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Abstract

In this thesis the new procedure Mesh Construct for neighbor discovery

and mesh topology construction of radio alarm systems based on multihop

wireless sensor networks (WSNs) is presented.

The detectors of such a system are equipped with a radio transceiver

and a pack of batteries in order to report detected dangers wirelessly over

possibly multiple hops to a central node of the underlying multihop WSN.

To ensure a reliable alarm message transmission several node-disjoint multi

hop routing paths from each detector to the central station are required.

A connectivity state is defined to determine whether the constructed mesh

network fulfills this requirement.

The Mesh Construct procedure constructs a mesh network topology by

initiating neighborhood discoveries on each node starting from the central

station and proceeding outwards hop by hop. During the neighborhood

discoveries nodes are chosen as neighbors depending on the link quality and

a possible connectivity state improvement.

After the completion of the Mesh Construct procedure the operation of

the radio alarm system including a topology control procedure is started.

Removals of inappropriate neighbors by the topology control can cause in-

stabilities in the connectivity state of the network and increase energy con-

sumption.

The objective of the Mesh Construct is to discover neighbors and con-

struct a stable mesh network topology in terms of connectivity in a fast and

energy-efficient way.

The evaluation of performed Mesh Construct tests showed promising re-

sults. Compared to an existing solution with the Mesh Construct procedure

the energy consumption, the duration, and the network instability could be

reduced.
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Introduction Chapter 1

Chapter 1

Introduction

A wireless sensor network (WSN) consists of a set of autonomous nodes,

each equipped with one or more sensors and a radio transceiver. The sensor

nodes can be deployed at distributed locations over an area in order to

jointly monitor various environmental conditions. The gained informations

from the sensors are processed and exchanged within the network by radio

communication.

Alarm systems require sensors to detect a possible danger, e.g. a thermal

or optical sensor for fire, or a motion sensor for intrusion. Detected dangers

are reported to a central station in order to raise alarm. For alarm systems,

often sensors are equipped with a radio transceiver and a pack of batteries

to save laborious and expensive wiring of detectors. A larger region than

the communication range of one single sensor can be monitored by deploying

several sensors in a WSN. The monitored area of a WSN alarm system can

additionally be increased with a mesh network topology. In a mesh network

alarms can be forwarded over multiple sensor nodes to the central station.

To ensure a reliable alarm reporting more than one multi hop routing path

from a sensor node to the central station is demanded in the network.

When a WSN alarm system has been installed, the individual sensor

nodes have no apriori knowledge about other existing nodes in the system.

Therefore, each node has to discover nodes in the vicinity to construct the

network topology. Discovered nodes are stored in a neighbor table. Through

the informations in the neighbor tables the multi hop communcation paths

from a sensor node to the central station can be deduced.

In this master thesis the algorithm Mesh Construct is presented. Mesh

Construct is a new procedure to perform a neighbor discovery and topology

1



Chapter 1 Introduction

construction with certain characteristics for an WSN alarm system. In the

special case of a wireless fire detection sensor network the mesh topology

requires at least two node-disjoint communication paths from a detector to

the central station to ensure a reliable alarm reporting also in case of a

detector failure.

In this report several parts have been removed due to confidentiality

reasons.

1.1 Setup

The underlying systems considered in this thesis is are radio alarm systems

based on a wireless sensor networks. However, the investigations in this

thesis are mostly focused on a wireless fire detection sensor network but

could also be generalized on an arbitrary radio alarm system.

1.1.1 Definitions

In the following some primary definitions of an radio alarm system are stated.

In Figure 1.1 the mesh topology of an exemplary radio alarm system is

shown.

• An alarm system consists of at least one gateway and one or more

detectors. The detectors are equipped with sensors which can detect

a danger event. In the case of a fire detection system the sensors are

thermal or optical and are able to detect a fire. If a danger emerges

and is detected the detectors report it to the gateway. The gateway

is connected with a central unit which processes the alarm messages.

The detectors and the gateway are also denoted as nodes.

• A radio alarm system is an alarm system where each node is equipped

with a radio transceiver.

• For the communcation within the network each node has a table of

nodes located in the vicinity, which are reachable by radio communi-

cation. The nodes listed in this table are called neighbors, the table is

denoted as neighbor table (Note: Not each node in the vicinity is nec-

essarily contained in the neighbor table!). Two nodes are neighboring,

if both are contained in the neighbor table of each other. The radio

connection between a node and one of its neighbors is denoted as link.

2



1.1 Setup Chapter 1

In Figure 1.1 for example node A and B are neighboring, but A and

C are not. The lines between the nodes symbolize the links.

Figure 1.1: Mesh network topology of an multihop radio alarm system

• A communication path is a sequence of consecutive links between two

nodes. For example in Figure 1.1 between the node M and the gateway

there are the communication paths (M, G, B, gateway) or (M, H, C,

gateway).

• A radio alarm system is denoted as linked if there exists a communi-

cation path between each pair of nodes. For example in Figure 1.1 the

alarm system without the node P is linked.

• A multihop radio alarm system is a radio alarm system in which the

3



Chapter 1 Introduction

gateway is not a neighbor of at least one detector. In Figure 1.1 a

multihop radio alarm system is shown.

In the following definitions the term ”system” is always used interchangeable

with the term ”linked multihop radio alarm system”.

• The hop count of a specific node denotes the minimal number of links,

which lie on the communication path from the node to the gateway

(Note: In the case of an asymmetric neighbor relation, i.e. a node

has added another node to its neighbor table but not vice versa, it is

crucial to start the communication path from the node and count the

links up to the gateway). In Figure 1.1 the gateway has hop count 0,

the nodes A, B, C, D, E, and F have hop count 1, the nodes G, H, I,

J, K, and L have hop count 2 and the nodes M, N, O, and P have hop

count 3.

• The neighbors of a specific node, that have a lower hop count as the

node itself, are called parents of this node.

• The neighbors of a specific node, that have the same hop count as the

node itself, are called peers of this node.

• The neighbors of a specific node, that have a higher hop count as the

node itself, are called children of this node.

For example in Figure 1.1 the node H has the parents C and D, the

peer G, and the child M.

• Two communication paths are denoted as independent if the commu-

nication paths between these two nodes contain no common nodes. In

Figure 1.1 the communication paths (M, G, B, gateway) and (M, H,

C, gateway) are independent.

• The number of connectivity paths of a detector denotes the number

of independent communication paths between this detector and the

gateway. The number of connectivity paths of the node M in Figure

1.1 is 2.

In a multihop radio alarm system, usually there is a number of connectiv-

ity paths, which is at least required in order to ensure reliable reporting of

alarms, e.g. in case of broken communication paths due to detector failures

4



1.1 Setup Chapter 1

or interference. The minimal required number of connectivity paths is a pa-

rameter of an alarm system (see Section 3.5) and in the following is denoted

as nb con paths min. To indicate the current number of connectivitiy paths

of a detector a connectivity state is introduced. The state of a detector can

be red, yellow, green, or green+.

• State red : The detector has no communication path to the gateway.

• State yellow : The detector has at least one communication path to

the gateway.

• State green: The detector has at least nb con paths min independent

communication paths to the gateway.

• State green+: This is an internal system state, which indicates that

the detector has at least nb con paths min independent communica-

tion paths to the gateway using only parents as next hops. Such a

detector may offer an additional independent communication path to

the gateway to peers with less than nb con paths min parents. The

connectivity state of a gateway is defined as green+.

In Figure 1.1 the parameter nb con paths min is set to 2. The connec-

tivity states of the nodes are indicated with the corresponding color,

whereas nodes with a green+ connectivity state have the color blue.

Additionally, a connectivity state for the entire network can be defined

analogously.

• The network connectivity state is green, if all detectors are at least

green.

• The network connectivity state is yellow, if each detector is at least

yellow.

• The network connectivity state is red, if at least one detector is red.

The alarm system shown in Figure 1.1 has a red network connectiv-

ity state. A network or a node is also denoted as connected, if the

connectivity state is at least green, and unconnected otherwise.

5



Chapter 1 Introduction

1.1.2 Multihop Wireless Fire Detection Sensor Network at

Siemens BT

Siemens BT Zug and the Swiss Federal Institute of Technology Zurich are

working together on a research project in the area of fire detection. The

objective of this project is to investigate the potentialities and capabilities

in the application of multihop wireless sensor networks for fire detection

systems. The multihop wireless fire detection sensor network investigated

at Siemens BT is an example of a radio alarm system.

The alarm system consists of at least one gateway and several fire de-

tectors, which together form a mesh network and communicate by radio on

the 433 MHz or 868 MHz industrial, scientific and medical (ISM) frequency

bands [1].

Each gateway is connected through a wire with an alarm-processing cen-

tral unit. The wired gateways have an additonal wireless interface, the

detectors are all wireless. On the one hand, ommitting wires eminently fa-

cilitates the installation of the fire detection system, but on the other hand,

requires the detectors to be powered by batteries. The battery supply limits

the lifetime of the detectors. Since the fire detection system is designed to

operate over several years, an energy consumption in the order of µW is

required.

To increase the system lifetime and reduce the maintenance costs of

changing batteries, the media access control is implemented through an low

power listening (LPL) protocol [2]. Since the radio transceiver is the com-

ponent of a node which consumes the most energy, with LPL the transceiver

is switched off the most time. The nodes with a switched off transceiver are

in an energy-efficient sleep mode and wake up only periodically for a short

carrier sense. If a signal is detected during the carrier sense, the node stays

awake and a message can possibly be received. Otherwise, the node returns

to the energy-efficient sleep mode. The nodes wake up independently of each

other with a periodic time interval t w. The wake up times of the indiviual

nodes are not synchronized to each other. In order to be sure to reach a

node a long preamble with the duration of one complete sleep interval t w

has to be prepended to the true message.

A further enhancement in terms of energy consumption is achieved with

the use of the WiseMAC [3] protocol. With WiseMAC, the wake up time

schedule is enclosed in the message header and is stored in the neighbor

6



1.2 Problem Description Chapter 1

table after each successful message reception. The knowledge of the wake

up times of neighbors allows a transmitting node to use an energy-efficient

short preamble and sending a message just before the destinated neighbor

wakes up. Only when the wake up time of a destination node is unknown a

long preamble has to be prepended to the message.

The longer the wake up period t w, the less energy is consumed for carrier

sense on average, but the more increased is the disbalance between messages

using a short and messages using a long preamble concerning energy con-

sumption.

For the communication between nodes of the network different message

types are used (see also Section 3.3). Two different direct messages are used

for the communication over the distance of one hop. A unicast message is

transmitted between a pair of nodes and uses a short preamble once the wake

up schedule of the destination is knwon. A broadcast message is transmitted

from a node to all reachable nodes in the vincinity. The broadcast message

uses always the long preamble in order to be sure that all nodes in the

vicinity wake up during the transmission and receive the message. Hence,

the transmission of a broadcast message causes a high energy consumption.

Two different message types for the communication over the distance of one

or more hops are transmitted. Dynamic source routing (DSR) messages are

used for the communication between a pair of nodes over possibly several

hops. Alarms are always transmitted from a detector to the gateway with

delay-aware robust forwarding (DWARF) messages [4].

The network initialization and topology control of the fire detection sys-

tem currently in use is accomplished by an individual protocol, which is

described and analyzed in Section 2.1.

1.2 Problem Description

1.2.1 Neighbor Discovery and Topology Construction

When a multihop wireless fire detection sensor network as described in Sec-

tion 1.1.2 shall be commissioned, all nodes have to be installed at distributed

locations over the entire area which has to be monitored. The gateway is

connected to the central unit and afterwards all detectors are sequentially

mounted and switched on. However, after the physical deployment the fire

detection system is not yet ready for operation because first, the network
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topology has to be constructed in order to be able to forward and process

alarms.

When a node is powered on, the neighbor table is empty and no apriori

knowledge about other installed nodes in vicinity exists. Therefore, each

node has to perform a neighbor discovery in order to add nodes to the

neighbor table and construct the network topology. The network connec-

tivity state is green as soon as each installed detector is discovered and has

the minimum required number of connectivity paths to the gateway. From

then on, alarms can be forwarded reliably to the gateway and the operation

of the fire detection system can be started.

After the switch-on of the last detector, technicians which install the

system have to wait for the validation of the required green network connec-

tivity state and the approval of the proper operation of the alarm system.

Thus, the neighbor discovery and topology construction should be completed

in a reasonable time to ease the installation of the system.

During the operation in each node the topology control is performed

by the application described in 2.1. The application exchanges messages

between neighbors in a round robin way to monitor the network connec-

tivity state. When no more messages are received from a neighbor within

a certain period (e.g. due to collisions or a detector failure), the neighbor

appears to be dead and is removed from the neighbor table. Such a re-

moved neighbor is denoted as dead neighbor. Besides the topology control,

a link quality manager adapts the transmission power to save energy and

removes nodes from the neighbor table with poor link quality. If as a result

of removing a dead neighbor or a neighbor with poor link quality a node

loses the green/green+ connectivity state, new nodes have to be discovered

and added to the neighbor table. Certainly, nodes with a non-green connec-

tivity state are unwanted during operation because important connetivity

paths for alarm forwarding are missing. Additionaly, the discovering of new

neighbors requires to transmit broadcast messages which consume a lot of

energy.

Depending on the way which nodes are initially added to the neighbor

tables, the network topology eventually has to be adapted and is unstable

during the operation. In general, nodes which have a good link quality and

can improve the own connectivity state are prefered as neighbors. A lot of

energy wasting message retransmissions can be caused by a neighbor due to

8
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a poor link quality. Additionally, more neighbors than are required to ensure

the green connectivity state are desired in the neighbor table to prevent a

connectivity state change due to a single neighbor removal. Therefore, the

initial choice of the neighbors is crucial for the construction of an energy-

efficient and stable network topology.

The Mesh Construct algorithm introduced in this thesis is implemented

as an additional protocol. The Mesh Construct shall perform neighbor dis-

covery and topology construction which is fast, energy-efficient and achieves

a connected and stable mesh network topology. After the Mesh Construct is

completed the operation is started and the existing application 2.1 accom-

plishes the topology control.

1.2.2 Requirements and Assumptions

Several requirements for the neighbor discovery and topology construction

of a fire alarm system are imposed by Siemens BT as well as by regulatory

norms.

• The fire detection system shall ensure the capability of alarming also

in case of a detector failure. Hence, each detector must have at least

more than one independent communication path to the gateway. In

particular, the paramteter nb con paths min of the minimal number

of required connectivity paths is set to 2. The neighbor discovery

and topology construction has to be completed in a green network

connectivity state. Exception is a system consisting of one gateway

and only one detector [5, 4.3].

• The mesh network of the fire detection system has maximal three hops.

• The neighbor discovery and topology construction procedure has to

be completed in a finite duration, at longest one hour after switching

on the last installed node. Nevertheless, the duration of the commis-

sioning shall be as short as possible to provide an easy installation of

the fire alarm system.

