
Semester Thesis
June 2009

Development of software tools to facilitate
management and experimentation with the

TIK wireless testbed

Michael von Känel
Advisor: Merkouris Karaliopoulos

Table of Contents
Abstract..1

1.Project specification..2

1.1.Introduction and Motivation...2

1.2.The TikNet..3

1.3.Requirements...3

1.3.1.Management and monitoring...3

1.3.2.Visualization possibilities..4

1.3.3.Experimentation control...4

1.3.4.Security..4

1.3.5.Maintenance...4

2.Development of software tools..5

2.1.Nodecontrol...6

2.2.Visualization framework...8

2.3.Webmin wrapper...8

2.4.Maintenance and challenges...9

3.Demonstration and discussion...11

3.1.Example problem..11

3.2.Self-assessment of project goal achievement..13

4.Possible testbed functionality extensions..14

Reference..15

Appendix..16

nodecontrol (user documentation)...16

ssh..19

Webmin...19

Setup a new tik node...20

Security...23

Abstract

The goal of this project has been to implement a set of user-friendly tools to facilitate the
usage, monitoring and management of the TikNet, a static multi-hop wireless network located
at the G floor of the ETZ building. The testbed is used both for research and teaching in a real
case environment.

First existing testbed software solutions are checked and goals for the new software defined.
Since no available software matches precisely the case of the TikNet, a custom made solution
had to be devised and implemented.

During this semester project software tools were developed to manage and monitor the
testbed. It supports testers in the easiest but still most powerful way to simplify their work on
the TikNet. The software module nodecontrol is coded in the Ruby programming language
and executed mainly from the command line. It provides functionality ranging from simple
monitoring tasks to wireless interface management and experimentation. Additional abilities
include execution of predefined broadcast measurements as well as simplifications for
generic measurement aggregation.

A framework to visualize asymmetric wireless ad-hoc network links was developed and
customized for the TikNet. It is coded in Ruby as well and produces vectorized xfig images,
which are convertible to any commonly used image format. In order to ease the usage of
nodecontrol, a module for Webmin was developed. Webmin is a web-based interface for
Unix system administration. The module allows users to execute the most basic operations of
nodecontrol directly through a web browser.

With help of these new tools, experimentation on the testbed is highly facilitated as shown in
a demonstration exercise in section 3.1. Since the scope of this work is wide, there are
various ways for improvements and extensions to the current software and the testbed in
general. Some of them are stated in the last chapter.

1

1. Project specification

1.1. Introduction and Motivation

Over the past few years wireless technologies such as 802.11 were deployed everywhere
around us. Beside the infrastructure mode, several new technologies have been developed or
are still under research. Special attention is given to ad-hoc networks in order to improve the
performance of wireless networks and develop new applications based on this technology.
For example in static multi-hop wireless ad-hoc networks, several nodes cooperate by
forwarding each others packets. The great advantage is the easy deployment and the self
organization of the nodes. Another branch of wireless research goes into direction of mobile
ad-hoc networks (MANET) which often have to deal with sparse network connectivity.

However most of todays wireless research is based on simulations. Simulations have the clear
advantage, that they are easy to design. Running a new experiment comes with less effort
than in the real world. However, due to the complex nature of wireless signal propagation, it
has been shown that the results of even the most common simulators, like the ns-2, differ
significantly form real-world experiments[1].

Therefore a functional indoor static wireless testbed was installed at ETH. Every ETH
member can run arbitrary real-world experiments on these nodes without the limitations of a
simulator. One work, for example, evaluated several routing metrics on the testbed[3]
whereas another used it to obtain measurement to assess signal strength-based positioning
algorithms [4]. Furthermore the testbed can be used by students for short exercises, where
they could obtain hands-on experience with real wireless network equipment. On the other
hand, and despite the advantages a wireless testbed can offer, it is a lot more complicated to
setup a new experiment compared to a simulator. Therefore powerful tools are needed in
order to control, manage and monitor the testbed.

