LEA2P

The Linuz Energy Attribution and Accounting Platform

Diploma Thesis of Sebastian Ryffel'

Advisor: Dr. Thanos Stathopoulos?
Supervisors: Prof. Dr. Lothar Thiele’ and Prof. Dr. William J. Kaiser?

tSwiss Federal Institute of Technology (ETH) Zurich, Switzerland
fUCLA, Department of Electrical Engineering

July 21, 2008 - January 18, 2009

Abstract

This thesis presents a novel energy attribution and accounting architecture for multi-
core systems that can provide accurate, per-process energy information of individual
hardware components. I introduce a hardware-assisted direct energy measurement
system that integrates seamlessly with the host platform and provides detailed en-
ergy information of multiple hardware elements at millisecond-scale time resolution.
I also introduce a performance counter based behavioral model that provides indi-
rect information on the proportional energy consumption of concurrently executing
processes in the system. I fuse the direct and indirect measurement information into
a low-overhead kernel-based energy apportion and accounting software system that
provides unprecedented visibility of per-process CPU and RAM energy consump-
tion information on multi-core systems. Through experimentation I show that my
energy apportioning system achieves an accuracy of at least 96% while impacting
CPU performance by less than 0.6%.

Contents

1 Introduction

2 The Runtime Direct Energy Measurement System
2.1 Direct energy measurement system overview
2.2 RTDEMS design i

3 Per-Process Energy Apportioning

4 Indirect Energy Measurement Model
4.1 Performance counter behavioral model
4.2 Model learning o

5 Architecture
5.1 Resource containers e
5.2 Per-process accounting subsystem Lo,

5.3 Tracing subsystem oL

6 Implementation
6.1 Behavioral model learning system
6.2 Energy apportion and accounting system

6.3 Future improvements Lo

7 Evaluation
7.1 Per-process energy apportion accuracy o .o ...
7.2 CPUoverhead
7.3 Application apportioning oo

8 Related Work

9 Conclusion

I

13
14
15

20
20
21
23

25
25
27
33

35
35
36
38

40

42

Chapter 1

Introduction

The ever-increasing energy requirements of modern computing devices, from mo-
bile and embedded systems to large data centers, present significant research and
technical challenges. In data centers in particular, rising energy costs have resulted
in hardware replacement cycles of two years or less, as it is more cost effective to
acquire newer, more energy efficient systems than maintaining older ones [23]. Ac-
cording to recent studies [16], electricity use associated with servers has doubled
between 2000 and 2005 and is expected to rise by up to 76% by 2010. It is there-
fore paramount that computing platforms across all application domains consider
energy efficiency as a primary design objective.

In addition to advances in hardware and low-power CMOS technology, a critical step
in achieving higher energy efficiency is the development of a deep understanding of
the runtime energy consumption of individual system entities, including hardware
and software components. By obtaining detailed, runtime information about en-
ergy consumption of system entities and by determining the energy consumption
contribution of individual entities further operating system and application energy
optimizations can be achieved. Detailed runtime energy profiling of applications
can be used to identify suboptimal behaviors and thereby improve the energy us-
age. Moreover, runtime application energy information can be used for auditing
and accounting purposes. For instance, a service provider could potentially charge
clients by energy usage, in addition to computational resource usage and network
bandwidth usage. Therefore, the goal is to develop an energy measurement and ac-
counting system that can accurately determine the contribution of individual pro-
cesses to the energy consumption of individual hardware components such as CPU
or main memory.

This thesis introduces the Linux Energy Attribution and Accounting Platform
(LEA’P). Using a combination of detailed, hardware-assisted energy measurements
and indirect energy measurement models, LEA’P provides the first (to the best
of my knowledge) runtime, low-overhead, integrated energy monitoring of individ-
ual processes executing concurrently on a multi-core platform. My thesis focuses
on the computational subsystem, including CPUs and main memory that together
can account for 30-50% of a server’s total energy consumption [12, 23]. In addition
to its paramount importance in the overall server functionality, the computational
subsystem indirectly influences the power required for cooling, planar, and other
components that make up the remaining energy consumption of a server.

Several different mechanisms exist that attempt to determine a system’s energy
consumption. Options include ACPI battery state [1] for mobile systems, external
measurements [8] or energy estimation [5, 20]. In contrast to prior work, I introduce

the RunTime Direct Energy Measurement System (RTDEMS), a high-resolution
energy measurement, system that provides energy values for individual hardware
components such as CPU, SDRAM, motherboard, video card, hard drive, and so on.
RTDEMS is integrated with the host platform, thereby allowing the host platform’s
operating system immediate and direct access to energy data. I argue that direct
energy measurements such as those provided by RTDEMS are necessary, albeit
insufficient to determine per-process energy attribution. I consequently introduce
an indirect energy measurement model that is based on performance counters to
determine the proportional contribution of individual processes to the total energy
consumption of a hardware component. By asynchronously combining data from
RTDEMS and the indirect energy measurement model into the LEA?P kernel-space
software system, I demonstrate through experimentation that I can attribute energy
consumption to concurrently executing processes with at least 96% accuracy, while
inducing less than 0.6% of CPU overhead.

The primary contribution of this thesis is the introduction and experimental ver-
ification of a novel per-process energy attribution and accounting architecture for
multi-core platforms. Additional key contributions include:

e The introduction of the runtime direct energy measurement system that pro-
vides accurate high-resolution energy information on a per-hardware compo-
nent basis with negligible overhead (Chapter 2).

e An experimental analysis of the energy apportioning problem in multi-core
systems, using RTDEMS-obtained data (Chapter 3).

e A performance-counter based indirect energy measurement model approach
as a proposed solution to the energy apportioning problem that includes ex-
perimental data for several applications (Chapter 4).

e The LEA?P, a low-overhead kernel-based software system that combines data
from RTDEMS and the performance counter behavioral model to provide
per-process energy information for arbitrary processes (Chapter 5 and 6).

I have used my system to attribute energy consumption to several applications on
a multi-core platform and present my results in Chapter 7. I present related work
in Chapter 8 and conclude the thesis in Chapter 9.

Chapter 2

The Runtime Direct Energy
Measurement System

In this Section, I provide an overview of direct energy measuring techniques and also
describe my detailed real-time direct energy measurement system. Using empirical
information and experimental results, I argue that a detailed direct energy measure-
ment system is necessary in order to attribute proportional energy consumption to
hardware and software activities.

2.1 Direct energy measurement system overview

The direct energy measurement system is a critical element of my overall architec-
ture, as it provides the necessary information regarding energy consumption. As my
goal is to attribute energy consumption to individual hardware and software enti-
ties at runtime, the direct energy measurement system needs to satisfy the following
requirements:

Resolution. To resolve energy consumption of individual entities, the measure-
ment system must provide high resolution information in both the spatial (for
hardware) and temporal (for software) domains.

Cost. The measurement system needs to operate with the lowest possible
overhead—in terms of energy and resource consumption—as it is intended
to be used in production systems.

Integration. The measurement system needs to be integrated with the system-
under-measurement so as to provide the necessary information in the fastest
and most resource-efficient way possible.

Traditional energy measurement solutions in mobile, desktop as well as server class
systems rely on external measurements, such as oscilloscope sampling or other data
acquisition systems [3, 2, 10, 11, 8]. For battery powered systems internal devices
such as commercial “fuel gauge” or simpler voltage monitoring solutions are com-
mon [6, 21, 18]. However, none of those devices in either category satisfies all three
aforementioned requirements. External devices typically satisfy the resolution re-
quirement but do not meet either the cost or integration requirements, while internal
devices meet the latter but do not meet the resolution requirement.

2.2 RTDEMS design 4

110v 3.3V
D— PSU 5V
12V X
[0) @ JD
)
- \ -
Motherboard CPU
[_SDRAM] — GPU Card
Memory S
Slots |19V [_SDRAM |
| S D
DAQ Card
PCI/PCle
Slots
12v
—&— : Point of measurement,
\ sensing resistor

Figure 2.1: The RTDEMS measurement system hardware diagram.

In order to attain the resolution, cost and integration goals, I implemented the Run-
time Direct Energy Measurement System (RTDEMS). RTDEMS is the adaption of
the embedded low power energy-aware processing (LEAP) project [19, 24] to desk-
top and server-class systems. RTDEMS differs from previous desktop-class energy
measurement approaches such as PowerScope [11] in that it provides both real-time
power consumption information and a standard application execution environment
on the same platform. As a result, RTDEMS eliminates the need for synchronization
between the device under test and an external power measurement unit. Moreover,
RTDEMS provides power information of individual subsystems, such as CPU, GPU
and RAM, through direct measurement, thereby enabling accurate assessments of
software and hardware effects on the power behavior of individual components.

2.2 RTDEMS design

The RTDEMS implementation used in my experiments is hosted on an Intel®)
Core™ 2 Quad CPU Q6600 2.4GHz with 2x4MB of shared L2 cache and 4GB
of 1066MHz DDR2 SDRAM. Data acquisition and sampling is performed by a NI
PCI-6225 data acquisition (DAQ) card capable of acquiring 250kSamples/s at 16-bit
resolution. In order to measure the energy consumption of individual subsystems,
0.0112 sensing resistors were inserted in all the DC outputs of the power supply—
3.3, 5 and 12V rails. Components that are powered through the motherboard such
as SDRAM DIMMs are placed on riser cards in order to gain access to the voltage
pins. Power measurements are obtained by first deriving the current flowing over
the sensing resistors through voltage measurements across the resistors and then
multiplying with the measured voltage on the DC power connector. The DAQ card
autonomously samples the voltages at the specified frequency and stores them in
its buffer. A Linux driver initiates an interrupt-based DMA transfer of the buffer’s
content to main (kernel) memory. A Linux kernel module was implemented in order
to convert the measured voltage values to energy and export them through the
proc filesystem, thereby enabling integration with both kernel- and user space

5 CHAPTER 2. THE RUNTIME DIRECT ENERGY MEASUREMENT SYSTEM

10° ¢

Normalized PSD

1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Frequency [Hz]

Figure 2.2: Power spectral density of the CPU current signal.

applications. Figure 2.1 presents a summary of the RTDEMS energy measurement
system.

Resolution: RTDEMS requires sufficient measurement resolution—sampling
frequency—to capture the energy used within each scheduler tick in order to resolve
per-process energy information. Modern multitasking systems run several processes
pseudo-concurrently, by executing one runnable process after the other for a short
time slice. For my Linux system this time slice is 3.3ms; thereby, the currently exe-
cuting task is usually changed at the end of such a time slice. Therefore, assuming
that the maximum frequency of energy information that is of interest is 300Hz, a
sampling frequency of at least 600Hz is required, based on the Nyquist criterion.

In addition to measuring the energy used within each scheduler tick, measurement
resolution must be sufficient to accurately capture the power dissipation profile of
the CPU as well as SDRAM. Because the CPU supply voltage is constantly 12V, the
frequency spectrum of the power dissipation profile is defined by the current signal.
I used an oscilloscope to measure the current of the CPU and SDRAM channels
at high frequency—5MSa/s. The power spectral density of the CPU current signal
is shown in Figure 2.2. 99% of the CPU energy signal is contained within the first
500Hz—therefore a sampling frequency of at least 1KHz can recreate the signal and
thus adequately meet both resolution requirements.

