
Beat Gebistorf

Secure Messaging for Wireless

Sensor Networks

Semester Thesis, SA-2009-03

February 2009 until June 2009

Professor: Prof. Dr. Roger Wattenhofer

Advisor: Philipp Sommer & Roland Flury

II

Abstract

Wireless sensor nodes are deployed unnoticed in our daily life to support
and assist us, e.g. monitoring room temperature or detecting �re. To receive
trusted information from these sensor nodes they have to send authenticated
messages. Even more con�dential messages are required for sensitive infor-
mation. In a nutshell this means to send secure messages.
This semester thesis explains the design and implementation of secure mes-
saging on the example of the Meshbean900 and Pixie sensor node platforms.
Both include a ZigBit900 module with dedicated hardware to perform cryp-
tographic computations (128bit AES encryption) time- and power-e�ciently.
The procedure for the cryptographic computations are built on the speci�-
cations of the IEEE 802.15.4 communication protocol and implemented in
TinyOS, an operating system for sensor nodes. The resulting implementa-
tion enables applications on the Meshbean900 and Pixie platforms to add
authentication, integrity, con�dentiality, and replay protection to outgoing
messages.

III

IV

Acknowledgments

First of all I would like to express my sincere gratitude to Prof. Dr. Roger
Wattenhofer for giving me the opportunity to write this semester thesis in
his research group.

I would also like to thank my advisors Philipp Sommer and Roland Flury
for their constant support during this semester thesis. They always helped
me to solve the di�cult problems of this thesis. Without their assistance,
this work would never have been possible.

Furthermore, I would like to thank my �ancée, my family and my �at share
colleagues for supporting and motivating me during this thesis.

V

VI

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Structure . 2

2 Related Work 3

2.1 WSN . 3

2.1.1 Sensor Nodes . 4

2.1.2 IEEE 802.15.4 . 4

2.1.3 ZigBit900 . 6

2.1.4 TinyOS . 8

2.2 Related Implementations . 9

2.3 Security . 9

2.3.1 Con�dentiality . 10

2.3.2 Authenticity . 10

2.3.3 Replay Protection . 11

2.3.4 AES . 11

2.3.5 CCM . 12

3 Design 15

3.1 Secure Messaging . 15

3.1.1 Authenticity, Con�dentiality and Replay Protection . 16

3.1.2 Key Selection . 16

3.1.3 Cryptographic Methods 17

VII

3.2 Cryptography . 17

3.3 Key Management . 18

3.4 Radio Driver . 19

3.5 Overview . 19

4 Implementation 21

4.1 Constructs . 21

4.2 Secure Messaging . 22

4.2.1 Interface SecurityConf 23

4.3 Radio Driver . 23

4.4 Key Management . 24

4.4.1 Interface KeyManager 24

4.5 Cryptography . 25

4.5.1 Interface Cryptography 25

5 Evaluation 27

5.1 Message Size Overhead . 27

5.2 Time Overhead . 29

6 Future Work and Conclusion 33

6.1 Future Work . 33

6.2 Conclusion . 34

A How To 35

A.1 Setup . 35

A.1.1 Wiring . 36

A.1.2 Interfaces . 36

A.2 Installation . 36

A.3 Miscellaneous . 37

A.3.1 Interfaces . 37

A.3.2 Example Application Code 38

A.3.3 Alternative Security Features 40

VIII

List of Figures

2.1 IEEE 802.15.4 frame formats 5

2.2 Auxiliary security header format 6

2.3 Security control �eld format 6

2.4 Meshbean900 . 7

2.5 Pixie . 8

2.6 TinyOS interfaces . 8

2.7 TinyOS events and commands 8

2.8 CCM* authentication . 12

2.9 CCM* con�dentiality . 13

3.1 Cryptography stack . 16

4.1 CCM* nonce . 26

5.1 Message overhead best case 28

5.2 Message overhead worst case 29

5.3 Cryptographic time consumption 30

5.4 Message sending time consumption 31

A.1 Frame format alternative implementation 41

IX

X

1
Introduction

This semester thesis explains the integration of security features on a spe-
ci�c sensor node platform such as Meshbean900 or Pixie. This integration
includes the design, implementation and evaluation of the security features.
In particular these features are the encryption and decryption of data, the
authentication of messages, the replay protection of messages and the man-
aging of keys.

1.1 Motivation

In the past few years Wireless Sensor Networks (WSN) found their applica-
tion in many di�erent areas, e.g. bird observation, glacier monitoring, vital
sign monitoring or sniper localisation [16]. Several autonomous and spatially
distributed sensor nodes which communicate with each other over wireless
channels form a WSN. In a WSN the sensor nodes monitor cooperatively
their surrounding area to measure parameters like brightness, temperature,
pressure, sound or motion. Furthermore they are able to process the mea-
sured data with limited resources. As some WSN process sensitive data,
they have to be able to secure the processed data tamper-proof.

Sensor nodes are normally low-power and low-cost devices with the require-
ment of a long autonomous lifetime. Therefore the nodes have to use the
available power carefully and avoid expensive computations or radio trans-
missions. Reducing the computational power consumption can be achieved
by implementing large or often used computations in hardware rather than

1

Introduction 1.2 Goals

software. Considering this idea the Meshbean900 and Pixie platforms contain
the ZigBit900 module [11] which includes a 128bit AES (Advanced Encryp-
tion Standard) hardware encryption module. Therefore the computational
intensive AES cryptography can be performed power- and time-e�cient on
the dedicated hardware. Cryptography is needed to enable authenticity,
con�dentiality and replay protection of exchanged messages between sensor
nodes. Authenticity is very important in WSN to get reliable monitoring
information; con�dentiality prevents revelation of exchanged data for unau-
thorized parties; and replay protection disables attackers to record messages
and misuse the records for replay attacks [18].

1.2 Goals

Enable wireless sensor nodes, in particular the Meshbean900 and Pixie plat-
forms, to send secure messages is the main goal of this semester thesis. This
leads to the following subgoals:

• Implementing components in TinyOS for the ZigBit900 module to se-
cure messages.

• Secure messages according to the IEEE 802.15.4 [8] communication
protocol.

• Provide a basic key management.

1.3 Structure

This semester thesis is structured as follows:

• Chapter 2 introduces the IEEE 802.15.4 communication protocol, the
ZigBit900 module, TinyOS, and the sensor node platforms Meshbean900
and Pixie in the �rst part. The second part describes two related im-
plementations to the one in this thesis. Finally the terms security,
AES, and Counter with CBC-MAC are explained in the last part.

• Chapter 3 covers the design of the cryptography stack to secure mes-
sages on the Meshbean900 and Pixie platforms.

• Chapter 4 describes the TinyOS components of the implementation.

• Chapter 5 illustrates the performance evaluation.

• Chapter 6 proposes future work and concludes the semester thesis.

2

2
Related Work

Explanations of relevant terms and elements concerning secure messaging
in WSN are provided in this chapter. The �rst section gives an insight in
sensor nodes, the communication standard IEEE 802.15.4 employed in this
thesis, the ZigBit900 module, the Meshbean900 and Pixie platforms, and
the operating system TinyOS. Section two gives a brief overview of security
properties. It explains the terms en-/decryption, message authentication,
message integrity, replay protection, introduces AES and describes the cryp-
tographic Counter with CBC-MAC (CCM) mode.

2.1 Wireless Sensor Networks

A WSN consists of several independent sensor nodes. These sensor nodes
are mainly deployed to perform monitoring tasks in a cooperative manner.
The monitoring tasks can be divided in three categories [12]. The �rst cate-
gory covers monitoring spaces and their characteristics, e.g. temperature of
a room. The second encompasses the monitoring of things with their proper-
ties, e.g. speed of a car. The third consists of monitoring the interactions of
things with each other and with the surrounding space, e.g. transformations
of crevices. To be able to ful�l these tasks the sensor nodes are equipped
with according sensors, e.g. light, pressure or temperature sensors. More
properties of sensor nodes and of the Pixie and Meshbean900 platforms as
representatives of sensor nodes are shown in this section. This includes the
ZigBit900 module which is embedded in both platforms enabling them to

3

Related Work 2.1 WSN

perform computations and communication. Furthermore the IEEE 802.15.4
communication protocol supported by ZigBit900 and used by the majority
of wireless sensor nodes will be explained. The last part of this section de-
scribes TinyOS. For this semester thesis TinyOS as an operating system for
sensor nodes is chosen to run on the Pixie and Meshbean900 platforms.

