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Abstract

This thesis focuses on the mobility properties of route- and schedule-based networks,
such as public transportation networks. We are interested in the behaviour of nodes
in such networks and the feasibility of using them as a DTN backbone. We model
the Zurich and Amsterdam tram networks and analyse the distribution of the inter-
contact times. Our first contribution is that we find these inter-contact times to
be exponentially distributed. We then adapt simple analytical models based on
random mixing and exponential inter-contact times for the expected delivery delay
in delay tolerant networks to our network and compare them to experimental results.
The analytical model proves to be an accurate predictor of real performance over a
variety of densities. Finally we perform a feasibility study to determine the potential
of enabling stops to relay messages and analyse the congestion for epidemic routing.
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Chapter 1

Introduction

The density of smart-phones in the population is growing fast. People are used to
carrying their phone, which is nowadays more like a small computer, everywhere.
This provides an existing deployment of potential delay-tolerant network nodes on
a great scale. Therefore, there also exists a good opportunity to benefit from op-
portunistic networking approaches, provided that the quality of service is sufficient
for specific applications.
A lot of research in the field of mobility in delay tolerant networks has been

performed. Most experimental results are based on human mobility in specific
surroundings [2], and suffer from some known measurement issues. On the other
hand, synthetic traces are derived from simulations based on random way-point
mobility or simple adaptations thereof. Existing traces focus mainly on the contact
and inter-contact properties to describe mobility. For the inter-contact times in
these traces, some seem to be modelled best by a power law distribution, others
by an exponential one. No conclusive evidence has been found to prove either one
generally correct.
We study the Zurich tram network using real schedules and simulations, trying

to find an approximation of the distribution of inter-meeting times between the
trams to determine whether route- and schedule-based networks (RSBNs) can also
be analytically modelled according to existing models and whether such a network
could act as a backbone for a bigger DTN. Little previous work exists on RSBNs [1]
and usually not on a scale as big and dense as the Zurich network. In addition to
the real schedules, we derive synthetic schedules based on the real ones to vary the
density of nodes in the network. We also add random delays to individual nodes
to create a generic simulation on which we can verify our results within different
schedules.
Our paper has two major contributions. First, we show that the inter-meeting

times in the Zurich network, as well as in the Amsterdam tram network, are approx-
imately exponentially distributed. Independent of the exact schedule, inter-meeting
times in route-based networks seem to be exponentially distributed on a wide range
of tram intervals. Secondly, we propose a simple analytical model to describe the
expected delivery delay for routing messages in such a RSBN using epidemic rout-
ing. The analytical model found is based on well known Markov chain models for
epidemic routing [9] and holds well for all schedules and network topologies consid-
ered. This shows that the expected delivery delay in a route- and schedule-based
network can be calculated through a simplistic model derived from the general for-
mula for epidemic message spread in other types of networks, despite the evidently
more ”structured” mobility in RSBNs.
In the last section, we look at the feasibility of using the Zurich tram network as a

DTN backbone. We study the effect of enabling stops to store and forward messages
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as well as the influence of bandwidth constraints on congestion in the network and
try to give some estimates for the throughput of such a network.
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Chapter 2

Related work

Little previous work exists that studies the mobility properties of RSBNs. DieselNet
is a real-world DTN test bed over the bus network that connects the several sites of
the campus. Zhang et al. [1] analyse the inter-contact times between the buses and
study the performance of epidemic routing in that network. They could not show
conclusive evidence that the inter-contact times can be modelled generally and focus
on individual lines rather than the aggregate. Hui et al. [2, 8] created the well-known
haggle traces, consisting of six separate datasets of human mobility at conferences,
on campuses and throughout the city of Cambridge. They calculated the inter-
contact times and show that it can be modelled by a power law distribution. These
traces also have common measurement issues because nodes fail or the contacts
are too short and are not recognized due to the granularity of the measurement.
Furthermore, mobility of people at a conference is certainly very different than the
structured and scheduled one in a RSBN. A paper by Gaito et al. [3] examines the
possibility of using the bus network of Milano as a DTN backbone. They propose
and evaluate a routing algorithm for their network, but contrary to our approach
they are not particularly interested in modelling the mobility. Karagiannis et al.
[4] focus on fitting the inter-contact times of mobility in delay tolerant networks.
They do not include RSBNs in their work, but show for several settings using
human mobility and one for vehicular movement, that neither the exponential nor
the power law distribution is able to fit all of them. Depending on density and size
of a network, different distributions are used to model the aggregated inter-contact
times.
In this work, we analyse the mobility properties of RSBNs in more detail. We