Overhead: The RTDEMS energy measurement system utilizes the main CPU to
process power information. The process of data acquisition, conversion and storage
can adversely affect the CPU performance and thus violate the cost requirement.
The performance overhead is directly related to the sampling rate, as more sam-

2.2 RTDEMS design 6

T
4L r]
35 s
3L B (
E. 25 L . 7 /|
o
@
9]
= 2 + B
9]
>
)
) 15 —
o
O
1+ L B
0.5 = —
0K B
| | L | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000

Sampling frequency [Hz]

Figure 2.3: CPU overhead of RTDEMS as a function of sampling frequency, when
sampling 11 channels concurrently with 95% confidence interval.

ples result in larger amounts of data that need to be transferred to the CPU and
processed. At the same time, a very low sampling rate will violate the resolution
requirement, since it will provide insufficient information on the temporal domain.
A set of experiments was thereby conducted to ascertain the overhead-resolution
trade-off. The impact of sampling rate on CPU performance was determined by
having all CPUs execute a constant workload and subsequently measuring the com-
pletion time. As Figure 2.3 shows, the minimum sampling frequency of 1KHz that is
required to meet the resolution requirement results in a CPU overhead of less than
0.7%. When only sampling the computational subsystem—CPU and SDRAM—
instead of all eleven of RTDEMS’ channels, the overhead diminishes and becomes
not measurable anymore. In conclusion, this experiment shows that for all practical
purposes the overhead is negligible when sampling CPU and SDRAM energy only.
It must be noted that the data acquisition overhead depends on the CPU speed—
a faster CPU will result in less overhead, thereby allowing for higher sampling
rates. Ultimately however, the best approach to practically eliminate the resource
overhead would be to integrate the data acquisition system on the motherboard—
thereby eliminating the PCI bus transactions—and perform the data conversions
and energy accumulation in hardware—thereby eliminating any dependence on the
main CPU. In the embedded systems space, the LEAP2 energy-aware system [24]
adopted a similar approach.

As a result, I have chosen 1kHz as the operational sampling frequency for RTDEMS
since it meets both the resolution and overhead requirements.

AC power consumption: The following experiment assesses the impact of the
RTDEMS measured per-component energy on the whole system’s AC power con-
sumption. This experiment generates different load patterns for the CPU and
SDRAM, while also changing the CPU frequency, which can be either 2.4GHz
or 1.6GHz. Figure 2.4 shows the correlation between component energy—CPU
and SDRAM-—and PSU AC power of the system. Although the AC power is very
noisy, it is obviously proportional to a smoothed linear combination of CPU and

7 CHAPTER 2. THE RUNTIME DIRECT ENERGY MEASUREMENT SYSTEM

70 250

65 |-
60 |-
55 B PSU AC power 110V [W] 200
50
45 |-

150
40 -

35 |-

CPU supply 12V [W]

PSU AC power [W]

30
L 100
25

Per-component power [W]

20

10 _ SDRAM DIMMs 1.9V [W]

0 1 1
0 100 200 300 400 500 600

Time [sec]

Figure 2.4: Correlation between component energy—CPU and SDRAM—and PSU
AC power consumption.

SDRAM power. In conclusion, CPU and SDRAM load caused by running tasks
not only have a high impact on per-component energy, but also on the whole ma-
chine’s energy consumption. However, measuring CPU and SDRAM as opposed to
AC power power consumption has many advantages. For instance, the additional
per-component energy usage information can be used for scheduling or application
profiling and energy optimization [24]. More importantly, as opposed to AC energy,
which is too smoothed out to reflect power consumption changes at the rate at which
tasks can be switched, CPU and SDRAM energy consumption can be attributed to
the running processes. An example for this can be observed in the last phase of the
experiment shown in Figure 2.4.

Chapter 3

Per-Process Energy
Apportioning

The RTDEMS energy measurement system can accurately measure the energy ex-
penditure on individual hardware components, such as the CPU, SDRAM, moth-
erboard, hard drives and video card. It is reasonable then to consider whether an
energy measurement system with high spatial and temporal fidelity is sufficient to
attribute energy consumption to individual software entities such as processes. As
mentioned in Chapter 1 I will focus on the energy attribution of the computational
subsystem components, i.e. the CPU and SDRAM.

In a single-core system, only one process is executing in the CPU at any point
in time. With a sampling resolution higher than the scheduler tick—so as to de-
termine which process was executing at any point in time—attributing energy for
synchronous operations (i.e. CPU and SDRAM energy) is trivial; all the energy is
charged to the currently running process, which could be the idle thread or the
kernel itself [24]. I therefore argue that in a single-core architecture, the ability
to measure energy consumption of individual hardware components coupled with
a sampling rate that is higher than the process time slice is indeed sufficient for
energy attribution.

Figure 3.1 presents an example of energy attribution in a single-core machine. For
this example, I used a simple memory access benchmark that stored data sequen-
tially to a 512MB array—a large enough size so as to defeat all caches—and subse-
quently read back the stored data. The test process started at ¢ = 2sec and ended
at t = 8sec. To simulate a single-core architecture, I executed the test program only
on one of the four CPU cores of the test machine—CPU1. In addition to power
information on the CPU, SDRAM and motherboard, Figure 3.1 also plots the CPU
utilization of the four cores, as reported by the operating system. Using CPU uti-
lization information, it is clear that the increase in power on all channels can be
attributed to CPU1. However, this test also indicates that even though the CPU
utilization is at a constant 100%, different components have fundamentally different
power levels that also fluctuate over time, depending on their usage. Moreover, I note
that even though the power state of the CPU doesn’t change, the power consump-
tion is not constant but varies by a significant amount, depending on the executing
program’s functionality. Consequently attributing CPU energy consumption solely
based on the CPU utilization can lead to erroneous results [5].

In a multi-core system, per-process energy attribution is not straightforward. As the
system includes multiple CPUs and CPU cores, several processes can be executing
at the same time. Moreover, main memory access is now shared between multi-

9 CHAPTER 8. PER-PROCESS ENERGY APPORTIONING

35 -

30 i+Motherboard 5V [W]
25

20

CPU Supply 12V [W]

Power (W)
CPU Utilization

10
SDRAM DIMMs 1.9V [W]

5 WW%
CPU 1
) CcPU3

I CPU2
CPU 4

Time (sec)

Figure 3.1: CPU, SDRAM and motherboard power over time for a single 512MB
memory read & write test.

ple CPUs. Resolving per-process CPU energy consumption can be accomplished
through augmenting the RTDEMS measurement system with per-CPU core mea-
surement, capabilities, assuming that CPU manufacturers can provide interfaces to
such information. In the case of main memory (as well as L2 cache) such a technical
solution would be infeasible, as it is a shared resource. For accurate per-process en-
ergy attribution of memory access, one solution would be to create a measurement
system that tracks all memory transactions that occur on the memory bus and then
correlate them with individual processes. Even though such a system is technically
feasible, albeit with extensive motherboard modifications, it would generate vast
amounts of data and incur very high overhead, as individual memory accesses in
modern systems occur in the order of nanoseconds.

I therefore conclude that direct energy measurements, such as those provided by
RTDEMS or similar systems, although necessary, are by themselves insufficient to
resolve the per-process energy attribution problem in multi-core systems and that
additional, indirect energy information is required. One obvious approach to the
attribution problem is to use a utilization metric, such as CPU utilization as the
indirect measurement and then attribute energy in proportion to the utilization
metric, which is essentially process execution time.

The following example illustrates why such an approach is not always correct. I
conducted three experiments using my memory access benchmark with array sizes
of 32KB for the first, 512MB for the second and 4MB for the third experiment. In
each experiment, four identical memory access benchmarks were started in sequence
(one per core), with a 2-second delay between each instantiation. In the first exper-
iment, shown in Figure 3.2 the processes access their CPU’s L1 cache only, as an
array size of 32KB fits into the L1 cache. Considering that the four processes run
independently of each other and on different cores but are executing the same code,
attributing energy based on CPU utilization and dividing the total energy provided
by RTDEMS equally is a reasonable apportion method.

10

45

T T
CPU Supply 12V [W]
40 | T
35 |-
30 Motherboard 5V [W] L
™ oy | - 2 . i "
L1 e T 4 u " v | W‘“W
ey M
25 -
s
£ =) .
1] [l o =
z =
o 15 a
(8}
10
5 SDRAM DIMMs 1.9V [W]
O -
| | CPU1
| CPU 3
[| CPU 2
: [l l l CPU 4
0 5 10 15 20
Time (sec)

Figure 3.2: CPU, SDRAM and motherboard power over time for four 32KB memory
read & write tests.

In the second experiment, shown in Figure 3.3 all caches are defeated, since the array
size is 512MB. When the first task is started it quickly fills the L2 cache and after
that point the CPU is primarily stalled waiting for memory (maximum write perfor-
mance of Intel Core2 Quad is less than 2bytes per CPU cycle). When the second task
is started, power consumption does not increase (compared to Figure 3.2)—the two
cores are now waiting for the same shared resource. Power consumption increases
when the third task is started since that task, unlike the first two, is executed on the
previously idle second dual-core chip. This example showcases that even though all
tasks perform exactly the same operations, they have different runtimes, indicating
that they execute at a different rate. It is therefore not clear if they use the same
amount of energy. The apportion problem has no obvious solution unlike the first
experiment.

In the third experiment, shown in Figure 3.4, the array size of the memory bench-
mark is 4MB—equal to the size of the L2 cache. When the first task is started,
its memory space fits in L2 cache. Power consumption of SDRAM increases, which
indicates that the CPU proactively write cache lines to main memory. As soon as
the second task is started, the combined memory footprint of both tasks’ data does
not fit into L2 cache anymore, as L2 is shared between the two cores of a CPU.
Increased access to main memory is indicated by a power increase in the SDRAM
channel. The third task’s data fits into the L2 cache on the second chip. Therefore
it executes much faster than the two previous tasks that are constrained by main
memory access. The net result is an increase in total CPU power until the fourth
task is started, which forces the third task to main memory. In this experiment, the
addition of a new task can lead to either an increase or a decrease in the total CPU
power consumption. Even though all cores execute the same code, each individual
task’s behavior is different and dependent on all other running tasks. As a result,
in this example, CPU-utilization-based apportion leads to erroneous results.

The aforementioned examples showcase that a simple energy apportion solution that

11 CHAPTER 3. PER-PROCESS ENERGY APPORTIONING

T
35 - Motherboard 5V [W]

CPU Supply 12V [W]

CPU Utilization

SDRAM DIMMs 1.9V [W]

[| | | CPU1
] \ cPU3
[CPU 2
: Il [1 1 1 CPU4
0 5 10 15 20
Time (sec)

Figure 3.3: CPU, SDRAM and motherboard power over time for four 512MB mem-
ory read &write tests.

attributes proportional energy consumption based on CPU utilization an execution
time can lead to significant errors in multi-core systems. Using such a method, the
third task in Figure 3.4 would be charged for main memory access, while in fact
it does not access main memory. Another potential solution would be to profile
each application individually. However, as illustrated in the examples above, the
energy consumption of a task depends on the behavior of all other running tasks
in the system. Therefore, a more sophisticated indirect measurement methodology
is needed.