2.1.1 Sensor Nodes

Generally sensor nodes are small devices equipped with a microprocessor,
data storage, sensors, analog-digital converters, a data transceiver, an energy
source and a controller that connects the elements together [12]. One main
goal of sensor nodes is to consume as little power as possible to guarantee a
long lifetime without the need to change the power supply. This requirement
arises from the fact that many sensor nodes are di�cult to access physically,
e.g. distributed in the mountains, on seas or room ceilings.

2.1.2 IEEE 802.15.4

The IEEE 802.15.4 standard is a communication protocol customized for
wireless sensor nodes. It de�nes the wireless medium access control (MAC)
and physical layer (PHY) speci�cations for low-rate, low complexity and low
power communication in wireless personal area networks (WPAN) [8].

Table 2.1: 8 security levels speci�ed in IEEE 802.15.4

Identi�er Security Level Description

0x00 None No security applied to the message
0x01 MIC-32 Authentication with 4 bytes MAC
0x02 MIC-64 Authentication with 8 bytes MAC
0x03 MIC-128 Authentication with 16 bytes MAC
0x04 Encryption Encryption of the payload
0x05 Encryption & MIC-32 Authentication with 4 bytes MAC

and encryption of the payload & MAC
0x06 Encryption & MIC-64 Authentication with 8 bytes MAC

and encryption of the payload & MAC
0x07 Encryption & MIC-128 Authentication with 16 bytes MAC

and encryption of the payload & MAC

4

2.1 WSN Related Work

Security

The speci�cations of IEEE 802.15.4 relating to security include the de�nition
of 8 security levels. These security levels enable an application to send
messages with an adequate degree of security (see section 2.3 for security
details). The application has to decide how much security overhead it can
bear to get a higher security. It is a trade-o� decision left open to the
application. The possible security levels are described in table 2.1. The used
term MIC (Message Integrity Check) is an alias for MAC whereas MIC-X
means a MAC with length of X bits.
IEEE 802.15.4 prescribes message frame formats for the di�erent security
levels as shown in �gure 2.1.

Figure 2.1: Frame formats according to IEEE 802.15.4 for di�erent security
levels.

The IEEE 802.15.4 header contains the frame control �eld (FCF). The se-
curity enable bit within FCF marks whether security features are applied to
the message (bit set to one) or not (bit set to zero). If security features are
applied to the message an additional header, the auxiliary security header,
is concatenated to the IEEE 802.15.4 header. Included in the auxiliary se-
curity header are information to enable the receiver of the secured message
to check the MAC of the message and/or decrypt the encrypted parts (see
section 2.3.2 and 2.3.1 for explanations). The auxiliary security header con-
sists of the the security control �eld (1 byte), the frame counter (4 bytes)
and the key identi�er (variable between 0 and 9 bytes) (see �gure 2.2). The
frame counter is increased for each outgoing message and provides replay

5

Related Work 2.1 WSN

protection (see section 2.3.3). The key identi�er �eld contains information
about the key which has to be applied to check the MAC and/or decrypt the
message. The key is speci�ed by the key source in the meaning of the device
which distributed the key and the key index for the case that multiple keys of
the same key source exist. The security control �eld consists of the security

Figure 2.2: Auxiliary security header format

level information (3 bits), the key identi�er mode (2 bits) and 3 reserved
bits (see �gure 2.3). The security level information encodes the identi�er to

Figure 2.3: Security control �eld format

specify the security level applied to the message. The key identi�er mode
de�nes whether the key has to be determined implicitly by regarding the
sender and receiver addresses of the message or explicitly by choosing a key
of a key source. 4 di�erent key identi�er modes can be encoded with the two
bits. Depending on the mode the length of the key source and hence of the
key identi�er in the auxiliary security header (see �gure 2.2) varies from 0
bytes to 9 bytes.

2.1.3 ZigBit900

The ZigBit900 module of MeshNetics contains a radio transceiver (AT86RF212
of the RF2xx family) and a microcontroller (ATmega1281). It addresses the
low power requirements of sensor nodes and guarantees a battery lifetime of
10 years [11]. Additionally ZigBit900 supports the IEEE 802.15.4 protocol.
The communication between the microcontroller and the radio transceiver
is handled using an SPI-bus [5]. The radio transceiver supports 128bit AES
hardware encryption which performs 128bit block AES cryptography with a
�x key length of 128 bits (see section 2.3.4). This hardware module forms
the core of this thesis. The dedicated hardware reduces the time needed to
perform the AES computations and hence reduces the power consumption.

6

2.1 WSN Related Work

SPI A serial peripheral interface (SPI) bus is used for synchronous serial
data communication between devices in master/slave mode. The bus consists
of four lines: clock, master output slave input, master input slave output and
the select line. The master device selects a slave over the select line, provides
a clock and initiates the data frame.

Meshbean900

Meshbean900 is a sensor node development board of the Meshbean family
produced by MeshNetics containing a ZigBit900 module (see �gure 2.4).
Integrated in the board are a light and a temperature sensor. Supported
interfaces are amongst others JTAG, USB, SPI and USART. For simple
debugging cases 3 LEDs are placed on the board.

Figure 2.4: Picture of a Meshbean900 sensor node [10].

Pixie

Pixie is a sensor node developed by the DCG (Distributed Computing Group)
of the ETH Zurich (see �gure 2.5). ZigBit900 forms the core of the Pixie
platform. Pixie has by default no sensors. It is used for dedicated applica-
tions and provides therefore many open pins to connect devices or sensors.

7

Related Work 2.1 WSN

Figure 2.5: Picture of a Pixie sensor node.

2.1.4 TinyOS

TinyOS is an operating system developed for wireless sensor networks. It is
open source and uses the nesc programming language [7]. Components build
the structure of the operating system and enables a modular composition of
needed software elements. Communication between components is assured
with interfaces [4]. A component can use interfaces or provide interfaces
(see �gure 2.6). A component providing an interfaces has to implement all

Figure 2.6: Providing and using interfaces in TinyOS.

commands de�ned in the interface and can signal events to components which
use the interface. Components which use an interface can call commands of
the interface and have to implement the handling of all events speci�ed in
the interface in case that they are triggered (see �gure 2.7).

Figure 2.7: Events and commands in TinyOS.

8

2.2 Related Implementations Related Work

2.2 Related Implementations

Similar to the implementation of this thesis there exist other solutions imple-
menting security features for wireless sensor nodes. The solutions TinySec
and AMSecure are described in this section.

TinySec TinySec, a pure software solution for secure messaging, claims
to enable encryption and authentication of messages implemented without
dedicated hardware and without major performance degradation [14]. Due to
memory and computation limitations the security features chosen by TinySec
are less secure than the ones of AES [20].

AMSecure AMSecure is a link-layer security component running on TinyOS
for the CC2420 radio transceiver [2]. It is built on the IEEE 802.15.4 speci�-
cations. It provides message con�dentiality, authentication, integrity, replay
protection and semantic security. AMSecure relies on the hardware accel-
erated cryptography of the CC2420 chip. AMSecure therefore builds the
counterpart of the implementation in this semester thesis with the following
di�erences:

• AMSecure implements the older IEEE 802.15.4-2003 standard whereas
this semester thesis bases upon IEEE 802.15.4-2006 with modi�ed se-
curity features

• AMSecure relies on the CC2420 radio transceiver whereas this thesis
relies on the AT86RF212 radio transceiver

• AMSecure runs under TinyOS version 1.x whereas the implementation
of this thesis runs under TinyOS version 2.1

2.3 Security

Security is mainly achieved with cryptographic algorithms. Generally keys
are used by cryptographic algorithms to compute the ciphertext of a plain-
text. Di�erent keys lead to di�erent ciphertexts for the same plaintext. Keys
are the core secret of a user or device. If a key is revealed, a third party can
decrypt encrypted messages and authenticate forged messages. The security
terms encryption, decryption, con�dentiality, authentication and replay pro-
tection are explained in the �rst part of this section. The AES algorithm
and the CCM mode are explained in a second part.

