Jukebox

An Intelligent Online Music Player

Semester Project,

March 2009 — April 2009

Student: Mihai Calin
ETH - ITET Master Studies
Advisors: Olga Goussevskaia / Michael Kuhn

Supervisor: Prof. Dr. Roger Wattenhofer

Task Formulation

Media usage is changing rapidly these days. This process has been ignited by several
technological advances, in particular, the availability of broadband internet, the World
Wide Web, affordable mass storage, and high-quality media formats, such as mp3.
Many music lovers have now accumulated collections of music that have reached
sizes that make it hard to maintain an overview of the data by just browsing
hierarchies of folders and searching by song title or album. Search methods based on
song similarity offer an alternative, allowing users to abstract from manually assigned
metadata, such as, frequently imprecise or incorrect, genre information. In a context
where music collections grow and change rapidly, the similarity-based organization
has also the advantage of providing easy navigation and retrieval of new items, even
without knowing songs by name. This opens possibilities, such as sophisticated
recommendations, context-aware retrieval, and discovery of new genres and
tendencies.

In previous projects we have created a Euclidean map of the world of music, which
contains more than 400K songs. This map places similar songs close to each other,
whereas the distance between unrelated songs becomes large. Such a map exhibits
several advantages in terms of applications. It allows to quickly find songs similar to
each other, to define regions of interest, or to create smooth playlists by following
paths, such as straight lines between start- and end-songs, for example. Based on this
map, we have developed the music-explorer website (www.musicexplorer.org) that
provides a similarity based view on music collections.

The current website, however, provides only limited benefits to the user. In
particular, it is not able to directly play music. The goal of this thesis is to improve in
this point by connecting the music-explorer website to existing web-content. In a first
step, Mihai will study different APIs, such as the last.fm, youtube, google, or
facebook API, and investigate how the music-explorer project could benefit from each
of these data sources.

Dependent on the outcome of the API evaluation, Mihai will then design one or
several new use-cases for the music-explorer website that involve some of the
evaluated data sources. In a last step, Mihai will then implement at least one of the
proposed use cases and make it available to the user on www.musicexplorer.org.

Abstract

The continuous growing of people’s music library requires more advanced ways of
computing playlists through algorithms that match tracks to the user’s preferences.
Several approaches have been made to enhance the user’s listening experience; while
most of them rely on the music content provided by the user, this project presents an
online application that sources the audio content from publicly available resources
(YouTube). A playlist generation algorithm is developed that uses only one seed track
to compute a playlist of arbitrary length. For sourcing the audio content, YouTube’s
track coverage is analyzed and statistics show that, in a real-life usage scenario,
almost 80% of the tracks are available while the rest have rather lower popularity. The
resulting application is a fully functional but feature limited online music player that
can also serve as a framework for future playlist generating algorithms or other
content sources.

Overview
1 Introduction

Introducing the current report and placing it aside of similar ETH internal and other
works. Some introductory words about the music space, the goal and the approach
used in this report.

2 Problem Statement

This chapter debates the necessity of a new solution to make the world of
intelligent track comparison even more accessible to the end user, followed by an
approach sketch.

3 Related Work

When a new, revolutionary, product comes to market it usually has a mixed impact
on the audience. This chapter analyzes some of the achievements but also flaws of
existing solutions and therefore represents a base for the discussion in the Vision
Chapter.

4 Vision

This chapter sets the ground rules for developing the application, mostly based on
experience gathered from already existing implementations. Important decisions
about audio content sourcing and application promotion are discussed and
reasoned in this and also the next chapter.

5 Audio and Video Content Provider

This chapter analyzes advantages and disadvantages of the different content
providers and presents a coverage analysis for YouTube.

6 Architecture

After discussing the application’s approach to serving its goal, it’s time to describe
the technical details of the implementation. What functions should the client and
server side implement? How modularized can and should the application be build?
What’s the best approach in dealing with the huge data amount? What advantages
do the different APIs bring and how can they be used?

7 Conclusions

The conclusions section summarizes the projects final state as well as reconsiders
the main ideas and results.

8 Discussion and Future Work

The Section deals with the ideas that didn’t make it to the development process
mainly because of the tight time scheduler, but that are important to mention and
at some point or another in a future development they have to be addressed.

Table of Contents

T 3 1 oo o 10 U o 0) 3 N 3
2 Problem Statementccocvmrsnrimnsermsssssmserss s ssssssssssssssssssssssssassssssasssnsssenan 4
2% T "/ (Y 2= 1 (1) 1 T 4
2.2 APProOaCh ... ———————————————————-——;—; 5

3 Related WOrKicviierissisisessssssmsssesssssssssssssssssssssssssssssssssssssssnssssssssssnsssassssssnsssnsssnnan 6
3.1 ETH Projects..iismsssnssssmsss ssssssssssassssssssssenssssnnsas 6
3.2 EXternal Projects.....ssssssssnssssssssssssssssssssssssassssssssassssssssssssssssses 7

S V1 T) S 8
4.1 Requirement SPecifiCations ... ————————— 8
4.2 USer PerSPeCliVe... . missnisssssssnssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssassssassnas 9
4.3 Implementation as FAaceboOK APPcucmmimmsmsmmsismssnsmsnissssisssssssssssssssssssssssssssssns 10

5 Audio and Video Content Provider........ccccmmminmmnemmnnessssssssssssssssssssssssssssns 11
5.1 Content Provider ANalysis ... 11
5.2 YOUTUDE API ... ssssss s s s smssmssms s sm s sassassassmssmssmssmssmssmssms s s sansannnas 12
5.2.1 Technical POSSIDIIITIES ... sesss s sssssssssssssssssssssssssssssens 12
5.2.2 COVEIrage ANALYSIS...eerreesrereressesesseessesssessssesssssssssssssssssssssssssssssssesssssssssasssssssssssanes 12

5.3 QUETY DeSig....coiiniiimminmmsssmnmsssssssssss s 15
5.4 Post-processing YouTube ReSUILSccovrrrsmsnsmnimsnsmsmsssssssmsssssssssssssssssssssssssseses 16

LS TL N Al 111 <t 1) 18
6.1 Client and Server side FUNCHONSccmimmmmmensmssssssss s ssssssssssssssssssssns 18
6.1.1 The CHIENT SIAE vt s s s s bbb 18
6.1.2 The SEIVET Side .. s s s s s e s b 19
6.1.3 The COMMUNICALION w.ovecriceeceeceese e ss e s s s s 20

6.2 Music SPace (KDTIEE) ..cccverermsmsmsmsmsssssssmsssasasasssssasass 20
6.3 Playlist Generation AIGOrithm ... ———— 21
6.3.1 EXIStING SOIULIONS w.eueuieeieeereiectrect et sssesse s ssses st sses et sessse st ssesssssssesas 21
6.3.2 FIrSt APPIOACKH oo sees s ses s sess s sess s s ssssesssssss e 21
6.3.3 IMPrOVEMENT ... s 23