12

T T
35 |- Motherboard 5V [W]
" ol ik —
30
CPU Supply 12V [W]
25
20
c
_ s
£ sl
8 =]
& 2
10 ©
SDRAM DIMMs 1.9V [W]
1 | CPU 1
] [lcpus
I CPU2
| l [| | | | ‘ CPU 4
0 5 10 15 20 25 30

Time (sec)

Figure 3.4: CPU, SDRAM and motherboard power over time for four 4MB memory
read & write tests.

Chapter 4

Indirect Energy Measurement
Model

In Chapter 3, I argued that direct energy measurements are a necessary but in-
sufficient condition for determining the energy used by individual processes and
tasks in multi-core platforms. For this purpose, I introduced the concept of indirect
energy measurements. The indirect energy measurement system needs to meet the
following requirements:

e The values measured should reflect a task’s energy behavior.

e Appropriate models have to be defined, which allow behavioral comparisons
of different tasks. Consequently, variables and models have to be found for all
tasks running on a system.

e The comparison of different tasks should result in a fair energy apportion
scheme.

I define a fair energy apportion as one that apportions the total energy in proportion
to the amount of energy that would have been saved if the task would not have been
executed. Given a set of tasks that uses total energy Eioal, if task a is removed, the
remaining tasks use energy Fj;. A fair apportion method would charge the energy
cost Egost,q t0 @ task a as shown in Equation 4.1.

E —F;
Ecost,a = (total) * Etotal (41)

Zj (Etotal - Ej)

As a consequence, a’s energy cost depends on all other tasks executed concurrently,
that might or might not be under a’s control. I argue that this is fair for the
following reasons. First, tasks should be charged for the energy consumption they
cause, which depends on the other tasks and can result in either energy benefits
or savings (see Chapter 3). Also, application developers should be encouraged to
write efficient code and not be rewarded for inefficient or suboptimal multi-threaded
programming.

In this Section, I present an indirect energy measurement model which is well suited
for the apportion of SDRAM as well as CPU energy.

18

4.1 Performance counter behavioral model 14

4.1 Performance counter behavioral model

Most modern processors, whether embedded, desktop or server-class, contain a per-
formance measurement unit (PMU) which is capable of counting a variety of dif-
ferent processor related events. Performance counters are typically used to profile
applications and optimize their performance. In the energy estimation domain, Bel-
losa et al. used performance counters to predict CPU temperature for dynamic
thermal management [5]. They propose a linear, event-based model to estimate the
energy consumed by a single-core CPU. They show that the CPU’s energy con-
sumption F can be modeled as a sum of event counts ¢; multiplied by event energy
ei, as in Equation 4.2.

Eest = Z C; * €; (42)
i

I argue that performance counters are suitable indirect indicators for energy ap-
portion. Performance counters are available on most modern processors and can be
accessed without incurring significant overhead. Additionally, performance events
can be counted for each core separately. Therefore, performance counters can mea-
sure per-core behavior, thus providing the additional per-core visibility that the
direct measurement system lacks. Finally, previous work has shown that perfor-
mance events can be related to energy consumption [5, 20, 17, 13|, which makes
them good indicators for per-core energy behavior. I note that, unlike Bellosa et
al., I do not use performance counters to estimate total energy consumption as the
RTDEMS measurement system provides direct and accurate measurements. Rather,
after acquiring the total energy consumption through RTDEMS, I use performance
counters to solve the energy apportion problem. I also extend prior work by using
performance counters as indicators for SDRAM energy consumption, in addition to
CPU energy consumption.

Both CPU and SDRAM are complex systems that contain numerous subsystems.
Several of those subsystems can be shared among running processes at any point
in time. For example, the Intel® Core™ 2 Quad CPU consists of two separate
dual-core CPUs with 4MB of L2 cache each. Therefore, depending on which core
two processes are executing, they either have access to a shared 4MB L2 cache, or to
two individual 4MB L2 caches. I use models to estimate the tasks’ energy behavior
relative to each other and do not try to model absolute CPU energy consumption,
which would require to model all subsystems and inter-task dependencies. It is
sufficient to learn the event model for the single-core case as this provides an apt
approximation of Eioa — F5 for Equation 4.1.

FEest.a
Ecost,a = ﬁ:sm * Emeasured (43)

Equation 4.3 shows how I apply performance event based models for fair multi-core
energy apportion. The total measured energy Epeasured 1S apportioned among a set
of tasks. The energy cost Eiost,q charged to a task a can be calculated by dividing
total energy Fmeasured Proportional to Fest o, Which is the energy the task’s behavior
would have cost in single-core operation. As a consequence, additional costs as well
as energy savings resulting from running tasks on a multi-core system, are split
equally among the tasks.

I defined Fipeasured @s the energy cost caused by the running tasks. For that reason,
I subtract the dc component from all energy and power measurements. I think, this
is a fair policy, because it charges tasks only for the additional energy consumption
they are directly responsible for.

15 CHAPTER 4. INDIRECT ENERGY MEASUREMENT MODEL

8
SDRAM =4
2L CPU =y |
6 [% § -
_ . %
% 5+ K ' % 7 I 1
3 ™ .
o - . X B
e 4 : : %
(o))
) 3 § %
5 L _
g | P s =]
) § X |
1 _
O 4 4 % h % B b . % % %
o) Z, Z, 0, % (o)) < & s o)
% % D % %, %, 7% %, % Oy 7 %,
C, D, 7 (°4
S 4747+ ey + £ 3 By, O

Application

Figure 4.1: Average CPU and SDRAM power usage of different applications.

4.2 Model learning

In order to learn and test the models for CPU and SDRAM, I use a variety of differ-
ent microbenchmarks and actual applications typically found on desktop or server
systems. Microbenchmarks include burnMMX and burnP6, a memory and CPU
stress test from the cpuburn package, memtest, my own memory access test capa-
ble of accessing memory in various ways (Chapter 3), gsieve integer factorization
and linpackc. Applications include sort, md5sum, multimedia encoders (mm), lame
(mp3) and oggenc (ogg vorbis), imagemagick (immck), compilation of the Linux
kernel and the boost library using gce, the web browsers firefox and epiphany and
the web servers apache and thttpd. As shown in Figures 4.1 and 4.2 these appli-
cations have very different characteristics, both in terms of power and in terms of
performance events.

4.2.1 Performance event selection

Performance measuring units can track dozens of different events, albeit only few
at the same time. For instance, the Intel® Core™ 2 CPU used on the RTDEMS
is capable of counting well over 100 different events. However, for each core, only
five different events can be measured simultaneously and three of those are pre-
defined and cannot be changed. As a result, two events have to be selected that,
together with the three predefined events can constitute a reasonable set of indirect
measurement indicators for energy consumption (Equation 4.4).

2 3
Eest = E Ci * €5+ E Cfiw,j * €fix,j (4.9)
i=1 j=1
—_——
choosable predefined

One approach to this selection problem assumes, that energy consumption is best
modeled by the total model, using all available counters as shown in Equation 4.5.
Consequently, the event selection problem is solved, by choosing the two events

4.2 Model learning 16

Memory read event rate X_X] TLB miss ratio =]
Memory write event rate &=zd Branch mispred. ratio 1
Prefetch ratio

1 1
o .
€ osf i . 4 08
c
5 i i
) Il f °
[] Bl — =
8 0.6) | 0.6 5
o] 0.4 H H - 04 Lﬁ
(0]
N N
= |
E 02| 402
(=]
z

0 1y H n H 0

% Y Y % . % % %% %, % % %, %
% 7y T s B, C My, e Ry % Y, R, 7 %
(o) 8 % (%4
6@ 47@4— 6 ‘19?// + 4 52 %, Q\S‘f ®
Application

Figure 4.2: Normalized performance event rates and event ratios of different appli-
cations.

with the highest energy contribution e; * ¢; to the total model, which results in
Equation 4.6.

n
Emeasured = Z C; * €4 (45)
i=1
5
Eost = Z cixe; + O (ZZL:(S Ci*ei) (46)
: ——
i’_/ error

chosen counters

The event energies e; can be measured using micro benchmarks that cause a limited
set of PMU events, thus facilitating the calculation of event energies for all possible
events. However, this approach is not optimal as event energies are not constant
but depend on both the running application and the model itself. In general, a
PMU event can be caused by a set of different hardware events (subevents) with
different energy costs. For example, subevents for the PMU event Memory Read
include random reads within the same row, random reads that induce a row change,
and burst reads. The relative frequencies of those subevents and subsequently the
average cost of a PMU event depend on the application. Similarly, many PMU events
are not independent of each other. For example, translation lookaside buffer (TLB)
misses are for most applications highly correlated with memory reads. A model not
counting TLB misses will likely include their cost into the cost of memory reads.
For these reasons, the energy contributions of events in the total model is not a
good means for event selection.

My event selection methodology consists of the following steps. First, an expert
prunes the search space of events that are not likely to have an impact on power
consumption. For example, the event “transitions from floating point to MMX in-
structions” is not expected to occur often enough to have a measurable impact. Also,
events like “load instructions retired” are not correlated to energy usage, because
the load can result in a read from memory, L2, or L1 cache, which leads to funda-

17

CHAPTER 4. INDIRECT ENERGY MEASUREMENT MODEL

Predefined events

INSTRUCTIONS_RETIRED
UNHALTED_CORE_CYCLES

UNHALTED_REFERENCE_CYCLES

Selectable events

Instructions retired.

CPU cycles during which core was un-
halted.

Front side bus cycles during which core was
unhalted.

L2_M_LINES_OUT:ANY

L2_M_LINES_OUT:PREFETCH
L2_M_LINES_OUT:SELF
L2_LINES_IN:ANY

L2_LINES_IN:PREFETCH
L2_LINES_IN:SELF
L2_M LINES_IN:SELF

DTLB_MISSES
RESOURCE_STALLS
MEMORY_DISAMBIGUATION:RESET

BUS_TRANS_MEM: SELF
MACRO_INSTS: DECODED

MACRO_INSTS:CISC_DECODED
UOPS_RETIRED:ANY

BR_INST RETIRED:ANY
BR_INST_RETIRED_MISPRED
CYCLES_DIV_BUSY
X87_OPS_RETIRED:ANY
SIMD_INSTR_RETIRED

Modified lines evicted from the L2 cache.
All of these lines are written to memory.
Only prefetched lines.

Only not prefetched lines.

Lines read into the L2 cache. Due to the
inclusive nature of the cache of the Intel®
Core™ 2, all of these lines are read from
main memory.

Only prefetched lines.

Only not prefetched lines.

Modified lines written from the L1 into L2
cache.

TLB misses.

Cycles with a resource related stall.
Number of times an instruction had to be
re-executed due to a disambiguation error.
Completed memory transactions.
Instructions decoded, but not necessarily
executed or retired.

Complex instructions decoded.
Micro-operations retired.

Branch instructions retired.

Mispredicted branch instructions.

Cycles during which divider is busy.

FPU floating-point operations retired.
Retired streaming Single Instruction Mul-
tiple Data (SIMD) instructions.

Table 4.1: Performance events considered for energy estimation. All of these events
are counted on a per-core basis.

mentally different energy costs. Table 4.1 shows the performance events remaining
after pruning.