study the inter-contact times of real schedules and find them to be approx. exponen-
tially distributed. Furthermore, using simulations we find that this holds for a large
range of schedule densities and networks. Finally we propose a simple analytical
model to predict the performance of epidemic spread over RSBNs.
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Chapter 3

Modelling inter-contact times

To get a better understanding of RSBNs, we first wanted to look at the mobility of
nodes. RSBN have a different kind of mobility than other delay tolerant networks,
because (i) nodes run on predefined, known schedules and (ii) nodes share a set of
paths. Many papers analyse the inter-meeting times of nodes in various networks
[8], because inter-meeting times are considered a basic parameter on which the
performance of routing in delay tolerant networks depends. They conclude that
inter-meeting times have either an exponential or a power-law distribution. For
RSBNs, only little work has been done [1, 3] and no conclusive evidence for either
distribution has been published.

As our primary dataset, we choose the Zurich tram and bus network, because
it is dense, rather big and keeps its schedule quite precisely. Including buses, it
consists of 16 lines on 230 stops that go through the city center with an average
schedule interval of approximately 6 minutes. It has a star like topology with almost
every line passing one of the three main stations, which is shown in Figure 3.1. We
simulated the network based on the real schedule for the times from 9 am to 3
pm, because this is the most regular schedule without interference from lines that
stop early or start late. We assumed that nodes stop for 30 seconds at any given
tram stop and we made sure that they are at each stop according to the schedule,
travelling at a constant speed.

Contrary to other papers [2, 4], we focus on the any-inter-contact time rather than
the pair-wise inter-contact time, because measuring contacts between single nodes
in a tram network proves difficult because (i) trams might switch identities at final
stops and (ii) not all trams meet each other. So we assume similar to the work of
Gaito et al. [3] that meetings between specific trams are less important than the fact
of meeting another tram at all. Meetings between individual trams also matter less
in a tram network, because several nodes travel on the same route and exchange
messages in a predefined interval. Individual trams may also be exchanged, the
important factor being to which line a tram belongs, not the individual node id.

The first question that arose from this reasoning is the importance of inter-
meeting times between nodes of the same line. These intra-line meetings happen
at fixed intervals based on the frequency of trams running on the line. Because
of that, the any-inter-meeting times distribution would be upper bounded by half
of the interval with which trams start their routes. That would mask the tail of
the any-inter-meeting time distribution and cut off an important part of mobility
related information. We assume that nodes which only meet nodes of the same
line for a long time (i.e. on their way to a final stop they do not share), have a
different, smaller effect on (epidemic) routing and those meetings should therefore
be excluded. So we first compared the any-inter-contact time between all trams to
the any-inter-contact time excluding meetings between trams of the same line in
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Figure 3.1: Zurich tram network

Figure 3.2.

Figure 3.2: Any-inter-contact times with and without intra-group contacts in log-linear
scale in Zurich on the real schedule

It is clearly seen that the distribution of the any-inter-contact times with intra-
line contacts in Figure 3.2 is cut off at around 300 seconds, which is the average
interval between two nodes of the same line. The distribution without intra-line
contacts in Figure 3.2 shows nodes having inter-meeting times up to 1100 seconds,
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so the effect of the upper bound is clearly shown in these graphs. With the infection
model for message spread, intra-line contacts benefit only from the first node of a
line in both directions. Other nodes just meet already infected nodes, because they
just met a carrier a short time ago. So we assume that the model without intra-line
contacts is more appropriate routing.