6.4 User FEedbDacKccrinmmmmimimnnnssssssisssmssnssssssasssens 24
6.4.1 Direct and Indirect User FeedbacK......n s sessssenns 24
6.4.2 Activity and Feedback LOg StrUCLUTE ... sssesssessssssseens 25

Q72 070 4 Uod 1) 15 0) 4 - 26
8 Discussion and Future Workcemmmsmsssesmsmsssssssssssssssssssssssssssssssses 27
£ 00 T W 0D L 7=Y 14 1<) 0 L 28
8.2 FULUIE WOTK.. i iiririerissesnsssssssessssssssssssssssssssssssmssssssssssssssssssssnsssssssssnsssmssnssnneasssnnsnsnnns 28

o F07/008 S |\ (o< oo N 5 = 1T 28
8.2.2 Feedback Analysis and INtegration.......eeeereersmeessnessseesssesssesssessssesssseeesnees 28
8.2.3 USEI AWATEIIESS ..ttt bbb s s bbb bbb n bbbt 29

9 Bibliography.....————————————— 29

1 Introduction

Music has always been a means of entertaining people even from the earliest
ages of the civilization. Historically it was produced by musicians and only
available during life concerts. The technological evolution made it possible to
save the music on vinyl plates, later electromagnetic charged stripes, CDs until
the technology brought us to saving tracks digitally. When dealing with a huge
collection of tracks, people encounter management problems they did not have
before. So they have to develop new ways of using the music collection for their
entertainment. Playlists are a good approach for saving successions of tracks that
one likes. The most dominant problem of existing playlist generation
mechanisms is, however, their lack of flexibility: new tracks are not
automatically added, they don’t adapt to the user’s current mood etc.

A new approach in dynamically organizing tracks into playlists is on its way:
companies like last.fm already suggest an algorithm of mapping songs one to
each other based on their “similarities”; but how to compute these similarities?
One way, that did not prove to be very productive, is to analyze the audio content
of the track - its audio frequencies. This way, tracks are split in categories like
“Heavy Metal” and “Blues”, but people do not like all tracks of a certain gender
and these genders might be inaccurate. Another way, which is given more and
more attention by researchers and companies worldwide, is computing
similarities between tracks based on user input. As an example: if two users add
the same two tracks to their playlists, one can deduce that these tracks are
similar and so, also other people that pick one of them are likely to enjoy the
other one as well.

Lorenzi (Lorenzi, 2007) proposes a way of representing the similarity between
tracks in a 10-dimensional Euclidian space (further called music space), where
the closeness of tracks is approximately proportional to their similarity. 7M
songs currently appear in the database, but only 500K of them have enough user
statistics to be mapped in the graph. Using this simplified and computationally
efficient way of finding similar tracks, several applications can explore new ways
of computing playlists. Most of them offer support in playlist generation but none
also provides the tracks to be played. This could be seen as a disadvantage
because not all people possess all tracks that are suggested by the space.

This report sets its goal in developing an application that uses the space of music
for computing intelligent playlists and, more important, trying to deliver the
required songs to the user through publicly available tracks on YouTube.com.
For promotion purposes and also user data gathering, it was chosen to make the
application available on Facebook?!, which ensures an easy referral to friends.

The development process is not an easy one as many technologies are required
to work together to provide the user with a good experience. The huge amount of
data that has to be processed is demanding with respect to both algorithms and

1 www.facebook.com - community networking site

underlying hardware. In the end of this report, a fully functional, but feature-
limited, version of an online music player is presented. This application could be
the step stone of future, more detail-oriented applications because it sets the
basis of a new playground: an online music player.

2 Problem Statement

This chapter debates the necessity of a new solution to make the world of
intelligent track comparison even more accessible to the end user, followed by an
approach sketch.

Several solutions already use intelligent playlists embedded in music players
installed on computers. There are also online solutions, the most popular of
which is last.fm, which acts as a personalized radio station that plays preferred
music. On the other hand it does not allow playback of a certain track. There are
also other solutions, like the genius function of iTunes or the Music Explorer;
both use the user’s music collection to generate playlists. The biggest
disadvantage of the latter solution is that the user can use only tracks that
he/she already has on his/her PC to generate playlists. Of course this limits the
power or the algorithm very much.

There are already services that provide the music content (like last.fm or
YouTube to name a few) so it’s a natural conclusion to try to use these services in
connection with the playlist-generating algorithm.

In order to understand the utility of such an application, just imagine the
following scenario: one enjoys listening to music while working. It is not
common to store music on the company’s computer so one rather has a personal
mp3 player with himself during office time. If one takes enough time to prepare
ones playlists in order to fit ones current mood, it is a pretty decent solution. But
what if new tracks appear that one might like? One first has to do serious
research in order to find them and then go through buying them, downloading
them to his/her mp3 player, updating the playlists... it already sounds very
difficult, right? Now the suggested scenario is the following: one opens a web
site, types in a track that reflects ones current mood and hits “play”. That's it! The
player chooses tracks that one likes, also plays new tracks that one did not hear
before, and can go like this for hours and hours without repetition. One can go on
with one’s work and in order to stop the music, one only has to hit stop or close
the browser. The simplicity of the solution speaks for itself.

The goal of this thesis is to analyze and implement an approach of building such
a web-based music player. The questions it has to find answers for are: How
should the user interaction be designed to maximize the user satisfaction?
Where to source the audio (and video) data from, while ensuring a maximum
coverage? And finally, how to promote the application in order to attract as many
users as possible?

The different implementation possibilities are evaluated and the best solution is
implemented. The logic behind the web-based music player computes a

sequence of tracks based on their similarity. At the same time, user behavioral
data is gathered that helps further releases to be even more user friendly.
Another important aspect of the application is its extensibility. Modularity and
code reusing are very important parameters of this application, as it acts as a
version 1.0 for future releases. These future releases will be able to interact with
the user for finding the best track video on YouTube or to determine the music
preferences of users and even adapt the space to the new usage statistics.

The analysis of the currently available tools to accomplish the task is one of the
most important steps because the ground concepts of the application should
never change, regardless of its future complexity.

The several possible implementations of the web service together with the
balancing of computing tasks between server and client are the first parameters
that have to be defined for a solid base. Also the programming language plays a
crucial part in the development process, as it is shown later. The amount of
callbacks to the database in favor of less memory usage is also an important
aspect that is difficult to estimate from the start. In order to allow a high
flexibility while still maintaining a small dataflow, the implementation of the
logic is mainly on the server. The Ul responsibility is fully retained by the client
side as well as servicing Ul requests and only notify the server of such activity.

In order to achieve the high goals that were set, the structure of the application is
important to be highly modularized to allow interchanging the modules with
better, more complex implementations. It is important to determine which
components are possible and also easy to modularize, without introducing too
much communication overhead in the interfaces. It turns out that the music
content related jobs can easily be modularized, as well as the DB related jobs and
the playlist computing tasks. The core of the application only needs to handle
these modules and the logging task. Also the communication with the client is
modularized, making it particularly easy to implement new clients running on
the same service or new services to serve the same client.