There exist several real-world testbeds, each using its own software heavily based on the
specific purpose of the network. To state a few, Emulab[5] is one of the biggest sets of
testbeds. It was first developed by the Flux Froub, part of the School of Computing at the
University of Utah. The software is open source and nowadays also used on several sites
around the world. Then the ORBIT[6] radio grid emulator offers an indoor wireless network
testbed. It comes along with a whole experiment control framework coded in the Ruby[7]
programming language. It has also been shown that most of these software solutions are too
specific to be ported to another network[8]. More information about software solutions of
other testbeds can be found in section Error: Reference source not found

Considering the TikNet in the beginning of this work, only simple ssh based connection to
each node (or in very simple batch mode) was possible. Setting up new wireless interfaces
mostly let crash the machine requiring a manual hard reset. Since the size of the testbed was
growing, the administrative effort was also growing, making it time-consuming to set up even
simple experiments Nearly none of the functionality the testbed offered was documented.
Because it was difficult to configure nodes, experimenters did not shutdown the wireless
interfaces properly,which lead to interference with other experiments. This had also negative
consequences for the acceptance of the testbed by the rest of the local community.

2

1.2. The TikNet

The TIK wireless testbed (TikNet) consists of 21 nodes1 distributed throughout the G floor of
the ETZ building of the ETH (see Illustration 1). Every node is equipped with a D-Link
wireless card which supports 802.11a/b/g based on the Atheros chip-set therefore running
with the Madwifi drivers (madwifi-ng) on a Debian system.

All nodes are accessible over the wire (e.g. using ssh) from a central node (tik-wifi4), which
acts as an entry server in this case. Configuration and monitoring is all done over the wire.
Only experiments use the wireless interface.

1.3. Requirements

The goal of this project is to implement a set of user-friendly tools to facilitate the usage,
monitoring and management of the TIK wireless testbed.

In order to have a guideline several objectives or flexible targets where specified:

1.3.1. Management and monitoring

It should be possible to do basic operations on each node or a set of nodes. These includes
testing for connectivity, rebooting of machines, silencing the wireless devices, observing its
current wireless settings and running services. A special focus lies on creating new wireless
interfaces which should support the full functionality of the Madwifi driver.

In order to improve user friendliness and facilitate the work for those who are not familiar
with a Linux shell, a GUI is needed. The usage and the code should be well documented to
reduce difficulties to continue this project in another work.

1 Due to maintenance work not all 21 nodes can be used in an experiment (Stand: June 09).

3

Illustration 1: Snapshot of nodes in the TikNet.

1.3.2. Visualization possibilities

In order to get a quick overview over the testbed it should be possible to visualize several link
parameters such as throughput or jitter.

1.3.3. Experimentation control

In order to execute arbitrary experiments faster, the possibility to remotely execute scripts on
multiple nodes is needed. Also some basic experiments like link and broadcast measurements
need to be available. This includes the automatic setup of the experiment, along with trace
collection and some simple result visualization.

Additional tools for more powerful measurements should be tested and installed.

1.3.4. Security

Determine guidelines or access policies for work on the testbed.

1.3.5. Maintenance

In parallel maintenance work is required which includes upgrading of current operating
systems, help setting up new nodes and installing and upgrading software tools for
experimentation with the testbed.

4

2. Development of software tools

Probably the easiest solution is to adapt some wireless testbed tools from other testbeds to be
used by TikNet. However the freely available Emulab[5] software is designed to run on on a
wired network, which can be controlled using the same script language as the ns-2 simulator
does. This simplifies the step needed to try out a simulation in the real world. It offers an
internal database for trace aggregation and a web interface to control and manage it. Besides
several public but wired testbeds, only the original Emulab, located at the University of Utha,
provides a wireless testbed. This one matches size and form of the TikNet. However the
source for the wireless network was never disclosed. So the Emulab could only be used to
aggregate the data. The whole process of setting up new nodes is done in the wireless Emulab
by using low level commands or simple scripts, which is not more than the TikNet offered in
the beginning. Since setting up this Emulab environment is difficult and time consuming and
the only advantage would be a more efficient data aggregation, we decided to not use the
Emulab at all.

