
Institut für
Technische Informatik und
Kommunikationsnetze

Semester Thesis
at the Department of Information Technology

and Electrical Engineering

IPv6 for Wireless Sensor Networks

SS 2009

Lars Schor

Advisors: Philipp Sommer
Roland Flury

Professor: Prof. Dr. Roger Wattenhofer

Zurich
19th June 2009



Abstract

The Internet of Things predicts a world in which each thing is connected to
the Internet. Integration of a wireless sensor in each thing is one approach
to realize this idea. The 6LoWPAN standard proposes a solution to use the
Internet Protocol on sensor nodes and to connect low-power sensor devices
with the Internet.

In this semester thesis, 6LoWPAN is implemented on the newest generation
of low-power sensor nodes. For this purpose, an already existing 6LoWPAN
implementation for TinyOS is ported to the new platforms.

In the vision of Web of Things, each device can be accessed through the
Web. A RESTful API for sensor nodes is developed that allows a computer
to access the sensor data of a low-power hardware device using the standard
Web protocol. Based on a mashup application, the possibilities of the Web
of Things are demonstrated.
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1
Introduction

1.1 Motivation

In an automated home, all objects can be centrally controlled. The baking
oven starts 20 minutes before you get home, the fridge orders the missing
yoghurts in the Internet in order that each day starts with your favorite
breakfast. The power consumption is minimized by centrally monitoring
the standby power and automatic disabling unused devices. The Internet of
Things, a vision in which each device is connected with the Internet, will
completely change our lives.

So far, in the absence of a single standard for the Internet of Things, gateways
are used to convert the commands of a user-friendly interface to a language
each single device understands. The Web of Things defines the missing
standard and proposes a solution to address each device directly over the
Web.

The newest generation of sensor nodes offers enough performance to realize
the idea of the Web of Things with minimal energy consumption. Nowa-
days, Wireless Sensor Networks (WSNs) employ proprietary communication
protocols, making it therefore difficult to connect the nodes to the Inter-
net. The recently launched IPv6 over Low power Wireless Personal Area
Networks (6LoWPAN) standard proposes a solution to use the Internet Pro-
tocol (IP) on sensor nodes and to integrate these low-power devices into
the Internet. Unfortunately, no implementation of 6LoWPAN exists for the
newest generation of sensor nodes.
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1.2. CONTRIBUTIONS

Current realizations of the Web of Things exist only for high performance
sensor nodes using an advanced gateway to translate the Web data to sensor
node readable data frames. Standard networking tools like ping or further
protocols cannot be used unless the gateway offers these specific functiona-
lities.

This semester thesis combines the solutions described above. To support the
Internet of Things, 6LoWPAN is implemented on the newest generation of
energy-saving sensor nodes having only eight Kbytes of RAM. Based on this
IP stack, the sensor nodes offer Web services, which can be accessed over the
Web.

1.2 Contributions

• An existing 6LoWPAN implementation for TinyOS is ported to the
newest generation of energy-saving sensor nodes in particular the Me-
shBean900, the Pixie and the Crossbow IRIS. The performance and
advantages of the new sensor nodes are discussed with regard to the
6LoWPAN implementation.

• A RESTful application-programming interface (API) is developed for
sensor nodes. To present the data offered by the sensor nodes in a
user-friendly way, we have programmed a Web application assuming
this functionality.

• In order to point out the various possibilities that will be enabled by
the Web of Things, a mashup application has been implemented. It
allows a simple and graphical monitoring of a WSN.

1.3 The Internet of Things

In the vision of Internet of Things, each thing is connected to a network,
namely the Internet [1]. A thing might be any object of the daily life as
shoes or cars. The vision does not only assume that the fridge is connected
to the network, but also all yoghurts and all other things inside the fridge
are part of the Internet. Already realized applications of Internet of Things
are for example household appliances or wearable computing.

Communication is the key element in the Internet of Things. The goal is
to integrate everyday physical objects into communication networks: “from
anytime, any place connectivity for anyone, we will now have connectivity
for anything” [1].

— 2 —



1.4. THE WEB OF THINGS

From the technology point of view, a simple and cost-efficient system to
connect things to the network is required. The simplest devices which offer
these functionalities are radio-frequency identification (RFID) devices. Ne-
vertheless, as they only provide a limited functionality, other platforms are
needed to connect all things with the Internet. Another approach is to use
mobile phones, which have high power consumption and thus only have a
short lifetime without human intervention. Sensor nodes and actuators are
often mentioned in this area. They provide various functionalities and low
power consumption, thus ideally adjusted to the requirements of the Internet
of Things.

1.4 The Web of Things

While the vision of Internet of Things addresses the way of connecting the
devices, the Web of Things community considers the integration of the things
into the Web [2]. Each thing should be available using standard Web me-
chanisms by supporting protocols like Hypertext Transfer Protocol (HTTP),
Representational State Transfer (REST) or Simple Object Access Protocol
(SOAP). This thesis will propose a possible Web of Things implementation
for sensor nodes. For this purpose, a RESTful interface for sensor nodes has
been developed.

1.5 Related Work

Since the introduction of IEEE 802.15.4 and its establishment as link-layer
protocol for sensor nodes, many communication protocols have been desi-
gned with respect to this new standard. Examples include the ZigBee stan-
dard [3] or WirelessHART [4]. The first one is an open protocol to connect
small devices like sensor nodes. It is based on the OSI layer and proposes a
standard for all layers above the MAC layer. Since its introduction in 2005,
many products have been developed for ZigBee. WirelessHART is another
communication standard based on IEEE 802.15.4, but its mainly fields of
application are industrial purposes. For instance, a possible application of
WirelessHART is measuring instruments. The variety of these standards is
also a crucial factor in this area. Both protocols are stand-alone standards,
thus do not support communication with other networks without using an
advanced gateway. A similar approach is also necessary if a node of such a
network should be connected to the Internet. This thesis presents a network
layer protocol, which is based on IP. This simplifies the development of an
advanced gateway as only a tunnel is needed.

The idea of connecting sensor nodes with the Internet was first discussed in
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1.5. RELATED WORK

the late nineties (amongst others [5]). Nevertheless, it was concluded that
networks of sensor nodes have other requirements than the ones of the In-
ternet and a direct connection of sensor nodes with the Internet is neither
meaningful nor easily realizable. When the research about the Internet of
Things started in the early 20th century [1, 6], RFID devices were mainly
focused primarily by the community. Nevertheless, a first implementation of
an Internet Protocol (IP) stack for sensor nodes was programmed for Contiki
in 2003 [7]. The stack is based on IPv4 and triggered a small revolution in
the sensor nodes community. A rethinking has been established and a com-
mon standard for IPv6 on WSNs has been worked out [8] (see section 3.1).
Shortly afterwards, first possible implementations of 6LoWPAN have been
developed for TinyOS (amongst others [9]). The newest and most extensive
implementation of 6LoWPAN for TinyOS is currently being developed at
the University of California, Berkeley and is called Berkeley IP Information
for low-power networks (blip) [10]. It supports almost any functionalities of
6LoWPAN and is presented in detail in section 3.2. During this project, we
have ported blip to our sensor node platform, especially to a new RF trans-
ceiver and used blip as IP stack in our implementations. Several applications
based on blip are currently under development. An AC monitor [11] is one of
the first projects using blip. Nodes send the currently measured AC power
of an external device to a Web server using the User Datagram Protocol
(UDP). In contrast to our project, no approaches to use the Transmission
Control Protocol (TCP) or to react on requests of the Internet are integrated
in the AC monitor.

First approaches to integrate Web services in WSNs were done in 2007 and
one agreed about the fact that Representational State Transfer (REST) is the
most suitable protocol to implement Web services on sensor nodes. Stribu [2]
described a possible implementation of Web services on sensor nodes using
the REST protocol to communicate with the world, however only from a
theoretical point of view. The connection of the sensor nodes to the Internet
should mainly be realized through service gateways. A first real implementa-
tion of Web applications on sensor nodes has been presented for Contiki [12].
A simple Web server with a few pages has been implemented on sensor nodes
using the mentioned Contiki IP stack.

The ETH Zurich has developed in collaboration with SAP Research Zurich
during the last few months a first concrete approach of the Web of Things
vision [13, 14]. Based on REST and JavaScript Object Notation (JSON), a
sensor node delivers its data on request to the sender. The implementation
platform for this project has been Sun SPOT devices and the communication
with the Internet occurs using a gateway as the Sun SPOT does not support
the IP stack. Although the first paper has been published in a later point
of this thesis, several ideas of this paper influenced this thesis like the idea
of a Web front-end for easily observing the Web service responses. There
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1.6. OUTLINE

are two big differences between the implementation of their project and the
one used for this thesis. Our target platform, the MeshBean900, is much
less powerful than a Sun SPOT and uses TinyOS as operating system (OS)
while the Sun SPOT is built on the Squawk Java Virtual Machine. Even
though both projects are based on the same ideas, we implemented different
functionalities in our application like recording or mashups in combination
with a world map.

ArchRock presented in a tutorial at the IPSN 2009 a workable demonstration
of an HTTP layer for TinyOS. They implemented a Web server on a sensor
node, but did not provide any Web services. As only the interfaces are
publicly available, but not the concrete implementation of the HTTP layer,
a comparison with this project is not meaningful.

1.6 Outline

The remaining part of this semester thesis is organized in three chapters.
Chapter 2 presents the background technologies used in this project. First,
the target platform is shortly introduced. Nowadays, the IEEE 802.15.4
protocol is the classic link-layer protocol used for such platforms and is in-
troduced in the second part of the chapter. An overview about IPv6, the
future IP and a discussion about its advantages compared to some conventio-
nal network protocols uses in WSNs are given in the last part of the chapter.

Chapter 3 discusses a proposed standard for IPv6 on sensor networks. After
introducing 6LoWPAN in the first part of the chapter, an implementation
of this standard in TinyOS and its porting to our target platform are pre-
sented in the second part. A performance comparison between the original
implementation and the ported one concludes the chapter.

The Web of Things is the subject of chapter 4. A short introduction to
the basic technologies used for Web services is given at the beginning. The
chapter continues with the presentation of a concrete implementation of Web
services on sensor nodes. Finally, some performance evaluations of our ap-
plication are discussed.
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2
Background

A first goal of this project is to use the Internet Protocol (IP) layer to provide
a common network layer for sensor nodes. This network layer should allow
a direct connection between these nodes and the Internet. Nowadays, the
Internet undergoes a huge change because the standard IP protocol Internet
Protocol Version 4 (IPv4) is being upgraded to the Internet Protocol Version
6 (IPv6). Considering the functionalities and properties of both protocols, it
is quite evident that IPv6 is much better suited for WSNs than IPv4, even
if the adaptation of IPv6 to the common link layer protocol IEEE 802.15.4
comes up with many challenges and does not seem to be straightforward.

Before considering a potential implementation of IPv6 on WSN in chapter 3,
this chapter presents all background technologies and the hardware used in
this thesis. A short introduction to TinyOS, the operating system (OS) of
the sensor nodes is given in section 2.1. Nodes based on the RF transceiver
RF212 are used as target platform for the implementation. Therefore, a
technical overview about these sensor nodes is given in section 2.2 while an
upcoming link layer standard for sensor nodes, the IEEE 802.15.4 protocol
is presented in section 2.3. Afterwards, this chapter changes the focus to the
network layer and IPv6 is introduced in section 2.4. After introducing all
technologies, the last section answers the question why one should use IPv6
for WSN.
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2.1. TINYOS

2.1 TinyOS

There exists several OS for WSNs. TinyOS [15] is one of the most widely
used and offers a broad variety of functionalities for sensor nodes. In this
section, the architecture of TinyOS is discussed and an overview about the
features already implemented in TinyOS that may be helpful for this project
is provided.