One of the hardest tasks is determining how to provide the audio content to the
user. The playlist computing is based on a music space implementation,
described later. For the audio content there is anyway no guarantee because it is
an externalized task. Several providers of audio content are analyzed and the
best one implemented in such a way that it is reliable for the users.

For the client side, JavaScript and Flash are the only two solutions to provide a
good user experience because there is no need to install any software. When
working with JavaScript, AJAX (Wikipedia, AJAX (programming), 2008) is needed
for the seamless communication between client and server - thus enabling a
richer user experience - and also for avoiding communication overhead. GWT
(Google, 2008) dramatically eases the interaction and object exchange between
the client side and the web service because this tool enables the programming of
the client side in java and converting it to JavaScript.

Finally, one of the most important steps in the future extension of this
application is the logging of user activity. The activity of the users has to be

logged in such a manner that constructive information can be extracted from the
logs. It’s important to build the logs right such that future ideas can find the data
to base their research on. For this step no resource is too expensive. One has to
differentiate between user activity and user feedback. User activity can be
represented through actions like: jumping to a certain track, rearranging the
generated playlist; user feedback is the action of notifying the application of a
bad chosen track or of a track that the user doesn’t like. In the end the logs are
saved in the database and their exact structure discussed.

In the end of the report, an implementation is presented showing a web based,
personalized, music player. It is an interactive web site where the user selects a
favorite track and generates a playlist based on this. The playlist has the
following properties:

* Each track in the playlist is similar to the one before;

* A track is only allowed to be repeated if it has not been in the last 24
tracks; this should guarantee about two hours of non-repeating tracks;

* Tracks from the same artist do not appear more than at least 4 tracks
apart;

* The user has the possibility to reorder the tracks, to remove them or to
play them directly, without waiting for their turn to come;

* The music video of the currently playing track appears on the right;

* The user has the possibility to open the playing track in YouTube (with
possibility to switch to full screen).

* The user has the possibility to give feedback about the quality of the
recording or weather he/she likes the track or not;

e All user activity like reordering playlist, searching for tracks, track
removal - but also his/her direct feedback - is logged for future analysis.

After describing some of the most important features the application has to cover,
an analysis of already existing solutions is made in the Related Work Chapter.

3 Related Work

When a new, revolutionary, product comes to market it usually has a mixed impact
on the audience. This chapter analyzes some of the achievements but also flaws of
existing solutions and therefore represents a base for the discussion in the Vision
Chapter.

Several projects belonging to the Distributed Computing Group, part of the
Electrical Engineering Institute of the ETH Ziirich, have presented different
approaches as a playlist generating tool based on a specially created music space.

The first and most important was the creation of the music space itself (Lorenzi,
2007). Based on user statistics provided by Last.fm, Lorenzi presented a way of
representing the data such that the similarity between two tracks can be
quantified. By mapping tracks to points in a 10-dimensinoal space, the similarity
of two tracks can be easily computed as the Euclidian distance between them.
Through this, computationally hard problems become easy accessible for other

applications, such as: comparing similarities between several track pairs,
computing the nearest neighbor, finding tracks along a certain path or “negating”
a track - meaning finding another track that is far away from this track. A further
discussion of the correctness of this mapping is out of the scope of this report;
therefore this report considers the provided music space as efficient and uses it
asitis.

Based on the previously described music space, several applications were
developed to bring the advantages of the music space to the end user. The
musicexplorer web application (Gonukula, Kuederli, & Pasquier, 2008) presents
an approach of organizing the user’s music collection based on an online service.
The user has the possibility to upload the titles of its music collection, select two
of them and the algorithm computes a playlist that is a smooth crossover from
one track to the other. Both, the musicexplorer and the application presented in
this report, allow the user to generate intelligent playlists. The downside of the
musicexplorer is the requirement that the user already possesses the tracks to
be played. If his/her collection is limited, so is the playlists at the output. Using
publicly available tracks not only make it easier for the user but also the results
are be better.

Bossard presents a new way of exploring the Space of Music with a visual
approach that should allow the user to visually select tracks from the music
space (Bossard L., 2008). The ideas are implemented on the android platform
through a customizable music player.

Several companies have recently discovered the advantages of user-personalized
playlists and are currently building their business model based on providing
high quality but simple to use solutions to their customers. Last.fm is one of the
first ones on the market to offer personalized music playback; it achieves this
through an online “radio station” that is supposed to play music that the user
likes. The Last.fm approach is very similar to the one proposed by this report: it
is an online music player that usually plays the user’s favorite tracks and also
introduce new tracks if available. However, because the personalization of the
player is done on a per-user basis (opposed to the per-session proposal of this
report) it could happen that it does not react so fast to mood changes in the
user’s behavior. The biggest drawback is still the inability of the user to select
certain tracks to play; even if he/she has a certain favorite track in mind, he/she
has to stick to the automatically generated playlist of the player. This limitation
is probably more license-based than technological, but it is a field where
improvement is desired.

Another approach to delivering similar tracks to a user is the Genius function of
the Apple iTunes music player. The principle is fairly easy: iTunes analyzes your
music library, submits the tracks to an iTunes server, which returns popularity
measurements personalized for your tracks. During playback, the user has the
possibility to select a track and let the application generate a playlist containing
tracks similar to the selected one. The biggest drawback of this approach is the
limitation to the user’s personal computer, where he/she holds his/her private
music collection.

During the development process, two new companies launched an
implementation that is very similar to the presented approach. One of them is
Songza (www.songza.com), an online music player where users can search for a
track and play it. The audio (and sometimes also video) content is sourced from
YouTube or Last.fm. The user has the possibility to manually create a playlist.
However no mechanism of automatically generating playlists is yet available.
The second, and much more similar to this report’s implementation, is DropPlay
(www.dropplay.com). It allows the user to search for songs, generate playlists
based on similarity and also share these songs with friends on Facebook. Only
time will show which of the two implementations will be better for the users.

The discussion of external projects is continued in the Vision chapter, where the
pros and cons of the mentioned applications are further analyzed and weighted.

4 Vision

This chapter sets the ground rules for developing the application, mostly based on
experience gathered from already existing implementations. Important decisions
about audio content sourcing and application promotion are discussed and
reasoned in this and also the next chapter.

As presented in the related work section, there already are several
implementations that are more or less similar to this report’s solution. All of
them have their strengths and weaknesses so they are going to be analyzed and
combined to work in the targeted scenario. The goal is to create a web based
application that is simple to use and that can function independent of the users
resources. What can be learned from other approaches and what can be used to
increase the value of this implementation?