9

Related Work 2.3 Security

2.3.1 Con�dentiality

Con�dentiality of data means to assure that information contained in the
data is only disclosed to users or devices for which the data was intended.
This can be achieved by encrypting the data.

Encryption

Encryption means to transform data in a form which is unreadable for all
who do not know the key. The transformation works according to a speci�ed
cryptographic algorithm like AES. The resulting string of this transformation
is called ciphertext whereas the input is called plaintext. The transformation
steps and hence the ciphertext depend on the key.

Decryption

Decryption means to recover a plaintext out of the ciphertext by applying
the correct key1 to the cryptographic algorithm which has the ciphertext as
input.

Example Wireless sensor nodes for military purposes have not to send the
secret measurements like positioning in plaintext and therefore reveal it to
the adversary. Encryption of this data hence is required.

2.3.2 Authenticity

Authenticity of data means to assure that a receiver of the data is able to
check whether the data originates from the claimed sender or not. Data in-
tegrity comes along with authenticity and means to be able to check whether
the data was modi�ed in transmission or not.

Message Authentication Code

Data integrity and authenticity can be assured by adding a message authen-
tication code (MAC) to the end of a message which is similar to a hash of
the message. The receiver can compute the MAC of the message itself and
check whether it is the same as delivered in the MAC at the end of the

1For symmetric cryptographic algorithms the same key as for the encryption is used.
For asymmetric cryptographic algorithm the correspondent private key has to be used.

10

2.3 Security Related Work

message2. Throughout the rest of this thesis the abbreviation MAC invari-
ably means message authentication code in contrast to the second meaning
medium access control.

Example Responsible persons for buildings want their �re alarm system
only to go o� if a legitimate �re sensor triggers an alarm. Integrity and
authenticity prevents attackers to be able to rise a false �re alarm by the
means of faked messages.

2.3.3 Replay Protection

Replay protection means to assure that an attacker is not able to record a
message and send it successfully3 to a node at a later point in time. Replay
protection can be achieved by adding a unique information to each message.
The simplest way is to add the current number of a counter to the message
and increase it afterwards. Hence each message contains a unique sequential
number. If a receiver receives a message with the same number twice or with
a number below the number of the most recently received message from the
same sender the messages is rejected. This means that devices have to store
the most recent counter numbers of all reachable devices.

Example Many cars can be opened with a wireless sender. Without replay
protection an attacker can consequently record the signal and resend it later
to the car and open it successfully. A communication protocol with replay
protection disables this attack.

2.3.4 Advanced Encryption Standard (AES)

AES is the successor of DES (Data Encryption Standard). It is a symmetric
key cryptographic algorithm to e�ciently compute the ciphertext of a plain-
text using a provided key. The e�ciency origins in the fact that within the
algorithm only bit-operations like XOR or cyclic shifting are applied. AES is
hard to crack because some of these operations are non-linear. AES operates
in block cipher mode which means to take whole blocks of �xed length as
input. The block size speci�ed for AES is 128 bits. The used keys can have
length of 128 bits, 192 bits or 256 bits [6]. Longer keys provide stronger
security guarantees.

2Obviously the receiver processes the message excluding the MAC at the end of the
message to gain the correct result.

3Hereby successfully means that the receiver accepts the message.

11

Related Work 2.3 Security

2.3.5 Counter with CBC-MAC (CCM)

CCM stands for Counter with CBC-MAC [19]. CBC-MAC in turn stands
for cipher block chaining message authentication code. CBC-MAC means
that the message gets divided into blocks. Each block is XORed with the
ciphertext of the previous cryptographic transformation and processed itself
by the speci�ed cryptographic algorithm (see �gure 2.8).
CCM is a mode of operating a cryptographic algorithm like AES. The cryp-
tographic algorithm has to be a block cipher algorithm with a block length
of 128 bits to enable CCM. If an input block is smaller than 128 bit the
missing bits have to be padded by zeros.
The CCM mode provides authentication and con�dentiality of messages.
CCM* is a minor variation of CCM speci�ed in IEEE 802.15.4-2006 [8]. In
the following CCM* is considered to illustrate the operations performed to
enable message authentication, con�dentiality and replay protection. The re-
play protection is accomplished by using a frame counter in the input of the
authentication and encryption computations. This frame counter is unique
for each message of a source. It is stored in the auxiliary security header to
reveal it to the receiver.

Authentication

The CCM* mode authentication mechanism described in IEEE 802.15.4-2006
takes a message as input and gives a MAC of variable length as output. The
�rst input to the authentication method is a 16 byte initial frame consisting
of di�erent �elds (see �gure 2.8): a �ag �eld (1 byte), a nonce4 �eld (13
bytes) and a �eld containing the message length (2 bytes). The nonce con-

Figure 2.8: Authentication of a message according to CCM* with AES.

4Number used once. Included in messages to ensure the uniqueness of the message.

12

2.3 Security Related Work

sists of the 8 byte5 source address of the message, the 4 byte frame counter
and the security level used for this message (1 byte). The initial frame pro-
vides uniqueness of the input because the source address combined with the
frame counter are unique within a network.
The message is parsed and divided into 16 byte (128 bit) blocks. The initial
frame gets encrypted with the speci�ed block cipher. The resulting cipher-
text of the initial frame gets XORed with the �rst block of the message and
put to the block cipher again. The now resulting ciphertext is XORed with
the second message block and put to the block cipher. This procedure is
continued until the last block of the message is processed and hence ends the
chain. The output of the last computation is the MAC. To achieve di�erent
length of the MAC one simply has to take the most signi�cant bits of the
resulting MAC until the needed length is reached and cut the rest o�. This
MAC is added to the end of the message.

Con�dentiality

The CCM* mode con�dentiality mechanism described in IEEE 802.15.4-
2006 takes the payload/MAC of a message as input and gives the encrypted
payload/MAC as output. The input to the encryption method is a 16 byte
frame consisting of di�erent �elds (see �gure 2.9): a �ag �eld (1 byte), a
nonce �eld (13 bytes) and a �eld containing a counter (2 bytes). The nonce

Figure 2.9: Encryption of a message according to CCM* with AES.

5The current TinyOS version 2.1.0 uses only a 2 byte source address which can be
casted to a 8 byte value. According to the IEEE 802.15.4 speci�cations each node owns a
8 byte extended address and a 2 byte short address.

13

Related Work 2.3 Security

is the same as in the authentication. As di�erence to the authentication
the encryption is not performed in a chain. The additional counter is used
to assure that each encryption uses a unique input. The frame provides
uniqueness with the source address, the frame counter and the additional
counter in combination. The additional counter is initialised with the value
zero and resetted to zero for each new message. After each encryption of
a block the additional counter gets increased by one. The payload (and
if existent also the MAC) are parsed and divided into 16 byte blocks. For
each block the previously described frame containing a unique number of the
additional counter is encrypted with the speci�ed block cipher. The result
XORed with the current payload/MAC block replaces the old payload/MAC
block.

CCM vs. CCM*

The main di�erences between CCM and CCM* are the following:

• CCM only accepts MACs of a �xed length whereas CCM* allows to
use variable MAC length.

• CCM* supports the security level encryption without authentication
in contrast to CCM.

14

3
Design

To achieve the goal of secure messaging a device has to consider four areas.
First of all applications on the device which want do send secured messages
need an interface to do so (see �gure 3.1). This secure messaging interface is
described in the �rst section of this chapter. The second section illustrates
the cryptographic functionalities needed to secure messages. In the third
section the schemes for the key management and distribution are consid-
ered. Section four introduces the basic functionalities the radio driver has to
implement. Finally section �ve provides an overview of the four described
components.

3.1 Secure Messaging

An application which is intended to send sensitive data over a radio channel
relies on an interface which provides the functionality to secure messages.
This interface has to provide di�erent con�guration possibilities which are
mentioned in the following list and are explained in more detail afterwards.