• The memory resources of a detector are limited and are insufficient

to store the informations of the entire network. Thus, the own con-

nectivity state has to be identified by local available informations and

informations from the direct, immediate neighborhood.
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• The Mesh Construct procedure for neighbor discovery and topology

construction shall be implemented as new protocol in the existing soft-

ware.

In the scope of this thesis several assumptions are made, which are stated

in the following:

• Only one gateway is contained in the wireless fire detection sensor

network.

• When a node is installed and switched on, no topology and neighbor-

hood information about other network nodes is known a priori in the

node.

1.2.3 Quality Metrics and Objectives

The neighbor discovery and topology construction is a multi objective opt-

miziation problem. In this section the various objectives of the new proce-

dure for the neighbor discovery and topology construction are stated. Ad-

ditionally, metrics to assess the quality of the procedure are defined.

Duration

An important quality is the duration which is required to achieve a green

/green+ network connectivity state. The objective is that the technicians

installing the alarm system can approve the required network connectivity

state as fast as possible. Therefore, the following metric is defined to assess

the procedure quality concerning the duration.

• The duration t connected from the last switch on of a node until all

installed nodes have a green/green+ connectivity state is a metric for

the tempo of the procedure. The objective is to achieve a t connected

as short as possible.

Connectivity

The essential property a procedure for neighbor discovery and topology con-

struction must feature, is to initialize the alarm system for the proper oper-

ation. The requirement for the start of the operation is determined by the

connectivity state. The objective of the procedure in terms of connectivity is

10
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that, all installed nodes are discovered and achieve the required connectivity

state, which is at least green or green+. This ensures the reliable forwarding

of raised alarms to the central unit during the operation.

The following two metrics are defined to determine if all installed nodes

are discovered on the one side and on the other side have the required

connectivity state.

• The number of nodes with a red connectivity state nb red nds is a

metric for the discovering state of the network. The lower nb red nds,

the better discovered are the installed nodes. The objetive is to achieve

nb red nds = 0.

• The number of nodes with a red or yellow connectivity state nb red-

yellow nds is a metric for the connectivity of the network. The

lower nb redyellow nds, the more nodes have the required number

of connectivity paths to the gateway. The objective is to achieve

nb redyellow nds = 0.

Stability

Besides the connectivity and the duration of the procedure for neighbor

discovery and topology construction, it is essential that the network remains

connected during operation. The removal of dead appearing neighbors by

the topology control algorithm can cause a change of the connectivity state

to yellow or red. Subsequently, nodes start to broadcast and to discover

new neighbors. For that reason, the network topology can change over

time. Certainly, this is unwanted since the adaption of the network topology

consumes additional energy to get connected again. Hence, the objective

of a neighbor discovery and topology construction is to provide a network

topology which is stable during the operation with enabled topology control

application. The following two metrics are defined to assess the procedure

quality concerning the stability.

• The number of removed dead neighbors nb rem dead nhs is a metric

for the stability. The lower the nb rem dead nhs is, the more stable is

the network topology. The objective is to achieve nb rem dead nhs =

0.

• Additionally, the change of the node connectivity states over time is a

metric for the stability (Note: Although this is a metric to assess the
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procedure in a rather qualitative way, it allows to make very meaning-

ful statements for individual test results. To analyze a large number

of tests a metric representing a numeric value should be defined). The

objective is to achieve connectivity states which are constant over time.

The number of neighbors removed by the link quality manager is not

tracked in the statistic tool used for the tests in Section 2.1.2 and Chapter

4. Therefore, the number of neighbors removed by the link quality manager

is excluded from the quality metrics but is sometimes mentioned in the

stability evaluation.

Energy Consumption

The energy consumption is also an essential aspect of a neighbor discovery

and topology construction procedure. Since the detectors are powered by

batteries, the energy budget and therefore the lifetime of the alarm system

is limited. The objective is to minimize the energy consumption to increase

the system lifetime and reduce the maintenance costs. The following two

metrics are defined to assess the procedure quality concerning the energy

consumption.

• The total current i total averaged over time and the number of nodes

is a metric for the energy consumption.

• Additionally, the number of transmitted broadcasts nb tx bcasts is

a metric for the energy consumption. The transmission of broadcast

messages contributes substantially to the energy consumption.

The gateway is excluded from the energy considerations since it is wired

and not powered by batteries.

1.3 Chapters Overview

The thesis is structured in 5 chapters. In Chapter 2 the existing solution

for the network initialization and topology control and related work is in-

vestigated. In Chapter 3 the conceptual design of the new procedure for

neighbor discovery and topology construction is presented. Moreover, a few

implementation details are indicated. In Chapter 4 the new procedure is

tested and evaluated. In addition, the new procedure is compared to the
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existing solution described in Chapter 2 in terms of the metrics defined in

Section 1.2.3. In Chapter 5 the obtained conclusions of the evaluation in

Chapter 4 are stated and an outlook on possible future work is given.

13



Chapter 2 Background and Related Work

Chapter 2

Background and Related

Work

In the first section of this chapter the existing solution for the network

initialization and the topology control of the fire detection system presented

in section 1.1.2 is explained, tested, and evaluated.

In the second section related work in the area of neighbor discovery and

topology construction as well as link quality estimation is outlined.

2.1 Analysis of Existing Solution - Mesh Admin

Mesh Admin is the name of the existing protocol for neighbor discovery and

topology control in the wireless fire detection sensor network of Siemens BT.

The Mesh Admin is a random procedure, where each node after be-

ing switched on autonomously discovers neighbors in the vicinity through

the transmission of HELLO-broadcast messages. Other nodes receiving a

HELLO-broadcast message add the source to the neighbor table and period-

ically transmit direct hello-unicast messages to all its neighbors in a round

robin way. Among other things, each message contains information about

the source node, e.g. the hop count and connectivity state. Successively,

information about neighboring nodes is collected through this message ex-

change and updated in the neighbor table. The table has up to eight entries

for discovered and added neighbors. For each listed neighbor the following

informations are stored as fields in the neighbor table:

Each node is able to determine its own hop count and connectivity state

14
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Neighbor table Neighbor table variable description

nd add Node address of the neighbor

hop count Hop count

con state Connectivity state

check timer flag Indicates if a message from the neighbor is

received within the last check timer period

Table 2.1: Mesh Admin variables for each entry of the neighbor table

through the informations provided in the neighbor table (see also Algorithm

1). The nodes communicate periodically with its neighbors and exchange

informations of the neighbor table such that the nodes can update their own

connectivity state. If the own connectivity state is insufficient, periodically

further broadcasts are transmitted in order to discover new neighbors which

can lend the desired connectivity state. Changes in the topology are only

propagated through the hello-unicasts. Adjustements can take some time

when several hops need to be adjusted. By this means, the whole network

topology is constructed and maintained. In a node the protocol is started

with the swith-on and runs infinitely long.

2.1.1 Connectivity State Update

A procedure will be presented, which allows to determine the connectivity

state of a detector only with local available information in the neighbor table,

that is, the hop count and the connectivity state of neighboring nodes. First,

the own hop count is identified by searching for the minimal hop count in

the neighbor table, then the own hop count is one higher. Through the own

hop count each neighbor can be identified either as parent, peer, or child.

In the following the procedure to determine the own connectivity state is

indicated in Algorithm 1.

Note: The Algorithm 1 has only available local network information

from the neighbor table. The procedure ensures that with a resulting

green/green+ connectivity state there are at least nb con paths min con-

nectivity paths, with a resulting yellow connectivity state there is at least

one connectivity path. The reverse is not necessarily true. For example

for node I in Figure 1.1 the Algorithm 1 returns a yellow connectivity state

although there are two connectivity paths in the network.
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Important neighbors, which causes the node to achieve or maintain a

green/green+ connectivity state, are locked to avoid beeing deleted if a

neighbor should be added to a full neighbor table. In the following the

procedure to lock important neighbors is indicated in Algorithm 2. The

detailed communcation procedure among nodes is described in the next

section.

2.1.2 Testing and Evaluation

The performance of the Mesh Admin algorithm is assessed through longterm

tests on an experimental setup. The used testbed is described in Appendix

A. Through a statistic tool and logs on the nodes various informations for

an evaluation are collected during the test runtime. The number of nodes

nb nds of the testbed is 32. The test setup consists of one gateway and 31

detectors. At the beginning of the test first, the gateway is switched on

and afterwards sequentially all detectors in a random order. Before a node

is enabled, a time delay is inserted to simulate the installation time. The

time delay between the startup of two succeding nodes is uniform random

distributed in the interval [t min, t max]. The time delay due to the installa-

tion is set to be between one and five minutes. The test runtime t test starts

after the last switch-on and is set to twelve hours. The test parameters are

listed in Table 2.2.

Test Parameters Value

nb nds 32

t test 43200 s

t min 60 s

t max 300 s

Table 2.2: Test parameters

The set values of the Mesh Admin parameters are listed in Table 2.3.

Many longterm Mesh Admin tests have been run on the testbed. How-

ever, the number of performed tests does not claim to be statistical relevant

and therefore in the following only two typical test examples thereof are

shown and evaluated.

Mesh Admin Test A
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Algorithm 1 Connectivity State Update
1: if hop count == 1 then

2: if number of peers ≥ nb con paths min then

3: own con state = green+

4: else

5: own con state = yellow

6: end if

7: end if

8:

9: if hop count > 1 then

10: if number of green/green+ parents ≥ nb con paths min - 1 then

11: own con state = green+

12: else

13: if number of green/green+ parents and green+ peers ≥ nb con paths min then

14: own con state = green

15: else

16: if number of parents > 0 then

17: own con state = yellow

18: else

19: own con state = red

20: end if

21: end if

22: end if

23: end if

Algorithm 2 Lock Neighbors
1: if hop count == 1 then

2: lock the gateway and one arbitrary peer

3: end if

4:

5: if hop count > 1 then

6: lock green/green+ parents, at most nb con paths min

7: lock green+ peers at most nb con paths min neighbors in total

8: lock other parents, until a total number of locked neighbors is nb con paths min neighbors

in total

9: if no neighbors have been locked so far, lock at leat 1 parent.

10: end if

Mesh Admin Parameters Value

t w 1.5 s

nb con paths min 2

hello timer 240 s

check timer 16 · 240 s = 3840 s

happpy timer 20 · 240 s = 4800 s

Table 2.3: Mesh Admin parameters
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Figure 2.1: Mesh Admin Test A: Upper plot: Number of nodes on the

corresponding connectivity states. Lower plot: Number of nodes on the

corresponding hop counts.
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Duration In Figure 2.1 the connectivity and hop count states of the Mesh

Admin Test A are plotted over the test time. After the last switch on it

takes 1 hour 17 minutes and 47 seconds until the entire network is connected.

The duration t connected of the Mesh Admin test A does not fulfill the

requirement to be less than one hour.

Connectivity and Stability After the network is connected, nb red nds

is equal to zero for the entire remaining test time. Therefore, all installed

nodes are discovered.

During the operation the network does not remain connected for the

entire test time. After the network is connected, three time intervals of var-

ious duration occur, wherein nb redyellow nds is unequal to zero. Hence,

in each of this time intervals at least one of the installed nodes is temporary

in a yellow connectivity state.
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Figure 2.2: Mesh Admin Test A: Number of removed dead neighbors of

all nodes. Note: the decrease of the curve shortly before ten hours is an

artifact of the testbed caused by a failed readout of the statistics at one

node

In Figure 2.2 the number of dead neighbors, which are removed during
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the test, is plotted over the test time. In total nb rem dead nhs = 104

dead neighbors are removed during the test, all of them in the first six

hours. Thus, the two time intervals with yellow network connectivity states

towards the end of the test are caused by neighbor removals of the link

quality manager. A causality between the removal of dead neighbors in the

first six hours and the corresponding unstable time course of the connectivity

states in Figure 2.1 can be recognized. Between the neighbor removals the

network reaches an intermediate, almost stable and connected state.
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Figure 2.3: Mesh Admin Test A: The current consumption averaged over

all targets.

Energy Consumption In Figure 2.3 the current consumtpion averaged

over all targets is plotted over the test time. The total consumed current

of the Mesh Admin Test A is divided into the five contributions I sleep,

I carriersense, I overhear, I rx, and I tx. I sleep is the current con-

sumed in the energy-efficient sleep state. I carriersense is the current

required for the periodic wake up and carrier sense. I overhear is the cur-

rent consumed for receiving messages which originally are transmitted to a

different destination. I rx, and I tx are the currents consumed for receiving

and transmitting messages.

Until the network is connected the most energy is consumed, in particu-

lar due to the transmissions of the energy expensive broadcasts. The number

of transmitted broadcasts is plotted in Figure 2.4 over the testtime. The
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total number of transmitted broadcasts nb tx bcasts during the test is 37.

Thus, several nodes had to transmit more than one broadcast. By compar-
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Figure 2.4: Mesh Admin Test A: Number of transmitted broadcasts of

all nodes.

ing the time course of the current consumption with the time course of the

connectivity states in Figure 2.1, a relation between the energy consump-

tion and the stability of the connecivity states can be observed. The energy

consumption in the network is higher in time intervals of unstable connec-

tivity. In Figure 2.5 the current consumption of each individual detector

averaged over the entire test time is shown. Again, the current consump-

tion is divided into its five contributions. Although there are some nodes

with a higher total current, overall the current consumption of the nodes is

rather balanced. The total current consumption averaged over the time and

number of nodes i total is 144.090 µA.

Mesh Admin Test B

Duration In Figure 2.6 the connectivity and hop count states of the Mesh

Admin Test B are plotted over the test time. In contrast to the Mesh Admin
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Figure 2.5: Mesh Admin Test A: The average current consumption of

the nodes over the entire test time.

Test A, after the last switch on it takes only 17 minutes and 22 seconds until

the entire network is connected. The duration t connected of the Mesh

Admin test B clearly fulfills the requirement to be less than one hour.

Connectivity and Stability In Figure 2.6 the connectivity and hop

count states of the Mesh Admin Test B are plotted over the test time.

After the network is connected, nb red nds is equal to zero for the entire

remaining test time. Therefore, all installed nodes are discovered.

Like in the Mesh Admin Test A, during the operation the network does

not remain connected for the entire test time. After the network is con-

nected, five time intervals of various duration occur, wherein nb redyellow-

nds = 1, 2. Hence, each time one or two of the installed nodes are tempo-

rary in a yellow connectivity state.