Compared to the current musicexplorer web application, the designed
application is also a web-based service and targets the same audience: people
who want to have their music experience enhanced without a lot of effort on
their side. The users interact with the existing musicexplorer application by
submitting all the titles of their music library and then selecting two of those
tracks that are used as endpoints of a playlist. All the tracks in between
represent a smooth progress from one track to the other. This implementation
faces the problem that it completely depends on the user to provide the audio
content. The quality of the offered result is only as good as the number and
variety of submitted tracks; even the best implementation performs poorly if it is
fed with low quality resources. Also the mapping of tracks from the user’s tags?
to the applications tags is a problem to take into account. The lack of own music
content is also a problem for people that do not own a big music collection or do
not have it at hand. Hence, the current application sets a high priority to

2 Track meta-data, namely artist and title

providing the intelligent playlists together with the audio content. This ensures
both a greater QoS3 and ease of use.

Generating an intelligent playlist and then playing the tracks is similar to Last.fm.
In the case of Last.fm however, license limitations prevent the user to search for
specific tracks and play them. As long as the designed application has no
restriction in this matter, it is a high priority to implement such a popular
feature. A search bar allows the user to browse through the library and select
individual tracks to play. Lastfm also avoids displaying an actual playlist,
although most users like to at least see the tracks that follow, and possibly even
edit this list. To honor the playlist generating feature of the application, a playlist
is displayed to the user together with the possibility to add, remove and
rearrange tracks from the list. This makes the application very similar to the
music players the user is already used to.

As discussed in the last paragraph, the Ul* imitates a common music player such
that the users do not have to get used to something completely new. This brings
the question wheater to implement the application as an installable - standalone
application or as a web service running in a browser. Modern technologies like
JavaScript and AJAX allow a simple development of a solution running in the web
browser. Also encouraging for using this approach is the fact that the application
most likely provides online-based streamed audio content. Online applications
provide decent results if they don’t have resource-consuming client side tasks;
also they are easy to update and maintain. In respect to all the mentioned pros, it
makes sense to develop the application as a JavaScript based implementation
that runs directly in the web browser, without the need to download or install
anything.

As one of the important goals is to have a user-friendly application, it is
necessary to provide good results with a minimum of information requested
from the user. As a second, but also very important feature, the user actions have
to be logged for understanding and improving the application’s behavior. The
logging should be made optional, to avoid privacy issues.

Understanding the resources that are at disposal is necessary to find the
minimum information required to return satisfactory results. In order to provide
tracks that the user likes to listen to, the application has to know which are the
preferences of the user. Last.fm does that by tracking the user’s preferred tracks
over several sessions and probably computes a user profile based on this
behavior. This approach is an elaborate one but introduces a huge overhead in
the user-management algorithms. And if the user decides at some point to listen
to something else, the inertia of the algorithm makes this very difficult. The best
approach that also ensures a minimum user interaction is no user tracking at all.
The application should work well for each user, independent on his/her history
with the application.

3 Quality of Service
4 User interface

Choosing not to implement any user management requires obtaining as much
information as possible at the start of each session. In order to make it very
flexible, the application can ask for “guidelines” (favorite tracks of the user) each
time it's requested to compute a new playlist. The approach of another ETH
project was to ask the user for several seed® tracks and computing a virtual path
in the music space that connected all the points. Of course the seed list was also
rearranged such that the resulting path is minimal. Using several seeds is a good
approach because it gives more details about the user’s current music
preference. But on the other side, the user might feel overwhelmed by the
information he/she has to provide to create a simple playlist. In respect to that,
the first approach is to ask the user for only one seed track. This track is used to
create a new playlist, and if the user doesn’t like the offered tracks he/she can
insert a new seed or just reshuffle. Tests will show if this minimal user input
approach is efficient enough in providing good tracks.

User feedback is very important for improving this application but it is well
known that the average user does not usually bother to give feedback; and if
he/she does, he/she usually reports features that are not working. To adapt to
this attitude, it is good to implement a way of monitoring the user’s actions, like
when he/she changed the track, when he/she removed a track from the
proposed ones, etc. Also the user has to be given the possibility to report faulty
features. Because the music content provider is YouTube and no guarantee can
be given for the played content, the user has the possibility to report tracks that
don’t fulfill his/her expectations. For example, if a track is a low quality, concert
recorded version, the user can notify the application and other users do not
receive it anymore. Another complaint possibility is about the playlist-generating
algorithm itself. The user is able to report a track that he/she doesn’t like so
much, indicating an inconsistency in the playlist generating algorithm or the
underlying music space.

Promoting the application to many users is important - among other reasons
also because user’s behavior is recorded and eventually leads to a better
application. Applications usually get promoted through commercials, referral
programs etc. As the application is one of a kind, word of mouth is the best way
to promote it. Community networks like Facebook and MySpace® are perfect
environments for deploying and promoting such community-targeted
applications. This networking platforms already have thousands of daily
returning users signed up and also facilitate the integration of applications
through specially designed APIs. Facebook APIs also offer the possibility to read
user data; this could come in handy at a later development stage. Because the
possibility of recommending applications between the users is provided by the
Facebook platform, the application is basically promoting itself - provided it
proves it's usefulness. Also appearing on a Facebook official site, the application

5> Seeds or seed tracks refer to the track provided by the user and used by the
playlist generating algorithm to find similar tracks.
6 www.myspace.com - community networking site

10

is granted more trust from the users, making it possible to integrate it even
better with the community.

Facebook offers two possibilities of designing an application: either the app is
written in a Facebook-specific markup language or any other web site. If the
latter is chosen, the application runs in an iFrame, of maximum 760 visible pixels
in width. Because the application is intended to run also as a stand-alone web
site, the deployment in an iFrame is chosen.

Choosing the promotion through Facebook doesn’t limit the application in any
way. It still runs in a web browser without any restrictions and independent of
Facebook. One can see this deployment as an add-on to the functionality.

Also the DropPlay application, presented in the Related Works Chapter,
integrates with Facebook and uses Facebook to recommend tracks to friends
(and through this indirectly refer the site to the friends). However, the DropPlay
application is not deployed as a Facebook app; not doing so neglects the trusty
environment for the users. To speculate upon the reasons, the width of the
iFrame might be too restrictive for DropPlay’s UI.

Having discussed the ground rules of functionality and also reasoned the decisions
through arguments mainly from the users perspective, the spotlight continues
towards the sourcing of the audio content.

5 Audio and Video Content Provider

This chapter analyzes advantages and disadvantages of the different content
providers and presents a coverage analysis for YouTube.

5.1 Content Provider Analysis

The necessity of providing public music content was analyzed earlier in this
document, concluding that it is important for a good user experience. To be
taken into consideration, a music provider has to fulfill the condition that it
offers a complete (or high) coverage of the track database. With respect to this
requirement, only YouTube and Last.fm can be considered good candidates at
this moment.

YouTube’s pros are: an easy to use API for implementing the video content in the
web browser; a java library for making the search for tracks easy and fast; the
tracks are uploaded by users, which means the data is always up to date with the
latest tracks. On the downside, because the content is user-generated, the quality
of some content is so bad, a results post-processing algorithm is necessary. Also
not all tracks are found on YouTube, but popular tracks are usually available.