Programmed in nesC, TinyOS features a component-based architecture for
developing applications for sensor nodes. It considers the memory and com-
putation constraints of such small devices as its core OS uses only 400 bytes
of memory [16]. Support for low-power operations and communication over
IEEE 802.15.4 are additional features that make TinyOS suitable for this
project.

TinyOS is a layered OS with interfaces and components. Each component
provides a set of services that are specified by interfaces. By connecting
these components together, an application defines its features. As the com-
piler only integrates the wired components into the binary, small and efficient
applications are generated. Two components communicate with each other
through interfaces. For this purpose, a component defines the interfaces it
provides and those it uses. It can only use functionalities of the interfaces
it uses and has to implement the features of those interfaces it provides.
The former are called commands while the later are denoted as events. One
differs between two types of components in TinyOS, the modules and the
configurations. By connecting interfaces used by components with interfaces
provided by other components, a configuration wires the components toge-
ther. Modules are used to implement commands and events. The effective
program code is therefore written in modules.

This thesis uses the latest stable release of TinyOS, version 2.1.0. TinyOS has
already been ported to the sensor nodes used in this project. Furthermore,
there exists an IEEE 802.15.4 communication stack for the radio chip RF212,
which can be used by the sensor nodes.

2.2 Hardware

Two target platforms are considered for this project, the MeshBean900 and
the Pixie. Both platforms are based on the ZigBit900 [17] module from At-
mel, which contains the ATmega1281V Microcontroller and the AT86RF212
Transceiver from Atmel. After introducing this radio transceiver in subsec-
tion 2.2.1, an overview about the two platforms is given in subsection 2.2.2.
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2.3. COMMUNICATION FOR LR-WPANS: IEEE 802.15.4

2.2.1 Radio Module RF212

The radio module RF212 from Atmel [18] is an RF transceiver optimized for
IEEE 802.15.4. It is integrated in the 800/900 MHz-Band and fulfills most re-
quirements of the IEEE 802.15.4-2006 standard like binary quadrature phase
shift keying (BPSK) and offset quadrature phase shift keying (QPSK). The
former allows transmitting with data rates of 20 and 40 Kbit/s while the
later can operate with rates of 100 Kbit/s and 250 Kbit/s. The radio chip
has a low current consumption and integrates an AES 128-bit hardware ac-
celerator and a MAC hardware accelerator.

During the project, we realized that the IPv6 implementation mainly de-
pends on the radio transceiver. As the RF212 transceiver is part of a product
family, one has decided to program the IPv6 implementation for the whole
RF2xx transceiver family to support also other platforms. One of them is
the Crossbow IRIS, which is based on the Atmel AT86RF230 radio module.
Its main difference to the RF212 is that it operates in the 2.4 GHz band,
thus supporting higher data rates. Additionally, the new Ateml AT86RF231
transceiver can easily be supported as soon as it is available in TinyOS.

2.2.2 MeshBean900 / Pixie

Both the MeshBean900 and the Pixie platform are based on the ZigBit900
wireless module. The latter uses an ATmega1281 microcontroller that fea-
tures 128 Kbytes flash memory and 8 Kbytes RAM. The MeshBean900 is
a development board produced by MeshNetics, which already implements a
temperature and illumination sensor.

While the MeshBean900 platform is commercial, the Pixie platform is deve-
loped by the Computer Engineering and Network Laboratory (TIK) at the
ETH Zurich and is not publicly available. Unlike the MeshBean900 platform,
which provides many potentially unused functionalities, the Pixie platform
only implements the most fundamental features. No sensors are integrated
by default and its on-board radio antenna is much weaker than the one on
the MeshBean900 board.

2.3 Communication for LR-WPANs: IEEE 802.15.4

As low-rate wireless personal area networks (LR-WPANs) have different re-
quirements than a classic wireless network, a new physical and link layer
standard for communication in LR-WPANs has been introduced by the IEEE
Computer Society. The IEEE 802.15.4 protocol defines a physical and media
access control (MAC) layer for such networks. Most new sensor nodes sup-
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2.3. COMMUNICATION FOR LR-WPANS: IEEE 802.15.4

port this protocol by implementing hardware accelerators. The ZigBit900
wireless module used for our project supports IEEE 802.15.4-2006. The
standard is defined by the IEEE Computer Society in [19].

The physical and MAC layer defined in the IEEE 802.15.4 standard are sum-
marized in subsection 2.3.1 while an overview about the data and acknow-
ledgement frame is given in subsection 2.3.2. Furthermore, IEEE 802.15.4
defines much more elements like network models, coordination and security
for LR-WPANs. As they are of low relevance for this project, they are not
considered in this thesis. The encouraged reader may refer to [19] for further
information.

2.3.1 The Physical and MAC Layer

The physical layer (PHY) has the following tasks: management of the phy-
sical RF transceiver, channel selection as well as energy and signal manage-
ment. For this purpose, PHY provides the data and physical layer manage-
ment service. The radio transceiver can operate either in the 868/915 MHz
band or in the 2450 MHz band. The 868 MHz band is only for Europe, the
915 MHz band only for North America and the 2450 MHz band for world-
wide use. In the 868/915 MHz band, one can use either BPSK or QPSK
while the 2450 MHz band is restricted to QPSK. This allows data rates up
to 250 Kbit/s.

The transmission of MAC frames across the PHY layer is the main purpose of
the MAC layer. Its further tasks are the channel access, the frame validation
and the acknowledged frame delivery. Each node has either a short 16-bit
or 64-bit extended address that is used as address on the MAC layer.

2.3.2 Data and Acknowledgement Frame

The implementation of the frames results in the biggest restriction for trans-
mitting IPv6 data packets. The IEEE 802.15.4 protocol differs between four
types of frames: the beacon buffer, the data frame, the acknowledgement
frame and the MAC command frame. The maximum size of the PHY pay-
load, i.e. the MAC packet, is 127 bytes. The beacon buffer is used by a
coordinator to transmit beacons and the MAC command frames have the
functionality to handle all MAC peer entity control transfers. Both are of
low relevance for the higher-level protocol and are fully explained in [19].

The data frame is outlined in Fig. 2.1. This frame is used for all data
transfers. The first two fields of the MAC Header (MHR) are the Frame
Control and the Data Sequence Number (DSN). Furthermore, it consists of
the Addressing Field that may contain the PAN identifier of the source and

— 9 —



2.4. INTERNET PROTOCOL VERSION 6

PHY dependent
Frame 

Length
PHY Payload

Frame Control
Seq. 

Number
Addressing Fields

Aux. Security 

Header
MAC Payload FCS

PHY 

layer

MAC 

layer

1 bytevarious

2 bytes 1 byte 4 to 20 bytes 0 to 14 bytes 2 byte

MHR MFR

SHR PHR

Figure 2.1: The 802.15.4 data frame subdivided into the PHY and MAC
layer.

the target node and both node addresses. Using PAN identifiers (two bytes
per identifier) and the extended addresses, the address field has a length
of 20 bytes. Nevertheless, if one may only use both short 16-bit addresses,
the length of the address field will be reduced to four bytes. An Auxiliary
Security Header might be the last field of the MHR. The MAC Footer (MFR)
contains only the Frame Check Sequence (FCS). The MAC packet is passed
to the PHY layer, which adds a PHY Header (PHR) and a Synchronization
Header (SHR). The PHR consists only of the Frame Length that contains
the length of the PHY payload in octets. Considering the worst case, i.e. if
all headers use their maximum size, the size of the data payload is only 88
bytes.

Fig. 2.2 outlines the acknowledgement frame that is used for confirming
successful frame reception. The PHY layer is similar to the Data Frame while
the MAC layer is reduced. An acknowledgement frame does not contain any
payload and the MHR consists only of the MAC Frame Control field and the
DSN. The MFR contains only the FCS field similar to the data frame.

2.4 Internet Protocol Version 6

IPv6 is the successor of the current Internet Protocol IPv4 and addresses
most limitations of IPv4. The biggest modification of the further IP is its
large address space of 2128 addresses that corresponds to around 5 ·1028 IPv6
addresses for each person alive. As one has addresses in abundance, IPv6
enables the basic idea of the Internet of Things community, i.e. to configure
each object with an IP address.
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Figure 2.2: The 802.15.4 acknowledgement frame subdivided into the PHY
and MAC layer.

IPv6, a layer 3 best-effort transport protocol that is defined in RFC2460 [20],
is described in this section. In particular, the most important points concer-
ning an IPv6 implementation on sensor nodes are emphasized. The advan-
tages of IPv6 compared to IPv4 are outlined in subsection 2.4.1, an overview
about the addressing format used in IPv6 is given in subsection 2.4.2 while
the header format of IPv6 packets is described in subsection 2.4.3. The last
subsection points out the most important protocols, which run over IPv6.

2.4.1 The New Internet Protocol

IPv4 is a widely accepted IP and is used for any connections with the Inter-
net. The protocol is implemented in most network components and almost
any communication software is based on IPv4. In this subsection, the ques-
tion why it is necessary to switch to a new IP, which requires an upgrade of
all software and most hardware components, is discussed.

The current problems of IPv4 are known since several years. In 1992, the
Internet Engineering Task Force (IETF) issued a call for proposals for the
next IP [21]. Three years later, the first RFCs were published, which de-
fine the recommendations, the address allocation, the specifications and the
architecture (RFC 1752, RFC 1881, RFC 1883 and RFC 1884) of a future
IP.

According to RFC 1752 [22], the main reason for introducing a new IP was
“that the Internet address space would become an increasingly limiting re-
source”. IPv4 uses 32-bit addresses, which enables to assign 232 addresses.
This corresponds to around four billion addresses. Nevertheless, mainly two
reasons prevent the use of all these addresses:
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• As an IP address consists of a network number and a host number, not
all allocated addresses are really used. Consider for example a network,
which allocates 64 IP addresses but only consists of seven real devices.
Only nine addresses (the router, all devices and the broadcast address)
are really used and 55 addresses or 86% of the addresses are not used
but allocated.

• Many addresses are used for specific functionalities like multi-casting
and cannot be allocated by users.

Stallings [21] points out additional requirements for a new IP. The header
and fragmentation principle used in IPv4 does not address performance re-
quirements as IPv4 has many fields in a header of variable length. IPv6
introduces a fixed-length header and does not allow routers to fragment pa-
ckets. Furthermore, IPv4 does not support network services and does not
provide any security capabilities on the IP layer. An interesting remark is
that these disadvantages of IPv4 have been considered in the early nineties
when most private households and companies were not yet connected to the
Internet.

2.4.2 Addressing

As mentioned before the biggest drawback of IPv4 is its small address space.
In this subsection, the new address concept described in RFC 4291 [23] is
introduced. The representation format of an IPv6 address, the different
address types and the address configuration principles used in IPv6 are each
described in the following.

Addressing Model and Representation

An IPv6 address has a length of 128 bits. According to [23] the preferred form
of an IPv6 address is x:x:x:x:x:x:x:x where each x represents one to four
hexadecimal digits and is called a group. An example for a well-formatted
address is ABCD:EF01:2345:6789:ABCD:EF01:2345:6789.

There exist several rules to simplify the address. The first rule concerns
the leading zeros in a group: any leading zeros in a group can be omitted.
Furthermore, it is possible to replace one or any number of consecutive groups
of zeros with two colons. So the address FF01:0:0:0:0:0:0:101 may be
written as FF01::101. Note that this substitution is only allowed once in an
address.