In Figure 2.7 the number of dead neighbors, which are removed during

the operation, is plotted over the test time. In total nb rem dead nhs = 89

dead neighbors are removed during the test, all of them in the first six

hours. Thus, the last three time intervals with yellow network connectivity

states are caused by neighbor removals of the link quality manager. A

causality between the removal of dead neighbors in the first six hours and the

corresponding unstable time course of the connectivity states in Figure 2.6
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Figure 2.6: Mesh Admin Test B: Upper plot: Number of nodes on the

corresponding connectivity states. Lower plot: Number of nodes on the

corresponding hop counts.
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Figure 2.7: Mesh Admin Test B: Number of removed dead neighbors of

all nodes.
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can be recognized. However, not each neighbor removal necessarily causes

a connectivity state change, e.g. when a child is removed from the neighbor

table. Therefore, in contrast to the Mesh Admin Test A the last dead

neighbor removals did not affect the connectivity state of the nodes. Between

the neighbor removals the network reaches short, intermediate, almost stable

and connected states.
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Figure 2.8: Mesh Admin Test B: The current consumption averaged over

all targets.

Energy Consumption In Figure 2.8 the current consumtpion averaged

over all targets is plotted over the test time. The total consumed current of

the Mesh Admin Test B is again divided into its five contributions.

Analogous to the Mesh Admin Test A, the most energy is consumed by

the transmissions of the energy expensive broadcasts during the neighbor

discovery and topology control. The number of transmitted broadcasts is

plotted in Figure 2.9 over the testtime. The total number of transmitted

broadcasts nb tx bcasts during the test is 36. Thus, several nodes had to

transmit more than one broadcast.

By comparing the time course of the current consumption with the time

course of the connectivity states in Figure 2.6, again a higher energy con-

sumption during time intervals of unstable connectivity can be observed.

In Figure 2.10 the current consumption of each individual detector av-

eraged over the entire test time is shown. In contrast to the Mesh Admin
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Figure 2.9: Mesh Admin Test B: Number of transmitted broadcasts of

all nodes.
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Figure 2.10: Mesh Admin Test B: The average current consumption of

the nodes over the entire test time.
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Test A, there are two nodes with a total current consumption which is about

three times higher than the one of the other nodes. The operation of these

detectors is eminently endangered by an early depletion of the batteries.

The total current consumption averaged over the time and number of nodes

i total is 123.536 µA.

Conclusions

The individual Mesh Admin test results do not reveal a homogenous be-

haviour. The randomness of the Mesh Admin procedure is clearly recog-

nizable in the plots. For example the duration t connected is eminently

variable. Additionally, there is no finite deterministic upper bound for the

duration of the neighbor discovery and topology control.

The main observation of the longterm tests is the unstable time course

of the connectivity and hop count states. As registered in the last sections

the removal of neighbors, which ensure the required connectivity state, is

responsible for the instability. The removals can consist of both, dead neigh-

bors or neighbors with a poor link quality.

Moreover, the instability of the network connectivity state causes the

unconnected nodes to transmit further messages to discover new neighbors,

in particular energy expensive broadcasts. By this, the energy consumption

on the battery powered detectors is additionally increased.

Therefore, the initial choice of neighbors is crucial for the stability and

the energy consumption during the future operation of the alarm system.

2.2 Related Work

In this section an overview of previous work in the area of neighbor discovery

and topology construction as well as link quality estimation is given.

2.2.1 NoSE: Neighbor Search and Estimation

Meier et al. in [6] and [7] propose with NoSE a time and energy-efficient

initialization of a WSN. A wake up call functionality is included for switching

the network from an energy-efficient sleep state through a neighbor discovery

to an operational state where the topology can be set up. The wake up call

can be flooded into the network by an external trigger and initiates with

a timer mechanism the simultaneous start of a discovery phase with finite
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duration. During the discovery all nodes transmit a predefined number of

discovery packets. Moreover, the nodes track the number of received packets

and the corresponding RSSI to assess the link quality providing a basis for

the topology set up. Energy is saved by the simultaneous discovery start

and the appropiate adjusting of the wake up period of the MAC protocol

for the different operational states.

2.2.2 Birthday Protocols

A popular approach for initializing WSNs is proposed in the Birthday Pro-

tocols [8] by McGlynn and Borbash. The neighbor discovery is started by an

external trigger. The time is slotted and each node decides independently

and randomly at the beginning of each timeslot for a sleep, listen, or trans-

mit state. A neighbor is added when a node in the listen state receives a

broadcast discovery message from another node in the transmit state. The

discovery period has a finite duration after which neighbors have either been

discovered or never will be.

The birthay protocols provide no information about the link quality of

discovered neighbors. The size of the neighbor table is not limited, which is

not given in the implementation on a practical setup. Additionally, a MAC

protocol with synchronized wake ups is required to enable the slotted time.

2.2.3 XTC

Wattenhofer and Zollinger proposed XTC [9], a practical topology control

algorithm for ad-hoc networks. The algorithm has three main contributions.

The algorithm choses neighbors solely based on local information by com-

municating only twice with nodes, works for general network graphs, and

does not require node position information. The algorithm orders neighbors

according to the link qualities, exchanges the neighbor orders and selects

topology control neighbors. If the algorithm is applied to a unit disk graph,

the resulting network topology has a bounded degree of at most 6, i.e. the

size of the neighbor table is limited to 6 neighbors.

Since the memory on sensor nodes usually is very scarce, the limited

neighbor table property of the topology control algorithm is interesting.

However, the unit disk graph assumes uniform radio propagation as in the

vacuum, which is not practical.
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2.2.4 A Simple Algorithm

Angelosanto et al. in [10] present a simple algorithm for neighbor discovery

in wireless networks. The algorithm assumes slotted time and a neighbor

discovery of limited duration. Nodes are indentified by a signature and ran-

domly either transmit or receive during a time slot under constant probabili-

ties. The neighbor discovery is solved by adding a neighbor if the correlation

between the receive signal and the signatur of the node exceeds an discovery

threshold. Collisions are avoided by using orthogonal signatures.

Analogously to the Birthday Protocols, the simple algorithm requires a

MAC protocol supporting synchronized wake ups. Additionally, the nodes

have to keep an apriori known list with all signatures of the network.

2.2.5 Link Quality Estimation

Meier et al. in [11] showed that the deployment of a typical multihop WSN

based on low power radios results in a network with a large percentage of

very poor link characteristics. A pattern based link estimation scheme is

presented which allows to rate the link quality in an energy-efficient way

during the initialization phase in order to construct optimal neighbor tables

from the beginning.

Srinivasan and Levis in [12] showed that for new transceivers the RSSI

above the sensitivity threshold is a promising link quality indicator. A RSSI

above the sensitivity threshold results in a packet reception rate (PRR) of

at least 85%, whereas around the sensitivity threshold the RSSI does not

have a good correlation with the PRR.
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Chapter 3

Conceptual Design

In this chapter the conceptual design of the Mesh Construct is presented.

The first section outlines the basic idea of the Mesh Construct. In the

following sections the details of the procedure concerning the different node

functions, messages, timers, and parameters are explained in more depth.

In the subsequent section pseudocodes of the three main components of the

procedure are indicated. In the last section the maximal duration of the

Mesh Construct procedure is theoretically derived.

In this chapter various variables and fields, messages, and parameters

are introduced. For a better visualization variable and field names are

written in typewriter font, message names are written as emphasized text,

and parameter names are typeset as sans serif.

3.1 Basic Idea of Mesh Construct

The Mesh Construct algorithm is a deterministic procedure to construct

a mesh network topology for a wireless fire detection sensor network. The

Mesh Construct differs in several essential aspects from the existing solution

(see Section 2.1). The existing solution is a random procedure with an

infinite duration, which is running completely autonomously on each node.

In contrast to that, the Mesh Construct is a deterministic procedure which

is finished after a finite duration. Additionally, the procedure is no longer

running completely autonomously on each node but is controlled centrally

by the gateway.

In the Mesh Construct algorithm there are three different functions a

network node can fullfil, either gateway, discoverer, or, just a neighboring
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Figure 3.1: An example of the basic idea of the Mesh Construct
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node. The gateway functionality is contained only in one single node in

the whole network. The discoverer and node functionality is contained in

each node, also in the gateway. The node with the gateway functionality

acts like a choirmaster who conducts the construction of the mesh network

and arranges the time periods where the discoverers are allowed to discover

potential neighbors. A node in the discoverer function performs a neigh-

borhood discovery in order to find other nodes in mutual radio range. The

discoverer chooses the most suitable nodes for the purpose of the network

as neighbors and transmits its choice in form of a neighbor table message to

the gateway. The gateway successiveley stores and maintains the received

neighbor tables to gain information about the whole mesh network topology.

The functionality of a neighboring node denotes a node interacting with a

discoverer. The three different node functions are described in Section 3.2.

The different messages used for the communication between the nodes are

described in Section 3.3.

An easy example of the Mesh Construct procedure for a small num-

ber of nodes is illustrated in Figure 3.1. The underlying idea of the Mesh

Construct is to start from the network center at the gateway and construct

the mesh network through neighborhood discoveries by proceeding outwards

hop by hop. First, the gateway self performs a neighborhood discovery as

a discoverer to find neighbors with hop count 1 (number 1 in Figure 3.1).

Not all discovered nodes are necessarily chosen as neighbors. Next, further

neighborhood discoveries are sequentially initiated by the gateway on each

node with hop count 1 (number 2 and 3 in Figure 3.1). After the comple-

tion of these neighborhood discoveries a network consisting of nodes with

hop count 1 and 2 is constructed. Through the received neighbor tables of

nodes with hop count 1 the gateway has obtained informations about the

children of the nodes with hop count 1, which are nodes with hop count

2. In this manner the gateway succesively continues to sequentially arrange

neighborhood discoveries on the next hop to find new nodes and construct

the mesh network (number 4, 5 and 6 in Figure 3.1). The Mesh Construct

algorithm stops if the neighbor tables of all installed nodes are received or

the maximal number of allowed hops is attained (number 7 in Figure 3.1).

After the Mesh Construct is completed the installed nodes are part of a

constructed mesh network and the primary scheduled operation (e.g. fire

detection) with network topology control can be started.
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The whole Mesh Construct procedure is described more detailed in Sec-

tion 3.1.1. The neighborhood discovery is an component of the Mesh Con-

struct algorithm and is described in Section 3.1.2. The choice of the neighbor

nodes is a component of the neighborhood discovery algorithm and is de-

scribed in Section 3.1.3.

3.1.1 Mesh Construct

The Mesh Construct is the basic procedure and can be started by a trigger

mechanism at the gateway after the last detector of a wireless fire detection

sensor network is physically installed. The communication scheme of the

gateway and an arbitrary discoverer during the Mesh Construct is shown

in the Figure 3.2. The Mesh Construct procedure is also described in the

pseudocode of algorithm 3 in Section 3.6. All message types exchanged

between the gateway and the discoverer are described in Section 3.3.

Due to the fact that the transmission medium is wireless, it can always

be assumed that a message is not received at the destination because of a

collision or any type of interference. Therefore, the whole procedure must

be able to cope with missing messages at any time. Timers and retry mecha-

nisms with thresholds for the number of retries are introduced to prevent the

algorithm from stopping. The different applied timers are described more

detailed in Section 3.4.

Once the Mesh Construct is started by the trigger, the gateway per-

forms a complete neighborhood discovery. Afterwards, the gateway stores

its added neighbors with hop count 1 as future discoverers in a discoverer

table discoverer tbl. All variables and fields of the Mesh Construct pro-

cedure are defined in Section 3.2. In the following the gateway sequentially

initiates the procedure shown in the Figure 3.2 on each discoverer in the

discoverer table in order to allow temporal non-overlapping neighborhood

discoveries. The hop count of the discoverer performing the current neigh-

borhood discovery is denoted as the Mesh Construct state mc state.

The gateway transmits a start discovery message to the first discoverer in

discoverer tbl and starts the two timers t rx ack start and t rx nhtbl

simultaneously. As a reaction on receiving a start discovery the first discov-

erer starts the neighborhood discovery procedure and transmits an ack start-

discovery back to the gateway. If an ack start discovery is received at the

gateway, the timer t rx ack start is stopped. When t rx ack start ex-
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Figure 3.2: Mesh Construct: Communication scheme of the gateway and an

arbitrary other discoverer
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pires and the number of retries rtr start has not already exceeded the

threshold rtr start max, another start discovery is transmitted and the two

timers are restarted. Otherwise the start of the neighborhood discovery

failed, and the procedure continues with the next discoverer.

As soon as a neighborhood discovery is completed, the discoverer node

transmits its neighbor tbl in a neighbor table message to the gateway. If

the timer t rx nhtbl at the gateway expires without having received the

expected neighbor table and the number of retries rtr request has not ex-

ceeded the threshold rtr request max, then a request nhtbl message is trans-

mitted to the discoverer. When the timer t rx nhtbl expires, it implies that

the timer t rx ack start has been stopped and an ack start is already re-

ceived. Therefore, the neighborhood discovery should already be completed

and an other, shorter timer t rq is started for the requesting of the neighbor

table. When the timer t rq expires another request nhtbl is transmitted if

the retries have not exceeded the threshold rtr request max, otherwise the

transmission of the neighbor table failed and the procedure continues with

the next discoverer.

When a neighbor table is received at the gateway, the timers t rx nhtbl

and t rq are stopped. Additionally, the gateway processes the information

of the neighbor table. In particular, neighbors of the discoverer which have

a hop count that is one higher than the current mc state are stored in

the discoverer tbl. By this means, with each received neighbor table the

gateway successively adds new discoverer on the next hop to the discoverer

table. When all neighbor tables of the current mc state are received at the

gateway, the Mesh Construct procedure continues on the next mc state.

The Mesh Construct procedure terminates if all nodes in the discoverer

table have performed their neighborhood discovery and the following trans-

mission of the neighbor table or otherwise no more nodes with a hop count

less or equal than the maximal number of allowed hops nb hops max are in

the discovery tbl.

After the Mesh Construct procedure is completed, the operation of the

alarm system including the topology control is started by the sequential

transmission of completed messages to each discoverer in discovery tbl.

A discoverer receiving a completed starts the operation and transmits an

ack completed back to the gateway. The timer t rx ack completed waiting

for the reception of the ack completed is started at each transmission of a
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completed and ensures with a retry mechanism that each discoverer starts

the operation. As last node the gateway starts the operation.

3.1.2 Neighborhood Discovery

The neighborhood discovery is a component of the Mesh Construct algo-

rithm. During the Mesh Construct each node in the network performs at

least one neighborhood discovery. The objective of the neighborhood dis-

covery is to collect as much information as possible about other nodes in

the vicinity in order to provide a good basis of decisionmaking for choosing

neighbors (see Section 3.1.3 and algorithm 5). For that reason, messages of

different types have to be exchanged between the discoverer and neighboring

nodes to transmit informations and to notify the chosen neighbors. Finally,

the neighborhood discovery ends with the construction of a neighbor table.

The communication scheme of a neighborhood discovery ist illustrated in the

Figure 3.3. The neighborhood discovery is also described in the pseudocode

of algorithm 4 in Section 3.6.2.

At the beginning of the neighborhood discovery the discoverer transmits

a sequence of nb tx bcast numbered broadcast messages. The different mes-

sages are described in Section 3.3. All paramteters of the Mesh Construct

are listed in Section 3.5. All variables and fields are defined in Section 3.2.

