figure 3.6 sketches the dependency
graph of this class.
For usage, we can call it like the following:

#include "utility.h"
Utility util;

Briefly speaking, this a the utility class specially to make shorten the length of a group of
IP addresses: groplPs function represents a range of IP addresses in a CIDR format, e.g.
100.100.100.101 — 100.100.100.255 = 100.100.100.100/24 and etc.

3.2.5 Base flowchart and summing up

As also depicted in Figure 3.8, the basic flow of AnalyzeTES program is as follows (the items

before “::” represent the classes that that subsequent functionality is part of):

1. Main::process input parameters: In this phase, the main program processes the input
parameters and based on them decides to call the anomaly class or not.

2. Anomaly::initialize and read anomalies: This phase deals with initializing variables like
the input file and if the traffic is incoming or outgoing. Then, it reads the anomalies and
converts some of the fields like IP addresses into more readable format.

3. Utility::convert IP address to dotted format: By calling this part, an IP address is converted
into more comfortable format for humans, so to speak in dotted style, in order to ease the
analysis part.

4. Database::connect to MySQL database: After reading the anomalies by Anomaly class,
it needs to find out the corresponding ¢ Tsallis values for every one of them. So in this
phase, it makes a connection to the Tsallis pre-computed database.

5. Database::read ¢ Tsallis values: From the last phase, it continues with reading of the
demanded information from the database, of course if the connection was obtained suc-
cessfully.

6. Anomaly::pre-process anomalies: In order to organize the anomalies into a victim-oriented
format, this phase works on them and categorizes/groups by them based on the same
victim IP address. In this way, it concentrates on the victim as the reason/target of every
possible attack.

7. Anomaly::analyze them on possible attacks: This phase cross-checks the anomalies with
the list of known attacks in order to identify them based on the attacks’ characteristics.

34

CHAPTER 3. DESIGN AND IMPLEMENTATION

10.

11.

12.

13.

14.

3.3
3.3.1

Anomaly::check the possibility of network scan attack: Also, since the nature of network
scan attack is a bit different and can not easily be viewed in the victim-oriented format
(usually an attacker scans a vast range of IP addresses to gather information about pos-
sible victims for later intended attack), it goes through an attacker-oriented one. In other
words, it now categorizes the anomaly based on its attacker IP address. If the range of
victim IP addresses exceeds a pre-set threshold value so it is (possibly) a network scan
attack.

. Anomaly::post-process the attacks, summarize them in CIDR format: After the analysis

phase, this phase summarizes some of large fields like attackers (or victims) IP addresses
in detected attacks (or respectively network scan attacks) in equivalent compact CIDR for-
mat. (Specially for the network scan attacks, due to the fact that their victims’ IP addresses
usually are serially ordered.)

Utility::show in CIDR format: It converts the range of IP addresses into the equivalent CIDR
notation, if possible. For example, instead of having 256 IP addresses from 192.168.0.0 to
192.168.0.255, just one “192.168.0.1/24” is considered and stored.

Anomaly::write the database scripts into output files: This phase deals with writing the
anomalies, the result of analysis including the attacks and so on into the script files in
MySQL language. These scripts can be executed later on on every machine equipped
with MySQL DBMS, and actually as a kind of exporting data for future import.

Main::make ready data for database: Since the script files have been created and filled,
this phase passes them by calling the database related functions on each of them, in
correct sequence: The first script should be table creation (if not exist) followed by a bunch
of insertions.

Database::connect to MySQL database and create the tables if do not exist: At the first
step of every database activity, it should acquire a handle to a running MySQL database.
If this phase is invoked without error, it means that a (back-end) DBMS is ready to receive
queries and respond accordingly. Needless to say that the necessary tables should be
created first and then the data be inserted.

Database::insert data into the tables: Finally, the gathered data are inserted into corre-
sponding tables for further queries.

Installing and Usage the program

Install

There is no installation needed for AnalyzeTES program. Since it has been developed in pure
C++, it can be compiled and built in both Windows and Linux operating systems (binary files for
each of these platforms are available as well). The only necessary library (other than standard
C++ libraries) is the MySQL C API [3], that also the same for both operating systems.

This is the Makefile script of how to build the AnalyzeTES:

CXX=g++
CXXFLAGS=
PROG=analyzeTES
INCLUDE=mysqgl/include/
LIBDIR=mysql/lib/
MYSQLLIB=mysqglclient

all:

main.cpp anomaly.o database.o utility.o
$ (CXX) main.cpp anomaly.o database.o utility.o \
-1$ (MYSQLLIB) -IS$(INCLUDE) -o $ (PROG)

anomaly.o: anomaly.cpp anomaly.h

$(CXX) -c anomaly.cpp —IS$ (INCLUDE)

3.3 Installing and Usage the program

35

Anomaly class

(2,3)
process input parameters |) initialize and read anomalies
pre-process anomalies Fj 4)
| | make ready data for database |« (5)
analyze them on possible attacks ©6)
check the possibility of network scan attack
(7
post-process the attacks, including
(10) summarize them in CIDR format
(11))
write the database scripts into output files
®3)
Database class
(11.1)
IR (3.1)
connect to MySQL database
(3:2)
. (3.3)
d Q tsallis values f¢———F— 2
read Q tsallis values convet ip address to dotted format |<— @
(11.2)
L—| insert data into the tables (®)
show in CIDR format |

Figure 3.8: AnalyzeTES flow diagram.

36 CHAPTER 3. DESIGN AND IMPLEMENTATION

database.o: database.cpp database.h

$ (CXX) -c database.cpp -I$(INCLUDE)
utility.o: utility.cpp utility.h

$(CXX) —-c utility.cpp —-I$ (INCLUDE)
clean:

rm —-rf *.o $(PROG)

Just executing the command make in the Linux shell suffices (for Windows it is similar, depends
on the compiler though).

3.3.2 Usage

In order to use the AnalyzeTES program properly, these arguments should be feeded as input
parameters:

./AnalyzeTES —-f [filename] -{a,i,0,?}
These options mean:
—a: automatically read the analysis_x files and process them
—i: if the file contains incoming traffic
—-o: 1f the file contains outgoing traffic
-?: for this guide

Note: —-i and -o can not come together!

No need for explanations though, the program accepts an input file name (by —f, the output
of FlowSketches program), and also either —i or —o to indicate the input file contains incoming
traffic or outgoing traffic, respectively.

Chapter 4

Experimental Result

Two approaches are considered to evaluate and examine TES. First one is to take every
anomaly discovered by TES visualization tools and run the FlowSketches at that particular time
to see if it is really an attack or not (if not, it means false positive). Second one is to run FlowS-
ketches and examine the ¢ Tsallis value of every discovered attack (and also the TES pattern of
the attack time period) to see whether this attack is viewable there or not (if not, it means false
negative). Section 4.1 gives a successful example of the first one, and subsequently section 4.2
illustrates a unsuccessful example of the second one.

For the privacy purposes, the IP addresses are anonymized.

4.1 First approach: examining an anomaly from TES

We illustrate a sample running of the first approach, giving an example on real data. Here we
would like to examine whether an anomaly seen in TES visualization tools is really an attack or
not. If it is, we would like to extract the feature information about it.

We run the TES visualization program (which has been implemented in MATLAB) on the data
“2008_04_12_refl_DDoS” in order to search for possible anomalies. As appears in the Figure
4.1, we can see the computed Tsallis entropy values at different point in time. Here, we con-
centrate on anomalies of TCP packets for incoming traffic to SWITCH network (indicated by IN
tab). The TES diagram at this figure (bottom of Figure 4.1) and Figure 4.2 respectively show the
entropy changes for the source IP address and the corresponding destination IP address.
Figure 4.3(a) represents a vast changes (here “strange” low activity) from the entropy of normal
traffic for source IP addresses, and respectively Figure 4.3(b) shows a vast changes (here
“strange” high activity) for destination IP addresses, at that particular time. Different colors show
different numbers for ¢ Tsallis values, for instance the dark blue is a value between ¢ = 1.5 and
q = 1, and the red is for values around ¢ = —1.75.