Address prefixes are handled in IPv6 similar to IPv4. The prefix is represen-
ted as ipv6-address/prefix-length with ipv6-address any valid notation
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Table 2.1: Address types of IPv6 according to RFC 4291 [23].

Address type Binary prefix IPv6 notation
Unspecified 00...0 (128 bits) ::/128
Loopback 00...1 (128 bits) ::1/128
Multicast 11111111 FF00::/8
Link-Local Unicast 1111111010 FE80::/10
Global Unicast (everything else)

of an IPv6 address as described before and prefix-length a decimal value,
which specifies how many bits comprise the address.

One more remark to the URL notation of an IPv6 address as it is used in
Internet Browsers: The address is written in brackets such as

http://[ABCD:EF01:2345:6789:ABCD:EF01:2345:6789]

to not mistake the last group as the transport protocol port.

Address Types

RFC 4291 differs between several types of IPv6 address classes, which are
described in the following. Additionally Table 2.1 provides some examples of
these address types. The type of an address can be identified by considering
its higher-order bits.

Unicast A single network interface is identified by a unicast address. One
differs between

• Global Unicast,
• Site-Local Unicast (which are now deprecated) and
• Link-Local Unicast.

Anycast The IPv6 anycast address has no comparable address in IPv4. The
address is assigned to more than one interface. A packet sends to an
anycast address is routed to the nearest interface with this address.

Multicast A multicast address identifies multiple nodes together, i.e. it
is an identifier for a group of interfaces. If one sends a packet to a
multicast address, the message is delivered to all interfaces identified
by that address.

Furthermore, each address type can be divided into subgroups. For this
project, the following multicast addresses are relevant:
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Figure 2.3: IPv6 Header Format according RFC2460 [20].

• FF02::1 (link-local all-nodes address), which addresses all nodes on
the link and

• FF02::2 (link-local all-routers address), which addresses all routers on
the link.

Address Configuration

IPv6 supports two types of address configuration: an updated version of
the well-known Dynamic Host Configuration Protocol (DHCP) known as
DHCPv6, which is defined in RFC 3315 [24] or a stateless address auto-
configuration mode defined in RFC 2462 [25]. DHCPv6 works similarly to
DHCP for IPv4 and defines the stateful address configuration. For further
information, one may refer to [24].

For sensor nodes, the newly introduced stateless autoconfiguration mode is
much more interesting than DHCP. Using its layer-two MAC address, an
IPv6 stack can generate itself a link-local address. The nodes can use this
address together with the Neighbor Discovery Protocol (NDP, see subsection
2.4.4) to search for routers in its local network by sending messages to the
multicast address FF02::2. Using the NDP, routers distribute information
about the address range the node can use to assign itself a unicast address.
The Duplicate Address Detection (DAD) mechanism prevents that the same
address is assigned twice to different nodes.

2.4.3 Header Format

As already mentioned, a design goal of IPv6 was to simplify the header
format. The new header format has to deal with the new addressing format
and should be of fixed size. This subsection gives an introduction to the
IPv6 header, which is described in RFC2460 [20]. Fig. 2.3 outlines the new
header format while the individual fields are described in the following.
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The first field contains the IP version number and is always set to the value
six. The traffic class and the flow label fields are included to support quality
of services. The first one sets the packet priority and the second one can be
used for the Quality of Service (QoS) management but is currently unused.
As the name implies, the payload length field contains the length of the
IPv6 payload. The type of header, which follows immediately the IPv6
header, is identified by the next header field. Each node that forwards the
packet decrements the hop limit field by one. The source and the destination
addresses contain the according 128-bit IPv6 address.

To support optional Internet-layer information, IPv6 introduces the concept
of extension headers. Each of these headers contains a next header field,
which are used to link the headers together. Each extension header is optio-
nal and contains information, which supports the IPv6 transmission. There
exist extension headers for various purposes like the routing, the fragmenta-
tion or the authentication header.

2.4.4 Support Protocols

To perform all operations described so far, IPv6 makes use of several other
protocols. With an IPv6 implementation for sensor networks in mind, the
two most important support protocols are the Internet Control Message Pro-
tocol for IPv6 (ICMPv6) and the NDP. In this subsection, both protocols
are shortly introduced and its purpose in an IPv6 network is presented.

Internet Control Message Protocol for IPv6

ICMPv6 is described in RFC 4443 [26]. It is the successor of the well-known
IPv4 protocol ICMP. The main purpose of ICMPv6 is to report errors en-
countered in processing packets. Furthermore, it is used for network diag-
nostics and other inter-layer functions. The well-known command ping is
based on ICMP.

An ICMPv6 message consists of a message body and three header fields: the
type, the code and the checksum. The first one is used to indicate the type
of the message and to automatically determine the format of the remaining
data. The message types Echo Request and Echo Reply are the most well
known message types. A ping request is bases on these two message types.

Neighbor Discovery Protocol

The specifications of the NPD, which is newly introduced in IPv6, are descri-
bed in RFC 4861 [27]. The goal of the protocol is to solve problems related
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Table 2.2: Comparison between an IEEE 802.15.4 network (LoWPAN) and
a typical IPv6 network.

IEEE 802.15.4 Network Typical IPv6 Network
Packet Size Maximum payload of a

physical layer packet: 127
bytes.

Maximum Transmission
Unit (MTU): at least 1280
bytes.

Addressing 16-bit short or IEEE 64-bit
extended MAC addresses.

128-bit IPv6 addresses.

Bandwidth Typically 250 Kbps. 54 Mbps (802.11g) /
100 Mbps (Ethernet)

Power Low, most devices run on
battery.

No constraint, most de-
vices are connected to a
power network.

Reliableness Connection is often unre-
liable.

Connection is often almost
static.

Sleeping Devices conserve energy by
sleeping for long time.

Devices do not sleep and
are always connected.

to the link layer. This includes the router and prefix discovery, the address
autoconfiguration and resolution, the neighbor unreachability detection and
the duplicate address detection.

To solve the above-described problems, five different ICMP packet messages
are defined. The Router Solicitation message is used from a host that be-
comes enabled. It sends out these messages to request routers to generate
router advertisement messages. The Router Advertisement message is used
from a router to show their presence together with various link and Internet
parameters. The message also contains the network prefix. The identifi-
cation of the link-layer address of a neighbor node happens by analyzing
the Neighbor Solicitation messages. The response to such a message is the
Neighbor Advertisement message. The last ICMP packet type is the Redi-
rect message, which can be used by routers to inform hosts about a better
first hop for a destination.

2.4.5 Comparison of IPv6 and IEEE 802.15.4

The last section has given an introduction to the typical link-layer protocol
for WSN while IPv6, a network layer protocol starting to be used in the
biggest worldwide network, the Internet is described in this section. Before
answering the question why one should use IPv6 for sensor nodes, an IEEE
802.15.4 network is compared with a typical IPv6 network in this subsection.

In Table 2.2, the most important differences between both networks are
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summarized. The IEEE 802.15.4 protocol is optimized for networks with
low-energy devices, while IPv6 should support high performance networks.
The connections in a WSN are often unreliable, so IEEE 802.15.4 uses small
packets and short addresses. This problem is almost unknown for IPv6
networks. To achieve high performance, such a network has to support long
packets.

Nevertheless, in the next section, it is shown that IPv6 is better suited to
WSN than all other network layer protocols irrespective of all these diffe-
rences between a typical IEEE 802.15.4 network and an IPv6 network. The
demands on a possible IPv6 implementation for WSNs follow directly from
this comparison and are presented in subsection 3.1.1.

2.5 Connecting Sensor Nodes to the Internet

The newest approach of the WSN community is to connect their nodes di-
rectly to the Internet. The goal is to enable the ideas of the Internet of
Things community and to standardize the different network protocols used
in WSNs. The IEEE 802.15.4 protocol and IPv6 are introduced in the last
few sections while in this one, the current approaches of introducing an IP
on WSNs is discussed and the question why IPv6 is the right protocol for
WSNs is answered.

At the beginning of the 21th century, the research community thought that
WSNs have different requirements as the ones of the Internet and need a
reconsidering of the overall structure of the services [5]. The assumption
was that the layered architecture could not be used anymore because of the
resource constraints. They thought that the required robustness and scala-
bility could only be achieved by using localized algorithms. Furthermore, it
was assumed that a WSN device might not need an identity, as the naming
will be data-centric.

The idea was brought out by the fact that sensor nodes are connected with a
serial interface to the outside [28]. For this purpose, an application level ga-
teway might be installed at the root and the connection could be compared
with USB. Nevertheless, application level gateways also provide many pro-
blems. Adam et al. [29] summarizes that “protocol gateways are inherently
complex to design, manage, and deploy”. Adjustments to gateways are hard
to manage, for each new functionality of the sensor node, the gateways have
also to be updated.

Nowadays the IEEE 802.15.4 protocol is widely accepted as physical and
MAC layer protocol for WSNs. A potential network layer protocol has to
respect the constraints that results from the MAC layer protocol. As already
mentioned, the properties of IP, especially of IPv6 do not fully match with
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whose of the IEEE 802.15.4 protocol. Nevertheless, the Internet Protocol
for Smart Object (IPSO) Alliance [30] proposes to use IP also for smart
objects [29]. The support of a wide range of applications, the stability and
the high scalability are its main reasons. The alliance argues that the de-
velopment of a few lightweight IP stacks in the last few months have been
given a proof-of-concept of IP on sensor nodes. The big advantages in the
alliance’s point of view is that sensor nodes can be accessed from anywhere
and anything using IP and that IP is independent of the used physical and
MAC layer protocol.

The above argumentation justifies using IP on sensor nodes but does not
answer the question why one should use IPv6 on such devices. The answer
is given by Hui et al. who claim that “IPv6 is better suited to the needs
of WSNs than IPv4 in every dimension” [28]. They argue that IPv6 allows
the implementation of more efficient network architectures than the current
solutions and proving their theory with the following mechanisms of IPv6:
sample listening, hop-by-hop feedback and collection routing. Because of
the structure of the IPv6 address, a better compression is possible compa-
red to IPv4 addresses. Their rationale is completed with the remark about
the support protocols of IPv6 like autoconfiguration and that IPv6 imple-
ments features that are required in WSNs. The authors regard the address
scalability, visibility and unattended operation as examples of these features.

The paper [28] proposes to connect WSN to other IP networks through one
or more border routers, which have the function to forward IP datagrams
between different media. This solves the main problem mentioned at the
beginning of this section, i.e. the adjustment of the gateway after each
sensor node modification. The border router forwards IP datagrams on the
link-layer level. Once developed, the border router has never to be adjusted.

2.6 Summary

The MeshBean900 and the Pixie are new modern platforms for sensor nodes.
Their RF212 transceiver supports the link-layer protocol IEEE 802.15.4. No-
wadays, this protocol is used by almost any modern sensor node platform
for communication. It is designed for short packets and unreliable networks.

IPv6, the future IP, is designed for huge networks. Using a large address
space and stateless address autoconfiguration, it fulfills many requirements
of the Internet of Things community. It can be shown that the use of IPv6 on
low-power devices simplifies many network tasks in particular the connection
of the low-power network with the Internet. As IPv6 has a large header and
the MTU is at least 1280 bytes, header compression and fragmentation is
necessary to implement IPv6 in WSNs.
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3
IPv6 on Sensor Nodes: 6LoWPAN

As the last chapter showed, implementing IPv6 on sensor nodes simplifies
the task of connecting a huge amount of nodes together to one big network
and enables to realize the ideas of the Internet of Things community. Un-
fortunately, it is not possible to write a simple network layer with all nodes
supporting IPv6. This chapter presents a proposed standard for IPv6 over
IEEE 802.15.4 networks [8]. In the first section, the proposed standard is des-
cribed while an implementation of 6LoWPAN for TinyOS and its adaption
for the radio driver RF212 is presented in section 3.2. Finally, the adapted
version is evaluated with the original implementation in section 3.3.