Last.fm has a better coverage of the tracks in the music space and the quality of
the content is also very high. The biggest downside of Last.fm is that the majority
of tracks are only 30 seconds snippets of the actual tracks. This is something
unacceptable for a music player, thus turning the decision in favor of YouTube.

The developers of Songza couldn’t apparently decide for one of the providers
and implemented both. It is a good approach because the songs on Last.fm have a

11

guaranteed quality and the application only switches to YouTube if there is no
unclipped track on Last.fm. Implementing both alternatives however, brings
problems especially in the Ul part of the application. Also indirect user feedback
is much harder to trace. This is why the application is relying on YouTube as it’s
content provider.

As discussed in the previous section, YouTube is the chosen music content
provider. It should be noted at this point that no music content is being held or
even transferred through the server hosting the service. Only the YouTube movie
id is passed to the client application that embeds the video using YouTube’s own
player.

The YouTube API offers the possibility to do most of the actions performable
manually through the web site in a programmatic manner. These actions include
receiving a list of results to a search query and for each of these tracks: its id, the
link to its implementation, link to its thumbnail etc. Moreover, the API offers
methods to set the query parameters, like: the country restriction, the language,
the uploader and also the order of the results.

The API also offers possibilities of logging in with a user account, uploading
videos from that account, generating playlists and many others features, but they
are (currently) of no use to this application.

YouTube was chosen over Last.fm to be the sole music content provider of the
project both because of its simple to use API but also for covering most of the
popular tracks. Coverage is one of the strong points of Last.fm, but the fact that
for most tracks only a 30 seconds sample is provided, biased the decision in
YouTube’s favor.

To analyze to what extend the library is covered by tracks from YouTube a test
was run on samples taken from the DB. In order to have an accurate result, a
certain number of random samples were chosen from the DB in order to make an
assumption about the coverage. The results show that from 137 samples, more
than half had no corresponding track in YouTube (Figure 5-1).

12

Figure 5-1 - YouTube Track Coverage

The coverage test was run over 7M+ tracks available in the DB, randomly
choosing 137 tracks. But around 60% of the tracks have a popularity of 1,
meaning that only one user ever listen to them. As a comparison, the average
popularity of the rest of 40% of the tracks is 24 with a maximum of around 62K.
The statistic doesn’t necessary reflect the real coverage of the DB, because most
users only listen to the most popular tracks - also enforced by the playlist
generation algorithm that select mostly rather popular tracks. Hence, in order to
reflect the effective coverage, a new statistic approach is chosen, detailed next.

13

Popularity Distribution

Popularity

1.00E01 5
1.00E+00
1.00E+01
1.00E+02
1.00E+03 °
1.00E+04
1.O0E+05
1.00E+06
1O0E+O7

Number of Tracks

Figure 5-2 - DB Tracks Popularity Distribution

Figure 5-2 illustrates the popularity distribution in the database. From the plot
one can for example see that more than 100K tracks have popularity above 10. In
order to create a weighted analysis of the coverage, tracks for analysis were
chosen in the following manner: the list of tracks was sorted by popularity and
the first 10 tracks were added to the statistic. Next, 10 tracks were chosen
randomly from the next power of 10 tracks (for the second step 100) and so on
until the limit of 7M tracks was reached and the sample contained 191 tracks.

14

Figure 5-3 - YouTube Weighted Track Coverage

Figure 5-3 shows the YouTube coverage the weighted statistic discussed earlier.
Only 19% of the tracks are not found at all on YouTube, and most of them are in
a lower popularity range, as shown in Figure 5-4 - YouTube Popularity vs
Coverage.

Popularity vs Coverage
1.2
1
0.8
5]
&
g 06
>
S
0.4
0.2 T]
1to10 10to 100 100 to 1K 1K to 10K 10K-100K
Popularity

Figure 5-4 - YouTube Popularity vs Coverage

5.3 Query Design

As a first approach, the query sent to YouTube contains only the track’s artist
and title, concatenated in a string and separated by space. This was thought of as
a first try but the results returned by YouTube are good enough to continue with
this solution in the development environment.

Other parameters were also supplied to the query, like to return only videos that
are visible in the client’s country. To achieve this, the clients IP address is
provided together with the query. Also the result’s sorting is requested to be by
‘relevance’. With this measures, the first result returned by YouTube is good
enough to be used in the implementation.

It is not certain whether the video contains the correct track at satisfactory
quality. User feedback helps a future version of this application to identify the
best matching video to a given track. Also at this time the query does not need
any optimization but in future this might change, as YouTube is changing as well.
In the next subsections, there is also a discussion about the query results’ post-
processing.

15

5.4 Post-processing YouTube Results

[t was mentioned in the query design section that it is not necessary to optimize
the YouTube query for the time being. But how about post-processing of results.
Does that bring better content for the tracks?

The weighted statistics presented in the previous section is also used to analyze
the effect of post-processing the results returned by YouTube. Based on this
statistics, the currently implemented algorithm (that just receives the result that
YouTube sets as most ‘relevant’) returns the manually compared results only for
61% of the tracks (Figure 5-5). This shows that YouTube finds an additional 20%
of the tracks but the algorithm fails to provide them because of the lack of post-
processing.

A better
implementation
in the next two
results; 39%

Figure 5-5 - YouTube's Relevance-Sort Analysis

The following approach shows how a few basic rules could help the
implementation increase the results quality through results post-processing. The
proposed rules are created based on observations when analyzing the tracks
where an implementation better than the first one was among the first 3 results.

The post-processing algorithm should process only the first three results
proposed by YouTube when sorted by relevance. In the following a rating
mechanism is presented that, after applied to all the three results, determines
the best one based on the obtained score. Note that the rating values are only
first guesses that provide decent results; they have to be optimized and their
performance analyzed to before being used in the application.

All three tracks have a score of 0 at begin. To this score the algorithm can add or
subtract points.

16

Table 5-1 - Post-Processing Rating Rules

Rule Score
Is first track in result set +3
Is second track in result set +1
Either title Music video +4
or Official /original +4
description Video +2
contains Lyrics +3
the word: HQ/HD +2
High Quality +2
Mtv/bbc +1
Live -2
Tour -2
Instrumental -4
Cover -4

In order to see the rules in action, the tracks from the statistic were analyzed
again, showing the results in Figure 5-6. The percentage of not delivered tracks
has lowered by 12% (from 39% to 27%) leaving only 8% of the results non-
optimized. This analysis shows that the post-processing can have an important
impact on the result and should be implemented in future.

A better
implementation in
the first three
results; 27%

Figure 5-6 - YouTube's Track Coverage After Post-Processing

Having decided upon YouTube as content provider, the rest of the implementation
details are discussed in the next chapter.

17

6 Architecture

After discussing the application’s approach to serving its goal, it’s time to describe
the technical details of the implementation. What functions should the client and
server side implement? How modularized can and should the application be built?
What is the best approach in dealing with the huge data amount? What
advantages do the different APIs bring and how can they be used?

The goal of the application is set and also the ground rules - also for
implementation - have also been set in the Vision Chapter. The application is
designed as a two-sided application: client and server side.