For the sake of brevity, in the following, we focus on the source IP addresses. First, the start and
end time of the anomaly period are extracted:

1. start time: Wednesday, April 02, 2008 10:06:46 AM (or 1207123606 in epoch format), and
2. end time: Wednesday, April 02, 2008 5:45:26 PM (or 1207151126 in epoch format).

Then, in order to run the FlowSketches program with appropriate parameters, the following script
is being prepared (ST ART is the start time of evaluation on the data, INT is time interval, LEN
is the sketch length, and HSH is the number of hash functions):

#!/bin/sh

SKETCHDIR="/home/amahdi/fromevelyn/sketch-1.0/src"

READERDIR="/home/amahdi/work/workspace/Netflowv5Reader/Debug"

MERGERDIR="/home/amahdi/work/workspace/FlowMerger/Debug"

DATAl="/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/\
19991x_1207123*.dat.bz2"

DATA2="/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/\
19993x_1207123*.dat.bz2"

37

38 CHAPTER 4. EXPERIMENTAL RESULT

Figure 4.1: A snapshot of TES visualization program, for incoming traffic of source IP addresses.

31-Mar-2008 [
L] |
01-Apr-2008 00:55:00
=] 0

Figure 4.2: A snapshot of TES visualization program, for incoming traffic of destination IP ad-
dresses.

4.1 First approach: examining an anomaly from TES 39

x A x 10

= e
= ks
T

Tzallis entropy
Tzallis entropy

S M B m m
T

| |
Apr-2008 09:06:50 02-Apr-2008 02-Apr—-2008 10:34:29 02-Apr-

TES for TopSipd TES for TcpDi
= ar TcpSipde - Pl f_‘l..e\

|| ll OW

i
(b)

(a)

Figure 4.3: A possible anomaly discovered by TES: (a) for the source IP addresses, (b) for the
destination IP addresses.

START=1207123606

INT=300

LEN=1024

HSH=5

Create pipes

mkfifo pipel

mkfifo pipe2

mkfifo pipe3

SREADERDIR/Netflowv5SReader S$DATAl pipel &

SREADERDIR/Netflowv5Reader S$SDATA2 pipe2 &

SSKETCHDIR/FlowSketches pipe3 /dev/null -h $HSH -1 $SLEN \
-i S$INT -s S$START &

SMERGERDIR/FlowMerger pipe3 pipe2 pipel

Delete pipes

rm pipel

rm pipe?2

rm pipe3

It is worth mentioning that FlowSketches program can use two threshold values, one considering
95%, the other considering 99% of the intervals as normal traffic. Here, we use the second
threshold.

The script is run and after considerable amount of time, it writes the output in files with prefix
“sketch_” (e.g. sketch_tcp_srcip_in_1.csv) for different protocols (TCP, UDP, ICMP), different
features (source ip, etc), and different directions (incoming or outgoing). The collect_anomalies
MATLAB program is subsequently invoked on the sketch files. After successful execution, it
eventually gives out files with prefix “anomalies_” (e.g. anomalies_tcp_srcip_in_99.txt) along
with text files.

At this stage, we deal with the feature extraction using the FlowExtractor program. But, before
we go on with it, we need a correct Python script as the extraction scenario. For this purpose, a
Perl script is changed and adapted for the current data. The result of this Perl script (named gen-
erate.pl) is two files: 1-extract.sh (as comes below), and 2-analysis1.py (the mentioned Python
script).

#!/bin/sh

40 CHAPTER 4. EXPERIMENTAL RESULT

B
1
1
1
1
1
1
1
1
1
1
1
1
1

[]

Figure 4.4: A snapshot from the output result of FlowExtractor (IP addresses are anonymized).

Create pipes

mkfifo pipel

Start programs

/home/amahdi/work/workspace/Netflowv5Reader/Debug/Netflowv5Reader

/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/\
19991_00045523_1207123200.dat.bz2 \
/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/\
19993_00045523_1207123200.dat.bz2 pipel &

/home/amahdi /work/workspace/FlowExtractor/Debug/FlowExtractor pipel \
/dev/null analysisl.py

Delete pipes

rm pipel

As mentioned in this script, FlowExtractor program is invoked on the specified data and follows
the instruction given by analysis1.py Python script. The outcome is several files with prefix
“analysis_” (e.g. analysis_tcp_hsips_in_1207123306.txt) that each contains these information
(the examples are from the first row of Figure 4.4):

e source |IP address, e.g. 1325315113

e destination IP address, e.g. 1283091506

e source port, e.g. 53346

e destination port, e.g. 22

e protocol, e.g. 6 (for TCP)

e number of packets, e.g. 2

e size in bytes, e.g. 88

o start time, e.g. 1207124026683 (or Wednesday, April 02, 2008 10:13:46 AM)
e end time, e.g. 1207124027003 (or Wednesday, April 02, 2008 10:13:47 AM)

Figure 4.4 shows a snapshot of one of the outputs.

At this stage: In order to find out a possible explanation for the anomalies and hence insert
them all into a (MySQL) database, the AnalyzeTES is invoked on the “analysis_” output files.
This program has the option to insert directly the result into a database or write them down in
(My)SQL language into files. In the first case, it uses MySQL C API [3] to connect, create and
insert data into a MySQL database. In the second case, it generates at least these files:

1. Text file tables.txt: contains SQL commands to create the necessary tables to keep the
data. The definition of main tables are mentioned in Section 3.1.

2. Text file anomalies.txt: contains SQL commands to insert anomaly data into Anomaly table
(see section 3.1.1). For example:

4.2 Second approach: example of false negative

41

INSERT INTO Anomaly VALUES (’026.065.121.2007",
INSERT INTO Anomaly VALUES (’026.065.121.2007,
INSERT INTO Anomaly VALUES (’026.065.121.2007,
INSERT INTO Anomaly VALUES (’026.065.121.2007,

INSERT INTO Anomaly VALUES (’026.065.121.2007,

7173.194.000.050",
53346, 22, 6, 2, 88, 1207124026683, 1207124027003, 1.5);
7173.194.000.146",
53346, 22, 6, 2, 88, 1207124026683, 1207124027323, 1.5);
7173.194.003.006",
53346, 22, 6, 2, 88, 1207124026746, 1207124027322, 1.5);
7173.194.003.009",
53346, 22, 6, 2, 88, 1207124026746, 1207124027386, 1.5);
7173.194.003.007",
53346, 22, 6, 2, 88, 1207124026746, 1207124027322, 1.5);

3. Text file attacks.txt: contains SQL commands to insert the discovered/identified attacks

into Attack table (see section 3.1.2).

INSERT INTO Attack VALUES (’173.194.000.0007",

1.5, '"Network Scan attack,’);

INSERT INTO Attack VALUES (’173.194.000.0017,

1.5, ’'Network Scan attack,’);

INSERT INTO Attack VALUES (’173.194.000.0027,

1.5, '"Network Scan attack,’);

INSERT INTO Attack VALUES ("173.194.000.0037,

1.5, '"Network Scan attack,’);

INSERT INTO Attack VALUES (’173.194.000.0047,

1.5, ’"Network Scan attack,’);

026
",53346,", ',22,", 6, 2, 96, 0, 1207124026683,

"026.
",5334¢,"’, ',22,", 6, 2, 96, 0, 1207124026683,

"026.
",53346,", ',22,’, 6, 2, 96, 0, 1207124026746,

"026.
",5334¢,’, ',22,", 6, 2, 96, 0, 1207124026746,

"026.
",5334¢,", ',22,’, 6, 2, 96, 0, 1207124026746,

.065.121.200,7,
1207124027003,

065.121.200,",
1207124027323,

065.121.200,",
1207124027322,

065.121.200,",
1207124027386,

065.121.200,",
1207124027322

4. Text file netscanAttacks.txt: contains SQL commands to insert the discovered/identified
network scan attacks into NetScanAttack table (see section 3.1.3). In the following, the
range of IP addresses (in CIDR notation) that the attacker ‘026.065.121.200° probes is
listed (this list is cut after passing the specified threshold/limit). This is actually the result
of running AnalyzeTES on the corresponding response traffic (indicated with “_answer.txt”

among FlowSketches output files).