3.1 6LoWPAN

6LoWPAN addresses the problems described in the last chapter and allows
the transmission of IPv6 packets over an IEEE 802.15.4 network. The main
idea of 6LoWPAN is to introduce an adaptation layer to enable IPv6 commu-
nication in WSNs. Whereas the requirements of 6LoWPAN are presented
in subsection 3.1.1, the adaptation layer is explained in detail in subsec-
tion 3.1.2. Furthermore, the different routing and forwarding protocols of
6LoWPAN are the subject of the last subsection.
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802.15.4 Header / Footer IPv6 Header TCP Header TCP Payload

39 Bytes 40 Bytes 20 Bytes 28 Bytes

Figure 3.1: IPv6 vs. 802.15.4: header sizes. In the worst case, one may only
be able to use a TCP payload of 28 bytes per IEEE 802.15.4 packet when
IPv6 is used according to the standard (according to IEEE 802.15.4-2006).

3.1.1 Requirements

The unequal properties of IPv6 and IEEE 802.15.4 cause many requirements
to the 6LoWPAN protocol, which have to be considered in order that the
underlying network still fulfills the needs of a modern WSN. In this subsec-
tion, these requirements are presented by giving an overview about the RFC
4919 [31].

The most important characteristics of the IEEE 802.15.4 standard [19] are
its low bandwidth, the requirements for low power and the maximum link-
layer packet size of 127 bytes. Implementing IPv6 unaltered over 802.15.4
would result in extremely small packet payloads for higher-level protocols
as the following calculation shows. According to IEEE 802.15.4-2006, in the
worst case the maximum size of an IEEE 802.15.4 frame is 88 bytes. The
IPv6 header has a size of 40 bytes, which results in 41 bytes for upper-layer
protocols like TCP or UDP. The length of the TCP header is another 20
bytes. Thus, only 28 bytes per packet are available for application-layer
protocols (see Fig. 3.1).

The above example points up the most important requirement of 6LoWPAN:
a compression standard for the IPv6 header as well as for the upper layer
headers. As IPv6 has a minimum MTU of 1280 bytes, a fragmentation and
reassembly layer has to be introduced. Furthermore, the routing protocol
should not impose an overhead on data packets. As most devices of a WSN
have only a restricted performance, a possible routing protocol should also
preserve the computation power and the memory utilization.

Further requirements result from the network topology. To reduce the confi-
guration overhead, a stateless address autoconfiguration is preferable. Va-
rious security requirements should also be addressed by the 6LoWPAN pro-
tocol, in particular countermeasures against man-in-the-middle attacks and
denial of services attacks. Nevertheless, as such countermeasures are still
not addressed by current implementations of 6LoWPAN, this report does
not provide further ideas to solve the security requirements.
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802.15.4 Header
IPv6 Header 

Compression
IPv6 Payload

(a) 6LoWPAN packet using only the IPv6 header compression subheader, which has a
size of only three bytes in the best case.

802.15.4 Header Fragment Header
IPv6 Header 

Compression
IPv6 Payload

(b) 6LoWPAN packet using the IPv6 header compression subheader and the fragmentation
header.

802.15.4 Header
Mesh Addressing 

Header
Fragment Header

IPv6 Header 

Compression
IPv6 Payload

(c) 6LoWPAN packet using the IPv6 header compression subheader, the fragmentation
header and the mesh addressing header.

Figure 3.2: Examples of various 6LoWPAN header stacks. 6LoWPAN is
based on header encapsulation, only the required headers have to be included.

3.1.2 Adaptation Layer and Header Compression

To address the above requirements, the 6LoWPAN protocol [8] introduces
the adaptation layer. By using header compression and fragmentation, a
6LoWPAN packet needs a much smaller header than an IPv6 packet would
use. After introducing the 6LoWPAN packet format, further details to the
IPv6 header compression, the fragmentation header and the mesh address
header are given in this subsection.

Introduction

The adaptation layer of 6LowPAN consists mainly of three components: the
header compression, the fragmentation and the layer-two forwarding [32]. It
uses stateless and shared-context compression to reduce the length of the
IPv6 header to a few bytes. The key ideas of the 6LoWPAN adaptation
layer are the assumption of shared context like the common network prefix
and the use of only a subset of IPv6 functionality.

Similar to IPv6, 6LoWPAN uses also an encapsulated header format consis-
ting of the IPv6 header compression subheader, the fragment header and the
mesh addressing header. Fig. 3.2 outlines the most important variants of the
header stack. At the beginning of each header, a header type field identifies
the header format.
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Figure 3.3: IPv6 Header Compression (HC1). The uncompressed fields may
use more than one byte but should always be aligned to an octet boundary.

Header Compression

The 6LoWPAN header compression is defined in RFC 4944 [8]. It describes a
stateless compression scheme consisting of two parts: the header compression
one (HC1) and the header compression two (HC2). HC1 allows compressing
the IPv6 header with an original size of 40 bytes into three bytes in the
best case. Similarly, the HC2 describes a compression format to reduce the
length of the transport protocol header. Both HC1 and HC2 consist of each
one encoding byte and non-compressed fields. The latter are dynamically
determined for each particular connection.

HC1 reduces the length of the IPv6 header described in subsection 2.4.3 to
three bytes in the best case. The compression expects several values for the
IPv6 header fields. If the assumptions turned out to be wrong, the non-
compressed values of the fields have to follow the encoding field, i.e. carried
in-line. The first assumption is that the version is IPv6. The source and
destination address is assumed to be link local and to be inferred from IEEE
802.15.4 MAC addresses. Furthermore, the Traffic Class and the Flow Label
fields hold the value zero. The packet length is not presented in the header
as it can be inferred from the IEEE 802.15.4 length field or from the length
field in the fragment header. Last but not least, the Next Header is assumed
to be either UDP, TCP or ICMP. As there are no ways to compress the Hop
Limit field, it has to be carried in full.

Fig. 3.3 outlines the principle of the compression. The first octet is the dis-
patch byte, which defines the header format as an HC1 header. The next
byte is called HC1 encoding octet. The source address and the destination
address bits define whenever the prefix and the interface identifier are carried
in-line. The TF bit is zero if the Traffic Class and the Flow Label are not
compressed. The Next Header bits are 00 if the fields cannot be compressed
and the HC2 encoding bit defines whether a HC2 encoded header immedia-
tely follows the HC1 encoding. The Hop Limit field immediately follows the
HC2 encoding octet or in the case the latter is not presented, it is appended
the HC1 encoding octet. Further non-compressed fields follow the last octet
in an order defined in RFC 4944.

6LoWPAN supports also the compression of the transport protocol header,
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Figure 3.4: Fragmentation header of 6LoWPAN.

which is denoted as HC2. RFC 4944 only defines a compression format for
UDP, which reduce the length of the UDP header from eight octets to four
octets in the best case. Several examples of header compressions can be
found in [32].

Fragmentation Header

To support the minimum MTU of IPv6, 6LoWPAN introduces the fragmen-
tation header. Whenever the payload is too large to fit into a single IEEE
802.15.4 frame, it will be fragmented into several packets. The fragmentation
header for the first fragment is outlined in Fig. 3.4(a) while the header for
any subsequent fragment is shown in Fig. 3.4(b). The first field is the Da-
tagram Size, which is the size of the entire IP packet before fragmentation.
It is included in each packet to simplify the packet handling in the case of
out-of-order arrivals. The Datagram Tag identifies the fragmented payload
while the Datagram Offset field defines the offset of the fragment within the
original payload.

Mesh Addressing Header

The IEEE 802.15.4 header only contains the source and the destination ad-
dress of the next hop. If a packet should be transmitted to a node that
is not a neighbor of the source, a higher-level protocol needs to implement
this functionality. Using IPv6, the originator and final receiver addresses
are included in the IPv6 header. Nevertheless, using the compression header
this information may be lost. The solution to this problem is to introduce
an additional header, the Mesh Addressing header, which is used to sup-
port layer-two forwarding. Furthermore, it supports multi-hop forwarding
of 6LoWPAN payloads [32]. The header is outlined in Fig. 3.5. The bit V
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Figure 3.5: Mesh addressing header of 6LoWPAN.

indicates whenever the Source Address is a short 16-bit address or an IEEE
extended 64-bit address. The same applies for the F bit and the final destina-
tion address. The Hop Limit field is similar to the Compression Header. The
Source Address field contains the address of the originator of the 6LoWPAN
packet and the Destination Address field the corresponding final destination
address.

3.1.3 Routing and Addressing

The underlying network of a 6LoWPAN environment may behave completely
different from a typical IPv6 network. In LoWPAN, one may have to consider
power issues, multi-hop and other specific features. In this subsection, the
routing and forwarding issues of a 6LoWPAN network are considered and
the addressing of the nodes is explained. Both are current research topics of
the 6LoWPAN community.

Forwarding and Routing

Packet forwarding in a multi-hop environment can be implemented either in
the link layer or in the network layer. 6LoWPAN supports both approaches.
Forwarding on the network layer is called route over [32]. Its main advan-
tage is that the existing network capabilities of IP can be used. Nevertheless,
using route over one cannot utilize the full features of the header compres-
sion as the IPv6 addresses may have to be transmitted with each multi-hop
packet. An additional problem is that forwarding on the network layer may
be slow in reacting to changes in the link state.

To address these problems, 6LoWPAN also supports forwarding on the link
layer called mesh under [8]. The source distinguishes between the following
two cases: If the destination is directly accessible by the source, the packet
is forwarded to the destination. But if no direct reachability between the
source and the destination exists, the source node has to include the Mesh
Addressing header. The source and the final destination link-layer address
are included in the Mesh Addressing header, while the IEEE 802.15.4 header
will contain the forwarder’s link-layer address. A node, which receives a
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frame with a Mesh Addressing header, checks the final destination. If the
node itself is not the final destination, it inserts the address of the next hop in
the destination field of the IEEE 802.15.4 header and transmits the packet.

Both link-state and distance vector routing protocols do not seem to be
well suited for 6LoWPAN networks. Currently the Routing over Low Power
and Lossy Links (ROLL) working group within the IEFT is considering this
problem [33] and is trying to find a suitable routing protocol.

Addressing

Addressing is mainly based on the stateless address configuration of IPv6,
which is described in subsection 2.4.2. The RFC 4944 defines in detail how
the Interface Identifier is derived. In general, it is based on the IEEE EUI-64
address of the IEEE 802.15.4 device. In a mesh-under network, the link-local
address is used for communication within a LoWPAN and routable addresses
are used to communicate outside. Using Route-Over, slight differences have
to be considered [32].

The NDP is used in a similar way as in IPv6 and includes prefix discovery
and default route configuration. Nevertheless, the protocol is not perfectly
adjusted to the 6LoWPAN requirements and may generate an overhead in
the number of messages.

3.2 6LoWPAN for TinyOS

The currently most extensive implementation of 6LoWPAN for TinyOS is
called blip [10] and is currently being developed at the University of Califor-
nia, Berkeley. Although it implements many functionalities, it only supports
platforms with the RF transceiver CC2420 from Texas Instrument1. Ne-
vertheless, new platforms often use a transceiver of the RF2xx family from
Atmel2. Instead of designing a new 6LoWPAN stack for these hardware
systems, one has decided to port blip to the RF transceiver family RF2xx.
First, blip is introduced by presenting its functionalities and its restrictions.
The most important aspects of the porting to the RF transceiver RF2xx are
described in subsection 3.2.2 while appendix B gives guidance on how to
install blip on a Linux system.