Second, I gather model learning and test data. Because running a test multiple times
always results in the same total event count, it is possible to run each test %n times
as required to measure the total counts for n events. As opposed to total values,
using time series of event counts and energy provides more data points and also
makes many counts linearly independent. For instance, for a program that reads and
writes the same amount of data, the total counts for Memory Reads and Memory
Writes are equal. This makes it impossible to attribute event energies using total
counts, while it would be possible using time series. On the other hand, using time
series each test has to be executed separately for each possible event combination,
(72’) times in total. Because this is extremely time consuming, I decided to use total
counts. To provide valuable model learning data tests have to be designed carefully.

Finally, T systematically build models using linear regression for SDRAM and
CPU energy and compare their performances. For my system, I found through
exhaustive search that the events L2_LINES_IN:ANY, L2_M LINES_OUT:ANY
and INSTRUCTIONS_RETIRED are well suited to model both SDRAM and CPU

4.2 Model learning 18

Application SDRAM Model CPU Model
Memory Memory | Instr. Memory Memory
Reads Writes Retired Reads Writes
generic 56 63 2.1 121 273
apache 66 67 3.1 241 266
browsers 59 63 2.5 128 252
burnMMX | 55 59 2.1 120 264
burnP6 55 64 2.0 124 277
gece 57 64 3.2 98 296
immck 56 63 1.9 151 264
lame 57 62 2.6 95 265
linpack 55 63 1.9 134 233
md5sum 56 63 2.3 116 269
memtest” 52 61 1.6 113 265
memtest’ | 69 85 2.0 185 325
gsieve 56 64 2.6 98 272
sort 68 55 2.4 159 215
thttpd 63 72 2.6 162 387

Table 4.2: Event energies in nJ for different applications.
* sequential read/write, T random read /write

energy.

4.2.2 Event energy learning

After having selected the appropriate PMU events, their event energies e; must
be learned. As mentioned in Section 4.2.1, event energies vary slightly between
applications. For example, when reading an 512MB buffer sequentially the energy
cost of reading a cache line is 52nJ. When reading the same buffer randomly, the
cost rises to 69nJ (see Table 4.2).

For event energy learning I use time series. By performing linear regression on all
of the learning data, I obtain a generic model. While learning application specific
models, overlearning can become an issue if an application’s counts for certain events
are too low to have a measurable impact on energy, or if two counters are highly
correlated. To avoid overlearning and ensure results that are generalizable beyond
the learning data, I calculate the application specific event energies with a weighted
least squares linear regression. By assigning higher weights to a specific application’s
learning data points, the generic model is shifted towards values that correspond
to this application’s event energies. Table 4.2 shows the event energies estimated
with this method. I implemented a system, that fully automates the event energy
learning step, which makes it easy to support new applications.

Figure 4.3 shows the R? value of the single-core energy estimation for both SDRAM
and CPU using three event counters only. The performance of the model is very good
for all test applications, even for very complex programs like Firefox or a complete
Linux kernel compilation. An increase in the number of PMU counters and energy-
relevant performance events would lead to improved model performance.

19

CHAPTER 4. INDIRECT ENERGY MEASUREMENT MODEL

Model performance, R squared

SDRAM XX CPU XXX

% 9% G B % % B, %, %
& i Ze o %y %,
e R H Ky v Y A %
s
Application

Figure 4.3: Single-core energy estimation performance.

Chapter 5

Architecture

The purpose of LEA?P is to accurately account for the energy used by processes
within a computer system. LEA’P also provides runtime per-process energy usage
information to the operating system and to user space programs. LEA’P builds
on the RTDEMS real-time energy measurement capability. Consequently, LEA?P
should meet the same requirements regarding resolution, cost, and integration stated
in Chapter 2 as well as the following:

Modularity. The accounting system and its subsystems should be modular com-
ponents of the operating system.

Latency. Per-process accounting requires tight integration with critical code paths
of the operating system. Low latency on these critical paths is paramount for
the operating system and therefore a crucial requirement for the software
architecture.

Parallelism. The software architecture must be optimized for multi-core opera-
tion.

Figure 5.1 shows an architectural diagram of LEA?P. It is comprised of several Linux
kernel modules together with a small kernel patch that adds energy information to
Linux’s process management. The system uses real-time energy samples acquired
by RTDEMS. Energy is ultimately charged to resource containers, my energy cost
accumulation data structures [4, 25]. The core of the system is the energy apportion
and accounting component, which asynchronously processes the CPU’s activity lists
in order to apportion the energy measured using the performance counter attribu-
tion method introduced in Chapter 4.

5.1 Resource containers

As energy accounting data structures I use resource containers, a well-known OS
abstraction that is used for accounting usage costs of several shared OS resources.
Resource containers separate the concept of a resource consuming entity from pro-
cesses, which allows fine-grained accounting. Resource containers accumulate energy
values for all hardware components individually. Each process and thread is asso-
ciated with a resource container by means of resource binding [4]. Processes and
threads constitute the accounting entities of my system. When an an accounting
entity is active, its energy consumption is charged to the respective container. I
utilize dynamic resource binding to allow binding of any resource container to a

20

21 CHAPTER 5. ARCHITECTURE

(([eocizeill) (Energy L /ec/ssll N/
i d () | sampler
Linux Apportion rea i vl
Process and start() 5 racing |
Management Accounting | stop() Container { | Sampler [omoel | Subsystem |
System B Management i

£i11()

Task Tpgipter () Setup] || |
Management Controlling LHY Arbiter Client

flork ()

exif() do_accounting () harge () register() | ‘|‘ callback () ’
task- = Y | N\
struct

Energy Apportion and Accounting
| get_entries() y 9et_estimation() | get energy()
Per-CPU Activity Logs Model Management Energy Data
put_task () o i Acquisition
Lo CPU Model
pop_tameq | L[] |2 ||
=] L
Model
(N -
switch() - get_samples ()
N
: DAQ card
[Scheduler ‘ i RTDEMS Subsystem | Driver
N J "

Figure 5.1: Architectural diagram of LEAZP.

process or thread at any time. This makes it possible to implement systems other
than per-process accounting, such as per-activity accounting [4, 25].

5.2 Per-process accounting subsystem

On a single-core machine, each process would be charged the energy Fieasured mea-
sured during the time slice the process ran uninterruptedly.

On a multi-core machine however, tasks are executed on all n cores independently.
The energy apportion algorithm introduced in Chapter 4 apportions energy among
up to n tasks that run concurrently. For that reason, RTDEMS’ energy measurement
data has to be divided into segments (time slices) that do not include any task
switches on any CPU. The energy used during those time slices is proportionally
attributed to to the tasks running concurrently on the CPUs, through the energy
apportion algorithm. Figure 5.2 shows two CPUs running three tasks a, b, and ¢,
their combined energy consumption Fieasured @S measured by RTDEMS and the
resulting energy apportion time slices At;. For Atq, used total energy e; is divided
among tasks a and b, in Aty es is divided among a and ¢, in Atz all energy es is
charged to ¢, and so on.

The energy apportion time slice is in general smaller than the scheduler time slice
since tasks can block or be interrupted by a high priority task before their scheduler
time slice expires. Additionally, while a task a is running uninterruptedly, a task
switch might happen on another CPU, leading to segmentation.

For each time the scheduler selects a new task on any of the cores, the apportion
algorithm needs to be executed, and energy charged accordingly. It is not prac-
tically feasible to do the energy apportioning immediately when a task switch is
scheduled. The computational load of the algorithm would lead to a significantly
increased latency in the scheduler. More importantly, the accounting would have to

5.2 Per-process accounting subsystem 22

task a tésk a Time
CPU 1 : L
. taskb . taskc : taskb : itask c
CPU2 s . ! >
Emeasured ' & ' e2 . €3 : €a :95 i (S : er : >
Apporti.on 5 Ata 5 Atz 5 Ats 5 Ata 5At55 Ate 5 At7 5
time slices

Figure 5.2: Energy accounting time slicing for three tasks a, b and ¢ running on two
CPUs.

be synchronized among the CPUs, which would result in a blocking scheduler and
therefore a momentous latency overhead.

The following paragraphs describe the following main components of my archi-
tecture depicted in Figure 5.1: Per-CPU activity logs, model management, task
management and the energy apportion and accounting algorithm.

Per-CPU activity logs: To minimize the latency in the scheduler and to solve
the synchronization issue, I introduced per-CPU activity logs. The logs keep track
of the scheduling of tasks, on a per CPU basis. Using per-CPU log information,
the expensive apportion computation can be deferred and need not be executed on
every context switch. In addition, since information is recorded per CPU, log access
need not be synchronized.

My energy apportion algorithm needs the following data as input: a) the energy
Epneasured @s measured by the RTDEMS, b) the concurrently running tasks among
which Eieasurea 18 divided, and c¢) the task’s energy behavior Ees needed by the
apportion algorithm introduced in Chapter 4.

While FEieasured 18 provided by the RTDEMS’ energy log, all other data must be
stored within the activity logs. Consequently, log entries contain a time stamp, a
pointer to the task’s current resource container, a pointer to the task’s current model
information and a memory region for each of the task’s energy models. Because the
computation of E might be expensive, it is also deferred. Instead models utilize
the activity log’s memory regions to store model specific values to compute Fegt.
For example, the PMU model stores the event counts c;.

Model management: LEA?P uses application- and device-specific energy models
to assess the processes’ respective energy behavior. Each model is defined by an
interface consisting of the following five functions:

put_task () This function initializes the model’s memory area for a task that has
just been selected by the scheduler. For instance, the PMU model uses this
function to store the current, initial performance counter values in the memory
area. The model could also reconfigure the PMU to count different events
that are better suited to determine the energy behavior of this particular
application.

pop_task () This function finalizes an activity log entry for a task that is removed
from the CPU. For example, the PMU model reads the new performance
counter values, subtracts the initial values, and saves the difference in the
memory area.

23 CHAPTER 5. ARCHITECTURE

estimate () This function calculates Fes of a given activity log entry. For exam-
ple, the PMU model calculates Feqt using its application specific event energies
and the performance event counts stored in the entries’ model memory area.

init (), exit () These functions are called upon loading and exiting the energy
accounting system in order to initialize and terminate the model.

Task management: In order to enable both per-process accounting and applica-
tion specific models, I extended Linux’s process data structure task_struct to
include a pointer to a dynamically allocated data structure ea_data. This struc-
ture contains task specific information needed by the energy accounting system such
as a pointer to the task’s current resource container and models—one for CPU and
one for SDRAM energy.

Dynamic allocation of the energy accounting data structure enables dynamic bind-
ing of the task’s model and resource container. This feature allows LEA’P to change
the model at any point without data loss. Because activity log entries contain a
pointer to the task’s currently valid ea_data, entries are always processed using
the right model, even if the task’s model binding has changed by the time the
accounting thread becomes active.

Besides augmenting the process data structure task_struct, I created an in-
terface to Linux’s process management that allows to manage per-process energy
data. When a process or thread is created, changed or exits, its ea_data structure
must be updated. In order to not violate the modularity requirement by including
this functionality into Linux’s process management, I defined an interface, through
which the energy accounting system can register callbacks for the following events:

fork () and exit () On the creation and termination of a task create or delete
ea_data.

exec () When a task loads a new executable, reevaluate the task’s models and
possibly choose new application specific models. This is done using the model
management’s model factory.

switch () When the scheduler is about to switch to another task insert new entry
into the per-CPU’s activity log.