INSERT INTO NetScanAttack VALUES
("026.065.121.200", ’'Randomly Distributed,
173.194.000.001/24,173.194.001.001/24,173.
173.194.003.001/24,173.194.004.001/24,173.
173.194.006.001/24,173.194.007.001/24,173.
173.194.009.001/24,173.194.010.001/24,173.
173.194.012.001/24,173.194.013.001/24,173.
173.194.015.001/24,173.194.016.001/24,173.
173.194.018.001/24,173.194.019.001/24,173.
173.194.048.001/24,173.194.049.001/24,173.
49152, 1207124026683, 1207124128115);

194.
194.
194.
194.
194.
194.
194.
194.

002.
005.
008.
011.
014.
017.

020

001/24,
001/24,
001/24,
001/24,
001/24,
001/24,

.001/24,
050.

001/24,...7,

As indicated in the attack script example (which contains a small portion of all detected ones'),
most of them are categorized as “Network Scan attack” attacks. It means that at this time, the
attacker is scanning the SWITCH network for possible victims to be probably used as a reflector

for intended attack.

4.2 Second approach: example of false negative

Here, we follow a similar procedure as described for the first approach. First, FlowSketches
program is run on the traffic and then the discovered attacks are evaluated and examined based

"The tag “Randomly Distributed” is being inserted after the length of this field exceeds from a predefined threshold.

42 CHAPTER 4. EXPERIMENTAL RESULT

on their ¢ Tsallis values.

So, as before, FlowSketches with appropriate parameters and data is invoked (as can be seen,
we configure this script to run on all data indicated by “19991*.dat.bz2” and “19993*.dat.bz2”,
not just specific ones).

#!/bin/sh
SKETCHDIR="/home/amahdi/fromevelyn/sketch-1.0/src"
READERDIR="/home/amahdi/work/workspace/Netflowv5Reader/Debug"
MERGERDIR="/home/amahdi/work/workspace/FlowMerger/Debug"
DATAl="/largefsl/netflow_data/raw/2008_04_12_refl DDoS/19991x.dat.bz2"
DATA2="/largefsl/netflow_data/raw/2008_04_12_refl_DDoS/19993%.dat.bz2"
START=1206896400
INT=300
LEN=1024
HSH=5
S
Create pipes
mkfifo pipel
mkfifo pipe2
mkfifo pipe3
SREADERDIR/Netflowv5Reader S$SDATAl pipel &
SREADERDIR/Netflowv5Reader S$DATA2 pipe2 &
$SKETCHDIR/FlowSketches pipe3 /dev/null -h $HSH -1 S$LEN \

-1 SINT -s S$START &
SMERGERDIR/FlowMerger pipe3 pipe2 pipel
Delete pipes
rm pipel
rm pipe2
rm pipe3

After it is done with the FlowSketches, we continue with collecting anomalies as well as building
the script for FlowExtrator. This script is quite similar to the above version, just with different
input files. In this example we employ a smaller anomaly threshold in the collecting phase, on
purpose. After FlowExtrator finishes its work, we run AnalyzeTES on the result files.

In this example, we focus on the output file for UDP protocol, the destination IP address, and for
incoming traffic (i.e. file analysis_udp_hdips_in_1206919500.txt).

As the result of running AnalyzeTES, it gives out an attack list that the one below mentions the
occurrence of “UDP Flooding” attack:

INSERT INTO Attack VALUES (’161.170.184.128’,’Randomly Distributed,
159.049.215.245,221.115.209.082,217.164.182.216,174.102.253.218,
161.064.186.226,231.055.241.138,167.193.108.024,066.220.164.215,
134.078.182.006,211.173.121.177,200.072.115.059,OMITTED_1IP,
144.103.120.020,159.165.123.107,145",",23323,29162,10636, OMITTED_PORT,
11543,", ’',12055,0,23650,", 17, 13212, 6823754, 811072,

1206919498191, 1206920399828, 0.25, ’'UDP Flooding,’);

In above script, two values are omitted for the sake of brevity: 1-OMITTED _IP that contains
almost 50 random source IP addresses, and 2-OMITTED PORT that contains almost 7000
(look like randomly) generated source port numbers.

This attack happened in 31 March 2008, between 1:24:58 AM to 1:39:58 AM (local time). But
if we have a look at the corresponding ¢ Tsallis value at this period (which is ¢ = 0.25) and
also to the TES visualization program (Figure 4.5), we realize that this attack could not be
observed! Although TES could not detect this actual attack, choosing an appropriate threshold
in FlowSketches may bring invisible attacks into observation.

Therefore, we confront with a case that it is a UDP flooding attack but TES is not able to detect
it; In other words, this example shows one of the false negatives in the TES.

Summing up, we illustrate one example of correct detection of “Network Scan Attack” by TES,
and one example of weakness of TES in detecting “UDP Flooding Attack” at particular time in
the data.

4.2 Second approach: example of false negative 43

Figure 4.5: A UDP Flooding attack occurred in period that the black rectangle indicates, but it is
not reflected by TES.

44

CHAPTER 4. EXPERIMENTAL RESULT

Chapter 5

Outlook

Some suggestions that would help to improve this work and other related works, are proposed
in the following:

e The FLAME and its utility tools around are getting bigger and complicated in a bad way! As
though, everybody has added something but in his own way, without following an internal
standard or framework. Thus, for one single task we have to deal with several environ-
ments (and install several packages, t0o): running part of it with C++, with Python, some
other with Perl, even with Linux shell, with MATLAB and so on. We get to do something
before the whole system becomes unmanageable.

e Due to this vast spreading, this work just has been implemented in C++ and uses the ex-
isting APIs (e.g. MySQL database API) to bridge for different usages. (Besides, a program
written in C++ language is so much faster in comparison to one in script languages and
MATLAB.) But still major part of this work needs to use different platforms and the human
involvement, which would be better to have them automated in just C++. So, the ideal
version of this work can be only one program/package, providing these capabilities:

1. AnalyzeTES -s 1 -d database -t threshold -o pipe1
Step one: the outcome of this running is a file (or pipe7) that contains all the times-
tamp that the ¢ Tsallis value in those points does not satisfy this threshold. This part
considers the pre-computed TES database files.

2. AnalyzeTES -s 2 -d rawdatabase -i pipe1 -0 pipe2
Step two: it takes the timestamp output of the previous step (from pipe?) and gives
out the feature distribution for each timestamp, queried from rawdatabase. For this
purpose, it makes use of the FlowSketches as well as FlowExtractor programs.

3. AnalyzeTES -s 3 -d resdatabase -i pipe2
Step three: it takes the anomaly information generated in the previous step (from
pipe2) and works on the data. It analyzes the file and puts a good possible expla-
nation for every anomaly and finally inserts them into the designed database res-
database.

e In the AnalyzeTES program, set of rules to identify an anomaly have been written in if
statements (e.g. if (tcpport == 80) then etc). So, whenever we want to include another
attack we should change the code and subsequently run the make file. A subtler idea is
to define a simple language for these rules and put them into a file, and feed this file as
input parameter to the program. One entry of that file could look like this: udpsport=4000,
packetsizethreshold>300 => "X attack’. Thus, there is no need to change and recompile
the code anymore, however coming up with this rule language may not be straight-forward.

e In the existing scenario of extracting feature information, we have to read the data twice:
once we run FlowSketches and the other time when we run FlowExtrator. Each of this
reading and the necessary computations take considerable times in the scale of some
days (it depends on the data). This way, it could not be seen as an “online” detection and
identification system! It seems that we can improve the system and use a better memory
management in such a way that all of the tasks are done in one reading/shot. We can

45

46

CHAPTER 5. OUTLOOK

put a limit, say a window time, and only consider the data in this window to compute the
threshold and the like. Along with this sort of changes, we can also employ some virtual
memory management algorithms if we usually run out of memory.

e Because of time limit, we could not run this scenario on more data from different time slots.
However the running may seem a bit time consuming, the scenario is almost straight-
forward.