Roofnet[9] is another experimental 802.11 mesh network currently under development at
MIT. It consists of several nodes located at roofs. The custom made madwifi driver and other
used software is open source. However the Roofnet is not actually a testbed. It mainly
provides a static network using a routing protocol called SrcRR. This does not match our
testbed designed to run arbitrary experiments and therefore cannot be used.

ORBIT[6] offers a testbed setup where every node of the network can reach any other node.
An experimenter can use the predefined Debian based OS and describe its experiments in the
Ruby programming language or run arbitrary code as root for a scheduled time slot. Similarly
to Emulab, ORBIT also offers a network which can be seen as a compromise between
simulation and real world setup. This is different from a real-world case the TikNet offers.
Furthermore it was not possible to get the source of the control software.

There are many more testbeds available. But none of the available software solutions could
easily be adapted to the TikNet. It has already been shown that it is difficult to reuse software
tools for wireless testbeds.[8] Therefore several possibilities for a new software design where
tested.

First the possibility to aggregate the data with the Simple Network Management Protocol
(SNMP) was checked. SNMP is a standard for network management. The basic idea is, that a
managed device running an agent reports meta-data, organized in a tree architecture (MIB),
back to the management system. System variables such as “free memory” or “number of
running processes” are measured typically. There are many SMNP solutions available,
mostly focusing on monitoring web servers. However finding a MIB which supports 802.11
on Atheros cards turned out to be an unsolvable task. Instead of spending a lot of time in
developing our own MIB, it was decided to go into direction of the ORBIT testbed and to
start from scratch.

Ruby[7] was the language of choice. To describe it in a few words: It is a dynamic, reflective
object-oriented programming language. It has Perl and Smalltalk like features and offers the
possible to develop powerful code in few lines of code. This keeps the code understandable
and simple to reuse. Because also Ruby itself is simple to learn and understand, it is also
favorable to be used in a subsequent work.

5

2.1. Nodecontrol

In this chapter the general concept of the software responsible for managing and monitoring
is described. The code of nodecontrol is modularly organized. The sequence of actions during
a generic task execution is the following: Fist the appropriate code is generated. This can be
given by user input, but most of the time it will be a predefined piece of external code. The
action is then passed to the instance responsible for executing, along with a list of affected
nodes. Wherever possible the action will be forked and executed in parallel on the remote
machines. This speeds up many of the tasks drastically. Finally the processes report back to
the parent process, which will take care of correct ordering of the collected data and maybe
further analyzes the data. This process can be seen in Illustration 2.

This general concept is also depicted in the construction of the command line argument:

nodecontrol action [arguments] affectedNodes

Every node has its id starting from 1 upwards (e. g. tik-wifi4). The affected nodes can be
described as a comma separated list of node-Id's, a hyphen separated range or a specific
keyword. This allows fast specification of target nodes.

Currently several actions are implemented, some of which are presented here. The rest can be
found in the documentation or the program internal help menu (see Appendix).

 The most basic action is test. It checks whether a given node allows an incoming ssh
connection without password, which is required for most of the actions. As in most cases the
output can be a simple console output or a picture. The picture output is further described in
chapter 2.2. There are more self explaining actions to reboot and ping nodes.

The more complex action set, is used to create a new wireless interface. On Linux systems
generally exists the programs “ifconfig” and “iwconfig” which are generic tools to control
network and wireless related settings. Theoretically they have the power to control every
detail needed to setup and modify an interface. However in practice they are often unable to
do so, sometimes with drastic effects such as a complete freezing of a system requiring a hard
reset. This was a big problem before this work was done. Most problems are caused by the
Madwifi[10] driver which does not fully support these tools and offers a set of its own tools
for specific tasks.