In addition, the process management makes per-process energy information ac-
cessible from user space using the process file system by reading the file
/proc/<pid>/ea.

Energy apportion and accounting: My design allows to defer the apportion
and accounting algorithm and execute it in a dedicated kernel thread. This thread
runs periodically or on demand on any CPU, preferably an idle one. This thread
processes the CPU’s activity logs and charges the energy measured by RTDEMS to
the resource containers using the application specific models.

5.3 Tracing subsystem

In addition to the energy accounting system, I also implemented a tracing subsystem
that provides an interface for monitoring and accurate energy measuring of tasks.
This subsystem acquires values such as measured energy Eieasured, €nergy used by
individual CPUs, model values ¢;, and model data e; and makes them available as
time series data. Values can be traced continuously or only when a given process is

5.3 Tracing subsystem 24

active. The tracing subsystem is used by my model learning tools and also enables
application developers to analyze the energy consumption of a single application.

The tracing subsystem consists of two modules: the arbiter module and the sam-
pler module. The arbiter module acquires and aggregates data that is subsequently
provided to multiple clients. Whenever the accounting algorithm processed a set
of activity log entries, it informs the arbiter which aggregates and distributes the
samples to its clients’ sample queues. Because this causes an additional overhead
for the accounting algorithm, I designed the tracing subsystem as optional kernel
modules, which should only be activated when their functionality is needed. The
sampler module exports the tracing interface and the samples to user space using
the process file system.

Chapter 6

Implementation

This Chapter documents the most important features and trade-offs of my imple-
mentation of LEA?P described in the previous Chapters. After explaining the event
energy learning system, I describe the implementation of LEA?P, and conclude this
Chapter with a list of possible future improvements.

All of my source code is provided on the CD included with this thesis report.
Table 6.1 shows the organization of the CD’s content.

6.1 Behavioral model learning system

In this section I describe the implementation of the model learning system intro-
duced in Chapter 4. I designed the standalone RTDEMS sampling module to fa-
cilitate training data acquisition for model learning. My behavioral model learning
system consists of the steps event selection and event energy learning.

6.1.1 RTDEMS sampling module

The RTDEMS! sampling module is a data acquisition module that builds on
RTDEMS’ energy sampling capability described in Section 2.2. Figure 6.1 shows

IRTDEMS was originally called LEAP-Server. However, time did not allow to change the
implementation to reflect the name change. Therefore, in this Chapter the two names are used
interchangeably of each other.

Directory Content
software/ Source code
rtdems/ RTDEMS system
module/ RTDEMS sampling module
tools/ Sampling and model learning tools
tests/ Application tests used for model learning
lea2p/ LEA’P system
module/ Kernel modules and kernel patch
tools/ User space tools
docs/ Documents such as references and manuals
doku/ My documentation
report/ Thesis report

usenix09/ Paper submitted to USENIX'09

Table 6.1: Contents of the CD included with this thesis report.

25

6.1 Behavioral model learning system 26

the software architecture of the module. I implemented the module for model learn-
ing and other experiments where per-process accounting is not needed or practical.
This standalone module is suitable for these cases, because in addition to energy, it
contains a system state sampler, which can sample arbitrary per-CPU system vari-
ables such as CPU utilization and CPU frequency. More importantly, the system
state sampler can measure arbitrary performance counters. Furthermore, the mod-
ule offers a process filesystem interface that allows to control the sampling process
and read the data from user space. The module’s source code is located in the CD’s
software/rtdems/module/ directory.

Tools

| {start,stop}-sampling.py |

| Sampling Library |

RTDEMS Sampling Module

[/proc Filesystem |

[Buffer]

Setup || system State || Energy

Sampler Sampler

DAQ Subsystem

Card Abstraction Layer

(Buffer]

Kernel Space DMA

Hardware

_ [ourer |

Figure 6.1: Software architecture of the RTDEMS sampling module.

Two user space tools wusing the RTDEMS sampling module are
start-sampling.py and stop-sampling.py, which are implemented in
python and can be found in the CD’s software/rtdems/tools/ directory.
These applications use the sampling library leapserver.py to setup, start
and stop the sampling process as well as to read, convert and export the values.
leapserver.py interfaces to the sampling module using the proc files in
/proc/leapserver/.

6.1.2 Event selection

The event selection process consists of two steps: training data acquisition and
analysis. The implementation of the event selection method can be found in the
CD’s software/rtdems/tools/tests/ directory.

To collect training data in a fully automated manner, I have written the
pmutotals.py script. The script measures total performance event counts as well
as energy values for a set of over 200 test cases containing all applications for which
I want to find behavioral models. The script’s arguments are the relevant perfor-
mance event names, the number of repetitions of each test case, the CPU frequency
and more. The test cases are executed in different combinations on different CPUs.
To get total counts for all performance events, every test case is executed multiple

27 CHAPTER 6. IMPLEMENTATION

times each measuring two different events. This takes a long time. For example, to
measure 2k = 20 performance events for n = 200 test cases in ¢ = 2 configurations
with r = 4 repetitions k*n *c*r = 16000 tests have to be executed, thus even if all
tests are only 30s long, this takes over five days. The script writes the the results
to a file for further processing.

For analysis, the output of pmutotals.py can be processed using statistical soft-
ware such as SPSS? or R3. I wrote the script analyze-pmutotals.py, which
performs the analysis using R’s linear regression and model analysis functionality.
The script is capable of parsing pmutotals.py’s output and generates detailed
statistics regarding the performance of the CPU and SDRAM models using a given
set of performance events. Furthermore, this script calculates estimations for the
per-applications event energies and other per-application statistics. This aids in
comparing different models in order to select suitable performance events.

6.1.3 Event energy learning

After selecting events, the application specific event energies must be learned. While
the event selection system provides event energies, I implemented a separate event
energy learning system for the following reasons. First, the separate event energy
learning system uses time series of event counts and energy. As explained in Sec-
tion 4.2.2; this has many advantages and results in more accurate event energy es-
timations using fewer tests. Additionally, the event energy learning system does not
require the RTDEMS sampling module, but uses the tracing subsystem of LEA’P.
Therefore, the event energy learning system allows to learn models for new appli-
cations on a running LEA?P, thus constituting a first step towards online model
learning.

Similar to event selection, the scripts pmu-tests.py and pmu-learn.py gather
learning data and calculate event energies. These tools are located in the CD’s
software/lea2p/tools directory.

6.2 Energy apportion and accounting system

The design and implementation of LEA?P are two of the main contributions of this
thesis. This Section describes crucial parts of LEA’P which are the data model,
the per-process accounting algorithm as well as the interfaces offered to user space
applications. I conclude the Section with a list of possible future implementation
related improvements.

6.2.1 Data model

LEA?P’s design described in Chapter 5 defines the following crucial requirements for
the data model: energy as well as per-CPU activity logs enabling deferred energy
accounting, dynamic resource container and model bindings for tasks, and support
for future extension to per-activity accounting. My data model is shown in Fig-
ure 6.5 on page 34, whereas arrows indicate possible pointer links. The following
paragraphs describe key features of the data model and individual data structures
like the energy log, per-CPU activity logs, task management, behavioral models and
resource containers. Afterwards, I explain LEA?P’s time measurement and account-
ing granularity choices.

28PSS: nttp://www.spss.com/statistics/
SR: http://www.r-project.org/

6.2 Energy apportion and accounting system 28

Energy log: Iimplemented the energy log as a ring buffer with a head and tail
pointer as well as a count field. This data structure allows to concurrently insert
samples at the head and read from the tail without the necessity of synchronizing
access. Because LEA’P’s apportion algorithm reads the energy consumption for
accounting time slices of arbitrary length, each of the energy log’s entries stores the
energy as well as the duration of the sampling period. This allows to partially read
energy log entries by segmentation, where energy is divided up in proportion to the
duration of the segments.

Per-CPU activity logs: Per-CPU activity logs are the core data structure that
allow to defer energy apportion and accounting. I designed the activity logs similar
to the energy log as ring buffers. In general, each entry represents a period, during
which a task is scheduled uninterruptedly. Each activity log entry stores the follow-
ing information needed in order to charge energy costs to that task: First, the length
of the time slice represented by the entry, second, a pointer to the task’s current
ea_data, which binds the task to its current model, third, the model_values|[],
that allows each of the models to store model specific values required to compute
Eest, and finally, the task’s current resource container to which the energy consump-
tion of the task is charged. In a per-activity accounting system, a task’s resource
container binding changes frequently. Therefore, I preserve the correct resource con-
tainer binding in the activity log. For example, in Figure 6.5 the entries 2 and 4 of
the nth CPU’s activity log point to the same task, even the same ea_data, but
not necessarily to the same resource container. Alternatively, the resource container
could be referenced using ea_data, but then a new ea_data would have to be
created whenever the resource container binding of a task changes.

Task management: Dynamic resource and model binding of tasks is implemented
by the ea_data structure. Dynamic allocation of ea_data necessitates the inclu-
sion of a reference counter, which indicates if ea_data is still being referenced by
either a task or an activity log entry. As soon as the reference counter becomes zero,
the data structure is freed.

Behavioral models: Models are represented by both their interface consisting
of the five functions described in Section 5.2, and a model specific configuration.
For example, PMU models for different applications are implemented by the same
model using different event energies e; stored in different model configurations. This
facilitates generating models for new application by simply allocating a new model
configuration.

Resource containers: Besides merely storing energy, resource containers imple-
ment a few more features. All operations on resource containers are atomic, which
allows them to be shared by multiple processes. For instance, all idle processes (one
per core) are associated with the same idle container. I use p_refs as a reference
counter to indicate how many processes are associated with a container. As a con-
sequence of deferring energy accounting, the resource container values are updated
with a delay. The maximum delay is limited by the period at which the accounting
thread is run. Each resource container counts the number of its activity log entries
in wl_refs, that are not yet accounted for. If the count is zero, a resource con-
tainer’s energy values are up-to-date. As soon as both the process as well as the
activity log reference counters are zero, the container is not in use anymore and can
be deleted. Additionally, every resource container has an unique id, that allows to
identify a particular container.

29 CHAPTER 6. IMPLEMENTATION

Time: LEA’P uses three different measures of time, which are: a) The operating
system’s time as returned by gettimeofday (), b) the DAQ card’s internal oscil-
lator from which the energy sampling frequency is derived, and ¢) the CPU’s time
stamp counter (tsc) used in the activity logs. For accounting, I have decided to use
the tsc for time measurements, because of its nanosecond resolution and stability
among the CPU cores. It is crucial, that these three time measures are always syn-
chronized. For example, if the DAQ card’s time and the per-CPU activity log’s time
drift apart, samples read from the energy log are not actually from the same time
as the entries read from the activity logs. Therefore, the energy is attributed to the
Wrong processes.

The most important means to prevent time drift is to make sure, that no entries
in the energy and the activity logs are lost. Consequently, it is paramount that the
system runs uninterruptedly and the log queues never become full, such that new
entries can be added at all times. I assume that both the CPU’s time stamp counter
as well as the DAQ card’s oscillator increase at a steady rate, such that the time
sync problem can be solved by knowing the respective rates very exactly in order to
allow a perfect conversion. By further choosing the DAQ card’s sampling period as
an integer multiple of the tsc period, the length of an energy log entry can perfectly
be expressed in tsc cycles. My experiments confirm, that these measures work well
for runtimes of a couple of minutes. In order to guarantee time sync for hours or
even days, an active time synchronization system, such as the one I describe in
Section 6.3, must be implemented.