Chapter 6

Summary and Conclusion

We carried out a network anomaly analysis by the TES (Traffic Entropy Spectrum) on some
traffic distributions from the SWITCH network. First, as explained mostly in Chapter 2, we took
the anomalous peaks from TES and extracted their occurrence period time and their ¢ Tsallis
value. Then, we executed FlowSketches program on the specified point in times to acquire
the detected anomalies by this tool as well. Subsequently, by means of FlowExtrator program,
features information about the anomalous peaks gave out as output files, each of which contains
IP source and destination addresses, port source and destination numbers and so on, for every
protocol.

Having these feature distributions, we run the AnalyzeTES utility program to further process
them and find out a reason for an anomaly or mostly for a group of anomalies. This program
could help us figure out what was really going on on the traffic, and further check the TES state-
ment in this respect. As mentioned, we were somehow able to verify either that the anomalous
peak/pattern viewed in TES was really an attack, or there should be an anomalous peak/pattern
in that particular time in TES but it was not. As mentioned in the (result) Chapter 4, we illus-
trated two examples: one (i.e. network scan attack) for the case that we could confirm the TES
alarm was also verified by another tools FlowSketches, and another example (i.e. UDP flooding
attack) to show how TES could be wrong about an anomaly/attack which did really occur in the
system.

And finally, AnalyzeTES program stored all the findings in different output files, including the
anomalies, attacks, network scan attacks, and table creation all in MySQL language. Also, it
inserted them into the designed MySQL database, if the database be ready and up. By doing
s0, we provided a capability of further working and investigating on the anomalies and attacks
in a better and efficient way of receiving assistance from database management system.

47

48

CHAPTER 6. SUMMARY AND CONCLUSION

Appendix A

Implementation details

More implementation details about AnalyzeTES program will be given in the following.

A.1 Main

The main program, first evaluates the input arguments and if they are correct, then based on
those arguments, it calls the appropriate functions.

A.1.1 run function
Function run has the following information:
o Definition: int run(const char* filename, bool incoming)

e Description: This function runs the init and process functions of Anomaly class on every
input file.

o Parameters: filename represents the name of input anomaly file. And parameter incoming
indicates if the traffic is coming to the inside of local network, or is going outside of it.

e Return: It returns an integer as error code.

A.1.2 autoRunning function
Function autoRunning has the following information:
e Definition: int autoRunning()

e Description: This function reads the input file names and subsequntly calls the run function
(as mentioned above) on each of them.

e Parameters: Nothing.

e Return: It returns an integer as error code.

A.2 Anomaly class

This class has the following definition. Description of each method will come at the subsequent
subsections.

#ifndef ANOMALY H_
#define ANOMALY_H__
finclude <iostream>
#include <fstream>
#include <list>

49

50 APPENDIX A. IMPLEMENTATION DETAILS

#include <string>
#include <sstream>
#include <map>
#include <time.h>
#include <math.h>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include "utility.h"
#include "database.h"

using namespace std;

class Anomaly
{
public:
/+% data structure for keeping the processed data,
* attackers along with the victim, and a reason/type of that attack.
*/
struct KnownAttackNode {
string reason;
string victim;
string attackers;
i
/+* data structure for keeping the network scan attack data,
* to put together the attacker and its target scanning victims.
*/
struct NetScanAttackNode {
string victims;
int n;
uint64_t stime;
uint64_t etime;

}i

/+x data structure for keeping all the processed data:

«* from attackers IP addresses, the victim, total packets, and so on.

* By processing these data, Anomaly class is able to detect a

* specific attack by cross-checking every entry with the known

+ attack informations.

*/

struct ProcessedInfo {
string attackerIp;
string attackerPort;
string victimPort;
uintl6_t proto;
int totalPackets;
uint32_t totalSize;
uint64_t duration;
double qgj;
string reason;

}i

/++ data structure for keeping the raw data read

* from the output files.

*/

struct Info {
string srcip;
string dstip;
uintl6_t srcport;

A.2 Anomaly class

uintl6_t dstport;
uintl6_t proto;
uintl6_t packets;
uintl6_t size;
uint64_t stime;
uint64_t etime;
double qgj;
bi
#define DOTTED_IP_SIZE 15 //000.000.000.000
private:
//database related
Database db;
string DBAnomalyTableName;
string DBAttackTableName;
string DBNetScanAttackTableName;
string DBAnomalyInfoTableName;
//network related
string filename;
bool IN;
bool OUT;
Utility util;
string insidelIP;
string insideNetMask;
int noIpsThreshold;
int portScanThreshold;
uint64_t longDurationThreshold;
uint32_t trafficThreshold;
public:
enum PROTO {TCP = 6, UDP = 17, ICMP = 1};
enum ANOMALY_LIST {
DOS,
ICMP_FLOODING,
ICMP_REFLECTOR,
TCP_SYN_FLOODING,
UDP_FLOODING,
DNS_REFLECTOR,
}i
private:
map<string, ProcessedInfo> attacks;
map<string, NetScanAttackNode> netScanAttacks;
list<Info> anomlist;
public:
Anomaly () ;
~Anomaly () ;
//read and process anomalies
void init ();
void init (const charx inputFile, bool incoming);
int process{();
void processAnomalies () ;
void postProcessAnomalies();
int analyze();
//related to network scan attack
int getNoVictimsByAttacker (string attackerIp);
bool checkForNetScanAttack (string attackerIp);
//print and utility functions
bool isInside(string ipstr);
int readAnomalies (const char xinputfile);
void printAnomalies();

52 APPENDIX A. IMPLEMENTATION DETAILS

void printAttacks();

void printNetScanAttacks();

void printTimes();

void test ();

//writing to a SQL script

int writeDBScriptUnprocessed (const char *outputfile);
int writeDBScriptProcessed(const char xoutputfile);
int writeDBScript (const char xoutputfile);

int writeDBScriptNetScan (const char xoutputfile);
//requesting q Tsallis values from Database class
int setTsallisEntropy();

;éndif /* ANOMALY_H_ «/

A.2.1 init: first function

Function init has the following information:
o Definition: void Anomaly::init()
e Description: This function initializes the private values.
e Parameters: Nothing.

e Return: Nothing.

A.2.2 init: second function

Function init has the following information:
o Definition: void Anomaly::init(const char* inputFile, bool incoming)
e Description: This function initializes the private values.

e Parameters: incoming is true if the traffic is from outside to the inside of the private net-
work. And inputFile contains the name of the anomaly file.

e Return: Nothing.

A.2.3 islnside function

Function isinside has the following information:
o Definition: bool Anomaly::isinside(string ipstr)
e Description: This function checks if an IP is inside of the network or outside.
e Parameters: jpstr string representation of an IP address in dotted format.

e Return: It returns true if it's inside, otherwise it returns false.

A.2.4 readAnomalies function
Function readAnomalies has the following information:
o Definition: int Anomaly::readAnomalies(const char *inputfile)

e Description: This function reads anomalies from the given input file and stores them in
anomlist storage.

e Parameters: inputfile is an input file name.

e Return: It returns error if something bad happens during file opening.

A.2 Anomaly class 53

A.2.5 printAnomalies function
Function printAnomalies has the following information:
o Definition: void Anomaly::printAnomalies()

e Description: This function prints the anomalies from anomlist, mostly for debugging pur-
poses.

e Parameters: Nothing.

e Return: Nothing.