• Choose between data authenticity, data con�dentiality, replay protec-
tion or combinations of them.

• Choose a key.

• Optionally choose the method of data authenticity, data con�dentiality,
replay protection or combinations of them.

15

Design 3.1 Secure Messaging

Figure 3.1: Cryptography stack for outgoing messages

This secure messaging interface is also used to forward received messages.
The handling to secure messages or recover secured messages is done in the
radio driver.

3.1.1 Authenticity, Con�dentiality and Replay Protection

An application has to be able to choose the kind of security that should
be used, e.g. choose authentication with a 32 bit MAC and no encryption.
Whether to use authentication, con�dentiality, replay protection or combina-
tions of them. The IEEE 802.15.4 speci�cations deal with all three of them
by using security levels and the CCM* operation mode (see section 2.3).

3.1.2 Key Selection

Keys are the core secret of cryptography. Several circumstances impose
to use di�erent keys or change keys regularly. An application using cryp-
tographic mechanisms therefore has to be able to deploy and change a key.
This can be done through the key manager, which is explained in section 3.3.

Circumstances In WSN sensor nodes can be removed from or added to
the WSN. The sensor nodes might be exposed and easy to capture. It is
relatively easy to read out the used keys of a captured sensor node without

16

3.2 Cryptography Design

tamper-resistance mechanisms [13]. Even without capturing a node, the com-
munication can be monitored due to the broadcast characteristic of wireless
communication. Hence the encrypted communication can be eavesdropped
to detect the key1. Changing keys regularly or distributing and using keys
only in a limited range mitigate the risk of keys being detected by attackers.

3.1.3 Cryptographic Methods

Allowing applications to choose between di�erent cryptographic methods
reduces undesirable overhead. Cryptographic methods have their charac-
teristics such as speed, payload overhead and level of security. Choosing a
method includes considering the tradeo�s. The option to choose according
to the IEEE 802.15.4 standard means to choose the security level. The secu-
rity level includes the choices to enable or disable encryption and to choose
the length of the MAC (0, 32, 64 or 128 bits).

3.2 Cryptography

Beneath the secure messaging interface the cryptographic operations have
to be performed by a cryptographic unit. The CCM* mode described in
IEEE 802.15.4 presents a way to implement security features considering the
low power constraints of sensor nodes (refer to 2.3.5). CCM* allows to add
authenticity, integrity, con�dentiality and replay protection to messages. The
IEEE 802.14.5 standard forms the basis of this semester thesis and therefore
the CCM* mode is applied in the implementation.

Authenticity

Adding a MAC to messages enables data authenticity and integrity (refer
to 2.3.2). Corresponding to IEEE 802.15.4 an application can choose dif-
ferent lengths of the MAC. According to the low power requirements for
sensor nodes one prefers shorter messages which need less transmission time
and therefore less power. But in contrast, better authenticity and integrity
warranties require to choose longer MAC.

Con�dentiality

The encryption of messages provides con�dentiality (refer to 2.3.1). The
drawback of encryption is the longer execution time which means more power
consumption.

1Not valid for AES. But holds for other cryptographic methods like WEP [17].

17

Design 3.3 Key Management

Replay Protection

To prevent replay attacks of messages a cryptographic method must guaran-
tee that two identical successive messages are not accepted by the receiver
(refer to 2.3.3). The nonce used within CCM* contains a frame counter
which gets increased for each outgoing frame. This frame counter is inte-
grated in the auxiliary security header and o�ers replay protection at the
cost that it enlarges the overhead of the message which again means longer
transmission times and hence more power consumption.

3.3 Key Management

Because keys are the central part of cryptographic algorithms it is important
to manage them carefully with a key manager. The cryptographic unit conse-
quently involves the key manager by asking for appropriate keys. The IEEE
802.15.4 protocol allows to introduce keys between two peer devices (link
key) or within a group of devices (group key). This key scheme allows an
application to choose between �exibility, key storage costs, key maintenance
costs and cryptographic protection tradeo�s [8]. The key manager addition-
ally is responsible to store security speci�c information beside the key like
key identi�ers, the frame counter of outgoing frames and frame counters of
devices of incoming frames.

Link Key Link keys o�er a high level of security. A cracked link key pro-
vides potentially less attack surface than a cracked group key and therefore
causes less harm than a disclosed group key. Only the two peer devices using
the key are afterwards vulnerable. One has to be aware that introducing link
keys complicate the key maintenance and require a larger storage space to
store the amount of link keys.

Group Key Group keys o�er higher �exibility for devices to join or leave
groups. Only one key per group has to be stored and the key maintenance
e�ort is relatively small compared to the usage of link keys. Group keys
used in peer-to-peer communications protect devices from outsider attacks.
Malicious devices within the group however can cause harm to the whole
group. Similarly the disclosure of a group key to an outsider makes the
whole group vulnerable. The e�ort to revoke the key and distribute a new
one is large.

Additional security information The keys stored in the key manager
are distinguishable by key identi�ers. Each key is stored in combination

18

3.4 Radio Driver Design

with a key identi�er which speci�es which device established the keys (key
source). The key identi�er furthermore speci�es which key of this key source
is meant if several key from the same source exist (key index). This method-
ology allows to use a replacement strategy where a new key is introduced
while an old one remains applicable. Beside key handling the key manager
is responsible to maintain frame counters. Each outgoing frame is uniquely
equipped with a frame counter value. If the counter reaches its limit, one
has to establish a new key for this link or group and restart the counter. The
key manager also has to maintain a list of all connected devices combined
with the most recent frame counter value of the last received messages from
them to check for replay attacks.
A secured message is only meaningful if the legitimate receiver is able to
decrypt it or check the authenticity and integrity. To allow a receiver to
perform the correct cryptographic transformations it requires security infor-
mation. These information are handled by the key manager and are added to
outgoing messages in the form of the auxiliary security header or read out of
the auxiliary security header in case of incoming messages (see section 2.1.2).

3.4 Radio Driver

As link between the radio transceiver and the secure messaging interface of
a device one needs a radio driver. This driver handles the communication
of the microcontroller with the radio transceiver and involves all required
components.
For both, incoming and outgoing messages, the radio driver forwards mes-
sages to the key manager and afterwards according to their security level
to the cryptographic unit. If neither en-/decryption nor the concatenat-
ing/checking of a MAC is required according to the security level, then the
radio driver passes the message only to the key manager to save computation
time and therefore power.
As a last step for sending a message the radio driver initializes the trans-
mission of the message over the radio transceiver. For received messages the
last step is to pass the message to the secure messaging interface.

3.5 Overview

The previous four sections illustrated the basic components to enable secure
messaging on a device. In this section an overview displays the cooperation
of these components.

19

Design 3.5 Overview

Sending Secured Messages

An application can send a secured message by passing it to the secure mes-
saging interface (see �gure 3.1). The application therefore has to specify
the level of security and the key which have to be applied, otherwise default
values are chosen (see chapter 4). The interface forwards the message to the
radio driver which handles the message. It passes the message to the key
manager which adds security information to the message (auxiliary security
header). Afterwards it sends the message further to the cryptographic unit
which adds the MAC and encrypts the payload according to the security
level. The cryptographic unit asks the key manager for the appropriate key
and performs the needed cryptographic algorithms. After receiving the mes-
sage from the cryptographic unit the radio driver sends the message to the
radio transceiver to transmit it.

Receiving Secured Messages

After receiving a message from the radio transceiver the radio driver forwards
the message to the key manager. The key manager extracts the security in-
formation out of the auxiliary security header including the security level
with which the message is secured. Afterwards it sends the message further
to the cryptographic unit. The cryptographic unit asks the key manager for
the appropriate key and performs the needed cryptographic algorithms. It
checks the MAC and decrypts the payload according to the security level
and returns the message to the radio driver. If the MAC is wrong the ra-
dio driver rejects the message. Otherwise the message is passed to the key
manager again to remove the auxiliary security header. Finally the message
reaches the application via the secure messaging interface.