Accounting granularity: For performance reasons, floating point registers are not
saved on context switches within the kernel, thus making it unsafe to use floating
point operations in kernel space. Therefore, all of LEA?P’s calculations use integer
arithmetic and require to carefully choose the granularity of the units. On one
hand, the accounting unit’s granularity must be fine enough, to accurately represent
small energy values, for example for very small accounting time slices. On the other
hand, large values for example energy accumulated over a long time, or intermediate
calculation results, must fit into 64bit variables. Because energy values are stored in
signed integer variables, their absolute value should not become bigger than 263 — 1.

I have identified the smallest physical values used by LEA’P, which are the pmu
model’s event costs e;. As Table 4.2 shows, event costs are of the order of a few nano-
joules and should preferably be represented with pico-joule granularity. LEA?P’s
largest numbers occur within RTDEMS’ energy calculation as in Equation 6.1 and
the energy apportion algorithm as in Equation 6.2. Variables with a tilde denote an
entity in accounting units and u represents one physical unit expressed in accounting
units, such as 10° for micro-joule accounting granularity. Therefore, = x * u, for
example using micro-joule granularity x = 10.5mJ is represented by z = 10, 500.

<(2%%-1)
~ N

N o= 1
B = _uEr At — logou < 31— 3 log, max(P) (6.1)
U
<(263_1)
—_—

- Eest,i * Emeasured

E(ost, ~
“OSt, L
Z] est,j

Since the accounting time slice and therefore the energies used by the apportion
algorithm are typically very small, Equation 6.1 is more critical. As a result, I have
chosen 1078 as my accounting unit, which allows to measure power consumptions

= logou < 31 —log, max(E) (6.2)

6.2 Energy apportion and accounting system 30

of up to 128 watts and apportion energies of up to 11 joules per accounting time
slice. These constraints force me, to use different units within the pmu model’s
calculations, where I use pico-joules and ultimately convert the result to accounting
units.

6.2.2 Per-process accounting

In order to apportion and account energy, my system logs per-CPU activity and
energy measurements. In a second step, the logs are processed and energy is charged.
The following sections describe both steps and the algorithms used in more detail.

Per-CPU activity logging

Each CPU inserts entries in its own activity log, which are later used by the ac-
counting thread to charge energy costs to tasks. Whenever the scheduler selects a
new task, the LEA’P is informed and inserts a new entry in the CPU’s activity
log. For example, Figure 6.2a) shows two CPUs running three tasks a, b, and c.
Task a is scheduled on CPU 1 at ¢ = Oms, and a new activity log entry is created.
For each of a’s models, the put_task () function is called to gives the model the
opportunity to prepare to monitor a’s energy behavior. Later at ¢ = 11.4ms a is
removed from the CPU, the task’s model’s pop_task () functions are called and
the activity log entry is finalized. In this example in Figure 6.2b), the models store
the values [100, 200] and [200, 100], respectively. At this point, the entry
contains all information needed by the energy accounting thread. CPU 2 performs
the same actions for tasks b and c.

CPU1 CPU 2 Energy Log
| 1 HE At=114ms At=8.2ms At =1ms, e = [100, 200]
' task a ' ' At =1ms, e = [100, 200]
CPU 1 : &ea_data_a &ea_data_b 2 me 62 [100 2001
o oo 5 m?[‘{eo‘ﬁvilgoj m;’[‘;%')ﬁ'g; At =1ms, e = [100, 200]
H H | H N , , 3 At =1ms, e = [100, 200]
o taskb . taskic 1200, 100]] [100, 101} at = 1ms, e = [100, 200]
CPU2 oo srca &rcb At = ms, e = [100, 200]
' ' ' " - = At = 1ms, e = [120, 240]
. I’ 4 B - - At =1ms, e = [120, 240]
E] (Bom EBoGHS At = 1ms, e = [120, 240]
s e e semmec | [aTimezia
i ' ' ' ' = - - - At =1ms, e = [90, 160]
Apportion Atn 0 Atz Ats: 1s, 81, [[40, 601, At=1ms, e = [90, 160]
time slices » [15, 1111 180, 5511 At=1ms, e = [90, 160]
&rc_idle &rc_c At =1ms, e = [100, 180]
- - At =1ms, e = [100, 180]
At =1ms, e = [100, 180]
a) b)

Figure 6.2: Per-CPU activity logging on two CPUs running the tasks a, b, and ¢. a)
Scheduling of the tasks. b) Corresponding activity and energy log entries.

Apportion and accounting algorithm

The apportion and accounting algorithm works as follows:

1. Get entries for the next accounting time slice At from all per-CPU activity
logs.
2. For each resource (CPU, SDRAM)

(a) Get Freasured for At from RTDEMS’ energy log.

(b) Get Eg of each entry by executing the estimate () function of the
model which is referenced by the entries’ ea_data reference.

81 CHAPTER 6. IMPLEMENTATION

CPU1 CPU 2 Entries Estimation Apportion Accounting
At = 3.2ms At = 8.2ms
&ea_data_a &ea_data_a timate ()
model_vals = i model_vals = estimate
Ly get_entries() K
[[28, 761, - 3 [[72,144), | ———— Eqq = [500, 1000] Ecost = [515,1099]
(76, 28]] (144, 72]]
&rc_a &rc_a
At = 5ms At = 6.6ms
&ea_data_idle &ea_data_c
model_vals = model_vals = At = 8.2ms
[Is. 81, [[40, 60], &ea_data_b X
[15, 11]] (80, 5511 model_vals = estimate ()
&rc_idle &rc_c 1[70,120], | ———— Eqq = [300, 500] apportion () &= Eqoqr = [309, 549]
[100, 1011
&rc b
Energy Lo
ay 9 get_energy (8.2ms)
R > Encasured = [824, 1648
At =1ms, e =[120, 240]
At = 1ms, e = [120, 240]

Figure 6.3: Steps taken by the activity log processing algorithm in order to account
for the schedule of tasks shown in Figure 6.2.

(c) Charge each entry’s resource container according to the apportion rule
introduced in Chapter 3.

For example, Figure 6.3 shows the steps necessary to process the energy and activity
log entries created by the schedule of tasks shown in Figure 6.2.

First, the entries of the activity logs are read. Since all CPUs create activity log
entries independently, the log entries do not correspond to the same time slice in
general. However, to apportion the energy of a time slice At, the entries have to be
of the same length. The length of the accounting time slice is defined in step 1 by
the shortest entry, which is in my example task b’s and 8.2ms long. Longer entries
are segmented into an entry of length At¢ and the remainder. In this example, the
11.4ms entry of CPU 1 is segmented into a parts of 8.2ms and 3.2ms. All model
values are divided up in proportion to the length of the segments. For example,
when splitting up the value 100 the 8.2ms segment gets 100+ 8.2/11.4 = 77 and the
second 3.2ms segment remaining in the activity log gets 28.

Second, the energy FEieasured Used during those 8.2ms is retrieved from RTDEMS’
energy log. In my example this is 824 for SDRAM and 1648 for CPU energy.

Third, each of the task’s behavioral energy models is called to provide an energy
estimation for the log entry:

sdram_est = entry->ea_data->sdram _model->estimate (entry)
For this estimation, the model relies on the model values it saved in the
put_task () and pop_task () calls.

Forth, Fieasured 1S apportioned according to my fair apportion system introduced
in Chapter 4 and finally, this energy is charged to the task’s resource container
referenced in the activity log entry.

I assume that the behavior of a task is approximately uniform during an activity
log time slice, such that when an entry is segmented, model values can be divided
up linearly among the segments. The following example shows a case, where an
activity log entry with non-uniform behavior leads to wrong apportion of energy.
Assume that task a and task ¢ shown in Figure 6.4 perform memory accesses, but b
does not. Furthermore, assume that a only accesses memory, when b but not when
c is active. In order to account SDRAM energy e; of Aty, a’s activity log entry is
segmented, and the model values are divided up proportionally among the segments,
even though a did not access memory during At,. Because b did not access memory
during Atq, all of e; is charged to a, which is correct. However, when the system
apportions ey for Aty, a’s model values for At; indicate wrongly, that a accessed

6.2 Energy apportion and accounting system 32

File Functionality

state Displays LEA’P’s current state and allows
to start and stop the system.

cont Allows to read the values of a particular
resource container, which can be selected
by writing the id to the file prior to reading.

conts Lists the values of all resource containers.

stats Provides information such as queue fill
statistics, overhead caused by the system,
current sampling rates and more.

Table 6.2: LEA’P proc interface files in /proc/ea/.

memory. Therefore, e, is split among a and ¢, which is obviously wrong because
only ¢ accessed memory during Ats. In conclusion, in order to segment activity log
entries the behavior of a task must be uniform during the entries time slice. Because
activity log entries created by the scheduler have an arbitrary length, a timer inserts
new entries at a frequency for which the above assumption of uniform behavior is
reasonable—20Hz in my implementation.

task a

CPU1 s 0 T TS
task b taskic
CPU 2 %
Em SDRAM __ €1 el >
Apportion : Aty : Atz EAtzi %% : memory
time slices— - — » access

Figure 6.4: Application example, where an activity log entry of non-uniform behav-
ior leads to a wrong apportion result.

6.2.3 User space interfaces

LEA?P provides a number of different interfaces, that enable user space applications
to control and monitor the system as well as acquire runtime energy information.
Along with three proc filesystem interfaces for LEA?P controlling, per-process en-
ergy information and for the tracing subsystem, I implemented a set of python
libraries that facilitate interaction with the interfaces.

LEAZP controlling and monitoring

The LEA?P controlling and monitoring interface is located in the /proc/ea/ direc-
tory. The functionality of the files is described in Table 6.2. The library interfacing
to these files is called ea.py and included in the CD’s software/lea2p/tools/
directory.

Per-process energy information

Similar to other per-process information offered by Linux, LEA?P adds a file to each
process’ proc directory showing the process’ energy usage in /proc/<pid>/ea.
A process has to have sufficient privileges in order to access this file. An application
like the well-known top, which provides a dynamic runtime view of tasks running
on a system, could easily be extended to display this per-process energy information
[24].

33 CHAPTER 6. IMPLEMENTATION

File Functionality

state Displays the current state and allows to
start and stop tracing.

ctrl Allows to choose the values which are

traced, for instance Fmeasured, Fest, Per-
CPU energy consumption, model values
and more.

cont Allows to choose the resource container
that is traced. Choose —1 to trace the
whole system.

samples Provides the tracing results.

power Displays the whole system’s current power
consumption.

Table 6.3: Tracing subsystem proc interface files in /proc/ea/sampler/.

Tracing subsystem

The tracing subsystem’s interface is implemented using files in
/proc/ea/sampler/. Table 6.3 describes the interface. However, I recom-
mend to use the library ea.py from the CD’s software/leal2p/tools/
directory for sampling. An example of how this can be implemented can be seen in
trace—-app.py.

6.3 Future improvements

My implementation described in this Chapter is complete and working. Now that
all components are finished and successfully meet the requirements specified in
Chapter 5, the following five improvements could be implemented.