The any-inter-meeting distribution excluding intra-group contacts in log-linear
scale looks approximately linear, which hints for an exponential distribution.
We tried to fit the distribution with several common models like log-normal
and Weibull, but the exponential model delivered the most accurate fit for the
distribution. Weibull actually performs as good as the exponential distribution,
but with ¯ approximately 1 it is essentially exponential. The comparison of the
different distributions is shown in Table 3.1, we used the sum of squared error
as the measurement for accuracy. The exponential distribution fitted for the
any-inter-meeting times distribution is shown in Figure 3.4. According to our
assumptions from the plots, the exponential model fits the distribution well. The
exponential parameter ¸ does not vary too much between different lines, and can
therefore be aggregated over the whole network as is seen in Figure 3.3.

Figure 3.3: Any-inter-contact times of individual lines in Zurich

Distribution ® ¯ SSE R-Square RMSE
Exponential 0.008 0.278 0.994 0.015
Power Law 5.567 0.481 17.070 0.639 0.119
Weibull 129.500 0.944 0.240 0.995 0.014

Log-normal 1.048 4.438 0.645 0.986 0.023

Table 3.1: Comparison of different distributions for the any-inter-meeting times in
Zurich

The formulas for the distributions in a ccdf plot are given as:

yexp(x) = e−®∗x
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Figure 3.4: Any-inter-contact times without intra-group contacts with exponential and
power law fitting in Zurich

ypower(x) = (
®

x
)¯

yweibull(x) = e−( x
® )¯

ylog−normal(x) =
1

2
− 1

2
∗ erf( ln(x)− ¯

® ∗ √2
)

As scales for the exactness of a certain distribution we chose three well-known
statistical measurements.

∙ SSE: Sum of squared error

∙ R-Square: The coefficient of determination, R2 = 1 − SSE
SST with SST as the

total sum of squares.

∙ RMSE: Mean square error

We have thus validated that the exponential distribution is a good fit for the
real tram schedule running at an interval of approximately 6 minutes. To further
test and validate our conclusions for different schedules, we implemented a synthetic
model for the tram schedule. We kept the original topology and routes, but replaced
the schedule with a synthetic model. Instead of the real starting times, we defined
an average interval I with which trams start their run at a final stop. With this we
can vary the number of nodes in the network to check whether the exponential fit
also performs best for different node densities.
We ran simulations with tram intervals between 3 and 30 minute. For 30 minutes,

the network becomes very sparse, corresponding to a late night schedule for example,
whereas routes are almost completely full at the 3 minutes interval. The simulations
should therefore cover most realistic scenarios of a RSBN. The any-inter-contact
times for the synthetic scenarios are plotted in Figure 3.5.
Table 3.2 shows the R-square values for different intervals. The exponential model

delivered a very good fit for all intervals considered. Even for a very dense network,
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the exponential model did not break. To take the variations from the fixed interval
into account, we distributed the exact starting times randomly over the time [− I

2 ;
I
2 ],

but the results were similar.

Figure 3.5: Synthetic any-inter-contact times for intervals 3 to 30 minutes in Zurich on
synthetic schedules

Interval[s] 3 min 6 min 12 min 24 min 30 min

Exponential 0.979 0.989 0.995 0.996 0.995
Power Law 0.673 0.663 0.628 0.617 0.635
Weibull 0.979 0.995 0.997 0.996 0.996

Log-normal 0.977 0.986 0.983 0.982 0.986

Table 3.2: Comparison of R-square for different synthetic schedules in Zurich

Counter-intuitively these results confirm that the any-inter-meeting times are in
fact distributed exponentially over various densities in the Zurich network. The
exponential model seems to be independent of the density of the network, so we
also wanted to analyse the importance of the network structure. For that reason,
we simulated the Amsterdam network as a second benchmark for the exponential
model. The Amsterdam tram-network has a similar density (16 lines, 230 stops)
but a quite different topology as is shown in Figure 3.6. Whereas Zurich has a
star like topology, Amsterdam focuses around a center where half the lines have
one of their final stops and the other half of the lines circle around tangentially to
the center. In the case of the Amsterdam network, the any-inter-contact time is
also best fitted with an exponential model compared to other models (Table 3.3).
The any-inter-meeting time distribution for a synthetic 6 minutes interval with the
exponential fit is shown in Figure 6 in log-lin.
Our simulations render considerable evidence that any-inter-meeting times in RS-