20

4
Implementation

In this chapter the TinyOS components belonging to the secure messaging
implementation of this semester thesis are explained. The primary goal of
the implementation is to enable an application to use simple interfaces to
secure messages. A secondary goal is to take advantage of the modularity of
TinyOS by redirecting the normal send process to the securing components
if requested by the application. This means that an application can use the
standard interfaces (AMSend and Receive). The application solely has to set
a de�ne clause (#define ENCRYPTION_ENABLED) and setup a correct wiring
at compile time (see section A.1).

4.1 Constructs

This section explains the most important constructs used within this secure
messaging implementation which are not speci�ed in IEEE 802.15.4.

Constructs

keyInfo An application can set the security level of outgoing messages
with the interface SecurityConf (see section 4.2.1). This interface uses the
parameter value keyInfo. keyInfo is a 16bit value which encodes the security
level and the key identi�er mode.

21

Implementation 4.2 Secure Messaging

key key is a struct of 16 8bit values (key_part[0] - key_part[15]) to store
a key used for cryptographic computations. Additionally the destination
personal area network (PAN) address and the destination address can be
stored in the struct. These two 16bit values de�ne for which peer device this
key will be used.

Security Level Aliases To facilitate setting security levels one can use the
following prede�ned self-explanatory security level aliases: SEC_LEVEL_NO,

SEC_LEVEL_MIC_32, SEC_LEVEL_MIC_64, SEC_LEVEL_MIC_128,

SEC_LEVEL_ENC, SEC_LEVEL_ENC_MIC_32, SEC_LEVEL_ENC_MIC_64,

SEC_LEVEL_ENC_MIC_128.

Default Key In the header �le Cryptography.h a group key is de�ned
which is applied to cryptographic operations if no other, more appropriate
key is stored.

Number of Keys The number of keys stored in the KeyManager com-
ponent can be de�ned in the header �le Cryptography.h with the alias
MAX_KEYS. The keys are replaced if more than MAX_KEYS are set with the
command setKey in the KeyManager interface. The replacement is carried
out in ��rst set, �rst replaced� order. The default key is excluded from
this replacement. To replace the default key one has to call the command
setDefaultKey in the KeyManager interface.

Security Metadata The security level and the key identi�er mode for a
message are stored in the metadata of the message to handle it in the driver
layer. The metadata is not transmitted and is dropped before transmission.

4.2 Secure Messaging

The component SecActiveMessageP serves as link to secure messages for
an application. It provides the TinyOS interfaces AMSend, Receive [9] and
an additional security interface SecurityConf to set security parameters. If
ENCRYPTION_ENABLED was de�ned at compile time it is recommended to use
SecActiveMessageP. Otherwise one has to ensure that the security byte in
the metadata of the message is set to zero to disable cryptographic transfor-
mations on the message.

22

4.3 Radio Driver Implementation

4.2.1 Interface SecurityConf

The interface SecurityConf contains only the setKeyInfo command which
takes a message, the length of the message and key information as parameter
values. These key information are written into the metadata of the message.
The default security level is set to SEC_LEVEL_ENC_MIC_128 in the meaning
of encoding and adding a MAC of 128bit length. The default value applies
if an application skips the SecurityConf usage.

4.3 Radio Driver

The radio driver component RF212DriverLayerP maintains a state machine
to keep track with the status of the radio transceiver. It is responsible to send
and receive messages via the physical radio transceiver chip using the SPI-bus
(please read section 2.1.3 or refer to the datasheet [1]). In the implementation
of this semester thesis the radio driver was changed to handle the commands
to apply the needed cryptographic operations. The radio driver therefore
invokes commands of the KeyManager and Cryptography components. Be-
cause these two components might change the length of the message the radio
driver has to be careful to set the length of the message correctly. The mes-
sage length has to be adjusted using the RF212DriverConfig.setLength

command each time an auxiliary security header or MAC is added or re-
moved. In the platform initialisation phase called by the command
PlatformInit.init the key de�ned in Cryptography.h is set as default key.

Send To send a message the radio driver extracts the security level rule
for this message from the metadata. If no security is required the driver
only ensures that the security enable bit in the frame control �eld (FCF)
is set to zero and continues as without security features. Otherwise it calls
the command KeyManager.setAuxHeader which adds the auxiliary security
header to the message. Afterwards the FCF security enable bit is set to one.
Subsequently the function Cryptography.CCM is called starting the crypto-
graphic transformations on the message respective to the speci�ed security
level. Finally the message is sent via SPI-bus to the radio transceiver.

Receive An incoming message from the radio transceiver causes an inter-
rupt leading to the execution of the downloadMessage function of the com-
ponent RF212DriverLayerP. After reading out the message over the SPI-bus
the radio driver checks whether the security enable bit in the FCF is set. If
it is not set the driver skips the security relevant procedures and sets the
security level in the metadata to zero. Otherwise it extracts the key infor-

23

Implementation 4.4 Key Management

mation including the security level out of the auxiliary security header by
calling KeyManager.getAuxHead. The information is stored in the metadata
of the message. The function Cryptography.inverseCCM computes as next
step the decryption and checks the MAC respective to the security level. If
the MAC is wrong the radio driver rejects the message similarly to when
the checksum of the message is wrong. If either no MAC was used or the
MAC was correct, the driver removes the auxiliary security header with the
command KeyManager.removeAuxHeader and forwards the message to the
next layer in the message stack like for unsecured messages.

4.4 Key Management

The component KeyManagerP serves as handler of keys and the auxiliary se-
curity header. It provides the interface KeyManager. If no keys are provided
to the Key Manager the default key de�ned in the header �le Cryptography.h
applies.

4.4.1 Interface KeyManager

The interface KeyManager includes the commands setKey, setDefaultKey,

getKey, setDefault, getAuxHeader, removeAuxHeader and
setAuxHeader.

setKey Takes a key, a destination PAN and a destination address as pa-
rameter values and stores the key in combination with the destination PAN
and the destination address.

setDefaultKey Takes a key as parameter value and stores it as the default
key.

getKey Takes a destination PAN and destination address as parameter
values and returns the most appropriate key for these parameters. If no key
is appropriate the default key is returned.

setDefault Sets the key de�ned in the header �le Cryptography.h as the
default key.

getAuxHeader Takes a message as parameter value and returns the key
information including the security level (keyInfo).

24

4.5 Cryptography Implementation

removeAuxHeader Takes a message as parameter value and removes the
auxiliary security header from the message. It returns the new length of the
message.

setAuxHeader Takes a message, its length and key information (keyInfo)
as parameter values to add the auxiliary security header to the message. It
returns the new length of the message.

4.5 Cryptography

The component CryptographyP serves as operator of cryptographic trans-
formations on messages. It provides the Cryptography interface and im-
plements the CCM* security operations speci�ed in IEEE 802.15.4 (see sec-
tion 2.3.5). An important part of these operations forms the CCM* nonce
(see �gure 4.1) which provides replay protection.
The CryptographyP heavily depends on the 128bit AES hardware module
on the radio transceiver. To perform an encryption with the AES hardware
module one needs 5 steps.

1. Set the 128bit key.

2. Select between electronic code book (ECB) and cipher block chaining
(CBC) mode. In CBC mode the hardware automatically XORes the
output of the previous encryption with the new input before performing
the next encryption. In ECB mode the hardware only considers the
current input.

3. Write data to SRAM via SPI-bus.

4. Start the AES operation.

5. Read the output of the operation from SRAM via SPI-bus.

For more details please refer to [8].

To use the Cryptography component it is required to ensure that

• the radio transceiver does currently not rest in the Sleep state and

• the SPI-bus is not used by another component at the same time.

4.5.1 Interface Cryptography

The interface Cryptography includes the commands CCM and inverseCCM.

25

Implementation 4.5 Cryptography

Figure 4.1: Nonce formatting for CCM*.

CCM Takes a message, its length and key information (keyInfo) as param-
eter values to encrypt the message and add a MAC according to the delivered
security level information. It returns the new length of the message if a MAC
had to be added.

inverseCCM Takes a message, its length and key information (keyInfo)
as parameter values to decrypt the message and removes the MAC according
to the delivered security level information. It returns the new length of the
message if a MAC had to be removed.