1A non-exhaustive enumeration of sensor network hardware systems with the CC2420
RF transceiver includes the Crossbow MicaZ, the Moteiv Telos and the Moteiv Tmote
Sky.

2This product family includes the AT86RF212, the AT86RF230 and the AT86RF231
transceiver.
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3.2.1 Berkeley IP Information (blip)

The functionalities of blip are described in this subsection. First, an over-
view about blip is given followed by a description of the code design. The
routing and forwarding mechanisms of blip are outlined in another part of
the subsection while current issues of blip are presented at the end of this
subsection.

Introduction

blip is an implementation of 6LoWPAN for TinyOS currently being deve-
loped at the University of California, Berkeley3. IPv6 neighbor discovery,
default route selection and point-to-point routing are the most important
features it supports. In addition to the IPv6 functionalities, it supports
ICMP, UDP and includes a prototype TCP stack. To connect the nodes
with the outside, a tunnel driver for Linux has been included. The computer
plays the role of a border router and may forward the packets to the Internet
or to another network. The tunnel driver uses radvd to implement the NDP.
This yields that global, link-local as well as link-local multicast communica-
tion is possible when using blip. Addressing, stateless autoconfiguration and
header compression are used according to the RFC 4944 [8].

As the sensor network behaves like a normal IP network, well-known com-
puter programs like ping6, tracert6 and nc6 can be used to test and debug
the network. Furthermore, blip supports network programming of the sensor
nodes using nwprog.

Code Design

The schematic code design of blip is outlined in Fig. 3.6. The network layer
mainly comprises three components: the IPAddress, the IPDispatch and
the IPRouting. The first one provides the address handling, this includes
the IPv6 addresses but also the IEEE 802.15.4 addresses. It implements
commands for getting the link local and the global IPv6 address. The rou-
ting functionalities of blip are implemented in the IPRouting component.
It reports the next hop for a packet and implements the NDP commands
to build up the routing and forwarding table. The core functionality of the
network layer is implemented in the IPDispatch component. On the one
hand, it handles the reception of packets and forwards them to the correct
transport protocol. On the other hand, it is responsible for forwarding a mes-
sage from the transport layer to the link-layer. It includes the correct route
of the packet and buffers the message until the send process is completed.

3Unless stated otherwise, this project uses the release with date 3-20-2009.
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IEEE 802.15.4 Radio Driver

IPDispatchIPRouting IPAddress

TCP UDPICMP

Figure 3.6: Schematic code design of blip. Only the most important com-
ponents are shown.

Furthermore, it is responsible for the validation of a successful transmission
and the fragmentation of packets.

The ICMP component is required to send router solicitations and adver-
tisements. The transport layer comprises a TCP and a UDP component.
The latter provides functionalities to easily send and receive UDP packets
by one command. The TCP component supports the creation of a socket
and allows the use of split-phase connections. It implements a sender and
receiver window to guarantee a successful transmission and to support out of
order reception of packets. An application that uses the blip IP stack needs
to access only the according TCP and UDP interfaces to send and receive
messages.

A base station is required to connect the sensor network to a computer, thus
to the world. Both, the base station and the computer together, implement
the border router functionality. One node has to be programmed with this
separate application. The code of this application needs neither the IP layer
nor the transport layer, but accesses directly the radio driver. 6LoWPAN
packets are directly forwarded to the computer and vice versa.

Routing

There are two basic principles, which define together the routing behavior of
the nodes: Each router acts as IP router and every node has a default route
towards a border router. From the outside view, a tree with the border router
as root is created. The default route of a node is computed by summing up
the link-quality indicator (LQI) of the routes.

IPv6 router solicitation and advertisement packets (see subsection 2.4.4) are
used to build the tree. A router solicitation message is sent out at boot up
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and whenever a default route failure happens. Furthermore, each node sends
out advertisement packets whenever it receives router solicitation messages
or its hop limit to the border router changes.

blip also supports source routing where the source includes a hop-by-hop way
to the destination. As this functionality is non-standard, it is not activated
by default. To forward a packet, a node checks if the IPv6 destination is
a multicast address. Whenever this condition is fulfilled, the packet is not
forwarded. The message is sent to the next hop of the source route whe-
never the packet contains source route information. If none of the previous
conditions is fulfilled, the packet is sent to the default route.

Using software acknowledgements, blip verifies if the packet has received its
next hop. If the sender does not receive an acknowledgement message after
several retransmissions, it tries to forward the packet to another node in the
network hoping that this one can correctly forward the packet.

Issues

The current release of blip contains mainly two known issues [34]: the frag-
mentation and the buffering. The fragmentation of IP packets used in blip
provides several problems, in particular when using multi-hop. The only
known solution is to use short messages.

Buffering is a second known issue of blip. It is mainly based on several mes-
sage buffers and windows, which consume a large amount of memory. This
amount can be reduced by minimizing the length of the buffers. Neverthe-
less, this leads to several problems as messages are dropped if the buffer has
no free space. The restriction primarily concerns older platforms, which have
only an internal memory of four Kbytes. This project addresses this issue
by porting blip to a modern platform that includes eight Kbytes of RAM,
thus supporting much larger buffers.

3.2.2 Porting blip to ZigBee900 Platforms

The process of porting blip to the MeshBean900 and Pixie platform can
mainly be divided into two parts. The current radio driver of the RF trans-
ceiver is extended in a first step. It has to support new interfaces and functio-
nalities like reliable connections. In a second step, blip is adjusted to the new
driver. The release with date 3-20-2009 is used as basis of the porting, which
is outlined in this subsection. In collaboration with the University of Szeged,
the updated driver has been published in the official TinyOS repository [35].
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RF2xxDriver Layer

IEEE154Message Layer

MessageBuffer Layer

PacketLink Layer

SoftwareAck Layer

Unique Layer

LowPowerListening Layer

CollisionAvoidance Layer

Ieee154SendI

C

C

C

C

C

C

C

C

Figure 3.7: The send process of the RF2xx transceiver driver used in blip to
provide the Ieee154Send interface (schematically). Compared to the stan-
dard RF2xx radio driver, the IEEE154Message layer has been extended and
the PacketLink layer has been introduced. Interfaces are marked with I○
while components are marked with C○.

The New RF Transceiver Driver

As mentioned earlier, blip is directly ported to all RF2xx transceivers. The
aim is to support all platforms that use a chip of the RF2xx transceiver
family for their communication. This is not difficult as most layers of the
RF2xx driver are written independent of the concrete transceiver. To sup-
port blip, mainly two new interfaces have to be provided by the radio driver,
the Ieee154Send and Ieee154Packet interface. Furthermore, the implemen-
tation of the Receive interface has to be adjusted.

The Ieee154Send interface is almost similar to the AMSend interface, but uses
another address type. As outlined in Fig. 3.7, the interface is provided by
the IEEE154Message layer. This layer has been extended to support the new
interfaces of blip. It initiates the data frame, sets the correct payload length
and all addressing resources of the IEEE 802.15.4 frame. The PacketLink
layer has newly been introduced in the send process with the object to gua-
rantee a reliable connection. The layer tries to send the message several
times until the next-hop receiver confirms the packet reception. Further-
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Figure 3.8: The receive process of the RF2xx transceiver driver used in blip
to provide the Ieee154Receive interface (schematically). Compared to the
standard RF2xx radio driver, the IEEE154Message layer has been extended.
Interfaces are marked with I○ while components are marked with C○.

more, it allows a higher-level application to check if a packet is successfully
transmitted or might be lost.

The receive process, which is outlined in Fig. 3.8, can mainly be copied from
the standard RF2xx reception, as the Ieee154Receive interface is similar
to the standard Receive interface. The IEEE154Message layer is used to
examine whether the link-layer address corresponds to its own address. The
newly introduced Ieee154Packet interface is responsible for the addressing
of a message. It allows setting the source and destination addresses and
provides functionalities to handle the PAN identifier. The packet is also pro-
vided by the IEEE154MessageLayer. Further modifications have been done
at the send and receive process to fully support all required functionalities
of blip.

Adjust blip to the New Radio Driver

The adjustment of blip to the new RF transceiver driver is straightforward.
The base station application and the IPDispatch layer have to be reconnected
to the new driver. In addition, few detail implementations of blip have to
be adjusted as the CC2420 transceiver behaves different from the RF2xx
family in a handful of cases. Consider for example the LQI. For the CC2420
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transceiver, the values of the LQI are between 50 and 110 [36] while the
RF212 transceiver reports an LQI value of zero up to 255 [18]. Entering a
LQI value of 255 in blip would generate an overflow and the corresponding
route is reported to be quite worse. This can imply that a node cannot
calculate its default route, thus may be unable to communicate with other
nodes. By setting the correct preprocessor directive in the ported version of
blip, the programmer can choose whenever the radio driver of the RF212,
RF230 or CC2420 should be used.

3.3 Comparison

After porting blip to hardware devices with the RF212 transceiver, platforms
with the CC2420 radio transceiver are compared with RF212 platforms. The
measured round-trip time (RTT) of a ping request is used to evaluate the
performance of both platforms. In subsection 3.3.1, the most important re-
sults of this performance test are presented. By considering the properties of
both target platforms, the advantages and disadvantages of RF212 platforms
are evaluated with respect to ones with the CC2420 transceiver in subsec-
tion 3.3.2. Self-evident, the comparison is performed with regard to the blip
implementation.

3.3.1 Performance

As a first step, the performance of a node with the RF212 transceiver is
compared with a node with a CC2420 transceiver. The standard test appli-
cation of blip, UDPEcho, has been installed on all nodes. Ping is a small tool
for testing networks and it measures the RTT between a client and a server.
It sends out an ICMP packet “echo request” and measures the time until
it receives the corresponding ICMP “echo response” message. Furthermore,
the tool can be used to test whenever a node is reachable in a network.

IPv6 is supported by ping6, which is used in this evaluation to measure the
RTT between the computer acting as border router and a node in the net-
work. Three different types of nodes are used: the MeshBean900, the Pixie
and the Moteiv Tmote Sky. The first two nodes running on the ZigBee900
chip while the Moteiv Tmote Sky uses a TI MSP430 microprocessor and a
Chipcon CC2420 radio. It includes 10 Kbytes SRAM and 48 Kbytes Flash
storage. The MeshBean900 and the Pixie are based on the same architec-
ture, but the MeshBean900 uses a stronger and bigger antenna. For the
evaluation, the RTT has measured 150 times per experiment.

The average RTT of the three nodes is outlined in Fig. 3.9. For each node,
the single hop and two-hop RTT is measured. In the case of single hopping,
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Figure 3.9: The average RTT of a ping request for a MeshBean900, a Pixie
and a Tmote Sky node. The diagram differs between the RTT for a single
hop and a multi-hop ping request.

the RTTs for both the MeshBean900 and the Pixie are almost the same, no
significant difference can be detected. In the average, the RTT of a Tmote
Sky device is slightly longer for single hop. The RTT for two hops is striking
longer for all nodes. The MeshBean900 has the smallest RTT while the RTT
of the Tmote Sky is almost two times longer as the one of the MeshBean900.

To clarify the above results, the variance of both platforms is considered
and outlined in Fig. 3.10. One might be aware that a logarithmic scale is
used for the RTT variance. This demonstrates the biggest difference between
the ZigBee900 devices and the Tmote Sky: the RTT of a MeshBean900 is
almost constant while the one of the Tmote Sky has a large variance. The
fastest RTT for the Tmote Sky is only 65 milliseconds while many values are
around 100 milliseconds. This phenomenon may be based on the fact that
the antenna of the ZigBee900 devices is much powerful than the one of the
Tmote Sky. The distances between two nodes are almost identical for all
experiments. As a stronger antenna results in less retransmission, the nodes
with a more powerful antenna have a smaller variance and a faster RTT.
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Figure 3.10: The variance of a ping request for a MeshBean900, a Pixie and
a Tmote Sky node. The diagram differs between the variance for a single
hop and a multi-hop ping request. Be aware that a logarithmic scale is used
for the RTT variance.