A.2.6 printTimes function
Function printTimes has the following information:
e Definition: void Anomaly::printTimes()

e Description: This function prints “time” field of anomlist data structure in human readable
format.

e Parameters: Nothing.

e Return: Nothing.

A.2.7 processAnomalies function
Function processAnomalies has the following information:
o Definition: void Anomaly:;processAnomalies()

e Description: This function processes the anomlist and brings together those have the
same destination IP address (as the victim), by accumulating the source IP addresses, the
source and destination port addresses, summing up the number of packets, calculating the
amount of data being received, and measuring the duration anomaly time. Mainly, it works
on anomlist data structure, and fills the attacks data structure as a processed anomaly
list.

e Parameters: Nothing.

e Return: Nothing.

A.2.8 postProcessAnomalies function
Function postProcessAnomalies has the following information:
o Definition: void Anomaly::postProcessAnomalies()

e Description: This function post-processes the attacks data structure and further organizes
it, such as summarizing the list of IP addresses in the CIDR format.

e Parameters: Nothing.

e Return: Nothing.

A.2.9 analyze function
Function analyze has the following information:
o Definition: int Anomaly::analyze()

e Description: This function analyzes every entry of attacks data structure in order to find
a good enough attack description for that anomaly. The well-known attacks are listed in
Tables 2.1 and 2.2.

e Parameters: Nothing.

e Return: Nothing.

54 APPENDIX A. IMPLEMENTATION DETAILS

Anomaly: checkForMNetScanattack |

I Anomaly postProcessAnomalies
‘ Anomaly.proceSsAnomaMe
Anomaly.readAnomalies }

| Database getMedianTsallisValue ‘

Database statDBTES Database: startDB

Anomaly:process

Anomaly - setTsallisEntropy

| AnomalywriteDEScript |

AnomalywriteDEScripthetScan

I Anomaly: writeDBScriptProcessed I

‘ Anomaly writeDBScriptUnprocessed ‘

Figure A.1: Call graph of Anomaly::process function.

A.2.10 process function
Function process has the following information:
e Definition: int Anomaly::process()

e Description: This function is the main function in the class. It reads the input files which
are the output of FlowSketches program, and calls setTsallisEntropy function in order to
acquire the corresponding ¢ Tsallis values. It subsequently executes processAnomalies
to categorize the victims and then analyze to identify the attack being done in that entry.
Finally, it calls database related functions in order to store the data in a database, or save
the database script in a script file (to be executed on a database, later on). Along with
the aforementioned functions, it often prints the intermediate step outputs for debugging
purposes.

e Parameters: Nothing.

e Return: It returns an error integer. If an error occurs when it tries to open a file or the like,
it returns -1, and if it ends normally, it returns 0.

Figure A.1 shows the call graph of this function.

A.2.11 printAttacks function
Function printAttacks has the following information:
e Definition: void Anomaly::printAttacks()

e Description: This function prints the entries in attacks data structure, in a decorated text
format.

e Parameters: Nothing.

e Return: Nothing.

A.2.12 printNetScanAttacks function
Function printNetScanAttacks has the following information:

o Definition: void Anomaly::printNetScanAttacks()

A.2 Anomaly class 55

e Description: This function prints the entries in netScanAttacks data structure, in a deco-
rated text format.

e Parameters: Nothing.

e Return: Nothing.

A.2.13 writeDBScriptUnprocessed function
Function writeDBScriptUnprocessed has the following information:
o Definition: int Anomaly::writeDBScriptUnprocessed(const char *outputfile)

e Description: This function writes the content of anomlist data structure in a file, in the
SQL format. It’s actually a database script, so by feeding it to a database, the discovered
anomalies are being stored there.

o Parameters: outputfile is the name of output file.

e Return: It returns an integer as error message, for the case that opening a file causes a
problem.

A.2.14 writeDBScriptProcessed function
Function writeDBScriptProcessed has the following information:
o Definition: int Anomaly::writeDBScriptProcessed(const char *outpultfile)

e Description: This function writes the content of attacks data structure in a file, in the SQL
format. It's actually a database script, so by feeding it to a database, the discovered attacks
are being stored in that database.

o Parameters: outputfile is the name of output file.

e Return: It returns an integer as error message, for the case that opening a file causes a
problem.

A.2.15 writeDBScriptNetScan function
Function writeDBScriptNetScan has the following information:
o Definition: int Anomaly::writeDBScriptNetScan(const char *outpultfile)

e Description: This function writes the content of netScanAttacks data structure in a file,
in the SQL format. It’s actually a database script, so by feeding it to a database, the
discovered attacks are being stored in that database.

e Parameters: outputfile is the name of output file.

e Return: It returns an integer as error message, for the case that opening a file causes a
problem.

A.2.16 writeDBScript function
Function writeDBScript has the following information:
o Definition: int Anomaly::writeDBScript(const char *outputfile)

e Description: This function writes the table definitions in a file, in the SQL format, as a
database script.

e Parameters: outputfile is the name of output file.

e Return: It returns an integer as error message, for the case that opening a file causes a
problem.

56 APPENDIX A. IMPLEMENTATION DETAILS

| Database: finishDB |

Database: getError ‘

Anomaly: setTsallisEntropy

Database: gaethedianTsallisValue ‘

Database: startDETES }—pl Database: startDB

Figure A.2: Call graph of Anomaly::setTsallisEntropy function.

A.2.17 setTsallisEntropy function
Function setTsallisEntropy has the following information:

o Definition: int Anomaly::setTsallisEntropy()

e Description: This function queries the database of pre-computed Tsallis values to get the
corresponding ¢ value for the duration of that anomaly, from start time to end time. Then,
adds the median value of this boundary to the attack data structure to be saved along with
other information we have for every anomaly.

e Parameters: Nothing.

e Return: It returns an integer as error message, for the case that connection to the database
raises an error. Otherwise, it returns 0.

Figure A.2 shows the call graph of this function.

A.2.18 checkForNetScanAttack function
Function checkForNetScanAttack has the following information:

o Definition: bool Anomaly:.checkForNetScanAttack(string attackerip)

e Description: This function checks if an attacker IP address can be marked as Network
Scan attacker. If it is, the program stores them in the netScanAttacks data structure.

e Parameters: attackerlp contains the attacker IP address, in dotted format.
e Return: It returns true if this attackerlIP be located in a network scan scenario, false other-

wise.

A.2.19 getNoVictimsByAttacker function
Function getNoVictimsByAttacker has the following information:
o Definition: int Anomaly::getNo VictimsByAttacker(string attackerip)

e Description: This function calculates the number of victims that are being attacked by a
single attacker, given its IP address. It is mainly used for detecting the network scan attack.

e Parameters: attackerlp contains the attacker IP address, in dotted format.

e Return: It returns the number of victims attacked by this particular attacker.

A.3 Database class 57

A.3 Database class

This class has the following definition, description of each method will come at the subsequent
sections.

#ifndef DATABASE_H_
#define DATABASE_H_
#include <iostream>
#include <string>
#include <list>
#include <sstream>
#include <fstream>
#include <vector>
#include <stdlib.h>

#define USE_DATABSE

#ifdef USE_DATABSE
#include <mysgl.h>

#endif

class Database
{
private:
#ifdef USE_DATABSE
MYSQL =*connectionDB;
MYSQL mysqgl;
MYSQL_RES *resultDB;
MYSQL_ROW rowDB;
#endif
list <string> dbCreatelist;
list <string> anomalyList;
list <string> attackList;
list <string> netScanlist;
list<string>::iterator index;
string serverAddr;
string userName;
string password;
string dbName;
//TES related
string TEScolumnQName;
string TESTableName;
string TEScolumnTimeName;
public:
Database () ;
Database (string serverAddr, string userName, string password,
string dbName) ;
~Database () ;
//initializing database handlers and so on.
int startDB();
int startDB(string serverAddr, string userName, string password,
string dbName) ;
int startDBTES() ;
int testDB();
void f£inishDB () ;
string getError();
//special function for acquiring g Tsallis value
double getMedianTsallisValue (uint64_t startTime, uint64_t endTime);
//read input files
int readDBScriptAnomaly (const char xinputfile);

58 APPENDIX A. IMPLEMENTATION DETAILS

int readDBScriptAttack (const char xinputfile);

int readDBScriptNetScanAttack (const char xinputfile);
int readDBScriptCreate (const char xinputfile);
//running the script on a database

int execDBScriptAnomaly () ;

int execDBScriptAttack();

int execDBScriptNetScanAttack();

int execDBScriptCreate();

}i

#endif /» DATABASE_H_ «/

A.3.1 Database constructor

Constructor Database has the following information:

o Definition: Database::Database(string serverAddr, string userName, string password,
string dbName)

e Description: This function is the class constructor to initialize private values.

e Parameters: serverAddr is the server address for connecting, userName is the username
should be given to the connect function, password is the password for connecting, and
dbName is the name of database to connect to.