The client side must implement the Ul of the application. It must be a stand-alone
program that only requests and delivers parameterized data from and to the
server. It is important to have a strict and simple communication between the
two applications (client and server) such that an extension or even replacement
of each one of them is easy to understand by the developer. The client
application is responsible for delivering an intuitive Ul and handling all requests
of the user that are related to the Ul Basically the client implements the whole
music player Ul, with play, pause, repeat functions as well as playlist generation
and modification. The list of tracks actually present in a playlist is generated by
the server and returned to the client with enough parameters (video id) such
that the client itself can download the music content from YouTube. No music
content is available from or routed through the application’s service.

The seed to be used for generating a new playlist is not selected in a traditional
‘search and select candidate’ manner. A type sensitive field responds to each
keystroke with a suggestion list for tracks that contain the words either as artist
or title. The user has to select a track from this list and use it as a seed for the
playlist he/she wants to generate. The client does not fetch results from the
server for each letter the user types. A delay is set such that a suggestion request
is sent to the user only if the user has stopped writing for more than ‘delay’ time
ago.

The playlist is fully customizable and offers the user the possibility to rearrange
the tracks in order to influence the playing order, to remove and to jump to
tracks. No restrictions are made on the rearranging of the playlist; for example if
a user whishes to replay a track that he/she already heard, he/she is able to do
that. Also the playlist is responsible of always having a minimal number of tracks
loaded after the currently playing one. If this number decreases because of
playing track advancement, track removal or reordering, the playlist
automatically loads new tracks until the minimum size is reached again.

The Ul has an area used to display track specific information like title, artist and
other. The user uses this area also to directly give feedback about the current
track (low quality or bad track choice). A direct link to the implementation on
YouTube is also available.

18

6.1.2 The Server Side

The server must provide the following two services for the client application:
playlist generation and suggestion generation. The core of the server is the only
non-interchangeable part and it acts as a bridge between the modules to provide
the services requested by the client. The server side application consists of
modules that handle: the database, the YouTube related data, the music space
data and the client connection socket. The client connection socket is distinct
from the core module, such that it can also be interchangeable if a different type
of client is used to connect to the same server. In this case however, the core has
to be modified as well to provide the new functionalities. Also the socket has
responsibilities like maintaining the session and converting the data from the
structures (Objects) used in the server to the ones used in the communication to
the client. Figure 6-1 - Modular Structure of the Server Side Application offers an
overview of the modular structure.

Client

Connection
Neld s

Admin
Servlet

Interface

Interface Interface

Q Jukebox

Core

YouTube
KDTree H DataBase e-‘ Module

N I

Figure 6-1 - Modular Structure of the Server Side Application

The suggestion service’, uses an algorithm that executes an indexed crawl in the
database for the words currently entered by the user. Words shorter than 3
letters are not included to avoid a high number of results. Also the results
returned by the suggestion algorithm are sorted by popularity, such that the
most popular tracks come up in the limited number of suggestions at an early

stage of typing.

The server also offers the possibility to monitor and change its state by other
means than the client application or the console. A servlet connects to the service
and enquires status information like: state of the music space, state of the db
connection or errors that were thrown upon client requests; this information is
printed out in a web site so it can be accessed via a web browser. The

7 Service that proposes tracks as result of user inserted words. Described later.

19

administration tool can be extended to implement functionality to reinitialize the
server, to read and output user statistics etc.

Using only standardized communication between the client and server helps
future developers to interchange the components seamlessly. It's important for
calls to be serviced directly, to return the requested values and to finish upon
returning. Otherwise, if calls depend on local variables and states, the
communication becomes very complex. The only two states the service can be in
are: initializing and running. The initializing state is only at startup so it is
assumed no request ever finds the server in this state (except for the
administration interface).

Well-defined interfaces are at the connection of the client application to the
client socket of the server; between the client socket and the core of the server
and between the core and each of the modules of the server application. Several
objects have been specially designed for - and are used only in - the
communication between server and client. Each request is executed
immediately, sequentially without (many) threads running concurrent to
compute the results. Responses to requests are synchronous - always returned
to the call and not sent back at a later time (when done).

The music space is built of tracks that are mapped to points in a 10 dimensional
field. To be able to find nodes in this space and get their neighbors, it is
necessary to find a method of storing the data to be accessible in a fast way. A KD
Tree (Wikipedia, KD Trees, 2009) is a right choice for this, as it is very fast at
computing the nearest neighbor - O(log n) - and also nearest neighborhood -
basically the two functions needed for the proposed playlist generation
algorithm.

There are only few libraries that offer solutions for KD Tree implementations.
One of them is Perst8, a database that can store data in a KD Tree. As Perst is still
under development, the KD Tree algorithms are not complete and there is no
efficient implementation for retrieving the nearest neighbor or nearest
neighborhood. The advantage of Perst was that the whole music space wouldn’t
have been stored into the memory, but rather in a database.

The second option that is also used because of the shortcomings of Perst, is a KD
Tree fully loaded into the memory. KDTree.jar is a KD Tree implementing library
for java. The disadvantage of using KDTree.jar is the huge amount of used system
memory, occupied by the music space, but also the reloading process that has to
run every time the server is restarted. However there is also an advantage when
saving the tree in memory: high access speed. Only the coordinates of a track are
saved in the tree, together with the trackID and the track’s popularity. The
track’s title and artist together with other information is crawled from the
database at run time as this occupies too much memory.

8 Open source, object-oriented database - www.mcobject.com/perst/

20

The base of the playlist generation algorithm is the music space containing data
about similarity between tracks. The music space basically states that the
smaller the distance between two tracks, the more similar they are. The topic of
creating algorithms that use this property of the music space to generate
playlists has been addressed by several ETH internal projects discussed in the
Related Work Section.

The existing musicexplorer web application allows the user, in a visual 2D way,
to select two tracks representing the beginning and the end of his/her playlist.
The algorithm then draws a line in the music space connecting the two tracks
and adds tracks found in the vicinity of this line to the playlist such that in the
end the user has a playlist that represents a smooth transition between the
chosen tracks. Some problems arise from using this approach, because the
algorithm never knows what two tracks the user selects. If he/she just states two
of his/her favorite tracks, the distance between these two is very short in music
space metric, not allowing the algorithm to find optimal transition tracks. A very
high distance might make the transition not smooth enough. Optimizing in
respect to this variable - distance - is a difficult task and it’s even more difficult
to prove its correctness. Also another downside is that the generated playlist has
a fixed size and cannot be extended.

Also the Amarok2 plug-in (Kanel, 2008) uses a similar way of computing
playlists. The difference is that it does not take only two inputs but an indefinite
number, such that the user can state several of his/her favorite tracks. First,
these are reordered such that a minimal path is used to reach all of them. Next,
the algorithm walks along the paths with a predefined step size and after each
step it chooses the nearest track to that point in the space. After reaching the end
destination, it randomly chooses a point in the graph and walks to that one such
that the user can explore other types of music. The algorithm is intuitive and has
several advantages; the user can insert several favorite tracks and implicitly
helps the application to understand his/her music taste better. The random
chosen point at the end of the walk encourages the user to explore new tracks
but even more, it allows the generation of an ‘infinitely long’ playlist.