3.3.2 Advantages of the Porting

To complete the comparison of both RF transceivers, several advantages
of RF2xx transceiver platforms are presented compared to ones with the
CC2420 transceiver.

blip currently only supports the RF transceiver CC2420. Nevertheless, new
platforms are often running on a chip of the RF2xx transceiver family. The
most famous hardware device with an RF2xx chip is the Crossbow IRIS,
which is now also supported by blip. Both the MeshBean900 and the IRIS
platform are running on more powerful microprocessors than the classic
CC2420 platforms like the MicaZ. They include a larger memory and a higher
clock speed, thus the issue with the buffer sizes mentioned in the last sub-
section is at least partly solved. Furthermore, various experiments suggest
that the RF2xx transceiver is more stable than the CC2420 transceiver.

Almost all modern sensor node platforms that are also supported by the
TinyOS are compatible with blip now. This enables developing future Ti-
nyOS projects based on 6LoWPAN thus exploiting the advantages of the IP
technology.
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3.4 Summary

6LoWPAN is a specification of the IETF group to standardize the use of
IPv6 over IEEE 802.15.4 networks. Based on header compression and frag-
mentation, an efficient implementation of IPv6 in WSN has been developed,
which is able to support most tools and features of a real IPv6 network.

blip has been presented as an implementation of 6LoWPAN for TinyOS,
which supports almost all features of the 6LoWPAN standard. This realiza-
tion has been ported to the new RF2xx transceiver family during this project
and the resulted modifications of the corresponding radio driver have been
published to the official TinyOS repository. Various comparisons have shown
the advantages of the new platforms compared to the classic hardware de-
vices of blip.
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Web Services

In the vision underlying the Web of Things, all objects of the world are
integrated in the existing Web. The most realistic scenario is that each
real-world thing provides an API, which allows another device to access its
resources. This chapter proposes a solution to integrate sensor nodes into the
Web. The 6LoWPAN stack presented in the last chapter enables that each
device is directly connected to the Web. Based on this IP stack, a RESTful
API for sensor nodes has been developed. It enables other devices to access
a node’s resources by using its API.

In the first section of this chapter, a short overview about the technologies
used in the implementation of the Web services is provides while the imple-
mented API is presented in section 4.2. Finally, section 4.3 proposes another
approach to connect the nodes to the Web: The nodes report independently
their status to Twitter [37].

4.1 Web Service Technologies

A Web service consists mainly of two technologies. A transfer protocol is
used to communicate between the service requester and the service provider
while a data format protocol is required to guarantee that both participants
interpret the exchanged data identically. Nowadays, either SOAP or REST
is often used as data transfer protocol. There exist various protocols for the
data format; the most famous ones are the Extensible Markup Language
(XML), RSS or the JavaScript Object Notation (JSON). To implement Web
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services on sensor nodes, both protocols should be resource saving. REST
and JSON are therefore used in this project. REST is introduced in subsec-
tion 4.1.1 whereas an overview about JSON is given in subsection 4.1.2.

4.1.1 Representational State Transfer (REST)

REST [38] can be outlined as a collection of network architecture principles.
Each data object is referred as a resource and REST describes how these
resources can be addressed. When using HTTP, this protocol can be misused
to communicate directly with the resource. Although HTTP is often used in
conjunction with REST, it can also be implemented using other high-level
protocols. One speaks about a RESTful system if it follows the principles of
REST.

A group of information a system can provide is denoted as a resource. A
host can access the resource using its identifier and perform some actions to
this resource. An example for an identifier is the Uniform Resource Identi-
fier (URI) in the context of HTTP. The creation of a new resource or the
retrieving of the resource data are two possible actions.

In connection with REST, a Web service is a collection of data that can be
accessed using HTTP as its interface. One can address either the collection
or any of its members. The four main operations of HTTP can be used to
operate on these resources: GET, POST, PUT and DELETE. Each of them
executes a corresponding action. For instance, a GET operation can be used
to retrieve a list of the members of a collection or to access the data of an
addressed member of a collection.

SOAP relies on another application layer protocol for transmission. HTTP
and RPCs are two such protocols. Thus, REST is more lightweight as it
misuses the application layer protocol for the transmission. Furthermore, the
overhead introduced by using the xml language to describe the operations in
SOAP does not exist in REST, thus it is often easier to implement. As sensor
nodes are often limited in their computational performance, REST seems to
address their requirements better than SOAP. This concludes why REST is
used as transport protocol for the Web service application developed in this
project.

4.1.2 JavaScript Object Notation (JSON)

Using tags to structure data, xml can generate a huge overhead. Further-
more, neither the production nor the parsing of xml is straightforward as it
is not a programming language object, but a separate data construct. JSON
addresses these problems and defines a small data interchange format, which
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Listing 4.1: Example of a JSON object according to RFC 4627 [39].

1 {
2 "Image" : {
3 "Width" : 800 ,
4 "Height " : 600 ,
5 " T i t l e " : "View␣from␣15 th␣Floor " ,
6 "Thumbnail" : {
7 "Url " : " http ://www. example . com/481989943" ,
8 "Height " : 125 ,
9 "Width" : "100"

10 } ,
11 "IDs" : [ 116 , 943 , 234 , 38793 ]
12 }
13 }

consists of a small set of formatting rules. Although JavaScript is included
in its name, JSON is language independent. Nevertheless, the JSON data
are according to the JavaScript definition, thus a JSON object can easily
be parsed in JavaScript. That is partly the reason why many Rich Internet
applications (RIAs) use JSON as their data format protocol.

JSON is defined in RFC 4627 [39] and uses four primitive (string, numbers,
Booleans and null) and two structured (objects and arrays) types. An array
is an ordered sequence of zero or more values while an object is an unordered
collection of zero or more name and value pairs. A value can be any primitive
or structured type. This allows the nesting of several objects and arrays. To
differ between types, JSON uses six structural characteristics: the square
brackets for arrays, the curly brackets for objects, the colon to separate
names from values and the comma to separate values. An example of a
JSON object can be found in Listening 4.1.

4.2 RESTful API for Sensor Nodes

The above-described technologies enable the development of an API through
whom the sensor nodes can be accessed through the Web thus put the Web
of Things in practice. A RESTful API has been implemented on the sensor
nodes, which provides the current values of the sensors as a resource. In
subsection 4.2.1, the structure of the implementation is presented while the
API is described in appendix C.1. The Web application described in subsec-
tion 4.2.2 allows someone to access the nodes in a human-friendly way. Fur-
thermore, the most important results of the evaluation of the above describe
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Sensor nSensor 2Sensor 1

Sensor 1 Infos Sensor 2 Infos Sensor n Infos

REST

HTTP

TCP (blip)

JSON (library)

Figure 4.1: Outline of the RESTful API for sensor nodes implemented in
TinyOS. A sensor has to implement the REST component to provide its
data to the world. Furthermore, an HTTP layer and a JSON library for the
creation of a data packet in the JSON format have been integrated.

implementation are presented in subsection 4.2.3. Finally, to demonstrate
the possibilities of such an implementation, a mashup application is presen-
ted in subsection 4.2.4. This example of an RIA highlights the advantages
of the Web of Things.

4.2.1 A RESTful API

To provide Web Services on a sensor node, a corresponding provider has been
implemented. Using blip as IP and TCP stack, three additional components
have been added to provide a simple way to extend the resources of a node.
The principle is schematically outlined in Fig. 4.1. The incoming request
is a REST command while the answer is a standard HTTP message, which
includes the requested response.

The HTTP layer is responsible for the communication between the TCP
and the REST layer. This mainly implies the initialization of the TCP
layer, but also provides a functionality to send HTTP responses. On the
one hand, it includes functionalities to create a correct HTTP header and
on the other hand, it splits the HTTP message in several small packets
to minimize the fragmentation problem (see subsection 3.2.1). When the
HTTP layer receives a TCP packet, it forwards this packet directly to the
REST layer. It analyzes the REST request, filters out the action and the
URI of the request and informs the corresponding collection. Furthermore, it
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manages all registered collections and answers to a root request. The JSON
component provides several commands to generate a valid JSON object and
to add parameters to the JSON object. A parameter is a concrete value
provided by the resource like the current value of the temperature sensor.
To send a JSON answer, the sensor resource has to generate a JSON object
in a first step and forwards this data to the REST layer in a second step.

By sending a REST command to the corresponding URI, one can access the
resources of the sensor node. The host name of each sensor node is its IPv6
address. Three different types of URIs exist:

• A root collection is accessed by sending a GET to the root (“/”) and is
answered with a list of all collections on this sensor node. An example
of a valid URI is http://[2001:470:1f04:56d::65]/.

• To access a collection, a GET request to the collection address followed
by an asterisk has to be send. For instance, http://[2001:470:1f04:
56d::65]/temperature/* is a correct URI to access the collection
temperature. Only the GET request is supported for collections and
the answer involves a list of all its members.

• By sending the corresponding REST command to a collection mem-
ber, the actual data can be accessed. Depending on the functionality, a
member may support GET, PUT and DELETE actions. An example of
a valid URI is http://[2001:470:1f04:56d::65]/temperature
/celcius.

Listening 4.2 outlines a possible answer to a GET request, which was ad-
dressed to a member of a collection. The answer includes the name of the
resource, which types of REST commands are supported and self-evidently,
all parameters of the member. Further information on the API and a detailed
description of the answered JSON object can be found in appendix C.1.

4.2.2 Presentation

As neither the manual parsing of a JSON answer nor the manual sending of
PUT and DELETE requests is very comfortable, a Web application has been
developed to support the user by these tasks. It presents the answers of the
sensor nodes in a user-friendly way and provides a simple way to send REST
requests. In this subsection, the implementation of the Web application and
its functionality are described while an overview about the front-end is given
in appendix D.

The front-end has been developed as AJAX (asynchronous JavaScript +
XML) Web application using Google Web Toolkit (GWT) in version 1.6 [40].
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Listing 4.2: Example of a JSON object sent by the RESTful API in response
to a GET request.

1 {
2 " dev i ce " : "Temperatur" ,
3 "method" : [
4 "G"
5 ] ,
6 "param" : [
7 {
8 "n" : " value " ,
9 "v" : 3392 ,

10 " t " : " i " ,
11 "u" : 0
12 } ,
13 {
14 "n" : " c e l c i u s " ,
15 "v" : 26 ,
16 " t " : " i " ,
17 "u" : 0
18 }
19 ]
20 }
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Figure 4.2: Recording of the outdoor temperature using the RESTful API
and a MeshBean900 sensor node. The Web application has been used to
record the data while the diagram is generated using Microsoft Excel.

It allows the connection to a sensor node, to explore its collections and
to view the corresponding parameters. Sending the modified parameters
back to the sensor node can be done by one click. Furthermore, various
statistic functionalities are implemented like measuring the time until an
answer returns. The application provides a record functionality to log the
values of a parameter. This is implemented by sending a GET request in a
user-selected interval. This can be used to generate diagrams like the one
in Fig. 4.2. Additionally, the user can choose if the TCP request should be
closed or not after each request.

As the “same origin policy”1 of JavaScript does not allow sending PUT,
DELETE and GET request to other hosts than the current one, server calls
are used to communicate with a back-end. The server calls are realized using
remote procedure calls (RPC) already included in GWT. The back-end is
programmed in Java and simply forwards the messages to and from the
sensor nodes.