BNs are distributed exponentially. That the mobility in a rather complex network
behaves similarly to a random way-point model is interesting, because it has many
implications on routing. Why the any-inter-meeting times are exponentially dis-
tributed should be analysed in further work. Preliminary studies will implement a
synthetic topology to generalize our conclusions for any randomly created network.
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Distribution ® ¯ SSE R-Square RMSE
Exponential 0.008 0.834 0.982 0.026
Power-law 5.272 0.487 16.81 0.629 0.118
Weibull 120.6 0.999 0.834 0.981 0.026

Log-normal 1.008 4.389 1.152 0.975 0.031

Table 3.3: Comparison of different distributions for the any-inter-meeting times in the
Amsterdam network

Figure 3.6: Amsterdam tram network

Figure 3.7: Any-inter-contact time without intra-group contacts in Amsterdam
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Chapter 4

Analysis of epidemic message
spread

Inter-meeting times are a core indication for the performance of epidemic mes-
sage spread in DTNs. We found that the any-inter-meeting times in RSBNs are
distributed exponentially, so standard models for delay tolerant networks should
render reasonable results for RSBNs as well. Therefore we want to try to adapt a
simple analytical model for the performance of epidemic routing to analyse rout-
ing in RSBNs. It would be interesting if a RSBN, which has predefined paths and
schedules, could be modelled similarly to a random way-point scenario where all
nodes move arbitrarily and are able to reach any destination. If estimates for the
performance of epidemic routing deliver approximate results, it would give a new
perspective to the concept of routing in RSBNs. Many well-studied ideas of delay-
tolerant networks could be adapted for RSBNs and simple routing protocols might
be able to deliver good performance.

4.1 Analytical model

In this section we try to predict the performance of routing in a RSBN based on
existing concepts for delay tolerant networks. There are several models for epidemic
message spread in networks with exponentially distributed inter-meeting times. For
our network we assume:

∙ Message sources and destinations are randomly chosen stops.

∙ A node that can deliver a message to the destination always delivers.

∙ Bandwidth and buffer constraints are not taken into account because we are
primarily interested in the optimal expected delivery delay without constraints
due to congestion.

For the RSBNs, we need to additionally make the following assumptions:

∙ Any-inter-contact times distribution of all nodes is exponentially distributed
over the same parameter ¸. (We saw that this holds for the Zurich and
Amsterdam networks)

∙ Routes are interconnected in such a way that all nodes are theoretically able
to see almost every other node. (This is only an approximation, as in practice
there is a bias as to which lines a given line sees more often)
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In our simulations, messages are created at stops, so the overall delivery delay
Edd needs to include the time Epickup to initially pick up the message. The time
between when the first node picks up the message until the node which delivers
the message is infected is Einter. Finally, the last node takes time to deliver the
message to the destination stop approximated by Edrop.

Epickup is dependent on the interval I between trams and the average number
of lines Mlps that visit a certain stop. So the average time until a message is
picked up equals the interval between trams divided by two (for both directions),
Mlps (because more than one line might visit a stop) and two (half for the average
distance of the closest tram at the moment of message creation). This renders
Epickup to:

Epickup =
I

2 ∗ 2 ∗Mlps
(4.1)

To calculate Einter we use an approach by Daley and Gani [9]. They use the
distribution of pairwise inter-contact times to calculate the expected delivery delay
of a message from any node to another. It is based on a markov chain using identical,
independent and exponentially distributed inter-contact times. If the mobility of a
RSBN behaves similarly to the random waypoint networks they considered, we can
adapt that model for any-inter-contact times, using the markov chain in figure 4.1
with node 1 being the first node to pick up the message.