26

5
Evaluation

This chapter gives an overview of the performance evaluations made for the
implementation of this thesis. The evaluations include illustrations of the
message size overhead produced by security features in section one and time
overhead in section two.

5.1 Message Size Overhead

Security features causes the size of messages to grow (see �gure 2.1). The
consequences of the growth in size are longer transmission times for the
radio transceiver and therefore higher power consumption. As sensor nodes
are targeted on long lifetimes they require implementations which use as
little power as possible. A developer of an application hence has to perform
a proper tradeo� analysis to check whether the higher power consumptions
are justi�able to use a higher security level1.
Figures 5.1 and 5.2 show the overhead of messages produced by all security
�elds for di�erent security levels. The security �elds included in this analysis
are the auxiliary security header and the MAC.

The x axis shows the payload whereas the y axis shows the percentage of
overhead the security �elds produce in comparison to the entire message in-

1Higher in this context means the following: Longer MAC-codes are more secure and
therefore provide higher security. Encoding provides higher security than no encoding.
Encoding and Authentication can not be compared as they target at di�erent security
goals.

27

Evaluation 5.1 Message Size Overhead

Figure 5.1: Percental message overhead of security �elds for di�erent security
levels, in the best case.

cluding the message header and the checksum �elds. Regarding the IEEE
802.15.4. speci�cations for security operations one observes that the encryp-
tion of a payload does not change the length of the payload, e.g. MIC-32
causes the same overhead in size as Encoding & MIC-32. This can be seen
in both �gures 5.1 and 5.2. In the evaluation two cases out of four possible
are considered. The best case and the worst case regarding the size of the
auxiliary security header. Depending on the key identi�er mode the size of
the auxiliary header can vary from 5 bytes to 14 bytes. In �gure 5.1 the
key identi�er mode is set to determine the key implicitly which leads to a
auxiliary security header size of 5 bytes. Figure 5.2 in contrast shows the
overhead if the key identi�er mode is set to determine the key explicitly
form the 8 byte key source and the 1 byte key index sub�eld which leads to
a auxiliary security header size of 14 bytes.

Concluding the �gures it is very important to specify the needed security
level in the design phase of an application accurately. Choosing a higher
security level than needed can increase the message size in the worst case by
60 percent, e.g. choosing MIC-128 instead of no security at a payload size of
8 bytes. But choosing a too low security level o�ers incentives to attackers
to break the system.

28

5.2 Time Overhead Evaluation

Figure 5.2: Percental message overhead of security �elds for di�erent security
levels, in the worst case.

5.2 Time Overhead

The computation of security transformations on messages is time-intensive
and therefore also power-intensive. It is again true that a developer of an
application has to perform a proper tradeo� analysis to check whether the
higher power consumptions are justi�able to use a higher security level. Be-
cause the higher power consumption shortens the lifetime of a sensor node.

Figures 5.3 and 5.4 show the time consumption for two di�erent scopes. Fig-
ure 5.3 shows the average time consumed just for cryptographic methods in
the component Cryptography on the y axis for di�erent security levels. The
x axis counts the bytes of payload included in the message. Figure 5.4 shows
the average time consumed between sending a message over the secure mes-
saging interface SecActiveMessage and getting the information sendDone

on the y axis. The x axis counts the bytes of payload included in the mes-
sage.
In �gure 5.3 one is able to recognize the block cipher computation charac-
teristic. The bends of the lower lines in the graph originate from the fact
that the time consumption heavily depends on the number of blocks which
have to be computed with the AES module on the ZigBit900 module. Each
opened block causes an additional encryption cycle, e.g. 17 bytes payload

29

Evaluation 5.2 Time Overhead

Figure 5.3: Time consumption only of the cryptographic methods for di�er-
ent security levels. The key is determined implicitly. Therefore the auxiliary
header has a length of 5 bytes.

causes two encryption cycles2 as well as 20 bytes payload. For the evalu-
ation case the key is determined implicitly. Therefore the auxiliary header
has a length of 5 bytes. The o�set between the authentication-only and
the encryption-only security levels in the graph originates from the IEEE
802.15.4 header and auxiliary security header. Authentication-only includes
the IEEE 802.15.4 header, the auxiliary security header and the payload
of the message for the cryptographic computations whereas encryption-only
only includes the payload. The resulting di�erence of 18 bytes (1 block +
2 bytes) result in the o�set in the graph. This o�set has to little impact
regarding time consumption to be visible in �gure 5.4.

Concluding the �gures it is again very important to specify the needed se-
curity level in the design phase of an application accurately. Choosing a
higher security level than needed can increase the time needed to send a
message in the worst case by 6 ms, e.g. choosing encryption & MIC-128
instead of no security. The longer the sending of a message takes the lower
the throughput achieved and the more power is consumed by the process. It
can also be seen that encryption of messages takes slightly more time than

217bytes=16bytes + 1byte. 128bit AES block cipher encryption takes for each cycle
128 bits = 16 Byte.

30

5.2 Time Overhead Evaluation

Figure 5.4: Time consumption of sending a secured message for di�erent
security levels. The key is determined implicitly. Therefore the auxiliary
header has a length of 5 bytes.

authentication. This can be explained by the fact that authentication works
in CBC mode in a chained manner (supported by the 128bit AES hardware
module) whereas encryption works in ECB mode.

31

Evaluation 5.2 Time Overhead

32

6
Future Work and Conclusion

This chapter provides proposals for future work in the �rst section and con-
cludes the thesis in the second section.

6.1 Future Work

The implementation of this thesis covers the main requirements to secure
messages. Left open are additional functionalities and security features as
listed in the following:

• Extending the component Cryptography for general implementations
of the IEEE 802.15.4 message formats, e.g. handling a footer.

• Uncoupling of the TinyOS component Cryptography to use it inde-
pendent of the radio driver.

• Introduction and implementation of a key distribution mechanism.

• Implementation of the entire key management mechanism according
to the IEEE 802.15.4 speci�cations.

• Extended performance analysis including power measurements.

33

Future Work and Conclusion 6.2 Conclusion

6.2 Conclusion

Concluding this semester thesis one perceives that the goals are reached.
The implementation enriches TinyOS with components to enable wireless
sensor nodes containing a ZigBit900 module to secure messages according
to the IEEE 802.15.4 communication protocol. Hence applications on such
sensor nodes are able to add con�dentiality, authenticity, integrity and re-
play protection to their messages by using a simple interface. Based on the
128bit AES hardware encryption unit included in the ZigBit900 module,
cryptographic computations are performed fast and e�ciently and meet the
low-power requirement of sensor nodes. Furthermore eight selectable secu-
rity levels o�er �exibility to reduce unnecessary overhead and to apply an
adequate security. Finally the key manager component allows applications
to choose and change the key used for the cryptographic operations which
adds additional security. We conclude that the Meshbean900 and Pixie sen-
sor boards equipped with the ZigBit900 module are �t to face an insecure
environment.

34

A
How To

This appendix provides basic information to alleviate programmers to use
the implementation of this semester thesis. In the �rst section setup require-
ments to secure messages are explained. The second section gives hints to
install the implementation. Finally the third section provides miscellaneous
information which may help to develop applications based on secure messag-
ing. Examples to send secured messages and receive secured messages are
provided in the components SecSenderApp and SecReceiverApp, available
on the DCG Wiki [3]. To access the DCG Wiki one needs an ETHZ account
and the authorization of DCG (Distributed Computing Group of the ETH
Zurich). Parts of the code are also provided in section A.3.2.

A.1 Setup

To use the secure messaging components the de�nition #define

ENCRYPTION_ENABLED has to be set. This de�nition tells the preprocessor
of the compiler to integrate the needed components and code used to se-
cure messages. Furthermore one has to ensure to wire the needed com-
ponent SecActiveMessage and choose the Interfaces AMSend, Receive and
SecurityConf correctly as shown in the following.