1The same origin policy permits scripts to access data with another origin as the one
of the page the script is running. In order that the origins are the same, the domain name,
the application layer protocol and the port have to correspond.
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Figure 4.3: Response times of a long-term recording. The response times
are mainly around 270 and 900 milliseconds.

4.2.3 Evaluation

Using the recording functionality of the above-described Web application,
the RESTful API has been tested and evaluated. The target platform of all
evaluations is the MeshBean900. A first test addresses the stability during
a long time recording. Furthermore, the overhead introduced by the SYN
/ FIN handshake and the dependency of the response time on the packet
length are examined. The last evaluation compares the response times with
the number of hops between the sensor node and the base station.

Stability

To test the stability of the RESTful API, the Web application has requested
every 15 seconds the data of the light sensor. No other node has been
turned on during the evaluation. The response time of each request has been
measured for twelve hours. The response time starts with the first SYN sent
by the Web application and stops with the end of the FIN handshake.

The response times are outlined in Fig. 4.3. Total 2884 requests have been
sent to the sensor node during the evaluation. Five requests have been
lost, respectively not been fully responded and 39 answers have required
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longer than 500 milliseconds. This corresponds to only 1.35 percent of all
requests. The average response time is 275 milliseconds. One can categories
the response time as follows: response times around 270 milliseconds, slow
responses around 900 milliseconds and lost responses. In the first category,
each TCP packet has been successfully transmitted. If a TCP packet has
not been acknowledged, the sensor node has waited a few 100 milliseconds
and has retransmitted the packet one more time. This corresponds to the
second category with response times around 900 milliseconds. During the
transmission of the last category, more failures have happened, and the Web
application has not gotten the full response after two seconds, thus marking
the response as lost.

The loss of single packets has to do with the fact that no other sensor node
can try to transmit the packet to the base station and vice versa. Using
the PacketLink layer, blip can verify if a packet has been received by the
next-hop destination. If the sender does not get an acknowledgement, it
automatically tries to transmit the packet by means of other nodes.

Various Message Lengths and TCP Connection Overhead

Self-evident, the average response time of a request depends on the length
of the HTTP payload. For the evaluation, various requests have been sent
to a sensor node and the response time has been measured. On the one
hand, it is distinguished between three different payload lengths (94, 201
and 335 bytes) and on the other hand, between the cases whenever the TCP
connection is newly established for each request or not.

The chart outlined in Fig. 4.4 shows that the average response time almost
linearly increases with the message length. An HTTP payload length of
around 94 bytes corresponds to a single parameter while 335 bytes corres-
ponds to six parameters. Nevertheless, these are only approximate values as
the actual length depends on the name and value of the parameters. In case
of a payload length of 95 bytes, the HTTP packet of the response has to be
fragmented into three 6LoWPAN packets while the response of the packet
with a size of 335 bytes has to be fragmented into six 6LoWPAN packets.

The overhead caused by establishing and closing a TCP connection is also
outlined in Fig 4.4. In the case of a small HTTP payload, the overhead makes
up approximately 25% of the whole answer time. Nevertheless, always closing
and opening the connection has two main advantages. On the one hand, the
connection is more stable over a long time, as the connection would be reset
if only one node produces an erroneous behavior and on the other hand, a
sensor node cannot store many open connections. If various clients try to
connect to a single node, only a few clients would be able to establish the
connection.
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Figure 4.4: The average response time for various message lengths. The
number of bytes corresponds to the HTTP payload size. Furthermore, the
chart differs whether the TCP connection is closed, i.e. is newly established
for each request, or not.

Multi Hopping

The last evaluation focuses on multi hopping. As seen in subsection 3.3.1,
the RTT has significantly increased in the case of multi hopping. Similar
to the previous tests, a request for a resource has been sent to the sensor
node and the response time has been measured. The response has a HTTP
payload length of 94 bytes.

Fig. 4.5 outlines the average response time for a one-hop and a two-hop
response. The two-hop response time is more than two times longer as
the one for the single hop, which has to do with the fact that there exist
much more possibilities for transmission errors. The response time of a
request for a node, which is three hops away from the base station is not
outlined in the chart. Various experiments have shown that the response
time increases to around four seconds for this scenario. Apart from the
reasons mentioned above, one has to consider the test setup. To achieve multi
hopping with two MeshBean900s, the distance between the nodes has to be
in the tens of meters. Furthermore, only the nodes, which are necessary for
the corresponding test, have been turned on. The huge distance between the
nodes results in a higher packet loss rate and retransmissions are necessary.
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Figure 4.5: The average response time of a one-hop answer and a two-hop
answer. In both cases, the HTTP payload of the response has a length of 94
bytes.

By considering the fact that TCP waits a long time until it retransmits an
unacknowledged packet, the large average response times for multi hopping
can be explained. Similar to the stability evaluation, a better performance
might be achieved by using a dense network.

4.2.4 Mashup

A mashup is characterized as a Web application that uses data from more
than one external online source. It is often referred to a Web page that
uses a map to display data of some objects. In the context of sensors, it is
conceivable that all nodes are outlined on a map and further information is
provided whenever a user clicks on a marker. [41, 42] are examples of this
principle but take into account that the sensors in these projects are either
connected to a computer or integrated in a buoy but they are not embedded
in a low-power sensor node.

When the sensor node is directly connected to the Web, a mashup application
can directly access the data of a node. This enables a simple tracing of the
sensor nodes. To prove this statement, a simple mashup application has been
implemented using the Google Maps API [43]. The application requests the

— 45 —



4.3. SENSOR NODES START TWITTERING

Figure 4.6: Mashup application for sensor nodes. Each marker represents a
sensor node. By clicking on the marker, additional information is displayed.

coordinates of all nodes when it starts and displays them on a map. By
clicking on a marker, the application requests detailed information about a
node and provides them to the user. Fig. 4.6 shows the application while
the corresponding API of the sensor nodes is described in appendix C.2.

For instance, various applications of this principle are conceivable in the
logistics sector. Each container would include a sensor node that can be
accessed through the Web and an operator can monitor the current positions
of the containers on a mashup application.

4.3 Sensor Nodes Start Twittering

In the last section, it has been shown how the ideas of the Web of Things
can be implemented on sensor nodes. Another node in a network requests
some information from a sensor node. The opposite of this implementation
is that a node directly reports its status to a server in the Web.

To analyze this scenario, a sensor node application has been developed, which
reports is status to Twitter [37]. By clicking on a button, the sensor node
sends a corresponding message to Twitter. Fig. 4.7 shows a print screen of
the corresponding Twitter account. As the standard TCP implementation
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Figure 4.7: Twitter status messages of a sensor node.

of blip has many bugs for the case a sensor node connects to another TCP
server, a non-official TCP implementation has been used [44].

As Twitter does not support IPv6, an IPv6 transition mechanism has to
be used to access Twitter from the sensor nodes. There exist two standard
mechanisms for this purpose: Both NAPT-PT (defined in RFC 4966 [45])
and TRT (defined in RFC 3142 [46]) rely on header transition between an
IPv6 and IPv4 packet. As no implementation of both transition mechanism
operates free of errors under a modern Linux system, an own solution has
been developed in Java. This gateway rewrites the packet as an IPv4 packet
and vice versa.

4.4 Summary

A RESTful API for sensor nodes has been developed using JSON as data
format. It allows the reading out of the sensor data on the one hand and
the modification of the settings of the low-power device on the other hand.
As REST is used as transport protocol, all commands are sent as HTTP
packets to the sensor node. To improve the usability of the API, a Web
application has been developed that offers a user-friendly presentation of the
sensor data. The evaluation of the API has shown that TCP transmissions
cause a huge overhead and a dense network is required to achieve reliable
transmissions of large TCP packets over multiple hops. To demonstrate the
various possibilities of the Web of Things, a mashup application has been
programmed. It allows locating the sensor nodes on a map and, by selecting
one node, gaining further information about its sensors.
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Conclusion and Outlook

5.1 Conclusion

During this semester thesis a 6LoWPAN implementation for the newest ge-
neration of low-power sensor nodes has been developed. These hardware
devices are running with the ATmega1281V Microcontroller and use a radio
transceiver of the RF2xx family from Atmel. 6LoWPAN provides the trans-
mission of IPv6 packets over an IEEE 802.15.4 network, thus a WSN. The
main advantages of using IPv6 in sensor node networks is that it enables the
use of standard networking tools, which were originally developed for the
Internet, also for WSNs. Furthermore, it simplifies the task of interlinking
WSNs over the Internet, as there is no need for an advanced gateway. The
packets can simply be forwarded on the link-layer.

The current most fully developed 6LoWPAN solution for TinyOS is called
blip and has been used as basis for this project. blip has been developed for
platforms with the RF transceiver CC2420 from Chipcon and implements
ICMP, UDP and TCP. This implementation has been ported to sensor node
platforms with a radio transceiver of the RF2xx family. The porting is
composed of two parts. In a first step, the TinyOS driver for the RF2xx
transceiver has been extended to implement the required functionalities of
blip. The modified components have been integrated into the official TinyOS
repository. The second step of the porting includes the modification of blip
to use the new radio stack.

Using this IP stack, the newest generation of sensor nodes is part of the Inter-
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net of Things. Sensor nodes can connect to the Internet, but also computers
linked to the Internet can access the sensor nodes.

In the Web of Things, each device can be accessed through the Web. A
RESTful API has been proposed, which allows a computer to connect to the
sensor node using HTTP. It enables the communication between a user and
the sensor node based on a high-level RESTful protocol. The answer of a
sensor node is formatted as JSON. The API allows the readout of the sensor
parameters and the modification of the sensor node’s configuration.

A Web application based on AJAX has been developed to provide a graphical
user interface for communicating with the sensor nodes. Apart from the
exploration of the resources, it provides control mechanisms like turning on
or off the leds with one click. Furthermore, additional features like recording
of sensor node data have been implemented. The report has highlighted
several examples that use the recording feature. Various evaluations have
shown that the overhead caused by TCP packets cannot be neglected and
dense networks are required to achieve reliable transmissions of large TCP
packets over multiple hops.

To present the possibilities of the Web of Things, a mashup application
has been developed. Nodes can be placed anywhere on the world but are
connected through the Internet to the computer on which the application
runs. Each node is marked on a world map thus enabling a simple monitoring
of several WSNs together.

The connection of a node with the Web has been presented with the help of a
further implementation. Sensor nodes send status messages to Twitter. This
experiment has highlighted the problems of current IPv6 implementations.
Nowadays, the Web is running with IPv4 and huge efforts are required to
connect an IPv6 device to the IPv4 network.

5.2 Outlook

With the release 2.1.1 of TinyOS in August 2009, blip will be integrated
into the TinyOS core with the consequence that the packet format of blip is
going to change. By introducing a dispatch value, the radio stack can support
both Active Messages and other network protocols. It looks as if the main
interfaces will change and thus the radio stack driver and the applications
have to be adapted.

Compared to the CC2420, the RF212 transceiver integrates additional hard-
ware support, which could extend the 6LoWPAN implementation. For ins-
tance, the Advanced Encryption Standard (AES) is supported by hardware
and could be used to integrate the Internet Protocol Security (IPsec) in the
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6LoWPAN stack.

Large experiments with many nodes and several WSNs connected over the
Internet can demonstrate the possibilities of the Web of Things. They can
also be used to find out the boundaries of this vision.

At this point, we take the liberty to make an appeal to network administra-
tors to support IPv6 in their networks. Furthermore, big Web sites ought
to support IPv6. Google sets a good example by offering its search over
an IPv6-only website1. We think that IPv6 is important for the long-term
development of the Internet, but a switch to IPv6 is almost impossible as
long as most services are not offered over IPv6.