Both the approaches presented in the previous section tend to exceed the
simplicity that's set as a goal of this application. Also the user might be
overwhelmed when asked to insert several tracks; he/she might just have one
track in mind that he/she likes to listen to.

One first approach when dealing with only one seed track is to simply take the k
closest tracks to the seed. Through this, the user is likely to like the generated list
of tracks. An immediate problem is when trying to generate an ‘infinitely long’
playlist - the transition between the tracks is not very smooth after a while.
Figure 6-2 shows succession of tracks in a playlist after a certain number of
tracks have been already played. You can see how the algorithm makes very big
jumps to get the track that's nearest to the seed. Note that red tracks are ones

21

that have already been picked by the algorithm previously and cannot be chosen
anymore.

Figure 6-2 - Jumping behaviour when using static seed

A modification of this algorithm might bring the solution to this problem:
reassigning the seed for each iteration (Figure 6-3). The playlist generating
algorithm is a successive iteration of an algorithm that chooses the nearest track
to the seed, followed by setting the newly found track as seed for the next
iteration. In this way the application avoids as much as possible jumps over long
distances in music space metric. In the same scenario as the last example, the
modified algorithm performs without big jumps.

22

Figure 6-3 - Smoother jumping when dynamically assigning seeds

The modified algorithm also has other advantages: the distance between the
chosen tracks is always very short, guaranteeing a smooth transition. Not only
can the algorithm provide an infinite number of tracks, but also each track is
guaranteed to be very similar to the previous one. The random walking behavior
of the Amarok algorithm (Kénel, 2008) is also simulated, allowing the user to
randomly explore unknown regions of the music space.

6.3.3 Improvement

Choosing the nearest track to the current seed provides results equally
distributed regarding the popularity of the tracks. But the probability of users
enjoying the returned tracks is greater if the popularity of the returned track is
maximized. An improvement suggestion is therefore not to return the track
nearest to the seed, but the track in the vicinity of the node that has the highest
popularity. To find it, the algorithm queries for the first 10 tracks in its vicinity
and takes the one with the maximum popularity. Figure 6-4 shows a playlist-
computing example with and without this enhancement.

23

~o”

Figure 6-4 - Algorithm performance with (right) and without (left) vicinity priority search

The example in Figure 6-4 shows the algorithm performing with or without
vicinity popularity search (the vicinity consists of three tracks). On the left the
algorithm selects much less popular tracks in the first 10 than the one on the
right; but all this comes at a cost: the step size of the right algorithm is no more
than three times greater (on average) than the one on the left.

Because songs of the same artist are usually very close together in the music
space, the application tends to select several songs of the same artist and place
them successively in the playlist. This is an undesired behavior. To avoid it the
algorithm can be taught to also avoid tracks whose artist has appeared in the last
4 tracks. By applying this additional constraint, the algorithm avoids placing
tracks of the same artist less then 4 tracks apart.

When searching for tracks in the vicinity of a seed, tracks that have already been
added to this playlist in the past are omitted - as a rule. Doing so, if the algorithm
was not able to ‘move’ to a different region in the music space it starts picking
the lower popularity tracks. So after 24 tracks the algorithm can start adding
tracks that were present 24 tracks ago. Why 24?7 24 tracks with an average of 5
min/track are almost two hours of music - enough time to re-enjoy the tracks.

6.4 User Feedback

The importance of user feedback (both indirect and direct) has been discussed
throughout several sections of this report. Most important when designing the
feedback algorithm was the decision what data to store so that it is of use to any
future evaluation.

6.4.1 Direct and Indirect User Feedback

Direct user feedback is represented by the feedback the user chooses to submit
to the application in order to help the community. Currently two types of direct
feedback are implemented: ‘Quality is bad’ and ‘I don’t like the track’. Because

24

the application doesn’t directly react to feedback (yet) this feedback is stored for
a later processing. This direct feedback shows for example learn how many users
actually used the feedback algorithm.

The users should hit ‘Quality is bad’ to signal that a YouTube video of a track has
bad quality or doesn’t show the track at all. In a future version, the application
immediately reacts to this feedback and propose a different track or, even better,
let the user propose a better track by presenting a list of alternatives.

The ‘I don’t like this track’ is intended for users notifying the algorithm that the
chosen track was not chosen right by the playlist generation algorithm, because
this algorithm should only generate tracks that the user likes.

Indirect user feedback is feedback recorded and reported by the client
application and without the knowledge of the user. It's important to log also the
behavior and commands of the users to be able to figure out algorithm and
application flaws. For example, if a user listens to the first 5 seconds of the first
three tracks, but listens the whole fourth track, it means that the first three
tracks were not a good choice for this user.

Because most computations of the application are done per session basis, it is
good to keep track of the user’s sessions and their activity in these sessions. That
is why the application uses a table called tlbFeedbackSessions to save
information about the session. This information includes the sessionID of the
session - which at the same time is the date and time the session was first
started stated in milliseconds since Jan 1st, 1970 - and the IP address of the user
to compute a user-country statistic and to help user-tracking over several
sessions.

All commands issued by the wusers are saved in a table called
tblFeedbackCommands. Most of the commands issued by the user (as direct or
indirect feedback) but also commands issued automatically by the application
(like a track finishing playback) are recorded together with their time of issue -
at the same time being a commandID, the associated sessionID, the operation
code and the trackID upon which the command was executed. The list of
operation codes with their explanation is found in Table 5-1.

Operation Code = Command Track ID

-1* Report bad video

-2%* Report bad choice

0 A track reached the end and the The next trackID

next is played

Manually select a track to play

Use one of the tracks as seed

Manually remove a track

Track lifted to be moved**

Track put down after move** trackID before which the

Ul W IN -

25

dragged track was put
down, or -1 if it was put
down as last track in the

playlist
6 Toggle repeat off
7 Toggle repeat on
101%** Generate Playlist Command The seed
102%** Get more Tracks The seed
103%*** Refresh Playlist The seed

* Negative operation codes show direct user feedback, while positive codes show
indirect user feedback.

** These two commands are supported but not implemented on the client side
application. Hence, if a track is moved no command trigger is issued to the
server.

*** Commands having codes of the form 10* are not issued by the client side
application, but by the service itself, when the user requests new tracks for
example

The table tblFeedbackTracks holds some special case data. When the user issues
a generate playlist command, the service logs that command in
tblFeedbackCommands but also saves the tracks returned to the user as result of
his/her request in the tblFeedbackTracks table. Each track is saved with the
following fields:

¢ commandsID - representing the commandID whose result generated this
trackID;

e the trackID;

* the position, representing the position of the track in the returned array +
videolD.