Figure 4.1: Markov Chain for any-inter-contact times

We calculate Einter analogue to Daley and Gali. Einter equals the average of the
estimated times to reach states Ek with k nodes infected:

Einter =

N−1∑

k=1

Ek
1

N − 1
(4.2)

The meeting rate for a single node meeting an uninfected node, with i nodes

infected is: i ∗ (N−i)
N−1 ∗ ¸. This renders Ek to:

Ek =

k∑

i=1

N − 1

i ∗ (N − i) ∗ ¸ (4.3)

Inserting Equation 3 into Equation 2 leads to the final Einter:

Einter =
1

¸
∗

N−1∑

k=1

k∑

i=1

1

i ∗ (N − i)
≈ ln(N)

¸
(4.4)

using
N = the number of Nodes
¸ = the distribution rate of the any-inter-contact times

Edrop is the time it takes the final node to go the destination stop. It is calculated
as the average length of a line Lline (Lline ≈ 34min for the Zurich network) divided
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by a factor x. This factor should be between 2 and 4 for realistic schedules. Based
on experimental results, we scale the factor from 4 to 2 according to the interval
that trams start in the range of 3 to 30 minutes. The denser the network is, the
more likely is it that the final node gets the message closer to the destination. This
leads to:

Edrop =
Lline

2
∗ I + 1800

3600
(4.5)

Combining Equations 1, 4 and 5, the formula for Edd becomes:

Edd = Epickup + Einter + Edrop (4.6)

Edd =
I

2 ∗ 2 ∗Mlps
+

ln(N)

¸
+

Lline

2
∗ I + 1800

3600
(4.7)

With:

N =
Lline

I
∗Nline ∗ 2 (4.8)

This provides a closed form equation for the expected delivery delay for our trans-
portation networks. The essential part for the estimated delivery delay, the time for
the interconnection between nodes, is based on well studied work for general delay
tolerant networks with exponentially distributed inter-meeting times. We made two
key assumptions for the RSBNs that we studied. Our first assumptions was that
nodes are able to meet almost any other node, which is true for the Zurich as well as
the Amsterdam network although the probability of meeting with individual nodes
is not the same. This assumption will not hold true for all transportation networks,
so further studies should go into generalizing the argument for less interconnected
networks. Secondly we assumed that the inter-meeting times distribution is the
same for all nodes. In realistic networks, some lines are of course more intercon-
nected than others, but we believe that this does not have a large influence, because
the different ¸i for the individual lines vary only slightly.

4.2 Experimental results

Now we want to validate the accuracy of our analytical forms by comparing them to
experimental results. Preliminary simulations are performed on the DTN simulator
ONE (ref. ONE). To be able to implement synthetic schedules and run them in
reasonable time, all results are calculated by a proprietary simulator. Existing
simulators such as ONE were too slow and did not offer enough design flexibility to
render all our simulations.
For Zurich, the specific variables for the topology are the average number of lines

per stop Mlps:

Mlps =
385

228
= 1.6812

and the average number of nodes N in the network at any given time according
to Equation 8:

N =
Lline

I
∗Nline ∗ 2 =

2040

I
∗ 16 ∗ 2 =

65280

I

Hereby, we get the following values for Einter in Table 4.1 and Edrop in Table 4.2
for the intervals between 6 and 24 minutes. Both formulas hold for these intervals
with an error of less than 14 percent. From this we calculate Edd, as is shown in
Table 4.3.
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Interval[s] Analyt. Einter [s] Sim. Einter [s] Diff. [s] ([%])

360 623 692 -69 ([-11])
540 767 870 -103 ([-13])
720 854 909 -55 ([-6])
900 1036 1114 -78 ([-8])
1080 1144 1160 -16 ([-1])
1260 1170 1245 -75 ([-6])
1440 1216 1379 -163 ([-13])

Table 4.1: Comparison of Einter for the ZH network

Interval[s] Analyt. Edrop [s] Sim. Edrop [s] Diff. [s] ([%])

360 612 592 20 ([-3])
540 663 677 -14 ([-2])
720 714 737 -23 ([-3])
900 765 790 -25 ([-3])
1080 816 812 4 ([-0])
1260 867 820 47 ([-5])
1440 918 854 64 ([-7])

Table 4.2: Comparison of Edrop for the ZH network

Figure 4.2: Comparison of experimental and analytical results in the ZH network

Table 4.3 shows, that the analytical results match the experimental results with
an error of less than 8 percent for all intervals between 6 and 24 minutes. From this
we conclude that the analytical model for the Edd holds for the Zurich network.