The transmit power tx power of each broadcast is linear increasing and pro-

portional to the broadcast sequence number bcast nb. Among others, this

feature is used to assess the link quality to discovered nodes and is described

in Section 3.1.3.

When a neighboring node receives the first broadcast from a discoverer,

the sequence number bcast nb is stored as first rx bcast and the timer

t rx bcasts depending on first rx bcast is started. The different timers

are described in Section 3.4. While this timer is running the node waits

for the reception of the remaining broadcasts from the discoverer. At the

expiration of t rx bcasts the node transmits a broadcast received message

back to the discoverer. The broadcast received contains several informations

about the discovered node, in particular the field first rx bcast.

By this manner the discoverer collects informations about nodes in mu-

tual radio range and stores it into a node table node tbl. By the time the

discoverer transmits the first broadcast, a timer t rx bcast rx is started

simultaneously. While the timer is running, the gateway waits for broad-
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Figure 3.3: Neighborhood discovery of a single node: Communication

scheme of the discoverer and an arbitrary other node
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cast received messages. When the timer t rx bcast rx expires, the dis-

coverer chooses the best nodes from the node tbl according to the choose

neighbors algorithm 5. The output of the algorithm is a list of chosen nodes.

Subsequently, the discoverer transmits a notification message to the the first

chosen node. Simultaneously, a timer t rx ack not is started at the discov-

erer. A node receiving a notification adds the source as neighbor to the

neighbor tbl and transmits an ack notification back to the discoverer. As

reaction on receiving an ack notification the discoverer adds the source as

neighbor as well, restarts t rx ack not and transmits a notification to the

next chosen node. Upon having received all ack notifications, the discoverer

constructs a neighbor table and thus the neighborhood discovery is com-

pleted.

Like in the Mesh Construct procedure timers and retry mechanisms with

thresholds for the number of retries are introduced to prevent the algorithm

from stopping in case of a lost message. E.g. while the timer t rx bcast rx

is running the discoverer waits for receiving broadcast received messages.

When t rx bcast rx expires and not a single broadcast received is received,

the discoverer transmits again a sequence of broadcasts if the number of re-

tries rtr bcast has not already exceeded the threshold rtr bcast max. If so,

no neighbors could be found with the neighborhood discovery. Analogously,

while the timer t rx ack not is running the discoverer waits for a particular

ack notification. When t rx ack not expires the discoverer retransmits the

notification if the number of retries rtr not for this node has not already

exeeded the threshold rtr not max. If so, new nodes are chosen if the number

of retries rtr choose has not already exceeded the threshold rtr choose max,

otherwise no additional neighbors could be found.

The neighborhood discovery is completed with the construction of the

neighbor table, whether it could be filled up with neighbors or remains

empty.

3.1.3 Choose Neighbors

The choose neighbors procedure is a component of the neighborhood discov-

ery. The procedure chooses neighbors among all nodes which are discovered

during the neighborhood discovery. The objective of the choose neighbors

procedure is to make the best choice for the purpose of the whole wireless

sensor network. The choose neighbors procedure is also described in the
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pseudocode 5 in Section 3.1.3.

In a wireless fire detection sensor network two aspects are cruicial for

the choice of the neighbors. On the one hand, neighbors with a good link

quality are important. If messages to or from a neighbor are received only

rarely and require many retransmissions because of a bad link quality, a lot

of energy of the batteries is wasted and the reliability of the network function

is decreased. Thus, it is energy-efficient and more reliable for the network

function to choose the nodes with the best link quality as neighbors. On the

other hand, a node needs a certain number of independent communication

paths to the gateway to ensure the desired connectivity state. Therefore, it

is important to choose parents and peers with the best connectivity state in

order to achieve the own required connectivity state. Since the purpose of

a wireless fire detection sensor network is to forward alarms to the gateway,

the existence of the required number of independent communication paths

is weighted as more important than the quality of the links.

To evaluate the quality of a wireless link two quantities are used. The

link quality from the discoverer to the node is assessed through the se-

quence number of the first received broadcast first rx bcast. The trans-

mit power tx power of each broadcast is linear increasing and proportional

to the broadcast sequence number bcast nb. The first broadcast is trans-

mitted with tx power min and the last broadcast with tx power max. The

linear dependence of tx power and bcast nb is shown on figure 3.4 and

calculated in the Equation 3.1 and the following equations.

tx power = m · bcast nb + b (3.1)

By setting in the known pair of variates in the Equation 3.1

tx power min = m · 1 + b (3.2)

tx power max = m · nb tx bcasts + b (3.3)

for the slope and the intercept results a dependency only on parameters

m =
tx power max − tx power max

nb tx bcasts − 1
(3.4)

b =
tx power min · nb tx bcasts − tx power max

nb tx bcasts − 1
(3.5)

A small first rx bcast number implies the reception of the broadcast

already with a low transmit power. Hence, the lower the broadcast sequence
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Figure 3.4: linear increasing txpower

number the better is the link quality. To assess the link quality from the

node to the discoverer the received signal strength is measured and stored

in the variable rssi. By considering the link quality in both directions, the

choice of neighbors with an unsymmetric link quality shall be prevented.

The first rx bcast and rssi are message fields of the broadcast received

and are stored for each discovered node in the node table.

To make the best choice concerning the connectivity state the following

items from the node table are required for each node: number of peers nb pe,

connectivity state con state, hop count hop count, number of neighbors

nb nhs, and number of retries to transmit a notification rtr not. Addi-

tionaly, for the discoverer the following fields are required: own hop count

own hop count, own number of parents own nb pa, own number of peers

own nb pe, and own number of children own nb ch.

The choose neighbor procedure starts with a check of the node table.

Nodes which have already exceeded the threshold for the notification retries

(rtr not ≥ rtr not max) or have already a full neighbor table (nb nhs ≥

nb nhs max) are removed from the node table. Subsequently all nodes are
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sorted for the minimal first rx bcast and the maximal rssi. Thereby,

always the node with the better link quality is chosen, when two nodes

have the same ranking concerning the connectivity state. The discoverer

always tries to meet the requirements of the parameters concerning the

minimal number of parents, peers, or children on the corresponding hop

counts (pe hc1 min, pa hc2 min, ...). Moreover, the discoverer always checks

and only chooses a node if the own number of parents own nb pa, the own

number of peers own nb pe, and the own number of children own nb ch does

not already meet the requirements. In the following the choose neighbor

procedure distinguishs 4 different cases:

• own hop count = 0:

There is no connectivity state information at disposal of the gateway

at the start. The gateway choses the first nb nhs max nodes with the

best link quality from the node table.

• own hop count = 1:

The discoverer chooses the first pe hc1 min peers with minimal nb pe

to prevent that each discoverer with hop count 1 chooses the same

peers. Additionally, the required connectivity state is ensured. Then,

ch hc1 min children with a minimal con state are chosen in order to

add new nodes to the network and improve their connectivity state.

• own hop count = 2:

The discoverer chooses the first pa hc2 min parents with maximal con-

state to ensure the own required connectivity state. If not enough

parents can be chosen, additonal peers to the pe hc2 min with a maxi-

mal con state are chosen instead to ensure the own required connec-

tivity state. Then, ch hc2 min children with a minimal con state are

chosen in order to add new nodes to the network and improve their

connectivity state.

• own hop count = 3:

The discoverer chooses the first pa hc3 min parents with maximal con-

state to ensure the own required connectivity state. If not enough

parents can be chosen, additonal peers to the pe hc3 min with a maxi-

mal con state are chosen instead to ensure the own required connec-

tivity state. If not already chosen, pe hc3 min children with a minimal

con state are chosen in order to improve their connectivity state.
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At the end of the procedure the list of the chosen nodes is truncated to

the number of neighbors which can maximally be added. For that reason,

only the first (nb nhs max - own nb nhs) nodes are returned as the list of

chosen neighbors.

3.2 Node Functions and Fields

In this section the three different node functions and their corresponding

fields are described in more detail. The three different node types are de-

noted as gateway, discoverer, and node functionality.

3.2.1 Gateway

It is assumed that only one node with the gateway functionality exists in

the entire network. More gateways in one single network are conceivable but

in the scope of this thesis only networks with one gateway are investigated.

However, the gateway implements also the discoverer and node functionality.

The gateway controls and monitors the whole Mesh Construct procedure.

In particular, the start, the proceeding temporal non-overlapping neighbor-

hood discoveries, and the termination i. e. the start of the topology control

are initiated by the gateway. Besides, the gateway constructs and maintains

a discoverer table, wherein informations about each node in the network are

stored. For that reason, several additional variables and fields are required

in the gateway and listed in the Table 3.1 and Table 3.2.

The discoverer table discoverer tbl contains the node address nd add

and the connectivity state con state. The node address indentifies the

different discoverers and the connectivity state is required to track the con-

nectivity state of the entire network. Besides, nd add and con state in the

discoverer table for each discoverer the hop count and a trace are stored.

For example these informations are required to initiate a neighborhood dis-

covery. In a trace the addresses of the nodes on the communication path

between the gateway and the discoverer are stored. The combination of

the trace and the hop count allows to transmit a DSR message from the

gateway to the discoverer over more than one hop. The DSR messages are

described more detailed in Section 3.3.3.

The discoverer index discoverer ind indicates the discoverer in the

discoverer tbl, which is currently performing a neighborhood discovery.
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Gateway Gateway variable description

discoverer tbl Discoverer table with informations of all

discoverer nodes (see Table 3.2)

discoverer ind Indicates the current discoverer node

mc state The Mesh Construct state indicates on which

hop count the current discoverer is performing

the neighborhood discovery

nb nds on hc Number of discovered nodes on

the current mc state

nb rx nhtbl Number of received neighbor tables on the

current mc state (see Table 3.6)

rtr start Number of retries for transmitting a start discovery

to the current discoverer

rtr request Number of retries for transmitting a

request neighbor table to the current discoverer

rtr completed Number of retries for transmitting a

completed to the current discoverer

Table 3.1: Variables of the gateway

discoverer tbl discoverer tbl variable description

nd add Node address of the discoverer

con state Connectivity state of the discoverer

hop count Hopcount of the discoverer

trace The list of node addresses of one communication

path from the gateway to the discoverer

Table 3.2: Variables for each discoverer entry of the discvoerer table
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The Mesh Construct state mc state indicates the hop count of the cur-

rent discoverer discoverer ind. The number of nodes nb nds on hc on the

current Mesh Construct state is set each time the mc state is incremented

according the hop count informations in the discoverer table. The num-

ber of received neighbor tables nb rx nhtbl is incremented if the expected

neighbor table is received. The variables rtr start and rtr request are

required to count the corresponding retries.

3.2.2 Discoverer

The discoverer functionality is contained in each node of the network, since

each node has to perform at least one neighborhood discovery. The task

of a discoverer consists of discovering and choosing neighbors. The chosen

neighbors are notified and subsequently added to the neighbor table in case

an ack notification is received. The neighbor table is transmitted to the

gateway to deliver the information about the mesh network topology. The

variables and fields required in the discoverer are listed in the Table 3.3 and

Table 3.4.

For deciding which neighboring nodes to choose as neighbors the dis-

coverer for each discovered node stores information contained in the broad-

cast received messages in a node table node tbl. How a discoverer chooses

nodes depending on the values of the fields in the node table is described in

Section 3.1.3.

The number of received broadcast received messages nb rx bcast rx is

incremented at the reception of a broadcast received and is required to de-

termine if no nodes at all are beeing discovered. After neighbors have been

chosen the number of notifications to transmit nb tx notifications is set

in order to be able to decide wether all expected ack notifications are re-

ceived. The variables rtr bcast and rtr choose are required to count the

corresponding retries.

3.2.3 Node

The node functionality is the basic functionality contained in each node of

the mesh network. A node is only reacting on certain events: broadcasts are

answered with broadcast received, notifications are answered with notifica-

tions, and DSR messages are forwarded if required. Nodes are passive as
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Discoverer Discoverer variable description

node tbl Table of collected informations about

nodes in the neighborhood (see table 3.4)

nb rx bcast rx Number of received broadcast received from

discovered nodes

nb tx notifications Number of transmitted notifications

to chosen neighbors

rtr bcast Current number of retries for transmitting

nb tx bcasts broadcasts

rtr choose Current number of retries for choose neighbors

Table 3.3: Variables of a discoverer

node tbl node tbl variable description

nd add Address of the node

nb nhs Number of neighbors of the node

nb pes Number of peers of the node

con state Connectivity state of the node

hop count Hop count of the node

first rx bcast Number of first received broadcast of the node

rssi RSSI value of the received broadcast received

from the node

rtr not Number of retries for transmitted notifications

to the node

Table 3.4: Variables for each node entry of the node table
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long as none of these events occur. The variables and fields required in a

node are listed in the Table 3.5 and Table 3.6.

Each node has an operation state variable op state, which can be in

the sleep, Mesh Construct, or topology control state. When a node is phys-

ically installed and switched on, the operation state is initialized as sleep

state. Upon receiving the first broadcast the operation state is set to Mesh

Construct. When a completed message is received the state is changed to

topology control.

Additionally, when the first broadcast is received, the bcast nb of the

message is stored as first received broadcast to first rx bcast and the

gw address of the message is stored. If more mesh netork exists, the

gw address is included in direct messages to indicate whether a node is

in the network with the same gateway.

When a node receives a notification the source node is added as neighbor

in the neighbor table neighbor tbl. Each node entry in the neighbor table

will in future be used to communicate within the mesh network.

Node Node variable description

neighbor tbl Table containing information of chosen neighbors

(see Table 3.6)

op state sleeping, mesh construct, operation

gw address Address of the gateway

first rx bcast Number of first received broadcast

nb pa Number of parents in neighbor tbl

nb pe Number of peers in neighbor tbl

nb ch Number of children in neighbor tbl

hop count Hop count

con state Connectivity state

txpower The current transmit power

Table 3.5: Variables of a node

3.3 Message Types

In this section the different messages and message types used for the com-

munication within the mesh network are described. There are three differ-

ent message types, the direct, DWARF, or DSR message. For each single
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neighbor tbl neighbor tbl variable description

nd add Node address of the neighbor

con state Connectivity state of the neighbor

hop count Hop count of the neighbor

Table 3.6: Variables for each neighbor entry of the neighbor table

message it is indicated between which node types it is transmitted, which

information is contained, in which situations the message is sent, and which

actions are performed when the message is received. Each message con-

tains the message type, the destination address, and the source address as

message fields.

3.3.1 Direct Messages

Direct messages are exchanged over a distance of one hop. There are unicast

messages from one node to another or a broadcast message from one node

to all nodes in communcation range.

broadcast

A broadcast is transmitted from a discoverer to all nodes in communication

range. The information fields contained in a broadcast are listed in the Table

3.7.

broadcast broadcast field description

msg type Identifier indicating the message type broadcast

dest bcast Destination address

src bcast Source address

bcast nb Sequence number of the broadcast

gw address Gateway address

Table 3.7: Message fields of a broadcast

The broadcast message is transmitted nb tx bcast times with linear in-

creasing transmit power at the beginning of a neighborhood discovery. The

broadcast sequence number is incremented after each transmission.