The latter is important for example for evaluating commands like 1 - Manually
select a track to play. If the user did manually select a track to play, it could mean
this track is one of the users favorites so the algorithm can see where in the list it
was and how the algorithm could be improved to have this track appear earlier
in the playlist.

7 Conclusions

The conclusions section summarizes the projects final state and reconsiders the
main ideas and results.

The goal of this thesis was to implement a user friendly, very simple to use,
online music player. The approach set off by deciding which the ground rules of
the implementation are. To pursue the main rule of creating an easy to use music
player, an in-browser implementation has been chosen but this couldn’t live
without a server implementing some services the client application couldn’t

26

handle by itself. Among these services, the most important was to generate
playlists for the music player based on track similarity analysis.

The UI was the next thing to debate and how to design an Ul that is both very
simple and intuitive, but also powerful enough to provide enough information to
the service when asking for playlists and also to be able to record the user’s
action for a future evaluation.

YouTube has been chosen as main music content provider and the main
arguments that brought it a step in front of Last.fm were the good enough
coverage of the music space and an availability of full-length tracks, whereas
Last.fm usually provides only a 30 seconds snippet for a track. Analysis of
YouTube coverage shown that in a real life example, YouTube offers content for
about 80% of the tracks. Unfortunately, the current implementation can find
only 60% of the tracks in a satisfactory quality range. However it has been
shown that with post-processing of the YouTube results, an additional 17% can
be mapped to good quality track implementations on YouTube, making it able to
provide good results to about 77% of the user’s requests. Also it has been shown
that through a good feedback system, these numbers can be boosted even
further. Note that these percentages reflect the real world usage statistics of the
application (i.e. highly popular tracks); they cannot be generalized for the whole
music space.

The playlist generating algorithm is based on analysis of the provided music
space and its possibilities as similarity measurement tool. Several algorithms
previously developed by ETH members were presented and analyzed both in
respect to their own advantages and limitations but also their use in the context
of this project. An algorithm has been developed that uses only one seed to
create an ‘infinite’ series of succeeding tracks - meaning tracks that are each
very similar to the previous and next one. The simplicity of the algorithm makes
it possible to request any number of tracks from the system and the similarity
metric between two successive tracks to be constant over the whole list of
returned tracks. Also, the list attempts to take the user on random walks in the
music space to explore new regions of music. Enhancements brought to the
algorithm, like using the popularity value of each track to make a more advanced
selection of neighboring tracks, raised the average popularity of the outputted
tracks making the algorithm provide tracks that are even more attractive to the
users.

The goal of building a simple skeleton application for providing an online music
player has been achieved. The application is a good playground for further
developments or innovations especially in the algorithmic part.

8 Discussion and Future Work

The Section deals with the ideas that didn’t make it to the development process
mainly because of the tight time schedule, but that are important to mention and
at some point or another have to be addressed in future development.

27

The goal of the thesis was to create a simple application to be used as a
playground for future ideas of providing valuable music content to users. Also a
simple algorithm was developed that delivers good playlists with minimal input
from the user side.

Especially on the side of playlist-generating algorithms there is space for a lot of
new ideas. Past ETH internal reports have shown that there are a lot of ideas that
can make the best out of the given music space. Some of the ideas were discussed
in this report to find a new algorithm that combines the advantages of the other
algorithms while repressing the downsides. Of course no algorithm is perfect in
every sense, but especially this report shows that one can find a better algorithm
as other approaches, as long as it's customized on the targeted solution.
Algorithms that require more elaborate user input can be easily deployed and
tested on the developed application because of its module-based structure. Some
examples of such algorithms are found in the other ETH internal reports like the
musicexplorer web application, the Amarok plugin and a (not further detailed)
like/dislike track generation algorithm (developed for the Android platform,
(Bossard L., 2008) currently under submission).

When discussing the KDTree and its all-in-memory implementation, the
disadvantages of this solution have been presented. A future step is to integrate
the KDTree more into a database, rather than storing the data in memory.

In retrieving the results from YouTube the application does perform well only on
60% of the tracks. A post-processing algorithm has been presented that helps the
rising this margin to 77%; this algorithm has not been yet implemented in the
application. Also the integration of user feedback is very helpful if considered.

Depending on the concurrent user access on the service, parts of, or the whole
concept of shared resources would have to be generated all over. Especially the
suggestion retrieval algorithm, currently running in the Server’s core, could be
externalized to a module and enhanced not to crawl the database each time a
user hits a keystroke.

The feedback recorded by the application is very important for it's future
development. It gives a lot of information about the users behavior and allows a
good analysis of their actions when using the application. Based on the results,
some of the parts of the application can be changed, most probably the playlist
generation algorithm if it turns out that the people are not very satisfied with the
results.

Even more important is to analyze and react to direct user feedback. This is
especially essential in managing the quality of the YouTube videos of the tracks.
Because this quality warranty is out of the hands of this application it’s
important to react to the user’s feedback on this matter.

28

Implementing a mechanism that allows users to suggest a better YouTube
content based on several proposals is an important tool for the current
application, because it would allow the users to directly help at providing good
music content. Through implementing an advanced user feedback function, the
application could be designed to analyze the received feedback and to update its
state automatically and in real time, for the benefit of the whole community.

Another point only touched by the current implementation is the Facebook
integration. The application is available on Facebook and users can recommend
it to their friends, but the application is not using the access to the user’s data
yet. This data could prove very important, especially for generating the
application’s own - unbiased - track similarity space. Tracks listened to by users
could be analyzed over several sessions, not only session-based as it happens
now, moreover it could be compared to the history of friends to determine ways
of recommending tracks based on the friends’ preferences.

Having such a knowledge about the users could lead to completely new ways of
generating playlists, maybe without any user interaction at all... similar to
Last.fm’s approach, but with possibly better results because the playlists could
be based not only on the private but also on the friends’ track history.

9 Bibliography
Bossard, L. (2008). Pancho - The Mobile Music Explorer. Ziirich:
DCG.TIK.EE.ETZH.CH.

Bossard, L. (2008). Visually and Acoustically Exploring the High-Dimensional
Space of Music. Ziirich: DCG.TIK.EE.ETHZ.CH.

Gonukula, A., Kuederli, P., & Pasquier, S. (2008). MusicExplorer: Exploring the
Space of Songs on your PC. Zurich: DCG.TIK.EE.ETHZ.CH.

Google. (2008, 04 18). Google Web Toolkit. Retrieved 04 18, 2008, from Googe
Code: http://code.google.com/webtoolkit/

Lorenzi, M. (2007). Similarity Measures in the World of Music. Zurich:
DCG.TIK.EE.ETHZ.

Unknown. (2008). Amarok Plugin. Zirich: DCG.TIK.EE.ETHZ.CH.

Wikipedia. (2008, 04 18). AJAX (programming). Retrieved 04 18, 2008, from
Wikipedia: http://en.wikipedia.org/wiki/Ajax_(programming)

Wikipedia. (2009, 04 22). KD Trees. Retrieved 04 22, 2009, from Wikipedia:
http://en.wikipedia.org/wiki/Kd_tree

29