For Amsterdam, the specific variables for the topology are again the average
number of lines per stop Mlps:

Mlps =
386

224
= 1.7232

and the average number of nodes N in the network at any given time according
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Interval[s] ¸ Analyt. Edd [s] Sim. Edd [s] Diff. [s] ([%])

360 0.00834 1288 1323 -35 (-3)
540 0.00626 1510 1624 -114 (-7)
720 0.00528 1675 1767 -92 (-5)
900 0.00414 1934 2059 -125 (-6)
1080 0.00359 2120 2170 -50 (-2)
1260 0.00337 2224 2307 -83 (-4)
1440 0.00314 2347 2517 -170 (-7)

Table 4.3: Comparison of Edd for the ZH network

to Equation 8:

N =
Lline

I
∗Nline ∗ 2 =

1939

I
∗ 16 ∗ 2 =

62040

I

So for intervals ranging from 6 to 24 minutes we get Table 4.4.

Interval[s] ¸ Analyt. Edd [s] Sim. Edd [s] Diff. [s]

360 0.00836 1250 1570 -320 (-20)
540 0.00562 1552 1994 -442 (-22)
720 0.00457 1736 2265 -501 (-22)
900 0.00363 2023 2488 -465 (-19)
1080 0.00321 2194 2502 -245 (-12)
1260 0.00306 2280 2538 -258 (-10)
1440 0.00269 2481 2850 -369 (-13)

Table 4.4: Comparison of Edd for the ADAM network

Figure 4.3: Comparison of experimental and analytical results in the Adam network

The results in the Amsterdam network are a bit worse than in the ZH network.
But the difference between analytical and experimental results stays within a 22
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percent range for intervals of 6 to 24 minutes. The different topology changes the
outcome especially on very dense networks. The results improve significantly if
Edrop is changed to a constant value Edrop = Lline

2 as is shown in Table 4.5. Due to
the different topology, the time to deliver the message rises and the balance between
Einter and Edrop changes. What specific factor of the topology causes this will be
researched in future work.

Interval[s] ¸ Analyt. Edd [s] Sim. Edd [s] Diff. [s]

360 0.00836 1637 1570 67 (4)
540 0.00562 1892 1994 -102 (-5)
720 0.00457 2055 2265 -210 (-10)
900 0.00363 2266 2488 -222 (-9)
1080 0.00321 2387 2502 -115 (-5)
1260 0.00306 2425 2538 -113 (-4)
1440 0.00269 2578 2850 -272 (-10)

Table 4.5: Comparison of Edd for the ADAM network with adapted Edrop

The simulations give us enough evidence to believe that the performance of epi-
demic routing in RSBNs can in fact be modelled with sufficient accuracy, using
simple models for epidemic message spread in delay tolerant networks. We believe
that the main factor for this are the exponentially distributed inter-contact times.
In future work, we plan to investigate whether our conclusions hold for arbitrary
synthetic RSBN topologies and to identify the parameters that make an RSBN
topology amenable to such simple epidemic model analysis.
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Chapter 5

Feasibility study for routing

In this last section, we will look into our public transportation network from a
different angle. We want to perform a simple feasibility study for routing in RSBNs.
The previous section confirmed that RSBNs in fact behave similarly to other DTNs,
and that epidemic routing performs as the standard model assumes. We primarily
looked at epidemic routing in order to test our assumptions rather than to implement
a specific routing protocol. To study the routing process in more detail, we identified
two main issues. First we want to analyse the effects of including routers at tram
stops to improve performance. A tram network is built with the idea of people
getting on and off at stops, but includes the possibility of waiting there. In a
similar way, enabling stops to relay messages should enhance the performance of
the network, because no paths are lost, but contact opportunities would increase
especially in sparse networks. Secondly, we are interested in congestion, due to the
immense overhead of epidemic routing, to analyse the need for implementing more
sophisticated protocols and the benefits these could offer.