When a node receives the first broadcast from a discoverer, the broad-

cast sequence number bcast nb is stored to first rx bcast and the timer
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t rx bcasts depending on first rx bcast is started. Additionally, the

address of the gateway gw address is stored if it is not known yet at the

node.

broadcast received

The broadcast received message is transmitted as answer from a node to a

discoverer from whom a broadcast has been received. The information fields

contained in a broadcast received are listed in the Table 3.8.

broadcast received broadcast received field description

msg type Identifier indicating the message type

broadcast received

dest bcast rx Destination address

src bcast rx Source address

gw address Gateway address

bcast nb Sequence number of first received broadcast

con state Connectivity state of the source

hop count Hop count of the source

nb nhs Number of neighbors of the source

nb pes Number of peers of the source

rssi RSSI at the destination

Table 3.8: Message fields of a broadcast received

The broadcast received message is transmitted to the source of a received

broadcast src bcast when the timer t rx bcasts expires.

When a discoverer receives a broadcast received the message fields are

stored in the node table node tbl. The message field rssi denotes the

received signal strength indication (RSSI) measured at the discoverer and

actually, is only a virtual message field.

notification

The notification message is transmitted from a discoverer to a node in order

to notify the node that it is chosen as neighbor. The information fields

contained in a notification are listed in the Table 3.9.

Discoverers transmit notification messages at the end of the neighbor-

hood discovery after nodes are chosen as neighbors from the node table.
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notification notification field description

msg type Identifier indicating the message type notification

dest not Destination address

src not Source address

gw address Gateway address

con state Connectivity state of the source

hop count Hop count of the source

Table 3.9: Message fields of a notification

When a node receives a notification from a discoverer the node adds

the discoverer to its neighbor table neighbor tbl. Additionally, the own

connectivity state is updated from the neighbor table. As an answer an

ack notification is transmitted to the source of notification src not.

ack notification

The ack notification message is transmitted to the source of a received noti-

fication src not. The information fields contained in a ack notification are

listed in the Table 3.10.

Variable Variable description

msg type Identifier indicating the message type ack notification

dest ack not Destination address

src ack not Source address

gw address Gateway address

con state Connectivity state of the source

hop count Hop count of the source

Table 3.10: Message fields of a ack notification

The ack notification message is transmitted to the source of a received

notification src bcast as a direct reaction on receiving a notification.

When a discoverer receives an ack notification from a node the source is

added to the neighbor table neighbor tbl. Additionally, the own connec-

tivity state is updated from the actualized neighbor table.
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3.3.2 DWARF Messages

In this thesis all DWARF messages are transmitted from any discoverer to

the gateway. A DWARF message can be forwarded over several communica-

tion paths with several hops to the gateway. In addition, the communication

paths from the discoverer to the gateway are not determined a priori. More

informations about the DWARF message mechanism are given in (reference

dwarf paper).

neighbor table

The information fields contained in a neighbor table message are listed in

the Table 3.11.

neighbor table neighbor table field description

msg type Identifier indicating the message type neighbor table

dest nhtbl Destination address equal to gw address

src nhtbl Source address

neighbor tbl Table containing information of chosen neighbors

Table 3.11: Message fields of a neighbor table

A neighbor table message is transmitted to the gateway when a discov-

erer has completed its neighbor discovery. The whole neighbor tbl of the

discoverer is added to the message.

When the gateway receives a neighbor table the timers t rx nhtbl or

t rq are stopped and the informations of the neighbor table contained in the

message are stored in the discoverer tbl. Furthermore, the node addresses

of one communication path from the discoverer to the gateway are stored in

a trace in the discoverer table.

ack start discovery

The information fields contained in a ack start discovery message are listed

in the Table 3.12.

An ack start discovery is transmitted from a discoverer to the gateway

in response to a received start discovery message.

When an ack start discovery is received at the gateway, the timer t rx-

ack start is stopped.
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Variable Variable description

msg type Identifier indicating the message type

ack start discovery

dest ack start Destination address equal to gw address

src ack start Source address

Table 3.12: Message fields of a ack start discovery

ack completed

The information fields contained in a ack completed message are listed in

the Table 3.13.

Variable Variable description

msg type Identifier indicating the message type ack completed

dest ack comp Destination address equal to gw address

src ack comp Source address

Table 3.13: Message fields of a ack completed

An ack completed is transmitted from a discoverer to the gateway in

response to a received completed message.

No action is executed, when an ack completed is received at the gateway.

3.3.3 DSR Messages

DSR messages are transmitted from the gateway to any node in the mesh

network. A DSR message can be forwarded over several hops to the desti-

nation node. Therefore, the requirement to transmit a DSR message is a

known trace stored in the discoverer table of the gateway. A trace is a list

of node addresses of the communication path from the gateway to the des-

tination node. A trace is stored each time a neighbor table is received from

a discoverer at the gateway for each child of the discoverer. The discoverer

address is appended to the own trace of the discoverer and stored as trace

for each child of the discoverer. The trace of a discoverer with hop count

1 is an empty list. If a node receives a DSR message, the message will be

forwarded to the next node of the trace unless the receiving node is the final

destination.
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start discovery

The information fields contained in a start discovery message are listed in

the Table 3.14.

Variable Variable description

msg type Identifier indicating the message type start discovery

dest start Destination address equal to gw address

trace Node addresses to the destination node

src start Source address

Table 3.14: Message fields of a start discovery

A start discovery message is transmitted from the gateway to a discov-

erer to initiate the start of a neighborhood discovery.

When a start discovery message is received at a discoverer, an ack start-

discovery message is transmitted to the gateway to confirm the reception.

Subsequently, the neighborhood discovery procedure is started.

request neighbor table

The information fields contained in a request neighbor table message are

listed in the Table 3.15.

Variable Variable description

msg type Identifier indicating the message type

request neighbor table

dest rq nhtbl Destination address equal to gw address

trace Node addresses to the destination node

src rq nhtl Source address

Table 3.15: Message fields of a request neighbor table

A request neighbor table message is transmitted from the gateway to a

discover when the timer t rx nhtbl or t rq is expired before a neighbor

table is received from the discoverer at the gateway.

In response of receiving a request neighbor table a discoverer transmits

the requested neighbor table message to the gateway.
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completed

The information fields contained in a completed message are listed in the

Table 3.16.

Variable Variable description

msg type Identifier indicating the message type completed

dest comp Destination address equal to gw address

trace Node addresses to the destination node

src comp Source address

Table 3.16: Message fields of a completed

A completed message is transmitted from the gateway to each node of

the network, when the Mesh Construct procedure is completed.

A node receiving a completed message, sets the op state to topology

control, starts the topology control application and transmits an ack completed

message back to the gateway. To speed up the operation state change, a

node only forwarding the completed changes the operation state as well, but

does not transmit an ack completed .

3.4 Timers

Timers with corresponding retry mechanisms are introduced to prevent the

Mesh Construct Algorithm from running infinitely. The set timers are used

to limit the waiting time for a certain event to a finite duration. There are

two different types of timers applied in the Mesh Construct. The first type

of timers waits for an unknown amount of events and hence is designed to

expire in any case before further actions are performed (e.g. the timers in

Sections 3.4.1 and 3.4.2). The second type of timers waits for one certain

event and is stopped immediately if the expected event occurs (e.g. the

timers in Sections 3.4.3, 3.4.4, 3.4.5, and 3.4.6).

To design the Mesh Construct algorithm as stable as possible, the du-

ration of the timers is always chosen in a conservative way. Therefore, the

duration of a timer is theoretically calculated as the time period required

for the event to occur in a worst case scenario.

Since the WiseMAC protocol is implemented in the wireless fire detection

sensor network, each node can only receive messages at every periodic wake
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up point. The constant time period between these wake up points is denoted

as the wake up period t w. Thus, the duration of each timer is determined

by a number of time slots t w. For further informations about the WiseMAC

protocol see (ref wisemac).

Figure 3.5: Scheme for transmitting a direct message

To determine the duration of certain timers, the duration for the trans-

mission of one direct message is required. The possible worst case situation

of a direct transmission is illustrated in the Figure 3.5. A message is en-

queued in a node for transmission an infinitesimal time after the wake up

point of the destination node. The transmitting node has to wait the re-

maining time for its own wake up point t s plus the time difference between

the wake up patterns of both nodes t d until the transmission of the message

can be started. Depending on the length of the message t m the total dura-

tion t total from the point where the message is enqueued for transmission

until it is entirely received at the destination node is possibly longer than

one wake up period t w.

t total = t s + t d + t m > t w (3.6)

Therefore, the assumed time duration for transmitting a direct message is
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rounded up to two wake up periods.

t direct = 2 · t w (3.7)

As a consequence of equation 3.7 the maximal duration for the transmission

of a DWARF oder DSR message is given by the maximal number of hops.

t dwarf = nb hops max · t direct

= 2 · nb hops max · t w (3.8)

t dsr = nb hops max · t direct

= 2 · nb hops max · t w (3.9)

In the following sections for each timer the derivation of the duration is

described. Moreover, for each timer the starting point, the event the timer

waits for, and the actions which will be performed at the timer stop or

expiration are indicated.

3.4.1 Timeout receive broadcasts t rx bcasts

The timer t rx bcasts is started when the first broadcast of a discov-

erer is completely received at a node. While the timer t rx bcasts is

running, the node waits for the reception of the remaining (nb tx bcasts

- first rx bcast) broadcasts of the discoverer. When the timer expires the

node transmits a broadcast received to the discoverer.

Due to a technical restriction it is not possible to transmit broadcasts in

consecutive time slots. A number of idle slots has to be inserted between the

transmission of two broadcasts. During the transmission of the broadcast se-

quence the reception of a broadcast received at the discoverer is complicated

or not possible. Thus, the node transmits the broadcast received message

only after the last broadcast is received. Since each node in communica-

tion range receives the last broadcast approximately at the same time, a

simultaneous transmission of the broadcast received to the gateway leads to

numerous collisions at the gateway. For that reason a random number of

time slots t w is added to the timer duration in order to decrease the num-

ber of collisions. The random number is uniformly distributed over the set

{0, nb nds}. The scheme for the duration of the timer t rx bcasts is shown

in the Figure 3.6.
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t rx bcast (first rx bcast) = [(nb tx bcasts − first rx bcast)

· (idle slots + 1)

+ random(0, nb nds)] · t w (3.10)

Figure 3.6: Scheme for the duration of the timer t rx bcast

3.4.2 Timeout receive broadcast-received t rx bcast rx

The timer t rx bcast rx is started when the discoverer starts the transmis-

sion of the first broadcast of the sequence. While the timer t rx bcast rx

is running, the discoverer waits for the reception of broadcast received mes-

sages. When the timer expires the discoverer starts the choose neighbors

algorithm.

The scheme for the duration of the timer t rx bcast rx is shown in

the Figure 3.7. The duration of the timer t rx bcast rx is composed of

the time required for transmitting the broadcast sequence t bcast seq and

the random time waited of the nodes t wait to reduce collisons. From the

Figure 3.7 the duration of the t bcast seq results

t bcast seq = [1 + (nb tx bcasts − 1) · (idle slots + 1)] · t w (3.11)
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If the worst case is assumed the t wait is equal to the maximal waiting time

slots

t wait = nb nds · t w (3.12)

The total duration of the timer t rx bcast rx results as

t rx bcast rx = t bcast seq+ t wait (3.13)

= [(nb tx bcasts − 1) · (idle slots + 1)

+1 + nb nds] · t w (3.14)

Figure 3.7: Scheme for the duration of the timer t rx bcast rx

3.4.3 Timeout receive ack-notification t rx ack not

The timer t rx ack not is started when a discoverer transmits a notification

to a chosen node. While the timer t rx ack not is running, the discoverer

waits for an ack notification from the chosen node. When an ack notification

is received at the discoverer, the timer is stopped. If the timer expires,

another notification is transmitted to the node unless the number of retries
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rtr not has not exceeded the threshold rtr not max. If the threshold is

exceeded, new neighbors are chosen an notified with a notification.

Since notifications and ack notifications are transmitted only over one

hop, the duration of the timer t rx ack not is equal to the time required

to transmit two direct messages.

t rx ack not = 2 · t direct (3.15)

= 4 · t w (3.16)

3.4.4 Timeout receive ack-start-discovery t rx ack start

The timer t rx ack start is started when the gateway transmits a start-

discovery to a discoverer. While the timer t rx ack not is running, the

gateway waits for an ack start message from the discoverer. When an

ack start is received at the gateway, the timer is stopped. If the timer

expires, another start discovery is transmitted to the discoverer unless the

number of retries rtr start has not exceeded the threshold rtr start max. If

the threshold is exceeded, the start of the discovery failed and a start discovery

is transmitted to the next discoverer.

Start discovery and ack start messages are transmitted over several hops.

The start discovery is a DSR message and the ack start is a DWARF mes-

sage. Therefore, the duration of the timer t rx ack start is equal to the

time required to transmit a DSR and a DWARF message.

t rx ack start = t dsr+ t dwarf (3.17)

= 2 · nb hops max · t direct (3.18)

= 4 · nb hops max · t w (3.19)

3.4.5 Timeout receive neighbor-table t rx nhtbl

The timer t rx nhtbl is started when the gateway transmits a start discovery

to a discoverer. While the timer t rx nhtbl is running, the gateway waits

for a neighbor table message from the discoverer. When a neighbor table

is received at the gateway, the timer is stopped. If the timer expires,

a request nhtbl is transmitted to the discoverer unless the number of re-

tries rtr request has not exceeded the threshold rtr request max. If the
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threshold is exceeded, the reception of the neighbor table failed and a

start discovery is transmitted to the next discoverer.