First, as mentioned in Section 6.2 the system’s time sources are not actively syn-
chronized. Because all time sources advance at a reasonably steady rate, this is
sufficient for short runtimes of LEA?P. However, for runtimes in the order of hours
or even days an active synchronization is necessary. This can be implemented by
generating a pulse at a known frequency on a system output that is connected to
and measured by the DAQ card. By correlating the DAQ card’s measurements with
the known times, at which the pulses were sent, time drift can be detected and
corrected.

Second, the implementation of application specific models must be finished by imple-
menting the missing exec () callback. Furthermore, alternative behavioral models
could be studied. For example CPU frequency aware or independent models, non
linear models or also models that take the model values of all CPUs into account.

Third, per-user or also per-process accounting, where a process’ resource container
accumulates values from all threads and child processes, could be implemented. For
this, a resource container hierarchy must be introduced, where the energy costs of
a container are also charged to its parent container. This could provide valuable
energy usage information.

Fourth, the addition of per-activity accounting would be useful for some applications
such as web servers [4, 25]. This would not require changes on LEA?P, but extensive
modifications of the kernel as well as user space applications.

Finally, energy-aware user space applications such as etop could be implemented.

34

6.3 Future improvements

Energy Data
Acquisition

Energy
Samples

At
energy[]

Per-CPU Activity Lists

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energyl[]

At
energy[]

At
energy[]

At
energy[]

At
energy[]

At
energyl[]

At
energy[]

At
energy[]

At

energy[]

Task Management

Energy Accounting

CPU 1 CPUn task_struct Models Resource
ea_data Containers
el task 1 - model 1 rclr—

At At pid put_task() id

*task_ea_data *task_ea_data cmd pop. task() energy[]

model_values[] model_values|[] : mmzm:wnmc wl_refs

*resource_container *resource_container *ea_data init() p_refs

it
At *models[] X | rc3
*task_ea_data e2 *config(] id
T A *resource_ energy(]
HMMMF__MMM_FMMMMEJQ — o container wl_refs
- *task_ea_data ref_count p_refs
model_values[] —)) —
*resource_container task 2 configuration[] s
pid id
cmd uration[] energy[]

At i wi_refs

*task_ea_data es " *ea_data p_refs

HMMM__MMM_FMMMMWSQ *task_ea_data *models[]

- model_values[] *configl] \F\w id

At *resource_container *resource \Eem%\ energy(]

*task_ea_data container put_task() wl_refs

model_values[] ref_count vomuﬂmmxc p_refs

*resource_container estimate()

e4 task 3 init() rc5
At pid exit() id
*task_ea_data cmd energy[]
model_values[] i wi_refs
*resource_container *ea_data configuration[] p_refs
*models[]
*config[] id
*resource_ energy[]

At container wi_refs

*task_ea_data ref_count p_refs

model_values[] m

i *,

*resource_container e5 " *Mwﬂﬂmu_m: pULITask() rc7 ”
*task_ea_data *resource_ wmmﬂhwmuw energy[]
model_values[] \ container init() wl_refs
*resource_container ref_count exit() p_refs

At

*task_ea_data configuration[]

model_values[]

*resource_container

Figure 6.5: Data model of the energy accounting software system.

Chapter 7

Evaluation

In this section, I present an experimental evaluation of the accuracy of the appor-
tion algorithm and demonstrate the functionality of LEA?P using typical desktop
applications. In addition, I investigate the impact of my system on CPU resources.

7.1 Per-process energy apportion accuracy

The main part of the energy apportion algorithm is the set of performance event
models introduced in Chapter 4. In order to ascertain the accuracy of these models, I
would need to compare the results to those obtained by an a priori accurate measure-
ment system. However, as mentioned in Chapter 3, without extensive motherboard
and CPU modifications, I cannot measure the energy consumption of individual
CPU cores or the percentage of SDRAM energy usage caused by a particular pro-
cess. As a result, the correct solution of the apportion problem (i.e. ground truth)
is in the general case not known.

In order to test the accuracy of the apportion algorithm I therefore designed ex-
periments for which I am able to assert a particular apportion. I then compare the
asserted values with the solution found by my online algorithm. I chose a sequen-
tial memory access benchmark as my test program, as it allows to test SDRAM as
well as CPU energy apportioning, by controlling the number of memory accesses.
I chose a memory buffer of 512MB in order to minimize the impact of the CPU’s
cache management, which is beyond my control.

By executing two instances of the memory benchmark, A and B concurrently on two
different cores and by controlling the number of accesses over the memory buffer, I
assert the energy apportioning to be proportional to the number of memory accesses
performed by the two processes. For example, if process A accesses the memory
buffer once while process B accesses it twice, I assert that the correct memory
energy attribution would be 33% for process A and 66% for process B. I note that
this assertion holds for my benchmark because the type and locality of memory
accesses is the same for both processes, as opposed to arbitrary processes and tasks,
where neither type nor locality can be known in advance.

Figure 7.1 depicts the result of my experiments for both CPU and SDRAM energy
attribution. The x-axis depicts the asserted value of process A as a percentage of
the total energy value of A + B, i.e. EﬁriAEB’ while the y-axis shows the equiva-
lent measured result from LEA?P’s energy apportioning system. An ideal energy
apportioning system would have a y-axis value that would match the corresponding

z-axis value. SDRAM (utilization) is the CPU utilization based apportion result for

35

7.2 CPU overhead 36

100 - B

CPU —<—
SDRAM +—+—
SDRAM (utilization) *
Ideal
80 -

K
1

60 -

40 - * N

Measured apportion [%)]

20 - B

I I I I I I
0 20 40 60 80 100

Asserted apportion [%]

Figure 7.1: Asserted and measured CPU and SDRAM energy apportion of two tasks
a and b with 95% confidence interval. “SDRAM (utilization)” is the CPU utilization
based apportion result for SDRAM energy.

SDRAM energy. In all cases the utilization based apportion performs worse than
LEAP, especially for the cases where one test does not access memory by using
the CPU cache exclusively. As seen in Figure 7.1, my energy apportioning system
is very accurate, with a maximum deviation of up to 4% of the equivalent asserted
values. The accuracy achieved in this experiment makes it reasonable to assume
that my system provides the correct apportion for arbitrary applications.

7.2 CPU overhead

As mentioned in Chapter 2 and 5, LEA?P needs to operate with the lowest possi-
ble overhead. In Chapter 2 I investigated the RTDEMS overhead in terms of CPU
resources. However RTDEMS-induced overhead is only part of LEA?P’s overhead.
In addition, overhead is caused by the insertion of entries into the activity logs and
subsequent processing by the apportion and accounting thread. As a consequence,
the overhead is expected to depend on the scheduler’s task switching activity. When-
ever the tracing subsystem described in Section 5.3 is active, the accounting thread
is required to supply the arbiter with time series data, thus creating additional
overhead.

In order to determine the overhead of my system on CPU resources, I measured
the CPU time spent within LEA?P. This was determined using the processor’s
time stamp counter which provides nanosecond time resolution with minimal CPU
impact. To quantify the impact of scheduling activity, I implemented a microbench-
mark that periodically performs a CPU-bound computation and then causes a task
switch by yielding the processor. The task switching frequency can thus be controlled
by modifying the duration of the CPU-bound computation. Each task switch leads
to an additional entry in the per-CPU activity log as described in Section 5.2. The

87 CHAPTER 7. EVALUATION

CPU overhead depends on the rate of modifications (insertions and deletions) on
the per-CPU activity log. Therefore, increased scheduling activity (task switching
frequency) is expected to incur higher overhead.

I conducted experiments using two tasks per CPU, variable task activity periods,
and by enabling and disabling the tracing subsystem. Figure 7.2 shows LEA?P’s
CPU overhead. I note that even at very high task switching frequencies of 300Hz
the impact on the CPU is less than 0.45% and is reduced to less than 0.2% at
switching frequencies of 10Hz or less. On the other hand, the activation of the
tracing subsystem results in a relatively substantial overhead of 0.6% at high task
switching frequencies. Acquisition of time series data is a relatively expensive oper-
ation thereby justifying my design decision to implement the tracing subsystem as
an optional module.

0.7

T T
Tracing subsystem inactive
Tracing subsystem active

CPU overhead [%)]

0.1 ! ! ! ! ! !
0 50 100 150 200 250 300

Task switching frequency [Hz]

Figure 7.2: CPU overhead with 95% confidence intervals of LEA?P as a function of
task switching frequency.

I argue, that LEA?P’s overhead depends not only on the scheduling activity, but
also on the number or CPUs. Adding a CPU leads to the creation of an additional
per-CPU activity log. Not only does the additional CPU have to add entries to
the log, the entries also have to be processed. An additional CPU further results
in a more complex apportion calculation, because energy has to be apportioned
among more CPU entries. Also, since scheduling activity on the added CPU leads
to additional segmentation of the activity log entries so that the average accounting
time slice becomes smaller, thus resulting in more apportion steps which increases
overhead.

It is important to note, that the overhead does not depend on the number of tasks,
unless the number of tasks influences the scheduling activity. The overhead to appor-
tion and account for two tasks switching back an forth is the same as for many tasks
switching at the same frequency, because in both cases exactly the same amount of
activity log entries are created and processed in exactly the same way.

7.8 Application apportioning 38

Application | CPU [J] SDRAM [J] Runtime [sec]
apache 158.3 1.9 17.5
gce 159.4 4.0 17.9
sort, 128MB 174.0 5.1 19.2
image blur 96.8 0.5 10.1

Table 7.1: CPU and SDRAM energy apportion for four applications executed se-
quentially.

Application | CPU [J|] SDRAM [J] Runtime [sec|
apache 83.9 1.98 18.7
gee 109.7 5.19 19.6
sort, 128 MB 145.92 5.84 20.2
image blur 72.65 0.43 10.3

Table 7.2: CPU and SDRAM energy apportion of the same four applications exe-
cuted concurrently.

7.3 Application apportioning

Tables 7.1 and 7.2 show the results of the apportion system for four applications exe-
cuted sequentially and simultaneously, respectively. My application set includes the
apache web server, a gcc compilation of parts of the boost library, sorting a 128MB
file of 100-byte length random integers and an image blurring process. Figure 7.3
shows the applications’ individual CPU and SDRAM power profiles measured us-
ing LEA?P’s energy tracing capability. In contrast, Figure 7.4 shows the combined
energy consumption when executing all tests concurrently. In addition, the latter
Figure depicts the energy apportion as calculated by LEA?P. The application’s
characteristic energy footprints are also reflected by the apportion result. While
each application’s runtime increases slightly when executed concurrently with the
other applications, total CPU energy consumption decreases, thus all applications
are charged less CPU energy. On the other hand, gcc’s and sort’s SDRAM energy
consumption increases. This indicates, that some of their cache lines are evicted by
image blur and apache, respectively.

My experimental results demonstrate that LEA?P has achieved its design goals of

providing integrated and accurate—96% of optimal—per-process energy accounting
of individual hardware components, incurring only up to 0.6% of CPU overhead.

39 CHAPTER 7. EVALUATION
20 T T
apache CPU [W] mmmmm
gcc CPU [W]
sort, 128MB CPU [W]
image blur CPU [W]
apache SDRAM [W] mmmmm
15 gcc SDRAM [W] s
sort, 128MB SDRAM [W]
image blur SDRAM [W] s
apache gcc sort,128MB image blur
el
o
g &
5 2
g g
2 E
®
£

CPU1
CPU 2
CPU3
CPU 4
1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80
Time (sec)

Figure 7.3: Energy consumption of apache, gcc, sort
quentially.