1http://ipv6.google.com/
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A
List of Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks
AES Advanced Encryption Standard
AJAX Asynchronous JavaScript + XML
BPSK Binary Quadrature Phase Shift Keying
DCG Distributed Computing Group
DHCP Dynamic Host Configuration Protocol
DSN Data Sequence Nnumber
FCS Frame Check Sequence
GWT Google Web Toolkit
HTTP Hypertext Transfer Protocol
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IP Internet Protocol
IPsec Internet Protocol Security
IPSO Internet Protocol for Smart Objects
IPv4 Internet Protocol Version 4
IPv6 Internet Protocol Version 6
ITU International Telecommunication Union
JSON JavaScript Object Notation
LQI Link-Quality Indicator
LR-WPAN Low-Rate Wireless Personal Area Network
MAC Media Access Control
MHR MAC Header
MFR MAC Footer
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MTU Maximum Transmission Unit
NDP Neighbor Discovery Protocol
OS Operating System
QoS Quality of Service
QPSK Offset Quadrature Phase Shift Keying
PAN Personal Area Network
PHR PHY Header
REST Representational State Transfer
RFID Radio-Frequency Identification
RIA Rich Internet application
RPC Remote Procedure Calls
RTT Round-Trip Time
SHR Synchronization Header
SOAP Simple Object Access Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
URI Uniform Resource Identifier
WSN Wireless Sensor Network
XML Extensible Markup Language
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B
Installing blip under Linux

B.1 Installation

B.1.1 Prerequisites

• Make sure that the latest TinyOS version is installed. The variable
$TOS_ROOT is assumed to point to the current root folder of the TinyOS
installation.

• Download the modified version of blip for the radio stack RF2xx.

• Build the c serial forwarder tools in $TOS_ROOT/support/sdk/c/sf.
To generate libmote.a, bootstrap, configure, and make have to be
executed in this order.

B.1.2 Environmental Variables

The following environment variables have to be added to the startup script:

• LOWPAN_ROOT=<blip root directory>

• TOSMAKE_PATH=“$LOWPAN_ROOT/support/make”

LOWPAN_ROOT has to be replaced with the path of the blip root level directory.
If blip were included in the original TinyOS installation, one would have to
set LOWPAN_ROOT to the TinyOS root folder.
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B.1.3 Tunnel Driver Installation

Before starting the tunnel driver, a node has to be installed with the base
station application. It can be found in $LOWPAN_ROOT/apps/IPBaseStation.
Further information to the installation of a blip application can be found in
subsection B.2.1.

To build and start the tunnel driver, execute the following steps:

• Change the directory to cd $LOWPAN_ROOT/support/sdk/c/blip.

• Compile the driver with make.

• Execute the tunnel driver with the command sudo ./ip-driver
/dev/ttyUSB0 <baud rate>. USB0 has to be replaced with the USB
port to which the base station is connected.

In the case the message sendmsg: Operation not permitted is shown and
the tunnel driver is not correctly started, IPv6 is disabled in the firewall and
is only allowed to be used in combination with the loopback interface. This
configuration is currently standard in many Linux distributions. To enable
the IPv6 traffic under Ubuntu, the line IPV6=yes has to be added to the file
/etc/default/ufw. After restarting the firewall, the tunnel driver should
work fine.

Modifying the file $LOWPAN_ROOT/support/sdk/c/blip/serial_tun.conf
allows someone to use its own networking configuration.

B.2 Test the Configuration

B.2.1 Installing the Test Application

Currently, there exist two test applications. UDPEcho is included in the of-
ficial blip release and implements basic functionalities to response to a ping
requests. The webserver application has been developed during this project
and implements the RESTful API. Both can be found in the application
directory $LOWPAN_ROOT/apps/ of blip.

Before executing the make file to compile and install the sensor nodes, the
make file may has to be modified. A preprocessor directive is used that
the compiler connects blip with either the RF212 or the RF230 radio stack
instead of the one for the CC2420. The following directives are supported:
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• RF212: Defines that the RF212 radio stack should be used (Mesh-
Bean900 and Pixie).

• RF230: Defines that the RF230 radio stack should be used (IRIS).

No ID is used for the base station during the installation as the tunnel driver
automatically configures this node. In general, the ID 100 (0x64) is allocated
to the base station. For all other nodes, the ID defines the last block of the
IPv6 address. For instance, a node installed with the ID 101 (0x65) obtains
0x65 as the last block of its IPv6 address.

B.2.2 Executing a Network Test

After installing the base station, starting the tunnel driver and installing
at least one sensor node with a test application, the sensor network can be
tested. Standard networking tools like ping6, tracert6 or nc6 are sup-
ported. Assuming the configuration file of the base station has not been
modified, you can ping a node with the ID 65 using the command ping6
2001:470:1f04:56d::65.

— 55 —



C
API Descriptions

C.1 RESTful API for Sensor Nodes

C.1.1 HTTP Methods

As explained in subsection 4.1.1, REST differs between requests for collec-
tions and for specific members of a collection. An HTTP request consists
of a HTTP method and a URI. The HTTP method defines the action the
node has to execute while the URI defines the collection or the member of
the collection the request is addressed. The HTTP methods GET, PUT and
DELETE are supported by this API. PUT and DELETE are only supported
by members while GET is supported by members and collections.

GET Method

The GET method is used to receive the data offered by a collection or a
member of a collection. It contains the method and the URI in the first
line. The request is terminated with a blank line. The example outlined
in Listening C.1 requests the parameters of a specific member. If the GET
request is successful, the requested data are returned as a JSON object.
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Listing C.1: A GET request to the collection /management/info to receive
the parameters of the member values.

1 GET /management/ i n f o / va lue s HTTP/1 .1
2 <blank l i n e >

PUT Method

A PUT method is used to update specific parameters of a member. An
example of a PUT request is outlined in Listening C.2. It contains the
method and the URI in the first line and each parameter is added on a
new line. The request is terminated with a blank line. In this example, the
parameters name and place are updated to new values. The data type of the
parameters is defined in the answer to a GET request to the corresponding
member. If the PUT request is successful, a 200 OK status message is sent
back to the client.

Listing C.2: A PUT request to the member /management/info/values to
update the parameters name and place.

1 PUT /management/ i n f o / va lue s HTTP/1 .1
2 name : MySensor
3 p lace : ETZ F Floor
4 <blank l i n e >

DELETE Method

The goal of the DELETE method is to reset the parameters. In the example
outlined in Listening C.3, the delete request is used to turn off all leds,
but concrete actions depend on the implementation of the member. If the
DELETE request is successful, a 200 OK status message is sent back to the
client.

Listing C.3: A DELETE request to the member /management/info/values
to reset its values.

1 DELETE /management/ l e dL i s t / l e d s HTTP/1 .1
2 <blank l i n e >
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Listing C.4: The response to a root request generated by the RESTful API.

1 HTTP/1 .1 200 OK
2 Content−Length : 117
3

4 {
5 " co l " : [
6 "management/ l e d s " ,
7 " senso r / temperature " ,
8 " senso r / l i g h t " ,
9 "management/ i n f o " ,

10 "mashup/ coord " ,
11 "mashup/ i n f o "
12 ]
13 }

C.1.2 The Responses to a GET Request

The response to a GET request is formatted as JSON object. Depending on
the type of the URI, the payload of the response is different. Each answer
consists of the HTTP header and the payload. The header consists of the
status line and the length of the HTTP payload. The HTTP payload is
formatted as a JSON object and contains the data the user requested.

Root Collection

The response to a root request is outlined in Listening C.4. It consists
of a JSON object with a single array. This array contains a list of all
collections, which are supported by the sensor node. Consider the node
with the IPv6 address 2001:470:1f04:56d::65. The root collection can
be accessed using the address http://[2001:470:1f04:56d::65]/ while
the collection management/leds can be accessed using the address http://
/management/leds/*.

Collection

The response to a request for a collection is constructed in the same way
as the response to the root collection. The JSON object contains an array
with all members of the corresponding collection. Listening C.5 outlines the
response for a collection request. The corresponding collection contains the
members led0, led1 and led2.
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Listing C.5: The response to a request for a collection. All members of the
collection are listed in an array.

1 HTTP/1 .1 200 OK
2 Content−Length : 035
3

4 {
5 " r e s " : [
6 " led0 " ,
7 " led1 " ,
8 " led2 "
9 ]

10 }

Member of a Collection

The response to a request for a collection member consists of three parts:
the device name, the supported methods and the parameters. The first
object of the JSON response is called “device” and its value is the name of
the current member. In the example outlined in Listening C.6, the name is
“Information”. The object “method” describes the HTTP methods that are
supported by this member. Arranged in an array, the following values are
possible methods: “G” (GET), “U” (PUT) and “D” (DELETE).

The last object contains the parameters of the member with one entry for
each member. The member itself is formatted as a JSON object and contains
the name of the parameter (“n”), its value (“v”), its data type (“t”) and
whenever the parameter is updatable (“u”). Possible values for the data type
are “b” for binary, “i” for integer, “f” for float and “s” for string.

C.2 Mashup API

In order that a device can be displayed on the world map of the mashup
application, it has to implement two collections both with one member called
values:

• mashup/coord: This collection has to provide the coordinates of the
sensor node. Its member has to return the parameters lat and long
defining the latitude and longitude coordinate.

• /mashup/info: By clicking on a marker on the world map, further
information about the sensor node is displayed. All parameters of
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Listing C.6: Example of a response to a GET request generated by a sensor
node.

1 HTTP/1 .1 200 OK
2 Content−Length : 203
3

4 {
5 " dev i ce " : " In format ion " ,
6 "method" : [
7 "G" ,
8 "U"
9 ] ,

10 "param" : [
11 {
12 "n" : "name" ,
13 "v" : "Device " ,
14 " t " : " s " ,
15 "u" : 1
16 } ,
17 {
18 "n" : " p lace " ,
19 "v" : "ETZ␣G␣Floor " ,
20 " t " : " s " ,
21 "u" : 1
22 } ,
23 {
24 "n" : "ID" ,
25 "v" : 101 ,
26 " t " : " i " ,
27 "u" : 0
28 }
29 ]
30 }
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C.2. MASHUP API

the according member are displayed on the pop-up window, but some
parameters might be managed in a special way:

– name is interpreted as the name of the device,

– place is displayed as the current place of the sensor node and

– type is a code for a specific platform. For instance, type 1 means
that the device is a MeshBean900.
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D
Web Application

To provide a user-friendly interface for using the RESTful API, a Web ap-
plication has been developed using GWT [40].

Figure D.1: Main screen of the Web application.
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Figure D.2: Recording function of the Web application. The chart is auto-
matically updated during recording.

Its main screen is outlined in Fig. D.1. It can be divided into four areas (also
marked in Fig. D.1):

1. The Menu Bar contains the following buttons:

• Connect: allows a user to connect to a specific sensor node,
• Mashup: starts the mashup application and
• Configuration: provides several options to control the behavior of

the Web application.

2. The Connection Bar displays all sensor nodes to which the user is
connected. By clicking on a device address, all collections are shown.
The same applies to a collection while by clicking on a member, its
parameters are retrieved and displayed on the right.

3. The Parameter Table outlines all parameters of the member and allows
the modification of these parameters.

4. The Detail Area contains four tabs: the full JSON answer, a list with
the supported methods of the member, a list with all requests sent to
this member and a tab for recording. The latter allows the selection
of a parameter to be recorded and a chart of the recorded values can
be displayed (see Fig. D.2).
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