Nodecontrol chooses the right tools for the desired configuration and makes it as easy as
using the generic tools. Without loosing any of the scripts power a testbed user can simply
specify all differences from default configuration and therefore does not need to deal with the
complicated setup done in the background. As an example the following command which is
used to set nodes 1 to 4 into ad-hoc mode:

nodecontrol set mode adhoc 1..4

6

Illustration 2: General concept of task execution.

childchildaction execgenerated
code

childforkinput collect

The above command is executed on every of the four nodes with slightly modified
commands. First the old virtual wireless interface (VAP) is removed due to stability reasons.
Then the MAC is changed in order to re identify a node quickly according to its MAC. Then
a new VAP is created according to the specified mode. As for changing the MAC, a separated
mode is needed to operate the card in 802.11b. And finally the well known commands
iwconfig (for hardware related changes) and ifconfig (for network related configuration) take
action:

wlanconfig ath1 destroy; macchanger --mac=00:19:5B:00:00:%0id
wifi0 && wlanconfig ath1 create wlandev wifi0 wlanmode adhoc
&& iwpriv ath1 mode 11b && iwconfig ath1 essid tik-grid nick
tik-wifi%id channel 1 rate 11M txpower fixed && ifconfig -v
ath1 inet 10.0.0.%id netmask 255.255.255.0 up

On the opposite side also the need to quickly destroy a set of interfaces exists since they also
might interfere with other experiments. This can be done by completely disabling the wlan
card (silent) or by creating a new interface which does not send beacons at all (nosbeacon). It
therefore is completely silent if there are no packages to be sent, but it is still part of the
network.

Another action worth mentioning is called tudp. The program called Tudp is a custom
measurement tool written by Yang Su at the computer science department of ETHZ. It is used
to perform mainly MAC broadcast measurements. Why this tool is used, is explained in
chapter 2.4. Without arguments a set of nodes broadcasts and another set listens. But many
other patterns such as pairwise or parallel broadcasting are available. Besides the
experimenting part the collected data is analyzed and basic statistics such as packet loss,
throughput or jitter is displayed to the user. Even outputting the gathered statistics in form of
a picture is possible as explained in the following chapter. If a experimenter wants to
calculate more advanced stuff, the raw data output files can be used which are automatically
collected at the entry node.

There are even more advanced pattern such as bir, which calculated the Broadcast
Interference Ratio[16] (BIR). In order to calculate the BIR a series of tudp experiments is
done starting by broadcasting from every node and listening at the others. Then each pair of
nodes starts broadcasting. The results are then used to calculate the BIR of each pair of links.

Even if a needed experiment is not supported by tudp, an experimenter most possibly wants
to collect packages at a set of nodes. So after setting up an experiment, the tshark action
might be useful to collect data at every desired node and sending this back to the root node.

There are lots of other powerful functions for experimenters. The reader is here referred to
the script internal help menu, the appendix with the user documentation about nodecontrol or
the TikNet wiki[17].

nodecontrol help [action]

7

2.2. Visualization framework

For visualization, primarily one software tool called ViTAN[11] was tested. The ViTAN
project offers a tool written in Perl and has a well documented technical report.[12] An input
file describes positions of nodes and link qualities out of which an Xfig file is generated.
Xfig[13] is an open source vector graphics editor which runs on most UNIX-compatible
platforms. It is also possible to export to non-vectorized image formats. However the tool had
several problems in displaying special graphs such as the zero-graph, synchronization issues
which generated finitely large files and link qualities must be integers from 0 to 255, just to
name a few.

We decided to develop one's own visualization framework because it seemed to be easier
than fixing all limitations of ViTAN. Fortunately lots of code could be reused. As ViTAN
does, the framework can output files in the native Xfig format[14] and convert them to
Portable Network Grapgics (png).

A network graph is first a Ruby object. Step-by-step nodes can be added in different states
(such as “green” meaning node is fine). Then unidirectional links between these nodes can be
added in several formats. For example to display all throughputs, one can enter them as bits/s
and let them convert automatically depending on the input size to Mb/s.