A.3.2 Database destructor
Destructor Database has the following information:
e Definition: Database:: Database()

e Description: This function is the class destructor to remove the allocated memory and so
on.

o Parameters: Nothing.

A.3.3 testDB function
Function testDB has the following information:
o Definition: int Database::testDB()

e Description: This function tests connection to the database and runs a simple query to
check every thing is fine or not. Mostly for debugging purposes.

e Parameters: Nothing.

e Return: It returns an integer as error message, for the case that connection to the database
raises an error. Otherwise, it returns 0.

A.3.4 startDB: first function
Function startDB has the following information:
o Definition: int Database::startDB()

e Description: This function makes/opens a connection to the database, and assigns a han-
dler to the connection for hereafter use. Thus, this function is the starting point of working
with database.

e Parameters: Nothing.

e Return: It returns an integer as error message: -1 for the case that connection to the
database raises an error. Otherwise, it returns 0.

A.3 Database class 59

A.3.5 startDB: second function
Function startDB has the following information:

o Definition: int Database::startDB(string serverAddr, string userName, string password,
string dbName)

e Description: This function makes/opens a connection to the database, and assigns a han-
dle to the connection for hereafter use. Thus, this function is the starting point of working
with database.

e Parameters: serverAddr is the server address for connecting, userName is the username
should be given to the connect function, password is the password for connecting, and
dbName is the name of database to connect to.

e Return: It returns an integer as error message: -1 for the case that connection to the
database raises an error. Otherwise, it returns 0.

A.3.6 startDBTES function
Function startDBTES has the following information:
e Definition: int Database::startDBTES()

e Description: This function starts a connection to the TES database, specially to acquire ¢
Tsallis values.

e Parameters: Nothing.

e Return: It returns an integer as error message: -1 for the case that connection to the
database raises an error. Otherwise, it returns 0.

A.3.7 getError function
Function getError has the following information:
o Definition: string Database::getError()

e Description: This function returns back the last error the database class encounters in
string format.

e Parameters: Nothing.

e Return: It returns the last error in string format.

A.3.8 getMedianTsallisValue function
Function getMedianTsallisValue has the following information:

e Definition: double Database::getMedianTsallisValue(uint64_t startTime, uint64_t end-
Time)

e Description: This function returns the median value among all ¢ Tsallis values in the
database, which are in the period of a start point to an end point.

o Parameters: startTime is the start time of the query, and endTime is the end of that query.

e Return: It returns the median value of the period.

60 APPENDIX A. IMPLEMENTATION DETAILS

A.3.9 readDBScriptAnomaly function

Function readDBScriptAnomaly has the following information:

Definition: int Database::readDBScriptAnomaly(const char *inputfile)

Description: This function reads anomalies from the given input file and stores them in
anomalyList storage.

Parameters: inputfile is the input file name.

Return: It returns an error if something bad happens during file opening.

A.3.10 readDBScriptAttack function
Function readDBScriptAttack has the following information:
e Definition: int Database::readDBScriptAttack(const char *inputfile)

e Description: This function reads attacks from the given input file and store them in attack-
List storage.

o Parameters: inpultfile is the input file name.

e Return: It returns an error if something bad happens during file opening.

A.3.11 readDBScriptNetScanAttack function

Function readDBScriptNetScanAttack has the following information:

Definition: int Database:.readDBScriptNetScanAttack(const char *inpultfile)

Description: This function reads network scan attacks from the given input file and store
them in attackList storage.

Parameters: netScanList is the input file name.

e Return: It returns an error if something bad happens during file opening.

A.3.12 readDBScriptCreate function
Function readDBScriptCreate has the following information:
e Definition: int Database::readDBScriptCreate(const char *inputfile)

e Description: This function reads database table description from the given input file and
store them in dbCreateList storage.

o Parameters: inpultfile is the input file name.

e Return: It returns an error if something bad happens during file opening.

A.3.13 finishDB function

Function finishDB has the following information:

Definition: void Database::finishDB()

Description: This function closes the connection already established to the database.

Parameters: Nothing.

e Return: Nothing.

A.3 Database class 61

A.3.14 execDBScriptAnomaly function
Function execDBScriptAnomaly has the following information:
o Definition: int Database::execDBScriptAnomaly()

e Description: This function inserts the entries of anomlist data structure into a database. It
is supposed that a connection to the database has already been established by startDB
function (see section A.3.5).

e Parameters: Nothing.
e Return: It returns an integer as error message: -1 for the case that connection to the

database is NULL or the query is not run successfully. Otherwise, it returns 0.

A.3.15 execDBScriptAttack function
Function execDBScriptAttack has the following information:
o Definition: int Database::execDBScriptAttack()
e Description: This function inserts the entries of attacks data structure into a database. It
:‘i ns;?opnosed that a connection to the database has already been established by startDB

o Parameters: Nothing.

e Return: It returns an integer as error message: -1 for the case that connection to the
database is NULL or the query is not run successfully. Otherwise, it returns 0.

A.3.16 execDBScriptNetScanAttack function
Function execDBScriptNetScanAttack has the following information:
o Definition: int Database::execDBScriptNetScanAttack()

e Description: This function inserts the entries of network scan attacks data structure into a
database. It is supposed that a connection to the database has already been established
by startDB function.

e Parameters: Nothing.
e Return: It returns an integer as error message: -1 for the case that connection to the

database is NULL or the query is not run successfully. Otherwise, it returns 0.

A.3.17 execDBScriptCreate function
Function execDBScriptCreate has the following information:
o Definition: int Database::execDBScriptCreate()

e Description: This function creates tables for keeping the anomaly list and attack lists in
a MySQL database. It is supposed that a connection to the database has already been
established by by startDB function.

e Parameters: Nothing.

e Return: It returns an integer as error message: -1 for the case that connection to the
database is NULL or the query is not run successfully. Otherwise, it returns 0.

62 APPENDIX A. IMPLEMENTATION DETAILS

A.4 Utility class

This class has the following definition. Description of each method will come at the subsequent
subsections.

#ifndef UTILITY_H_
#define UTILITY_H_
#include <iostream>
#include <string>
#include <sstream>
#include <math.h>
#include <stdlib.h>
using namespace std;
class Utility

{

public:
#define DOTTED_IP_SIZE 15 //000.000.000.000
string dottedIP (uint32_t ip);
string readableTime (time_t t);
int gropIPs(string &ips);
string toString(const inté& t);
int fromString(const string& s);
void test ();
i
#endif /* UTILITY_H_ */
A.4.1 toString function
Function toString has the following information:
o Definition: string Utility::toString(const int & t)
e Description: This function converts an integer to string.
e Parameters: t is an input integer.

e Return: It returns string version of the input integer.

A.4.2 fromString function

Function fromString has the following information:
o Definition: int Utility::fromString(const string & s)
e Description: This function converts a string to integer.
e Parameters: s is a string value.

e Return: It returns integer version of the input string.