For the calculation of the duration of the timer t rx nhtbl it is as-

sumed, that each event occurs with the last retry and an infinitesimal time

before the corresponding timer would expire. First, one plus the maximal

number of retries for transmitting the broadcast sequence times the timer

t rx bcast rx is awaited. It is assumed, that only on the last retry from

each node an broadcast received is received and from the previous trans-

mitted broadcast sequences no broadcast receiced messages are received at

the discoverer. Second, the maximal number of neighbors plus the maximal

number of retries for choosing a new neighbor times the time required for

notify a neighbor, assumed that the maximal number of retries for a notifi-

cation is needed, is awaited. Finally, a DWARF message with the neighbor

table is transmitted to the gateway.

t rx nhtbl = t rx bcast rx · (1 + rtr bcast max)

+t rx ack not · (1 + rtr not max)

· (nb nhs max + rtr choose max)

+t dwarf (3.20)

3.4.6 Timeout receive requested-neighbor-table t rq nhtbl

The timer t rq is started when the gateway transmits a request nhtbl to a

discoverer which already has performed a neighbor hood discovery. While

the timer t rq is running, the gateway waits for a neighbor table message

from the discoverer. When a neighbor table is received at the gateway, the

timer is stopped. If the timer expires, another request nhtbl is transmitted

to the discoverer unless the number of retries rtr request has not exceeded

the threshold rtr request max. If the threshold is exceeded, the reception of

the neighbor table failed and a start discovery is transmitted to the next

discoverer.The duration of the timer t rq can be calculated analoguous to

the timer t rx ack start, since also a DSR and a DWARF message are

transmitted.

t rq nhtbl = t dsr + t dwarf (3.21)

= 2 · nb hops max · t direct (3.22)

= 4 · nb hops max · t w (3.23)

59



Chapter 3 Conceptual Design

3.5 Parameters

Paramter Parameter description

nb nds Total number of nodes

nb nhs max Maximal number of neighbors per node

nb hops max Maximal number of hops in the network

nb con paths min Minimal number of independent communication

paths from a detector to the gateway

nb tx bcasts Number of broadcasts a discoverer transmits

t w Wake up period of the Wisemac

idle slots Technical required idle time between

transmitting a message

tx power min Minimal transmit power

tx power max Maximal transmit power

rtr bcast max Maximal number of retries for transmitting

nb tx bcasts broadcasts

rtr choose max Maximal number of retries for choose neighbors

rtr not max Maximal number of retries for

transmitting a notification to a particular node

rtr start max Maximal number of retries for

transmitting a start

rtr request max Maximal number for transmitting

an request neighbor table

pe hc1 min Minimal number of peers on hopcount 1

ch hc1 min Minimal number of children on hopcount 1

pa hc2 min Minimal number of parents on hopcount 2

pe hc2 min Minimal number of peers on hopcount 2

ch hc2 min Minimal number of children on hopcount 2

pa hc3 min Minimal number of parents on hopcount 3

pe hc3 min Minimal number of peers on hopcount 3

Table 3.17: Parameters of Mesh Construct
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3.6 Pseudocodes

3.6.1 Mesh Construct

Algorithm 3 Mesh Construct
1: GATEWAY:

2: init

3: mc state = 0

4: discoverer ind = 0

5: discoverer tbl = { }

6: rtr completed = 0

7: run Discover Neighborhood

8: store neighbor tbl in discoverer tbl

9: continue on next hopcount

10:

11: continue on next hopcount

12: mc state++

13: if mc state > nb hops max then

14: Mesh Construct completed

15: else

16: set nb nds on hc on mc state

17: nb rx nbtbl = 0

18: continue on next node

19: end if

20:

21: continue on next node

22: discoverer ind++

23: rtr request = 0

24: rtr start = 0

25: initiate discovery

26:

27: initiate discovery

28: tx start discovery to discoverer ind

29: set timer t rx ack start

30: set timer t rx nhtbl

31:

32: Mesh Construct completed

33: tx completed to discoverer ind

34: set t rx ack completed

35:

36: upon rx ack start discovery:

37: stop timer t rx ack start

38:

39: upon rx neighbor tbl:

40: stop timer t rx nhtbl

41: nb rx nhtbl++

42: store neighbor tbl in discoverer tbl

43: if nb rx nhtbl ≤ nb nds on hc then

44: continue on next node

45: else

46: continue on next hopcount

47: end if

48:

49: upon rx ack completed:

50: stop timer t rx ack completed

51: if discoverer ind > 0 then

52: discoverer ind–

53: tx completed to discoverer ind

54: set t rx ack completed

55: else

56: start the operation with topology control

57: end if

58:

59: upon timer t rx ack start expires:

60: stop timer t rx nhtbl

61: rtr start++

62: if rtr start ≤ rtr start max then

63: initiate discovery

64: else

65: if nb rx nhtbl+1 ≥ nb nds on hb then

66: continue on next hopcount

67: else

68: continue on next node

69: end if

70: end if

71:

72: upon timer t rx nhtbl or t rq expires:

73: rtr request++

74: if rtr request ≤ rtr request max then

75: tx request neighbor tbl to discoverer ind

76: set timer t rq

77: else

78: if nb rx nhtbl+1 ≥ nb nds on hc then

79: continue on next hopcount

80: else

81: continue on next node

82: end if

83: end if

84:

85: upon timer t rx ack completed expires:

86: rtr completed++

87: if rtr completed ≤ rtr completed max then

88: tx completed to discoverer ind

89: set t rx ack completed

90: else

91: if discoverer ind > 0 then

92: rtr completed = 0

93: discoverer ind–

94: tx completed to discoverer ind

95: set t rx ack completed

96: else

97: start the operation with topology control

98: end if

99: end if

100:

101: DISCOVERER:

102: init

103: discovery started = false

104:

105: upon rx start discovery:

106: tx ack start discovery to gw

107: if discovery started == false then

108: discovery started = true

109: run Discover Neighborhood

110: tx neighbor tbl to gw

111: end if

112:

113: upon rx request neighbor tbl:

114: tx neighbor tbl to gw

115:

116: upon rx completed:

117: start the operation with topology control

118: tx ack completed to the gateway

119:
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3.6.2 Neighborhood Discovery

Algorithm 4 Neighborhood Discovery
1: DISCOVERER:

2: init

3: nb rx bcast rx = 0

4: node tbl = {}

5: NbRxAckNot = 0

6: rtr bcast = 0

7: rtr choose = 0

8: start

9:

10: start

11: set timer t rx bcast rx

12: for bcastnb = 1 to nb tx bcast do

13: txpower = m · bcastnb + b

14: tx broadcast(txpower,bcastnb)

15: wait idle slots

16: end for

17:

18: upon rx broadcast received:

19: nb rx bcast rx++

20: add src bcast rx to node tbl

21:

22: upon rx ack notification:

23: add src ack not to neighbor tbl

24: stop timer t rx ack not

25: NbRxAckNot++

26: if NbRxAckNot ≥ nb tx notifications then

27: //neighborhood discovery completed

28: return neighbor tbl

29: else

30: chosen node++

31: tx notification

32: end if

33:

34: upon timer t rx bcast rx expires:

35: if nb rx bcast rx == 0 then

36: rtr bcast++

37: if rtr bcast ≤ rtr bcast max then

38: //restart discovery

39: go to start

40: else

41: //No neighbors found

42: return neighbor tbl

43: end if

44: else

45: run Choose Neighbors

46: set nb tx notifications

47: tx notification

48: end if

49:

50: upon timer t rx ack not expires:

51: chosen node.rtr not++

52: if chosen node.rtr not ≤ rtr not max then

53: tx notification

54: else

55: rtr choose++

56: if rtr choose ≤ rtr choose max then

57: run Choose Neighbors

58: NbRxAckNot = 0

59: set nb tx notifications

60: if nb tx notifications == 0 then

61: //No neighbors are chosen

62: return neighbor tbl

63: else

64: tx notification

65: end if

66: else

67: //No additional neighbors found

68: return neighbor tbl

69: end if

70: end if

71:

72: tx notification

73: tx notification to chosen node

74: set timer t rx ack not

75:

76: NODE:

77: init

78: first rx bcast = 0

79: neighbor tbl ={}

80:

81: upon rx broadcast(bcast nb):

82: if first rx bcast == 0 then

83: first rx bcast = bcast nb

84: discoverer add = src bcast

85: set timer t rx bcast(first rx bcast)

86: end if

87:

88: upon rx notification:

89: add src not to neighbor tbl

90: tx ack notification to src not

91:

92: upon timer t rx bcast expires:

93: tx broadcast received(first rx bcast) to

discoverer add

94: first rx bcast = 0

95:
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3.6.3 Choose Neighbors

Algorithm 5 Choose Neighbors
1: input

2: discoverer fields: own nb nbs, own nb pas, own nb pes, own nb ch, own hop count

3: node tbl fields for each node: nb pes, con state, hop count, first rx bcast, rssi, nb nhs, rtr not

4:

5: start

6: chosen nodes = {}

7: remove nodes with (nb nhs ≥ nb nhs max) or (rtr not ≥ rtr not max) from node tbl

8: Sort nodes of node tbl descending for maximal rssi and minimal first rx bcast

9:

10: if own hop count == 0: then

11: append the first nb nhs max nodes to chosen nodes

12: end if

13:

14: if own hop count == 1: then

15: if pe hc1 min - own nb pes > 0 then

16: nb missing peers = pe hc1 min - own nb pes

17: append the first nb missing peers nodes with hop count = 1 and minimal nb pes to chosen nodes

18: end if

19: if ch hc1 min - own nb ch > 0 then

20: nb missing children = ch hc1 min - own nb ch

21: append the first nb missing children nodes with hop count = 2 and minimal con state to chosen nodes

22: end if

23: end if

24:

25: if own hop count == 2: then

26: if pa hc2 min - own nb pas > 0 then

27: nb missing parents = pa hc2 min - own nb pas

28: append the first nb missing parents nodes with hop count = 1 and maximal con state to chosen nodes

29: end if

30: nb chosen pas = len(chosen nodes)

31: if pe hc2 min - own nb pes + (pa hc2 min - nb chosen pas) > 0 then

32: nb missing peers = pe hc2 min - own nb pes + (pa hc2 min - nb chosen pas)

33: append the first nb missing peers nodes with hop count = 2 and maximal con state to chosen nodes

34: end if

35: if ch hc2 min - own nb ch > 0 then

36: nb missing children = ch hc2 min - own nb ch

37: append the first nb missing children nodes with hop count = 3 and minimal con state to chosen nodes

38: end if

39: end if

40:

41: if own hop count == 3: then

42: if pa hc3 min - own nb pas > 0 then

43: nb missing parents = pa hc3 min - own nb pas

44: append the first nb missing parents nodes with hop count = 2 and maximal con state to chosen nodes

45: end if

46: nb chosen pas = len(chosen nodes)

47: if pe hc3 min - own nb pes + (pa hc3 min - nb chosen pas) > 0 then

48: nb missing peers = pe hc3 min - own nb pes + (pa hc3 min - nb chosen pas)

49: append the first nb missing peers nodes with hop count = 3 and maximal con state to chosen nodes

50: end if

51: if pe hc3 min - own nb ch > 0 then

52: nb missing peers = pe hc3 min - own nb ch

53: append the first nb missing peers nodes with hop count = 3 and minimal con state to chosen nodes

54: end if

55: end if

56:

57: if len(chosen nodes) > nb nhs max - own nb nhs then

58: remove the last len(chosen nodes) - (nb nhs max - nb nhs) entries of chosen nodes

59: end if

60: return chosen nodes
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3.6.4 Implementation

In this section a few remarks concerning the implementation of the Mesh

Construct procedure in an embedded system are stated.

Control Functions

The Mesh Construct Algorithm 3 and the Neighborhood Discovery Algo-

rithm 4 are implemented slightly different than presented in the pseudocodes

of the last section. The algorithms are implemented as control functions,

which are invoked each time a corresponding event occurs or a timer ex-

pires. A decision tree determines the actions which have to be executed in

the current state of the procedure. For that reason, a few addional variables

are introduced.

RAM Optimization

The memory on the microprocessor applied in the nodes of the used testbed

(see also Appendix A) is very scarce. The available random access memory

(RAM) is only 4 kilobytes. The required RAM for the variables presented

in the last sections is much higher than the RAM provided in the micropro-

cessor. Therefore, the variables of the Mesh Construct procedure have to

be optimized to reduce the required RAM. Several optimizations have been

realized and listed in the following.

• The addresses of the nodes are 32 bit MAC addresses. Because they

appear very often in the variables of the Mesh Construct, a look-up

table is introduced. The nodes store each unknown MAC address

in the look-up table and use only the corresponding index for the

intern storage of the neighbor and node table (in the gateway also the

discoverer table).

• Timers require 64 bits RAM. To reduce RAM usage different timers,

which never can overlap due to the conceptual design, are summarized

to one timer.

• Various boolean variables are unified to bit fields (flags) of a 8 bit

unsinged integer variable.
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3.7 Theoretical Upper Bound for the Duration of

the Mesh Construct

The maximal duration of the Mesh Construct t mc max is composed of differ-

ent contributions. First the maximal time to initiate a neighborhood discov-

ery in each detector t init disc is derived. There are (nb nds - 1) detectors

which can require (rtr start max + 1) attempts to transmit a start discovery

message to. Therefore, for t init disc results

t init disc = (nb nds − 1) · (rtr start max + 1)

·t rx ack start (3.24)

The maximal time required for each node (including the gateway) to

perform the neighborhood discovery t disc is given by

t idisc = nb nds · t rx nhtbl (3.25)

The maximal time required to receive the neighbor table message from

each detector t rx neighbor table is given by the maximal retries for re-

questing the neighbor table and the timer duration t rq nhtbl

t rx neighbor table = (nb nds − 1) · rtr request max

·t rx rq nhtbl (3.26)

Finally the DSR message completed has to be transmitted to each node

to start the topology control

t tx completed = (nb nds − 1) · t dsr (3.27)

By combining all these equations for the maximal duration of the Mesh

Construct procedure results
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t mc max = t init disc+ t idisc

+t rx neighbor table+ t tx completed (3.28)

= (nb nds − 1) ·

[(rtr start max + 1) · t rx ack start+ t rx nhtbl

+rtr request max · t rx rq nhtbl+ t dsr]

+t rx nhtbl (3.29)
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Chapter 4

Testing and Evaluation

In this chapter the Mesh Construct procedure is tested and evaluated. In

the first section the test setup and the test parameters are described. In the

second section the values of the the Mesh Construct parameters described

in Section 3.5 are set. In the third section a timing analysis of the timers

introduced in Section 3.4 is carried out. In Section 4.4 the Mesh Construct

procedure is assessed by the quality metrics defined in Section 1.2.3. In the

last section of this chapter the Mesh Construct procedure is compared to

the existing solution described in Section 2.1.

Although many Mesh Construct tests have been run on the testbed, the

number of performed tests does not claim to be statistical relevant and there-

fore in this chapter only three examples thereof are shown and evaluated.

However, the evaluation of the Mesh Construct exhibits some promising

results.

4.1 Test Setup

The performance of the Mesh Construct procedure is assessed through tests

on an experimental setup analogously to Section 2.1.2. The used testbed is

described more detailed in Appendix A. The number of nodes nb nds of the

testbed is 32. The test setup consists of one gateway and 31 detectors. At

the beginning of the test first, the gateway is switched on and afterwards

sequentially all detectors in a random order. Before a node is enabled, a

time delay is inserted to simulate the installation time. The time delay

between the startup of two succeding nodes is uniform random distributed

in the interval [t min, t max]. The time delay due to the installation is set
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to be between one and five minutes. The test runtime t test starts after the

last switch-on and is set to twelve hours. The test parameters are listed in

Table 2.2.