35

How To A.2 Installation

A.1.1 Wiring

The wiring is important to include the secure messaging interface
SecActiveMessage. In the following an exemplary application which uses
SecActiveMessage to send secured messages is called SecSenderApp and
one to receive secured messages SecReceiverApp. Therefore the following
components have to be wired:

• SecSenderApp.AMSend -> SecActiveMessageC.AMSend

• SecSenderApp.SecurityConf -> SecActiveMessageC.SecurityConf

• SecReceiverApp.Receive -> SecActiveMessageC.Receive

A.1.2 Interfaces

The interfaces AMSend and Receive are the same as provided by the module
ActiveMessageLayerC [9]. For more information please refer to the TinyOS
tutorial [4]. The interface SecurityConf is speci�c for the security im-
plementation. SecurityConf is an optional interface. If it is skipped the
cryptographic stack will run with default values de�ned in the header �le
Cryptography.h (key) and the component SecActiveMessage (security level
and key identi�er mode). Details of the three mentioned interfaces are given
in section A.3.

A.2 Installation

This section gives some hints to alleviate the installation and debugging
of software on the Meshbean900 and Pixie platforms. Details and more
information are described in the TinyOS tutorial [4]. Hints:

• An installation guide for the Meshbean900 and Pixie platforms is given
on the DCG Wiki (see introduction of this chapter).

• An installation guide for Yeti 2, the TinyOS plugin for Eclipse, is given
on the website http://tos-ide.ethz.ch/wiki/

pmwiki.php?n=Site.Installation

• At USB problems, check the USB permission. Rules for the permission
are provided in /etc/udev/rules.d/ (for Linux distributions).

• For serial port access use the terminal or cutecom (cutecom is a user-
friendly GUI). The serial port is useful for debuging purposes.

36

A.3 Miscellaneous How To

• For the terminal:

� Add in the �le /opt/tinyos-2.1.0/support/sdk/java/net/

tinyos/packet/BaudRate.java the new devices "pixie" and "mesh-
bean900" with baud rate 57600.

� In �le /opt/tinyos-2.1.0/tinyos.sh: Modify the line CLASSPATH
=$CLASSPATH:$TOSROOT/support/sdk/java/ to CLASSPATH=

$CLASSPATH:$TOSROOT/support/sdk/java/tinyos.jar.

� You can start the terminal using: java net.tinyos.tools.Listen

-comm serial@/dev/ttyUSB0:meshbean900.

� The previous step can be simpli�ed to
java net.tinyos.tools.Listen if you add in the �le .bashrc

the line MOTECOM=serial@/dev/ttyUSB0:57600.

• For cutecom: Use as device "/dev/ttyUSB0" and as baud rate "57600".

A.3 Miscellaneous

A.3.1 Interfaces

The two interfaces AMSend and Receive are wired for this thesis to the com-
ponent RF212ActiveMessage (or more accurately to the component
ActiveMessageLayer). The two interfaces thereby are parametrized inter-
faces which take an active message type as extra argument. This active
message type allows to use the interface multiple time for di�erent purposes.
It can be compared to ports in a NAT [15].

AMSend The interface AMSend has two important commands (send and
getPayload) and one event (sendDone).

• send sends a message. It takes the address of the receiver (am_addr_t),
a pointer to the message (message_t*), and the length of the message
(uint8_t) as argument values and returns whether the send procedure
was successful (error_t).

• getPayload returns a pointer to the payload. It takes a pointer to
the message (message_t*) and the length of the message (uint8_t) as
argument values and returns a pointer to the payload (void*).

• sendDone informs about the sending status of the message. It provides
a pointer to the sent message (message_t*) and whether the message
was sent successfully, was canceled or failed (error_t). A new message
has not to be sent until the sendDone of the previous one was signalled.

37

How To A.3 Miscellaneous

Receive The interface Receive has one event (receive).

• receive signals that a message was received. It provides a pointer to
the received message (message_t*), a pointer to the payload (void*),
and the length of the message (uint8_t) as argument values and re-
turns a pointer to the allocated memory for a next message (message_t*).

SecurityConf The interface SecurityCond has one command (setKeyInfo).

• setKeyInfo stores the delivered key information in the metadata of the
message. It takes a pointer to the message (message_t*), the length
of the message (uint8_t), and key information (keyInfo) as argument
values.

A.3.2 Example Application Code

SecSenderAppP Code

#include "Cryptography . h"

module SecSenderAppP{
uses {
i n t e r f a c e Leds ;
i n t e r f a c e Boot ;
i n t e r f a c e Sp l i tCon t r o l as RadioControl ;
i n t e r f a c e AMSend [am_id_t tx_id] ;
i n t e r f a c e Secur i tyConf ;
}

}
implementation {

message_t packet ;
am_id_t id = 11 ;

event void Boot . booted () {
c a l l RadioControl . s t a r t () ;

}

event void RadioControl . startDone (error_t e r r) {
simple_enc_msg_t∗ newmsg ;
newmsg = (simple_enc_msg_t ∗) c a l l AMSend . getPayload [id] (

&packet , s izeof (simple_enc_msg_t)) ;
i f (newmsg == NULL) {

return ;
}
newmsg−>pla in [0] = 0x12 ;
newmsg−>pla in [1] = 0x34 ;
newmsg−>pla in [2] = 0x56 ;

38

A.3 Miscellaneous How To

newmsg−>pla in [3] = 0x78 ;
newmsg−>pla in [4] = 0x12 ;
newmsg−>pla in [5] = 0x34 ;
newmsg−>pla in [6] = 0x56 ;
newmsg−>pla in [7] = 0x78 ;
newmsg−>pla in [8] = 0x12 ;
newmsg−>pla in [9] = 0x34 ;
newmsg−>pla in [1 0] = 0x56 ;
newmsg−>pla in [1 1] = 0x78 ;
newmsg−>pla in [1 2] = 0x12 ;
newmsg−>pla in [1 3] = 0x34 ;
newmsg−>pla in [1 4] = 0x56 ;
newmsg−>pla in [1 5] = 0x78 ;

c a l l Secur i tyConf . setKeyInfo (&packet ,
s izeof (simple_enc_msg_t) , msgcounter) ;

c a l l AMSend . send [id] (AM_BROADCAST_ADDR, &packet ,
s izeof (simple_enc_msg_t)) ;

c a l l Leds . l ed1Toggle () ;
}

event void RadioControl . stopDone (error_t e r r) {}

event void AMSend . sendDone [am_id_t tx_id] (message_t ∗msg ,
error_t e r r o r){}

}

SecSenderAppC Code (Wiring)

The wiring of SecReceiverApp can be done similarly.

#include "Cryptography . h"
#define ENCRYPTION_ENABLED

con f i gu r a t i on SecSenderAppC{
}
implementation {

components SecSenderAppP as App ;
components SecActiveMessageC ;
components MainC , LedsC ;
components ActiveMessageC ;
components RF212ActiveMessageC ;

App . Boot −> MainC . Boot ;
App . RadioControl −> ActiveMessageC ;
App . Leds −> LedsC ;

#ifndef ENCRYPTION_ENABLED
App .AMSend −> RF212ActiveMessageC .AMSend [1 0] ;

#else

App .AMSend −> SecActiveMessageC .AMSend ;
App . Secur i tyConf −> SecActiveMessageC . Secur i tyConf ;

#endif

}

39

How To A.3 Miscellaneous

SecReceiverAppP Code

#include "Cryptography . h"

module SecReceiverAppP{

uses {
i n t e r f a c e Leds ;
i n t e r f a c e Boot ;
i n t e r f a c e Sp l i tCon t r o l as RadioControl ;
i n t e r f a c e Receive [am_id_t rc_id] ;
}

}

implementation {

event message_t∗ Receive . r e c e i v e [am_id_t rc_id] (
message_t∗ msg , void∗ payload , uint8_t l en){
c a l l Leds . l ed1Toggle () ;
return msg ;

}

event void Boot . booted () {
c a l l RadioControl . s t a r t () ;

}

event void RadioControl . startDone (error_t e r r) {}

event void RadioControl . stopDone (error_t e r r) {}
}

A.3.3 Alternative Security Features

In addition to the regular CCM* mode according to IEEE 802.15.4 another
implementation to add/check MAC and en-/decrypt the message payload
are possible. The alternative implementation encrypts the payload in CBC
mode and with an IV (initialisation vector). The IV can be speci�ed before
compilation in the component KeyManagerP. To encrypt the payload in CBC
mode it is padded to �t entirely in 16 byte blocks1 (see �gure A.1). The MAC
is computed over the whole message, exluding the length and CRC �elds. It
also uses the CBC mode and requires entire 16 byte blocks. If this is not the
case again padding is used.