A.4.3 groplPs function

Function gropl/Ps has the following information:
o Definition: int Utility::groplPs(string & ips)
e Description: This function converts range of IPs to CIDR notation [10].
e Parameters: ips contains the IP addresses.

e Return: It returns an integer for error checking.

A.4 Utility class 63

A.4.4 test function
Function test has the following information:

o Definition: void Ultility::test()

Description: This function is a test function, for debugging and nothing more.

Parameters: Nothing.

e Return: Nothing.

A.4.5 dottedIP function

Function dottedIP has the following information:
o Definition: string Utility::dottedIP(uint32_t ip)
e Description: This function converts an integer IP to its dotted format.
e Parameters: ip is the integer IP address.

e Return: It returns the dotted format of IP in string representation.

A.4.6 readableTime function

Function readableTime has the following information:

[]

Definition: string Ultility::readable Time(time_t t)

[]

Description: This function converts the time into a readable/user-friendly format.

e Parameters: t is the time in epoch format [1].

Return: It returns the time in time-stamp format, i.e. “HH:MM:SS DD:MM:YYYY”.

64

APPENDIX A. IMPLEMENTATION DETAILS

Appendix B

Abbreviations

Table B.1: List of abbreviations used in text.

Abbreviation | Stands for

API Application Programming Interface
CIDR Classless Inter-Domain Routing
DBMS Data Base Management System

DoS Denial of Service

FLAME Flow-Level Anomaly Modeling Engine
IDS Anomaly Detection System

IP Internet Protocol

SQL Standard Query Language

STL Standard Template Library

SWITCH Swiss Academic and Research Network
TES Traffic Entropy Spectrum

65

66

APPENDIX B. ABBREVIATIONS

Appendix C

Timetable

Table C.1 displays the effective time table of finishing each task. To explain the tasks a little bit
more: task Theory deals with reading the related papers [18, 20, 7, 13, 15, 9] and two master
theses [14, 11] (more or less thoroughly), FlowSketches/FlowExtrator indicates the effort needs
to correctly run these programs and get to a sound result, in Database Design phase a first draft
of database tables were proposed and revised later, MySQL C API phase investigates how to
query a database from a C/C++ program, Programming deals with developing AnalyzeTES
program, Result Collection phase gathered necessary experimental outcome for the result part,
and finally Documentation includes program documentation as well as preparing this report. It
is worth mentioning that the tasks were not done in subsequent weeks (sometimes with one
week off mostly due to technical problems).

Table C.1: Tasks and weeks used for them.

Task \Week [0102 03[04 05] 0607]08]09]10] 11 [12] 131415]

Theory X | X

FlowSk./FlowExt. X | X

Database Design X X

MySQL C API X

Programming X X | X | X

Result Collection X | X | X

Documentation X X | X | X | X

67

68

APPENDIX C. TIMETABLE

Appendix D

Task Description

D.1 Introduction

In the domain of network anomaly detection, tracking changes in feature distributions is impor-
tant to many detection approaches. The problem with distributions is that they can consist of
thousands of data points. This makes tracking, storing and visualizing how they change over
time a difficult task. One method to cope with this problem is to use techniques to capture and
describe important characteristics of distributions in a compact form. A standard technique used
for this purpose is the Shannon entropy analysis. Its use for detecting network anomalies has
been studied in depth and several anomaly detection approaches have applied it with consider-
able success. However, reducing the information about a distribution to a single number deletes
important information such as the nature of the change or it might lead to overlooking a large
amount of anomalies entirely. Recently, we found evidence that the Tsallis entropy offers a more
detailed view on the changes in the underlying distributions. We introduce the Traffic Entropy
Spectrum (TES) to analyze these changes and to use them as a basis for an anomaly detection
system. However, our evaluation as well as the approach used for the detection of anomalies
are incomplete since they focused on the exposure of a few large scale anomalies only. By
making an in-depth analysis of a three to four week long snippet of Cisco Netflow traffic traces,
this work will provide the basis for an accurate and insightful analysis of the TES.

D.2 Available data

Usually, network traces used for anomaly detection are either flow traces like e.g. specified by
the Cisco NetFlow ' [5] format or packet traces (full-payload or packet headers only). Therefore,
an important precondition to do research on anomaly detection is to have such data at hand.
In the course of the DDoSVax [16] project, an infrastructure to collect and store information
about the network traffic crossing the borders of the Swiss Education and Research Network
SWITCH [6] was set up at our institute. This dataset is a valuable source if an anomaly detection
approach needs to be validated. However, because this dataset involves the information about
approximately 60-200 Mio. connections per hour, it is very difficult to identify if an anomaly in a
time-series or a distribution of a traffic feature is indeed an anomaly that we should care about
(— identifying ground truth!). Anomalies we should care about are mainly anomalies which
involve (potentially) harmful and/or malicious activities.

D.2.1 Cluster and NetFlow Data Set

Facts about our cluster: See Figure D.1.

"This data contains e.g. information about which Internet hosts were connected to which others and how much data
was exchanged over which protocols.

69

70 APPENDIX D. TASK DESCRIPTION

Table D.1: Facts about our NetFlow data set

Coverage March 20083 - today
Bytes/hour 500-2000 MB (compressed)
Total Bytes (02.2008) | approx. 38 TB (compressed)
Archive Jabba (tape-library)
Download speed: 5(script) to 10(framework) MB/s
Completeness A few gaps or corrupt files
(exact number unknown).
An incomplete log already exists.

D.3 The Task

1. Identify anomalous peaks in a netflow trace

2. Investigation of root cause for (anomalous) peeks

The tasks (and their subtasks) are described in the following subsections.

D.3.1 Identify anomalous peaks in a netflow trace

We provide a tool (MATLAB, GUI based) to identify (statistically) anomalous peaks by looking
at timeseries and distributions(spectrum) of multiple flow features (IP addresses, port numbers,
flow-, packet- and byte counts). Propose a structure for storing at least the following information
in a mysql DB: time, metric(s) and root cause(s) of each peak/anomaly. Note that the root
cause(s) will be inserted after having completed the next step.

Expected Output

Expected output are DB design and implementation, filled with times and metric(s) of the
peaks/anomalies.

D.3.2 Investigation of root cause for (anomalous) peeks

Run a detailed analysis at the identified points in time. To do this, existing tool(s) written in C++
have to be extended so that they provide information about if and how a distribution changed
at these points in time (e.g., which RELEVANT IP ranges or ports were responsible for this
change).

Expected Output

Expected output are extended tool and description of identified root causes in DB.

D.3.3 Optional: Improvement and tuning of the anomaly detection ap-
proach

Analyze the weaknesses recognized in the previous tasks and find ways to mitigate them. Most
probably, our simple detection approach will be the most prominent weakness and is therefore
likely to be the best candidate for further improvements.

D.4 Deliverables

This work has the following deliverables:

1. A concise and detailed log of the conducted work.

D.5 General Information 71

2. A concise and detailed documentation of all experiments and their results so that they are
easy to reproduce.

3. The code and - if appropriate - installation instructions for the developed tools.

4. A ready-to-use installation on our computing cluster.

D.4.1 Documentation structure

The report should contain the steps conducted (methodology) along with find-
ings/consequences/results, lessons learned, summary and an outlook on future work. All
design decisions should be motivated and described. Any selection of parameters and their
value/range should be justified. Evaluations have to be academically sound.

The code of all of the in this thesis developed tools should follow a coherent and clean cod-
ing and commenting style so that the code is easy to understand and use. If applicable, the
documentation could be generated using automated documentation tools (e.g. doxygen).

D.4.2 Presentations

A final presentation at TIK will be scheduled close to the completion date of the work.

D.5 General Information

Dates/Meetings:

e This work starts on Thursday, 05.03.2009 and finishes on Monday, 29.05.2009. A total of
at least 150 hours have to be spent.

o Informal meetings with the tutors will be held at least once a week.

Figure D.1 represents the network topology for the working cluster.