2.3. Webmin wrapper

Webmin[15] is a web-based interface for system administration for Unix. Webmin comes per
default with various modules to configure many operating system internals, such as user
access, services, disk quotas and many more. Webmin is open source and largely based on
Perl, running its own web-server. It is installed on all nodes to manage simple tasks, mostly
for users not familiar with a UNIX shell. The service can be accessed on TCP port 10000 (per
default), using a regular web browser.

In order to improve user friendliness a Webmin module was developed in Perl which acts as a
wrapper for nodecontrol described in chapter 2.1. If nodecontrol runs on a given node under
a given user, it also runs via this wrapper. In the current setup of the testbed one should run it
on the entry node as root.

The idea was to create a web interface for the most basic commands of nodecontrol such as
testing if a set of nodes are up, setting a new interface and doing some predefined broadcast
measurements for a quick snapshot over the current state of the testbed. The module is
capable of using the output pictures created by using the visualization framework and
displaying them to the user right in the web browser.

8

2.4. Maintenance and challenges

The wiki[17] of the TikNet not only contains a set of hints and scheduling about this work
but should mainly be a central place of information for every user of the testbed. Hence all
necessary documentation about several software tools can be found there. We also provide
some info in the Appendix. Specific maintenance information for example how to add a new
node to the TikNet was written during this work. Concerning maintenance, some small
example problems encountered are presented in the following paragraphs.

Because there are lots of different wireless networks at ETH operating in 11b/g there is lots
of noise around the 2.4GHz band. To minimize interference for the TikNet and also not to
disturb other experiments in 11b/g too much, it was decided to operate the testbed in 11a per
default. Sadly because 11a uses the 5GHz band it has problems propagating through the thick
walls. In fact the range is reduced drastically such that no connected graph was possible any
more. If an experimenter wants to have a sparse graph this is an option, but for most cases
11a can not be used.

Another problem encountered was related to link measurements. A standard tools to measure

9

Illustration 3: The Webmin module for nodecontrol in action.

link quality in IP based networks is iperf[18]. Besides TCP it also supports UDP data
streams. In order to measure all links of the TikNet, some capability to do broadcast
measurements was needed. Iperf does not directly support broadcasting, but has the ability to
send multicast packages for which we went first. Sadly iperf's multicast is IP based, therefore
it sends the package only once to the card, but the card sends one package to each member of
the multicast group. Therefore this does not improve number of packages sent. Other well
known tools like mgen have similar problems. Additionally iperf had serious stability
problems while performing UDP experiments.

A solution was found with tudp which is a custom measurement tool written by Yang Su at
the computer science department of ETHZ for implementing MAC broadcast transmissions.
Since it is only a simple noise generator, it does not offer any data analysis. Simple statistics
are offered by the nodecontrol or, to completely work around this, one can monitor all
packages with an additional program like tshark and use standard analysis tools.

For experimenting, one likes to have as few unknown variables as possible. Per default all
cards use power and rate adaption which makes experimenting less predictable. Disabling
power control could be done easily but rate adaption is hard compiled into the Madwifi
driver. The current version of Madwifi (v0.9.4) uses the sample algorithm2. It turned out to be
infeasible to completely disable rate adaption, but the statistics about what rates are used for a
specific MAC can be found as following:

cat /proc/net/madwifi/ath?/ratestats_* | grep "MAC" -A 5

2 SampleRate chooses the bit-rate it predicts will provide the most throughput based on estimates of the
expected per-packet transmission time each bit-rate. SampleRate periodically sends packets at bit-rates other
than the current one to estimate when another bit-rate will provide better performance. [19]

10

3. Demonstration and discussion

3.1. Example problem

To illustrate the work on the testbed with the new functionality, we will solve a Lab exercise
of the ATCN course which basically contains the following steps.