5.1 Effects of stop relays on performance

Enabling stops to relay messages is bound to have a beneficial effect on the Edd.
Including stops does not destroy any paths, but is able to create new contact op-
portunities. Therefore the sparser a network is, the bigger the effect should be. We
categorized stops by the number of lines that cross them, to analyse if specific stops
have a bigger benefit than others. We enabled relaying in stops with a number of
lines equal or above a certain threshold Tℎ and compared the results for different
thresholds. We compared the results for intervals between 3 and 24 minutes in
Tables 5.1 and 5.2.

Interval[s] No Forwarding Tℎ 6 Tℎ 5 Tℎ 4 Tℎ 3 Tℎ 2

180 1150 1150 1145 1142 1132 1118
360 1415 1413 1396 1395 1370 1358
540 1660 1658 1649 1647 1573 1562
720 1970 1898 1875 1868 1833 1824
900 2200 2135 2108 2101 1967 1922
1080 2335 2310 2246 2236 2121 2119
1260 2311 2284 2236 2224 2140 2124
1440 2693 2618 2540 2528 2410 2394

Nstops 0 3 7 17 41 101

Table 5.1: Forwarding at stops with Threshold Tℎ based on lines [s]
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Interval[s] No Forwarding Tℎ 6 Tℎ 5 Tℎ 4 Tℎ 3 Tℎ 2

180 100 100 100 99 98 97
360 100 100 99 99 97 96
540 100 100 99 99 95 94
720 100 96 95 95 93 93
900 100 97 96 96 89 87
1080 100 99 96 96 91 91
1260 100 99 97 96 93 92
1440 100 97 94 94 89 89

Nstops[%] 0 1 3 7 18 44

Table 5.2: Forwarding at stops with Threshold Tℎ based on lines [%]

As expected, there is a beneficial effect of enabling stops to relay. For small
intervals, the effect is rather small (only 6 percent with more than 100 stops in-
cluded). The bigger the interval and therefore the sparser the network is, the more
the observed benefits. But even for a pretty sparse network at a 24 minutes in-
terval, the benefit is only 11 percent. We believe this is due to the robustness of
the epidemic routing protocol. Even in a sparse network, epidemic routing creates
enough messages to ensure a reasonable spread, although a lot of contact opportu-
nities are missed. Many lines share, especially in the center, a few stops in a row,
so even without enabling stops to relay messages, enough contact opportunities
seem to arise. Consequently, if the amount of resource usage for epidemic routing
is acceptable for a given network, (e.g. enough bandwidth and memory at nodes)
installing additional wireless relays at stops would not offer significant benefits. To
get a better understanding of this point, we will next investigate the incurred level
of congestion and its effect.

5.2 Congestion

Congestion is a natural problem for any delay tolerant network. The tram network
has the advantage over other DTNs, that buffer space and battery power are not big
constraints. An average sized router with a big hard drive can easily be fitted into
a tram and connect to the main power line. The constraint that matters most is
bandwidth for message transmission. We assume that messages between trams are
forwarded through standard IEEE-802.11 (WLAN) communication. That should
suffice for several messages at a station, but some connections appear when two
tram pass by each other, so they are only in range for about 4 seconds. Based on
an average speed of 10 m/s per tram, that would imply a distance of 80 meter in
movement. According to a study performed with cars in an urban environment [6]
at a distance of about 75 meters, the signal to noise ratio sinks below 15dB.
For the feasibility of routing over such a network, we want to study the effect

of congestion for epidemic routing. Epidemic routing has the biggest overhead
compared to any other (reasonable) protocol, so if epidemic routing is feasible, other
protocols should perform good as well, in terms of congestion. For the bandwidth
constraints, we assume:

∙ Bandwidth: 4Mbit/s, according to Singh et al. for crossing vehicles [6]

∙ Message size: 2 Mbyte = 16 Mbit, because that is just enough to apply a wide
range of services such as email or multimedia messaging.