1That is by taking the number of bytes which have to be padded, and padding the end
of the payload with this number value until the last 16 byte block is full. Padding in this
way is recoverable. A fault arises only if the payload has no partly full block and ends
with values corresponding to a correct padding.

40

A.3 Miscellaneous How To

Figure A.1: Frame format of the alternative con�dentiality and authentica-
tion implementation

To apply the alternative implementation, the driver layer (RF212DriverLayerP)
has to be changed. One has to replace the following code:

Send

In the transmission part of the driver layer replace

l ength = c a l l Cryptography .CCM(msg , length , keyIn fo) ;
c a l l RF212DriverConfig . setLength (msg , l ength) ;

with the code

// Encryption
i f ((keyIn fo & SEC_LEVEL_ENC_MASK)==SEC_LEVEL_ENC)
{

length = c a l l RF212DriverConfig . getLength (msg) ;
l ength = c a l l Cryptography . encrypt (msg , length , keyIn fo) ;
c a l l RF212DriverConfig . setLength (msg , l ength) ;

}

// MAC
i f ((keyIn fo & SEC_LEVEL_MAC_MASK)!=SEC_LEVEL_NO)
{

length = c a l l RF212DriverConfig . getLength (msg) ;
l ength = c a l l Cryptography .addMAC(msg , length , keyIn fo) ;
c a l l RF212DriverConfig . setLength (msg , l ength) ;

}

41

How To A.3 Miscellaneous

Receive

In the receive part of the driver layer replace

l ength = c a l l RF212DriverConfig . getLength (rxMsg) ;
l ength = c a l l Cryptography . inverseCCM(rxMsg , length , keyIn fo) ;
c a l l RF212DriverConfig . setLength (rxMsg , l ength) ;

with the code

// MAC
i f ((keyIn fo & SEC_LEVEL_MAC_MASK)!=SEC_LEVEL_NO)
{

length = c a l l RF212DriverConfig . getLength (rxMsg) ;
l ength = c a l l Cryptography . checkMAC(rxMsg , length , keyIn fo) ;
i f (l ength == 0)
{

c rc = 0 ;
p r i n t f (" Fa l se Mac\n") ;
l ength = c a l l RF212DriverConfig . getLength (rxMsg) ;
c a l l RF212DriverConfig . setLength (rxMsg , l ength) ;

}
else c a l l RF212DriverConfig . setLength (rxMsg , l ength) ;

}

// Decrypt ion
i f ((keyIn fo & SEC_LEVEL_ENC_MASK)==SEC_LEVEL_ENC)
{

length = c a l l RF212DriverConfig . getLength (rxMsg) ;
l ength = c a l l Cryptography . decrypt (rxMsg , length , keyIn fo) ;
c a l l RF212DriverConfig . setLength (rxMsg , l ength) ;

}

Further Alternatives

The component Cryptography provides additional functionalities which are
self-explanatory or explained in the source code itself.

42

Bibliography

[1] AT86RF212 datasheet. http://www.atmel.com/dyn/resources/
prod_documents/doc8168.pdf [Online; accessed 16-June-2009].

[2] CC2420 datasheet. http://enaweb.eng.yale.edu/drupal/system/�les/
CC2420_Data_Sheet_1_4.pdf [Online; accessed 23-June-2009].

[3] DCG Wiki. https://dcg-trac.ethz.ch/fs09/wiki/ [Online; accessed 29-
June-2009].

[4] TinyOS Tutorials. http://docs.tinyos.net/index.php/TinyOS_Tutorials
[Online; accessed 24-June-2009].

[5] SPI - Serial Peripheral Interface, June 2000.
http://www.mct.net/faq/spi.html [Online; accessed 23-June-2009].

[6] Announcing the ADVANCED ENCRYPTION STANDARD (AES),
Nov 2001. http://merlot.usc.edu/csac-s06/papers/�ps-197.pdf [Online;
accessed 23-June-2009].

[7] nesC: A Programming Language for Deeply Networked Systems, Dec
2004. http://nescc.sourceforge.net/ [Online; accessed 24-June-2009].

[8] IEEE Standard for Information technology- Telecommunications and
information exchange between systems- Local and metropolitan area
networks- Speci�c requirements Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Speci�cations for Low-Rate
Wireless Personal Area Networks (WPANs). IEEE Std 802.15.4-2006
(Revision of IEEE Std 802.15.4-2003), pages 0�305, 2006.

[9] Mote-mote radio communication, Sept 2008.
http://docs.tinyos.net/index.php/Mote-mote_radio_communication
[Online; accessed 16-June-2009].

[10] Meshbean900, 2009. http://www.meshnetics.com/dev-tools/meshbean/
[Online; accessed 23-June-2009].

[11] ZigBit 900 Module with Balanced RF Output, 2009.
http://www.meshnetics.com/zigbee-modules/zigbit900/ [Online; ac-
cessed 23-June-2009].

43

BIBLIOGRAPHY BIBLIOGRAPHY

[12] David Culler, Deborah Estrin, and Mani Srivastava. Guest Editors'
Introduction: Overview of Sensor Networks. IEEE Computer Science,
2004.

[13] Carl Hartung, James Balasalle, and Richard Han. Node Compromise
in Sensor Networks: The Need for Secure Systems. Technical report,
University of Colorado, Boulder, 2005.

[14] Karlof, Chris, Sastry, Naveen, Wagner, and David. TinySec: a link
layer security architecture for wireless sensor networks. In SenSys '04:
Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 162�175, New York, NY, USA, 2004. ACM.

[15] P.Srisuresh, K.Egevang. Traditional IP Network Address Transla-
tor (Traditional NAT). Network Working Group, January 2001.
http://tools.ietf.org/html/rfc3022 [Online; accessed 30-December-
2008].

[16] K. Romer and F. Mattern. The Design Space of Wireless Sensor Net-
works. Wireless Communications, IEEE, 11(6):54�61, Dec. 2004.

[17] Stubble�eld, Adam, Ioannidis, John, Rubin, and Aviel D. A key recovery
attack on the 802.11b wired equivalent privacy protocol (WEP). ACM
Trans. Inf. Syst. Secur., 7(2):319�332, 2004.

[18] P. Syverson. A taxonomy of replay attacks [cryptographic protocols].
In Computer Security Foundations Workshop VII, 1994. CSFW 7. Pro-
ceedings, pages 187�191, Jun 1994.

[19] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC
(CCM). Network Working Group, September 2003. ftp://ftp.rfc-
editor.org/in-notes/rfc3610.txt [Online; accessed 16-June-2009].

[20] Wood, Anthony D., Stankovic, and John A. AMSecure: secure link-
layer communication in TinyOS for IEEE 802.15.4-based wireless sensor
networks. In SenSys '06: Proceedings of the 4th international conference
on Embedded networked sensor systems, pages 395�396, New York, NY,
USA, 2006. ACM.

44

	Introduction
	Motivation
	Goals
	Structure

	Related Work
	WSN
	Sensor Nodes
	IEEE 802.15.4
	ZigBit900
	TinyOS

	Related Implementations
	Security
	Confidentiality
	Authenticity
	Replay Protection
	AES
	CCM

	Design
	Secure Messaging
	Authenticity, Confidentiality and Replay Protection
	Key Selection
	Cryptographic Methods

	Cryptography
	Key Management
	Radio Driver
	Overview

	Implementation
	Constructs
	Secure Messaging
	Interface SecurityConf

	Radio Driver
	Key Management
	Interface KeyManager

	Cryptography
	Interface Cryptography

	Evaluation
	Message Size Overhead
	Time Overhead

	Future Work and Conclusion
	Future Work
	Conclusion

	How To
	Setup
	Wiring
	Interfaces

	Installation
	Miscellaneous
	Interfaces
	Example Application Code
	Alternative Security Features