APPENDIX D. TASK DESCRIPTION

72

UorA}erad| (et O ||BLU 10 JaAas UIBO| O} premio 4 JielNl

Auo sopessupupy ((mdpwewasn) uibo

(S0 JuedQ) ainpoly SN Wwoud Heog

(UoBa SI018 Y 1WS T1L YIM 1S 268u01S

05EZ JRisue Joj sase abeloys LM 3| suapxa) sbeiois g1l 0z
WYY 919 ¢ '10533201d ZHD (' G0FG UoSX [3lU| udD-Penp

D203 BLL O ||BLU 0 JSAISS UIBO| o) pJemId 4 Sliel
fuo Joyessunapy (mdpwewasn) wmbon

SINS Pue |lews :Burely

“A3dn9p [BOO| ON "40°2Y15°99"|[Bwl O] ||Bul 1004 PUBMICS e

(¥a-ze) 6-22°9°Z ‘Pidanu| nunan ugiged SO
YSIp puey woud 5009
fuo 100 :{£ey pareys~aid) uibo
Wvd 919 2 'ZHO 2¢) ¥ wnuad Xz

(o aive MH 'g9 052 ¥al) sbesls gL 96

siepg< uayng
S 4K U0 MOl Jas)
Aoy pareys-aud :ssesoy

O |02 21ep Mo|laN
(g1°6e'650E 1)
o' yoyms euse

SINS pue |few3 :Bumpay

AlaA||9p (B00] ON U2 2Uierady|| el ¢ ||BLU [B20| JASN/A00) preMmIoS :lIEN
100y 'sH3SN (4 paueys-aud) uibor

(PIING WOISND || '7OX) Y3 weioed S0

(walshs a4 Joor) HSIp puey pu (jBwsy) OIS 95N woud :30sg

(9 QIvy MH ‘89 005 *g) sBeiolS gIL LT

Sads z eS|y =3ads Janas dimpreg WYY g9l
(uoD-enQ 'ZHO 22) S22 Un=ido X
1oads Janies uibo]
i . (S4M) S UO Se 2WES 2] S| SN [SAWOH
(550 3uadQ) ANPON 95N WS4 00g (1005 IN) WalsAs 211} 1001 [830] ON JWISAS 1y J00Y
vy gop Jerleg dmpseg _ LoOY ‘'sy3sn it J@.Em.ﬂ& ulo
0 , (plINg WOISND | SLUSY 'FO%) U wegaq SO
(ZHO o'} 'a100-pEND) Q_.m_‘m.__“”__cmw“_v_nn__. ﬁ (L21SAs 3 1004 + | SIS 100G HIOMIBR (00
sods ; o (9 Qv MH '89 006 Xg) 26einis glL /2
= : ; W ﬂm_mar
e —— ~ [@uoQ-enq 'ZHD 22) S22 UniEido X2
(LSZ70L'0E} 78) U2 game-od-Lwoy] :0ads sapou Bupndwos
£5/005e/.961 0001
(a1 v) Zeps/napy
(sssn) BIEQ
LOX/. LOLO'0"0F
Leps/nep/
N (aaivy 'aLL L'7) eeq
Zsyebie/ 9610001 . P —
(81191) Leps/nepy Lol 1ox [e ==} _nz B
(paruasau) eleq |
(=] F—rre——361°000L 25
@ W ! —=l | 20%/:201L0°0°0b
Leps/nep/
THIAEIS I (©aivd 'all LD eea

a1 9¢< (60/10) &3eQ AN
8L 00€< :Apoeden

S4X U0 MO|JI3U JosT|
Aoy parys-aud 58520y

Areig adel 13110
vaavr

15590081661 0001
(6119'6) Lepsiaepy
(s4asn'sa0k.) Bleq

L ¥3AEs Tid

6610001 b8t

O

[Xebue/00L'0'0°0L (pepodxs you) .&mco..mncc.__“on;.c.odv
(81L2'}) ¥epsiaep) (21996.) sepsirep; (EID00L) ZEPSINOPY (Z1D08) 1eps/iep|
MO BN

S2MUP RISV palodq

anup 1001

S

I am===]

L oaIVy ‘gLLL'Z) BpSAsp)

(9270105} 28) U Ao GMe-dc-LLIoY

NS0T

Rl ———]

ne

€0L'0°00L £0X [BT =——}

D

80X/ L0100 0k
Leps/nopy
(eaivd 'alL LT) eeq

k4

(WS YPIMS:

Y01 0001 v0x [f e == i

9

10X/ ¥0L'0°0° 0L
Leps/Aapy
(oand 'alL L T) eea

ne

L0001 S3%

coLo00Lg0x [e =—=

o)

GOX/' SOL0°00k
Leps/nepy
(eaivd 'alL L'T) eeq

nz

9

Figure D.1: Working cluster structure at TIK

Bibliography

[1] Epoch Converter. http://www.epochconverter.com.

[2] Kullback—Leibler divergence. http://en.wikipedia.org/wiki/Kullback-Leibler_divergence.

[8] MySQL C Application Programming Interface. http://dev.mysql.com/doc/refman/5.0/en/c.html.
[4] MySQL Open Source Database. http://www.mysqgl.com.

[5] Netflow services solutions guide. http://www.cisco.com/univercd/cc/td/doc.

[6] The switch education and research network. http://www.switch.ch.

[7] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina. Impact of packet sam-
pling on anomaly detection metrics. In Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement, page 164. ACM, 2006.

[8] D. Brauckhoff, A. Wagner, and M. May. FLAME: A flow-level anomaly modeling engine.
In Proceedings of the conference on Cyber security experimentation and test, page 1.
USENIX Association, 2008.

[9] X. Dimitropoulos, M. Stoecklin, P. Hurley, and A. Kind. The eternal sunshine of the sketch
data structure. Computer Networks, 52(17):3248-3257, 2008.

[10] V. Fuller and T. Li. Classless Inter-domain Routing (CIDR): The Internet Address Assign-
ment and Aggregation Plan. Technical report, BCP 122, RFC 4632, August 2006.

[11] T. Gsell. Evaluating and Improving TES. Master’s thesis, Computer Engineering and Net-
work Laboratory, ETH Zurich University, 2009.

[12] A. Lakhina, M. Crovella, and C. Diot. Diagnosing network-wide traffic anomalies. In Pro-
ceedings of the 2004 conference on Applications, technologies, a rchitectures, and proto-
cols for computer communications, pages 219-230. ACM New York, NY, USA, 2004.

[13] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic feature distributions.
In Proceedings of the 2005 conference on Applications, technologies, architectures, and
protocols for computer communications, page 228. ACM, 2005.

[14] E. Leuenberger. Extending FLAME: Anomaly Characterization and Extraction. Master’s
thesis, Computer Engineering and Network Laboratory, ETH Zurich University, 2009.

[15] X. Li, F. Bian, M. Crovella, C. Diot, R. Govindan, G. lannaccone, and A. Lakhina. Detection
and identification of network anomalies using sketch subspaces. In Proceedings of the 6th
ACM SIGCOMM conference on Internet measurement, page 152. ACM, 2006.

[16] C. Schlegel and T. Dubendorfer. UPFrame-A generic open source UDP processing frame-
work. http://www.tik.ee.ethz.ch/~ddosvax/upframe/.

[17] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE Mobile Com-
puting and Communications Review, 5(1):3-55, 2001.

[18] B. Tellenbach, M. Burkhart, D. Sornette, and T. Maillart. Beyond Shannon: Characterizing
Internet Traffic with Generalized Entropy Metrics. In Passive and Active Measurement
Conference (PAM). Springer, 2009.

73

74 BIBLIOGRAPHY

[19] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical
physics, 52(1):479-487, 1988.

[20] A. Ziviani, ATA Gomes, ML Monsores, and PSS Rodrigues. Network anomaly detection
using nonextensive entropy. IEEE Communications Letters, 11(12):1034—1036, 2007.