, and image blur executed se-

30

25

Power (W)

apaéhe CPU [W]
gcc CPU [W]
sort CPU [W]

image blur CPU [W]
apache SDRAM [W]
gcc SDRAM [W] s

sort SDRAM [W]
image blur SDRAM [W] s

Instructions Retired

Ao mmluum||||||||||||||||||||||||I|||||

CPU1
CPU 2
CPU3
CPU 4

Time (sec)

20 25

Figure 7.4: Combined energy consumption of apache, gcc, sort, and image blur

executed concurrently.

Chapter 8

Related Work

Prior work on energy measurement for server systems typically focuses on global
server power consumption surveys, such as Binachini et al. [7] and Koomey et al. [16].
External power measurements have been used by Chase et al. [8] to optimize the
energy consumption of a hosting center by dynamically resizing the server set of a
cluster. As explained in Chapter 2 external measurements are not suitable for per-
process accounting as they do not meet the integration and resolution requirements.

An alternative approach to determine a server’s energy consumption is through
estimation techniques. ECOSystem [27] and Rivoire et al. [22] use a power state
based model and associate a fixed power consumption to each state. Kansal et al. [15]
propose a similar model for application energy profiling. Using a per-component
utilization based approach, Mantis [10] learns and predicts the power consumption
of a server system for different workloads. My work does not rely on estimation
techniques, as the RTDEMS system provides direct energy measurements at high
temporal and spatial resolution.

Bellosa et al. [5, 20] introduced linear performance event based models for CPU
energy estimation and utilized them for dynamic thermal management. My energy
behavior models and methods of energy apportioning among tasks are based on this
work. LEA?P extends this previous work by providing application specific models for
accurate apportioning and also extends the PMU models to include main memory
energy consumption.

Isci et al. [13] used performance counters to estimate the energy consumption of pro-
cessor subsystems from power external measurements. Similarly, Lewis et al. [17]
proposed a method to calculate per-component energy from AC power measure-
ments. Alternatives to performance event based models are SimplePower [26], an
instruction level emulator and energy estimator, or regulator switching cycles based
energy models as proposed by Dutta et al. [9]. However, those systems do not pro-
vide per-task resolution and thus cannot be easily adopted to solve the multi-core
energy attribution problem.

Resource containers [4] are a well-known operating system abstraction. They have
been proposed and implemented for FreeBSD [4] and for Linux [25]. In addition,
Jones et al. [14] designed a modular resource management for the Rialto operating
system. My system builds upon previous work by providing the first implementation
of resource containers for multi-core systems and by solving the energy apportion
problem.

My work is an adaption of previous work—LEAP2 [24]—for embedded computing.
LEAP2 combined real-time energy information measured and accumulated by a
dedicated ASIC, and per-process energy accounting. Since this embedded platform

40

41 CHAPTER 8. RELATED WORK

has only one CPU, LEAP2 does neither require indirect energy measurements nor
energy apportion.

Chapter 9

Conclusion

This thesis introduces LEA’P, a new energy attribution software architecture that
augments the operating system of a multi-core platform with runtime per-process
energy usage information. LEA?P utilizes runtime direct energy measurements that
provide accurate per-component energy usage information at millisecond-scale reso-
lution. I argue that per-process energy accounting on a multi-core or multi-processor
platform necessitates the use of indirect energy measurements. As a solution to this
energy apportion problem I introduce performance counter based energy behavior
models. I experimentally demonstrate that my models exhibit high energy estima-
tion accuracy for single-core experiments with both microbenchmarks and actual
applications, thereby providing an apt measure for the apportion of both CPU as
well as SDRAM energy.

I fuse the direct and indirect portions of my system in a combined energy apportion
and accounting software system—LEA?P—, designed as a low-overhead modular
component of the Linux operating system. My experiments demonstrate that my
energy apportioning system can successfully provide per-process energy consump-
tion with over 96% accuracy, while impacting CPU performance by less than 0.6%.

In the future I plan to extend LEA?P to account energy usage of other components
such as hard drives and network cards, which requires the design and implementa-
tion of suitable energy models. Furthermore, I aim to replace the initial calibration
phase necessary for model learning with an online model learning system. I designed
LEA’P with future expansion to alternative accounting systems like per-activity ac-
counting in mind. I also intend to build on my resource container implementation
and provide a more powerful interface for container manipulation to user space
applications.

42

48 CHAPTER 9. CONCLUSION

Acknowledgments

I wish to thank Thanos Stathopoulos and Dustin McIntire from UCLA for their
invaluable support and advice. I am also very grateful to William J. Kaiser from
UCLA and Lothar Thiele from ETH for their guidance and approval that made this
thesis possible. Furthermore, I am thankful to all members of the ASCENT Lab for
their friendship and helpfulness and to UCLA’s Electrical Engineering Department
for always providing apt administrative assistance.

Bibliography

[1]

2]

3]

[4]

[5]

|6]

7]

8]

[9]

[10]

[11]

Advanced configuration and power interface specification, 2005.
http://www.acpi.info.

Manish Anand, Edmund B. Nightingale, and Jason Flinn. Ghosts in the ma-
chine: interfaces for better power management. In MobiSys ’04: Proceedings of

the 2nd international conference on Mobile systems, applications, and services,
pages 23-35, New York, NY, USA; 2004. ACM.

Manish Anand, Edmund B. Nightingale, and Jason Flinn. Self-tuning wireless
network power management. Wirel. Netw., 11(4):451-469, 2005.

Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: A
new facility for resource management in server systems. In Operating Systems
Design and Implementation, pages 45—58, 1999.

Frank Bellosa, Andreas Weissel, Martin Waitz, and Simon Kellner. Event-
driven energy accounting for dynamic thermal management. In Proceedings of
the Workshop on Compilers and Operating Systems for Low Power (COLP’03),
New Orleans, LA, September 27 2003.

Luca Benini, Giuliano Castelli, Alberto Macii, Enrico Macii, and Riccardo
Scarsi. Battery-driven dynamic power management of portable systems. In
ISSS ’00: Proceedings of the 13th international symposium on System synthe-
sis, pages 25—-30, Washington, DC, USA, 2000. IEEE Computer Society.

Ricardo Bianchini and Ram Rajamony. Power and energy management for
server systems. Computer, 37(11):68-74, 2004.

Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing energy and server resources in hosting centers. In

SOSP ’01: Proceedings of the eighteenth ACM symposium on Operating systems
principles, pages 103-116, New York, NY, USA, 2001. ACM.

Prabal Dutta, Mark Feldmeier, Joseph Paradiso, and David Culler. Energy
metering for free: Augmenting switching regulators for real-time monitoring.
In IPSN °08: Proceedings of the 7th international conference on Information
processing in sensor networks, pages 283-294, Washington, DC, USA, 2008.
IEEE Computer Society.

Dimitris Economou, Suzanne Rivoire, Christos Kozyrakis, and Partha Ran-
ganathan. Full-system power analysis and modeling for server environments.
In Workshop of Modeling, Benchmarking, and Simulation, 2006.

Jason Flinn and M. Satyanarayanan. Powerscope: A tool for profiling the en-
ergy usage of mobile applications. In WMCSA °99: Proceedings of the Second
IEEE Workshop on Mobile Computer Systems and Applications, page 2, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

44

45

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

William A Hammond. Efficient power consumption in the modern datacenter.
Technical report, Digital Enterprise Group, 2005.

Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end
processors: Methodology and empirical data. In MICRO 36: Proceedings of
the 36th annual IEEE/ACM International Symposium on Microarchitecture,
page 93, Washington, DC, USA, 2003. IEEE Computer Society.

M. B. Jones, P. J. Leach, R. P. Draves, and . [ii Barrera J. S. Modular real-
time resource management in the rialto operating system. In HOTOS ’95:
Proceedings of the Fifth Workshop on Hot Topics in Operating Systems (HotOS-
V), page 12, Washington, DC, USA, 1995. IEEE Computer Society.

Aman Kansal and Feng Zhao. Fine-grained energy profiling for power-aware
application design. SIGMETRICS Perform. Eval. Rev., 36(2):26-31, 2008.

Jonathan G. Koomey. Estimating total power consumption by servers in the
u.s. and the world. Analytics Press, February 2007.

Adam Lewis, Soumik Ghosh, and N.-F. Tzeng. Run-time energy consumption
estimation based on workload in server systems. In HotPower ’08, San Diego,
2008.

Dimitrios Lymberopoulos, Nissanka B. Priyantha, and Feng Zhao. mplatform:
a reconfigurable architecture and efficient data sharing mechanism for modular
sensor nodes. In IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks, pages 128-137, New York, NY,
USA, 2007. ACM.

D. Mclntire, K. Ho, B. Yip, A. Singh, W. Wu, and W.J. Kaiser. The low power
energy aware processing (LEAP) embedded networked sensor system. Informa-
tion Processing in Sensor Networks, 2006. IPSN 2006. The Fifth International
Conference on, pages 449-457, April 2006.

Andreas Merkel, Frank Bellosa, and Andreas Weissel. Event-driven thermal
management in SMP systems. In Second Workshop on Temperature-Aware
Computer Systems (TACS’05), Madison, USA, June 2005.

Dinesh Ramanathan and Rajesh Gupta. System level online power manage-
ment algorithms. In DATE ’00: Proceedings of the conference on Design, au-
tomation and test in Europe, pages 606-611, New York, NY, USA, 2000. ACM.

Suzanne Rivoire, Mehul A. Shah, Parthasarathy Ranganathan, and Christos
Kozyrakis. Joulesort: a balanced energy-efficiency benchmark. In SIGMOD
07: Proceedings of the 2007 ACM SIGMOD international conference on Man-
agement of data, pages 365-376, New York, NY, USA, 2007. ACM.

Ishan Sehgal and Michael Patterson. Cool crunching: Understanding green
hpc. Technical report, IBM and Intel, 2008.

Thanos Stathopoulos, Dustin McIntire, and William J. Kaiser. The energy
endoscope: Real-time detailed energy accounting for wireless sensor nodes. In-
formation Processing in Sensor Networks, 2008. IPSN ’08. International Con-
ference on, pages 383-394, April 2008.

Martin Waitz. Accounting and control of power consumption in energy-aware
operating systems.

BIBLIOGRAPHY 46

[26] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of
simplepower: a cycle-accurate energy estimation tool. In DAC ’00: Proceedings
of the 87th conference on Design automation, pages 340-345, New York, NY,
USA, 2000. ACM.

[27] Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Ecosystem:
managing energy as a first class operating system resource. SIGPLAN Not.,
37(10):123-132, 2002.

	Introduction
	The Runtime Direct Energy Measurement System
	Direct energy measurement system overview
	RTDEMS design

	Per-Process Energy Apportioning
	Indirect Energy Measurement Model
	Performance counter behavioral model
	Model learning

	Architecture
	Resource containers
	Per-process accounting subsystem
	Tracing subsystem

	Implementation
	Behavioral model learning system
	Energy apportion and accounting system
	Future improvements

	Evaluation
	Per-process energy apportion accuracy
	CPU overhead
	Application apportioning

	Related Work
	Conclusion