∙ Buffer uses FIFO
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∙ No buffer constraints

∙ No energy constraints

With these, we tested the Zurich network for different message loads at a tram-
interval of 6 minutes. We compared two different scenarios. One has no prior
knowledge of Edd whatsoever and performs epidemic routing with a TTL of 30
minutes. The second simulation also runs epidemic routing, but it uses a TTL-
oracle [5] , which means that it knows the exact time to delivery up front and can
set its TTL accordingly. This is a reasonable assumption in a RSBN, because the
message path and delivery time could be calculated or at least approximated in a
real environment through a time-variant Dijkstra-algorithm [7].

Figure 5.1: Comparison of congestion with and without TTL-oracle

The comparison shows a clear loss due to congestion in epidemic routing without
an oracle. We think this is because the Edd varies a lot between messages as is seen
in Figure 5.2, thus many messages keep being sent through the network uselessly
and block the useful transmissions in the FIFO buffers. The epidemic routing with
a TTL-oracle performs well, even with big message loads (88 percent at 3.6 GB per
hour).

This shows that with implementation of an oracle, routing is realistically feasible
even with epidemic routing. Creating a TTL oracle in a route- and schedule-based
network is simple, because the Edd as well as the optimal path in a network without
delays can be calculated easily with a time-variant Dijkstra-algorithm [7]. A Dijk-
stra algorithm should also be able to calculate reasonable approximations for the
individual delivery delays, even if delays are taken into account. However, enough
slack for queuing delays, missed contacts, etc. should be allowed to ensure a high de-
livery probability. Otherwise the protocol could simply save previous delivery times
and adapt the TTL for future messages accordingly. Different protocols could take
further advantage of the inherent properties of route- and schedule-based networks,
so it should be possible to decrease the overhead more without losing performance.
One such proposal, albeit with increased delays, can be found in [3]. Depending
on the application, other message sizes could be considered. The congestion should
not vary much, as long as the message size is small enough to be transmitted when
passing another tram. So with packets small enough, epidemic routing with a TTL

25



Figure 5.2: Distribution of delivery delay for individual messages

oracle can handle more than 2000 Mbyte per hour with a delivery probability of
about 95 percent, as is seen in Figure 5.1.
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Chapter 6

Conclusion

This paper has two main conclusions. First we show that any-inter-contact times in
RSBNs are approximately exponential. This model holds for two different topolo-
gies with real schedules as well as a wide range of different densities on synthetic
schedules. We believe this finding enhances our understanding of route-based net-
works and enables us to create analytical models for the performance of routing in
such networks.
From the model for the distribution of inter-meeting times in a RSBN, we secondly

create an analytical model for the expected delivery delay. For epidemic message
spread, it is derived from a simple Markov-chain model for exponentially distributed
inter-meeting times. The analytical results are compared to experimental values in
the Zurich as well as the Amsterdam network over a wide range of densities. The
model proves to be accurate within a 10 percent margin for all realistic schedules
in Zurich and 22 percent in Amsterdam. This shows that the epidemic message
spread in RSBNs can indeed be closely approximated with a simple model based
on random mobility, although the Amsterdam example hints that the individual
topology of a network has a big influence on the behaviour of epidemic routing.
Finally we did a feasibility study for routing to analyse the possibility of using

a tram network as a DTN backbone. Our preliminary studies have shown, that
routing should be feasible with standard protocols. The effect of enabling stops
to relay messages was rather small, but could prove to be an important factor for
different routing protocols. Congestion is naturally an issue for epidemic message
spread, but on medium message loads even epidemic routing performs well within
realistic bandwidth constraints.
Further work should go into the direction of confirming our results on more topolo-

gies and entirely different network sizes. We focussed mainly on the analysis of the
network rather than taking advantage of the unique properties which RSBNs offer.
The next step would be to go deeper into routing and study the performance of dif-
ferent routing protocols and the benefits of implementing oracles such as calculating
the optimal path based on the schedule up front. Scheduled networks have the ad-
vantage, that all meetings can be predicted or, with delays taken into consideration,
at least approximated closely, which should be reflected in a routing protocol.
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