Test Parameters Value

nb nds 32

t test 43200 s

t min 60 s

t max 300 s

Table 4.1: Test setup

4.2 Parameters

In Table 4.2 the set parameters of the Mesh Construct tests are listed. The

parameters nb nds, idle slots, tx power min, tx power max are determined by

the testbed. The paramteter nb nhs max is set to be one smaller than in the

alarm system described in Section 1.1.2, where the last entry of the neigh-

bor table is used as an overwrite slot for the MAC layer. The parameters

nb hops max and nb con paths min are determined by the requirements given

in Section 1.2.2. The parameter t w is adopted also from the alarm system

described in 1.1.2. However, for the evaluation of the network initialization

also tests with a wake up period of 0.5 s are run. The retry parameters are

determined empirically.

The parameters used in the choose neighbor algorithm are set with the

objective to construct a mesh network with redundancy concerning the con-

nectivity states. Each node tries to choose two parents and an additional

peer with maximal connectivity states as neighbors in order to have three

connectivity paths to the gateway (Except nodes with hop count 1, which

instead choose two additional peers, because these nodes have with the gate-

way only one possible parent). Nodes with hop count 1 or 2 additionally try

to add two children with minimal connectivity state. By this, new nodes

are added to mesh network, and the connectivity state of the added nodes

can be improved. Finally, two of the maximal seven neighbor table entries

are not filled with neighbors in order to give nodes with a higher hop count

the possibility to add a second parent during its neighbor discovery.
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Depending on the purpose and the requirements of the alarm system,

mesh network topologies with different characterictics can be constructed

with appropriate choices of the parameters of the choose neighbor algorithm.

Paramter Value

nb nds 32

nb nhs max 7

nb hops max 3

nb con paths min 2

nb tx bcasts 3

t w 1.5 s (Mesh Construct test A and B)

0.5 s (Mesh Construct test C)

idle slots 2

tx power min -16 dBm

tx power max +13 dBm

rtr bcast max 1

rtr choose max 3

rtr not max 2

rtr start max 5

rtr request max 5

pe hc1 min 2

ch hc1 min 2

pa hc2 min 2

pe hc2 min 1

ch hc2 min 2

pa hc3 min 2

pe hc3 min 1

Table 4.2: Parameters of the Mesh Construct tests

4.3 Timing Analysis

In this section the Mesh Construct timers introduced in Section 3.4 are

investigated. For each timer the duration is calculated with the paramteres

set in Section 4.2 and plots are generated to visualize the temporal behavior

of the relevant occuring events. In the following sections several examples
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thereof are shown.

4.3.1 Timeout receive broadcasts t rx bcasts

The duration of the timer t rx bcasts is not deterministic. However, if the

parameters of Table 4.2 are set into Equation 3.10, the following durations

result.

t rx bcast (1) = [(3 − 1) · (2 + 1) + random(0, 32)] · 1.5 s (4.1)

= 9 s + random (0, 32) · 1.5 s (4.2)

t rx bcast (2) = [(3 − 2) · (2 + 1) + random(0, 32)] · 1.5 s (4.3)

= 4.5 s + random(0, 32) · 1.5 s (4.4)

t rx bcast (3) = [(3 − 3) · (2 + 1) + random(0, 32)] · 1.5 s (4.5)

= random(0, 32) · 1.5 s (4.6)

In Figure 4.1 the occuring events for the discoverer 0002000D concern-

ing the timer t rx bcasts are plotted over the test time. The timer is

started with the reception of the first broadcast. All nodes, except of three,

received already the broadcast with sequence number 1, which is transmit-

ted with minimal power. When the timer expires the broadcast received is

transmitted. The random duration of the timer t rx bcasts scatters the

transmission of the broadcast received messages in time. The necessity of

randomness to decrease collisions at the discoverer unfortunately extends

the average idle time between the reception of the first broadcast and the

transmission of the broadcast received, which in this example is 22.671 s.

4.3.2 Timeout receive broadcast-received t rx bcast rx

By setting the parameters of Table 4.2 into Equation 3.14 for the duration

of the timer t rx bcast rx results

t rx bcast rx = [(3 − 1) · (2 + 1) + 1 + 32] · 1.5 s (4.7)

= 58.5 s (4.8)

In Figure 4.2 the occuring events for the discoverer 0002000D concern-

ing the timer t rx bcast rx are plotted over the test time. The timer is
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rx broadcast 1
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tx broadcast_received 
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Figure 4.1: Mesh Construct Test B: Timer t rx bcasts, discoverer

0002000D

started with the transmission of the first broadcast and expires after 58.5 s.

When the timer expires, the choose neighbor algorithm is started and the

chosen nodes are notified. The expiration of the timer, is indicated in the

figure by a red vertical line. In this example only one broadcast received

is received after the timer expired and is not considered for the subsequent

choice of neighbors. During the whole Mesh Construct test B only 26 (4.3%)

of the broadcast received are received after the timer expiration, i.e. less than

one broadcast received per discoverer is not considered. These omissions are

minor and therefore the duration of the timer t rx bcast rx can be con-

sidered as appropriate. A shortening of the timer duration could probably

lead to collisions at the discoverer between broadcast received messages re-

ceived after timer expiration and received answers to already transmitted

notifications.

4.3.3 Timeout receive ack-notification t rx ack not

By setting the parameters of Table 4.2 into Equation 3.16 for the duration

of the timer t rx ack not results

t rx ack not = 4 · 1.5 s (4.9)

= 6 s (4.10)
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Figure 4.2: Mesh Construct Test B: Timer t rx bcast rx, discoverer

0002000D
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Figure 4.3: Mesh Construct Test B: Timer t rxack not, discoverer

0002000D
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Figure 4.4: Mesh Construct Test B: Timer t rxack not, discoverer

00020019

In Figure 4.3 and 4.4 the occuring events for the discoverer 0002000D

and 00020019 concerning the timer t rx ack not are plotted over the test

time. The timer is started with the transmission of a notification and is

stopped with the reception of an ack notification. Only 4 (3.8%) of the

timers t rx ack not expired and a further notification had to be transmit-

ted, one such example is shown in Figure 4.4.

4.3.4 Timeout receive ack-start-discovery t rx ack start

By setting the parameters of Table 4.2 into Equation 3.19 for the duration

of the timer t rx ack start results

t rx ack start = 4 · 3 · 1.5 s (4.11)

= 18 s (4.12)

In Figure 4.5 the occuring events for all discoverers concerning the timer

t rx ack start are plotted over the time relative to the timer start. The

timer t rx ack start starts with the transmission of a start discovery and

stops with the reception of an ack start discovery. When the timer ex-

pires another start discovery is transmitted. For example, for the discov-

erers 0002001D, 00020017, and 0002000E a retry is required to receive
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Figure 4.5: Mesh Construct Test B: Timer t rx ack start

an ack start discovery. The average time which remained before expira-

tion when the timer was stopped is 10.691 s. Hence, the duration of the

timer t rx ack start of 18 s is rather conservative, but is not reduced. In

most tests the expiration of the timer t rx ack start was caused by a lost

ack start discovery message and therefore additional retransmissions would

predominantly increase the energy consumption and not reduce the duration

of the Mesh Construct procedure.

There are discoverer, for example 00020046, which have received sev-

eral ack start discovery messages without that the timer t rx ack start

expired and caused a retransmission of a start discovery. That is because

the MAC layer also has an own acknowledgement and retry mechanism for

direct messages. Several received ack start discovery messages can occur,

if the acknowledgment of a forwarded DSR message from the destination

node to the node on the second last hop is not received and the message is

retransmitted.
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4.3.5 Timeout receive neighbor-table t rx nhtbl and requested

neighbor table t rq nhtbl

By setting the parameters of Table 4.2 into Equation 3.20 and 3.23 for the

duration of the timer t rx nhtbl and t rq nhtbl results

t rx nhtbl = 58.5 s · (1 + 1) + 6 s · (1 + 1) · (7 + 2) + 9 s (4.13)

= 288 s (4.14)

t rq nhtbl = 4 · 3 · 1.5 s (4.15)

= 18 s (4.16)

In Figure 4.6 the occuring events for all discoverers concerning the timers

t rx nhtbl and t rq nhtbl are plotted over the time relative to the start of

the timer t rx nhtbl. The timer t rx nhtbl starts with the transmission

of a start discovery and is stopped with the reception of a neighbor table.

When the timer t rx nhtbl expires a request nhtbl is transmitted and the

timer t rq nhtbl is started. When the timer t rq nhtbl expires another

request nhtbl is transmitted.

Most of the neighbor table messages are received much earlier as the

timer t rx nhtbl would expired. Therefore, to reduce the duration of the

Mesh Construct procedure in case of a lost neighbor table message the timer

t rx nhtbl is empirically set to 120 s. By this, the idle times of the dis-

coverers 0002001E, 0002003B, 00020018, and 0002000B are reduced about

three minutes each.

4.3.6 Maximal Duration of the Mesh Construct

By setting the parameters of Table 4.2 and the duration of the timers com-

puted in this section into Equation 3.29 for the maximal duration of the

Mesh Construct procedure t mc max results

t mc max = (32 − 1) ·

[(5 + 1) · 18 s + 120 s

+5 · 18 s + 9 s]

+120 s (4.17)

= 10257 s (4.18)
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Figure 4.6: Mesh Construct Test B: Timers t rx nhtbl and t rq nhtbl

In the worst case with the parameters set in 4.2 the Mesh Construct proce-

dure is completed after 2 hours 50 minutes and 57 seconds.

4.4 Test Results

In this section three examples of Mesh Construct tests are evaluated and

the corresponding test results are presented. In the Mesh Construct tests

A and B the wake up period t w is set to 1.5 s in order to have equal

test conditions as in the testing of the existing solution in Section 2.1.2.

When the Mesh Construct procedure is completed, i.e. the neighbor table

of the last discoverer is received at the gateway, the operation of the system

with the toplogy control is started. The duration from the last switch-on

until the procedure is completed will be denoted as t completed. The phase

containing the installation of the nodes and the Mesh Construct procedure in

the following will also be denoted as the non-operational phase. In the Mesh

Construct test C only the non-operational phase is investigated. To reduce

the duration and the energy consumption during the neighbor discovery and

topology construction the wake up period t w in the Mesh Construct test C

is set to 0.5 s.
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4.4.1 Mesh Construct Test A

Duration

In Figure 4.7 the connectivity and hop count states of the Mesh Construct

Test A are plotted over the test time. In Figure 4.8 the same is plotted

over the non-operational phase containing the installation and the Mesh

Construct procedure. The Mesh Construct procedure is only started when

the last node is installed and powered on. After the last switch-on it takes 37

minutes and 35 seconds until the entire network is connected. The duration

t connected of the Mesh Construct test A clearly fulfills the requirement

to be less than one hour. The Mesh Construct procedure is completed after

52 minutes and 2 seconds.

Connectivity and Stability

After the network is connected, nb red nds is equal to zero for the entire

remaining test time. Therefore, all installed nodes are discovered.

After the network is connected and the Mesh Construct is completed

the operation starts and nb redyellow nds is equal to zero for the entire

remaining test time. Thus, the network remains connected during the oper-

ation.

In Figure 4.9 the number of dead neighbors, which are removed during

the test, is plotted over the test time. In total nb rem dead nhs = 1 dead

neighbors are removed during the test. In Figure 4.7 it can be observed that

the removal of one dead neighbor causes a connectivity state change at four

nodes from green+ to green. Since the mesh network topology constructed

by the Mesh Construct has a redundancy concerning the connectivity states,

the removal of one dead neighbor does not evoke yellow or red connectivity

states. During the test, except from a single dead neighbor removal, the

connectivity states are stable over the entire operation.

Energy Consumption

In Figure 4.10 the current consumtpion averaged over all targets is plotted

over the test time. The total consumed current of the Mesh Admin Test A is

divided into the five contributions I sleep, I carriersense, I overhear,

I rx, and I tx. I sleep is the current consumed in the energy-efficient sleep

state. I carriersense is the current required for the periodic wake up and
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Figure 4.7: Mesh Construct Test A: Upper plot: Number of nodes on

the corresponding connectivity states. Lower plot: Number of nodes on the

corresponding hop counts.
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Figure 4.8: Mesh Construct Test A: (non-operational phase) Upper plot:

Number of nodes on the corresponding connectivity states. Lower plot:

Number of nodes on the corresponding hop counts.
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Figure 4.9: Mesh Construct Test A: Number of removed dead neighbors

of all nodes.
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Figure 4.10: Mesh Construct Test A: The current consumption averaged

over all targets.
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carrier sense. I overhear is the current consumed for receiving messages

which originally are transmitted to a different destination. I rx, and I tx

are the currents consumed for receiving and transmitting messages.

The most energy is consumed during the Mesh Construct procedure,

in particular due to the transmissions of the energy expensive broadcasts.

The number of transmitted broadcasts is plotted in Figure 4.11 over the

test time. The total number of transmitted broadcasts nb tx bcasts dur-

ing the test is 96. Thus, each of the 32 nodes exactly transmitted the 3

scheduled broadcasts during the neighborhood discovery. No broadcasts are

transmitted during the operation.
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Figure 4.11: Mesh Construct Test A: Number of transmitted broadcasts

of all nodes.

By comparing the time course of the current consumption with the time

course of the connectivity states in Figure 4.7, it can be observed, that the

current consumption is uniform during the operation if the network remains

connected.

In Figure 4.12 the current consumption of each individual detector aver-

aged over the entire test time is shown. Again, the current consumption is

divided into its five contributions. Overall, the current consumption of the
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Figure 4.12: Mesh Construct Test A: The average current consumption

of the nodes over the entire test time.

nodes is balanced. The total current consumption averaged over the time

and number of nodes i total is 89.328 µA.

4.4.2 Mesh Construct Test B

Duration

In Figure 4.13 the connectivity and hop count states of the Mesh Construct

Test B are plotted over the test time. In Figure 4.14 the same is plotted

over the non-operational phase containing the installation and the Mesh

Construct procedure. Again, the Mesh Construct procedure is only started

when the last node is installed and powered on. After the last switch-on

it takes 35 minutes and 50 seconds until the entire network is connected.

The duration t connected of the Mesh Construct test B clearly fulfills the

requirement to be less than one hour. The Mesh Construct procedure is

completed after 48 minutes and 47 seconds.

Connectivity and Stability

After the network is connected, nb red nds is equal to zero for the entire

remaining test time. Therefore, all installed nodes are discovered.
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Figure 4.13: Mesh Construct Test B: Upper plot: Number of nodes on

the corresponding connectivity states. Lower plot: Number of nodes on the

corresponding hop counts.
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Figure 4.14: Mesh Construct Test A: (non-operational phase) Upper

plot: Number of nodes on the corresponding connectivity states. Lower

plot: Number of nodes on the corresponding hop counts.
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Figure 4.15: Mesh Construct Test B: Number of removed dead neighbors

of all nodes.
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After the network is connected and the Mesh Construct is completed,

the operation starts and nb redyellow nds is equal to zero for the entire

remaining test time. Thus, the network remains connected during the oper-

ation.

In Figure 4.15 the number of dead neighbors, which are removed during

the test, is plotted over the test time. In total nb rem dead nhs = 0 dead

neighbors are removed during the test. In the Mesh Construct Test B the

connectivity states are constant and stable during the operation.

Energy Consumption
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Figure 4.16: Mesh Construct Test B: The current consumption averaged

over all targets.

In Figure 4.16 the current consumtpion averaged over all targets is plot-

ted over the test time. Again, the total consumed current of the Mesh

Construct Test B is divided into the five contributions.

During the Mesh Construct procedure the most energy is consumed, in

particular due to the transmissions of the energy expensive broadcasts. The

number of transmitted broadcasts is plotted in Figure 4.17 over the test

time. The total number of transmitted broadcasts nb tx bcasts during the

test is 96. Thus, each of the 32 nodes exactly transmitted the 3 scheduled

broadcasts during neighborhood discovery. No broadcasts are transmitted

during the operation.

By comparing the time course of the current consumption with the time
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Figure 4.17: Mesh Construct Test B: Number of transmitted broadcasts

of all nodes.
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Figure 4.18: Mesh Construct Test B: The average current consumption

of the nodes over the entire test time.
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course of the connectivity states in Figure 4.7, it can be observed, that the

current consumption is uniform during the operation if the network remains

connected.

In Figure 4.18 the current consumption of each individual detector aver-

aged over the entire test time is shown. Again, the current consumption is

divided into its five contributions. Overall, the current consumption of the

nodes is balanced. The total current consumption averaged over the time

and number of nodes i total is 87.245 µA.

4.4.3 Mesh Construct Test C

The Mesh Construct procedure is initiated by a trigger mechanism at the

gateway and has a finite and determined duration after which the operation

is started. Therefore, it is theoretically possible to adjust paramteters at

the operation state changes, in particular when the neighbor discovery and

topology construction is started (The operation state changes from sleep to

discovery) and completed (The operation state changes from discovery to

operation).

The use of LPL in WSNs introduces a trade-off between energy-efficiency

and the latency, e.g. for transmissions of messages [13]. The shortening of

the wake up period on the one hand increases the wake up frequency and

hence the energy comsumption for carrier sensing but on the other hand,

increases the rate at which messages can be transmitted and additionally de-

creases the duration and thus the energy consumption of broadcasts. There-

fore, it is obvious that appropriately adapting the t w during the neighbor

discovery and topology control can reduce the duration and the energy con-

sumption of the Mesh Construct procedure.

Since the change of the parameter t w is not yet implemented in the

software, in the Mesh Construct Test C only the start up is investigated with

a t w set to 0.5 s. The operation and hence the stability of the procedure

are not considered.

Duration

In Figure 4.19 the connectivity and hop count states of the Mesh Construct

test C are plotted over the test time. After the last switch-on it takes 13

minutes and 5 seconds until the entire network is connected. The duration

t connected of the Mesh Construct test B clearly fulfills the requirement to
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Figure 4.19: Mesh Construct Test C: (non-operational phase) Upper

plot: Number of nodes on the corresponding connectivity states. Lower

plot: Number of nodes on the corresponding hop counts.
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be less than one hour and is significantly shorter than in the Mesh Construct

tests A and B. The Mesh Construct procedure is completed after 19 minutes

and 4 seconds.

Energy Consumption
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Figure 4.20: Mesh Construct Test C: The current consumption averaged

over all targets.

In Figure 4.20 the current consumtpion averaged over all targets is plot-

ted over the test time. Again, the total consumed current of the Mesh

Construct Test C is divided into the five contributions.

The current consumption during the neighbor discovery and topology

construction in the Mesh Construct test C is higher as in the tests A and

B. Additionally the current i carriersense is about three times higher be-

cause of the wake up period t w of 0.5 s instead of 1.5 s. In Figure 4.21 the

average current consumption of each individual detector during the neighbor

discovery and topology construction is shown. The total current consump-

tion during the Mesh Construct procedure averaged over all nodes i avg mc

is 689.645 µA.

To compare the overall energy consumption the relevant test results are

summarized and listed in Table 4.3. The energy consumption is compared

by computing the average depleted battery charge of one detector q avg mc

during the entire Mesh Construct procedure.

Overall, the Mesh Construct procedure in test C is completed signifi-

90



4.4 Test Results Chapter 4

0
0
0
2
0
0
1
7

0
0
0
2
0
0
4
4

0
0
0
2
0
0
3
b

0
0
0
2
0
0
0
c

0
0
0
2
0
0
0
8

0
0
0
2
0
0
0
9

0
0
0
2
0
0
1
5

0
0
0
2
0
0
1
2

0
0
0
2
0
0
1
3

0
0
0
2
0
0
0
1

0
0
0
2
0
0
4
5

0
0
0
2
0
0
2
1

0
0
0
2
0
0
1
f

0
0
0
2
0
0
0
a

0
0
0
2
0
0
1
9

0
0
0
2
0
0
1
d

0
0
0
2
0
0
0
e

0
0
0
2
0
0
4
3

0
0
0
2
0
0
0
5

0
0
0
2
0
0
0
d

0
0
0
2
0
0
1
e

0
0
0
2
0
0
0
b

0
0
0
2
0
0
2
2

0
0
0
2
0
0
1
4

0
0
0
2
0
0
1
0

0
0
0
2
0
0
0
3

0
0
0
2
0
0
1
a

0
0
0
2
0
0
0
f

0
0
0
2
0
0
2
0

0
0
0
2
0
0
1
8

0
0
0
2
0
0
4
60

100

200

300

400

500

600

700

800

900

cu
rr

e
n
t 

[u
A

]

average current consumption of the targets after

I_sleep
I_carriersense
I_overhear
I_rx
I_tx

Figure 4.21: Mesh Construct Test C: The average current consumption

of the nodes during the Mesh Construct procedure.

Test A Test B Test C

t completed 3122 s 2927 s 1144 s

i avg mc 295.830 µA 291.390 µA 689.645 µA

q avg mc 0.924 As 0.853 As 0.789 As

Table 4.3: Energy consumption during the Mesh Construct procedure
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cantly faster than in Test A and B and less energy is consumed as assessed

by the depletion of the battery charge.

4.5 Comparison with the Existing Solution

In this section the test results of the Mesh Construct tests are compared

to the test results obtained with the existing solution. The values of the

defined quality metrics are summarized and listed in Table 4.4.

eS test A eS test B MC test A MC test B

t connected 1 h 17 min 47 s 17 min 22 s 37 min 35 s 35 min 50 s

max(nb red nds) * 0 0 0 0

max(nb redyellow nds) * 4 2 0 0

nb rem dead nhs 104 89 1 0

nb tx bcasts 37 36 96 96

i total 144.090 µA 123.536 µA 89.328 µA 87.245 µA

Table 4.4: Comparison between the existing Solution (eS) and the Mesh

Construct (MC). (*: The maximal value after the network is connected the

first time until the test end is considered.)

In general, the results of the Mesh Construct test are more homogeneous

than the results of the existing solution, especially the duration t connect.

It can be assumed that, the heterogeneous nature of the results obtained

with the existing solution arises from the fact that the existing solution is a

random procedure, whereas the Mesh Construct is deterministic. In partic-

ular, depending on the random order of the node switch-ons a completely

different network topology is constructed with the existing solution. For ex-

ample this can be observed by comparing the different compositions of the

hop counts in the Figures 2.1 and 2.1. In the Mesh Construct tests, indepen-

dent of the random order of the switch-ons, exactly the same composition

of hop counts can be observed after the network is connected.

Duration

In constrast to the existing solution, in each Mesh Construct test the du-

ration t connect is less than one hour. However, there are test examples,

where the existing solution is connected faster than the Mesh Construct.

Connectivity and Stability

With both, the Mesh Construct or the existing solution all nodes are discov-
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ered. During the operation the network constructed by the existing solution

attains several times a yellow network connectivity state whereas with the

Mesh Construct the network remains connected. By considering the plots

of the connectivity states and the number of removed dead neighbors, the

Mesh Construct procedure results in a more stable network topology than

the existing solution.

Energy Consumption

Although the number of transmitted broadcasts of the Mesh Construct is

sharply higher, the overall average current consumption per node is lower

than in the existing solution. That is because energy can be saved by a

stable network topology in terms of connectivity.
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Chapter 5

Conclusions

In the first section of this chapter the work presented in this thesis is sum-

marized. The achieved contributions are indicated in the second section. In

the last section an outlook on possible future work in the area of this thesis

is given.

5.1 Summary

In this thesis the new procedure Mesh Construct for the neighbor discovery

and topology construction of a multihop WSN is presented. The objective

of the procedure is to be fast and energy-efficient. In addition, a stable and

constant mesh network topology with certain characteristics for the purpose

of the operational phase of the WSN shall be constructed.

A fire alarm system based on a multihop WSN is the underlying system

investigated in this thesis. Due to the safety-critical function of a fire alarm

system a mesh network topology with at least two node-disjoint multihop

communication paths from each detector to the gateway is required to ensure

reliable alarm forwarding in case of detector failures. A network connectivity

state is defined in order to indicate whether the mesh network topology

fulfills this requirement.

The Mesh Construct procedure is controlled by the gateway and con-

structs the mesh network topology through initiating sequentially neighor-

hood discoveries on each discovered node starting from the gateway and

proceeding outwards hop by hop. Nodes performing a neighborhood dis-

covery choose the best discovered nodes for the purpose of the network as

neighbors. In case of the fire alarm system, neighbors which can improve

94



5.1 Summary Chapter 5

the network connectivity state and have a good link quality are prefered.

After the neighborhood discovery, the choice is stored in a neighbor table

and transmitted to the gateway, which maintains and updates the network

informations in order to be able to initiate the next neighborhood discov-

eries. The Mesh Construct is completed when the neighbor table of each

discoverer is received at the gateway and the operation of the WSN including

a topology control can be started.

Tests and evaluations of the existing solution for the network initializa-

tion and topology control revealed several results: First, there is no finite

deterministic upper bound for the duration of the network initialization.

Second, during the operation the mesh network topology is unstable and

sometimes the required network connectivity state is not ensured, due to re-

movals of inappropriate neighbors by the topology control. Third, the neigh-

bor removals cause unconnected nodes to discover new neighbors, which

significantly increases the energy consumption.

Through the insights gained from the evaluation of the existing solution

the choice of the neighbors during the neighborhood discovery and the hop

by hop construction of the mesh network topology are crucial elements in

the conceptual design of the Mesh Construct to improve the performance of

the neighbor discovery and topology construction.

Although the amount of performed Mesh Construct tests is not staticsti-

cal relevant, the examples of test evaluations show promising results. First,

the duration of the Mesh Construct procedure is finite and fast enough to

fulfill the requirements. Second, the appropriate choice of neighbors and the

hop by hop construction reduce neighbor removals during the operation and

lead to a more stable and better connected mesh network topology com-

pared to the tests with the existing solution. Third, through the stable and

connected network topology the total energy consumption during the tests

is reduced compared to the tests with the existing solution.

Moreover, the triggered start and the finite duration of the procedure

allow to adjust parameters at operation state changes. A Mesh Construct

test with a shorter wake up time period of the WiseMAC, showed that the

duration and the energy consumption can be further reduced during the

neighbor discovery and topology construction.
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5.2 Contributions

In the following the main achievements and contributions of this thesis are

stated.

• The presented Mesh Construct is a procedure with the objective to

discover neighbors and construct a stable and connected mesh network

toplogy in a fast and energy-efficient way. In particular, the Mesh

Construct is suited for an alarm system based on a multihop WSN.

• The Mesh Construct procedure has a triggered start and a finite dura-

tion. A deterministic upper bound for the duration can be computed.

The triggered start and finite duration theoretically allow to appro-

priately adjust parameters for the different operation states, before,

during and after the Mesh Construct prodecure.

• With appropriate parameter choices the possiblity to rate and choose

neighbors depending on the link quality or the resulting connectivity

state improvement is provided. For an alarm system a good choice

can decrease the instability and introduce redundancy on the network

connectivity state in order to prevent the network from getting uncon-

nected in case of limited neighbor removals by the topology control

during operation.

• With the informations about the network topology at the gateway,

installed nodes which are not discovered can be identified and possibly

placed in an more appropriate location for the network.

• The Mesh Construct applied to the fire alarm system described in

Section 1.1.2 can reduce energy consumption, duration, and instability

in the mesh network topology.

5.3 Outlook

In this section proposals for possible future work in the area of this thesis

are indicated:

• To achieve a statistical relevance of the evaluation results more tests

in series could be performed and evaluated.
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• By running more tests with systematic choices of all the possible pa-

rameter constellations the performance of the Mesh Construct for a

particular application could be optimized.

• The possiblity of the Mesh Construct to adapt parameters at oper-

ation state changes could be implemented in practice to improve the

performance during the neighbor discovery and topology construction.

For example, as showed with the Mesh Construct test C, the energy

consumption and the duration of the Mesh Construct procedure can

be decreased by shortening the WiseMAC wake up period t w. In ad-

dition, a longer t w could reduce the energy consumed for the periodic

carrier sense in the operation state before the Mesh Construct actually

is started.
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Appendix A

Testbed

In this section of the appendix the testbed used in the tests documented in

Section 2.1.2 and Chapter 4 is described. Several parts of the testbed were

developed during the master’s thesis of Florian Betschart [14].

The testbed consists of 32 nodes, which can be used either for the gate-

way or for the detectors. The radio module on the nodes is based on a

MSP430 microprocessor [15] and uses an ADF7021 low power narrow-band

transceiver for wireless communication in the sub-gigahertz frequency band.

The MSP430 has 4 kilobytes random access memory (RAM) and 56 kilobytes

read only memory (ROM).

A Deployment Support Network (DSN) [16] is applied to the nodes of

the testbed. The DSN is a second network laid out above the actual WSN in

order to monitor, configure and reprogram the sensor nodes using a remote

procedure call protocol. The DSN applied to the testbed is based on a hybrid

solution of USB-interfaced DSN nodes and an Ethernet platform. Each

sensor node is attached to an adapterboard equipped with an USB-interface.

The adaptorboards are connected via USB to an Ethernet gateway, which

uses a TCP/IP stack to communicate with a DSN-server. The DSN-server

provides an interface to access the DSN and initiate several different tasks,

which can be accomplished through the DSN:

• New compiled software code can be downloaded to the microprocessor

of the sensor nodes.

• Sensor nodes can be enabled and disabled.

• Tests can be started.
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• Debug, warn, and error logs of the nodes can be read out.

• Collected statistics of the sensor nodes can be read out.

The read out statistics during tests are directly stored in a MySQL

database [17]. Over the logs of the nodes and the MySQL database test

results can be evaluated and analyzed.
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