1. setup a new ad-hoc network on a subset of nodes

2. verify the configuration and test the connectivity

3. paint the connectivity graph

4. calculate the broadcast interference ratio (BIR) of each link combination

To get a quick overview of the nodes we will
be using, we go to the Webmin page and run a
test on all nodes. We immediately realize that
nodes 11 and 12 are down (mentioned in the
command output and painted in red rather than
green) and the rest of the nodes is ready to
receive actions.

We will take the subset of nodes 1 up to 5 for
this exercise.

Even though we could do the following steps
also within Webmin we will go for the
console. First we need to login to the entry
server.
ssh root@tik-wifi4

In order to keep the node clean we change to
our user directory.

cd /home/testuser

Then we setup a new grid. Sadly we forgot
how to setup a new grid network so we
checkout the help.

nodecontrol help set

For every action there is a help chapter, so this
will not be mentioned during this exercise
anymore.

11

We create new interfaces on our set of nodes
with a non default ESSID. The script takes
care of the whole rest of the settings.
nodecontrol set essid tik-grid1
1..5

To verify the functionality we also check the
settings on all nodes quickly.

nodecontrol stat 1..5

We now do some throughput measurements
using tudp and draw this as a picture.
nodecontrol tudp png ex1 1..5

A predefined broadcast measurement will be
performed and the picture is stored to ex1.png.
In the current case we get a fully connected
graph with high loss rates for nodes far apart.

The last step includes to calculate the BIR
which can be easily done.
nodecontrol tudp mode bir log
ex1 1..5

This will do all measurements automatically:
First let all nodes broadcast sequentially and
then each possible pair of nodes
simultaneously to calculate the BIR of each
link combination.

Optionally we output the raw data of the
experiments to log files with the prefix “ex1”.
For example in the case of pairwise broadcast
on nodes 1 and 3 this created the file
“ex1_bcast1,3_node2.log” which contains the
packets received at node 2.

Now the experiments are finished. In order to
silent the cards to minimize interference to
other experiments, we can kill the wireless
interface
nodecontrol silent 1..5

...or simply disable beaconing but letting the
network unchanged.

nodecontrol set essid tik-grid1
nosbeacon 1..5

12

3.2. Self-assessment of project goal achievement

The rationale behind certain decisions taken during development is already described in
section 2. about software development. Therefore the discussion in this paragraph
concentrates on how and in what amount the goals are reached.

A great step was done in terms of facilitating the management of the testbed. With help of the
developed tools it is easy to get a quick overview of the status of the testbed nodes. For
example, creating new interfaces works around all difficulties and lets the user execute
powerful commands with very simple actions. For users not so familiar with a shell, a web
GUI, integrated in Webmin as a module, was created. This module only provides basic
functionality to work with nodecontrol. If the future shows that most of the users only want
to use the web-interface, one needs to improve the plugin as stated in section 4.

In order to visualize information about the testbed, a new framework was developed
optimized for showing ad-hoc network links. This is very simple to use on the predefined
static TikNet nodes but still can be used in any network setup. Sure a whole semester thesis
could be written about how to visualize the TikNet in an optimal way and there is plenty of
room for improvements (see future work).

Besides management, our work has enabled simple experimentation using the testbed. Most
time was spent into broadcast measurements. It is difficult to provide user friendliness
without giving away too much power such that a simple measurement can be performed
without much knowledge; nevertheless, very focused experiments are now feasible with the
testbed. Currently this is solved by showing simple statistics by default with optional raw
output. In a similar manner it is possible to easily monitor packages arriving at each node and
collect them.

Security is currently an issue on the TikNet. Because all changes of the wireless card and also
some noise generators operate on kernel level, for most of the actions performed, root rights
are required. Other testbeds address this problem by the use of an entry server. Complete user
management, logging and scheduling of experiments can be done on that single computer.
The problem of security was not yet addressed directly mainly because of the lack of time.
However some guidelines on how experimenters have to behave when using the testbed are
given in the Appendix in the end of this report.

In summary, the goals concerning management and simple experimentation are reached.
Concerning usability and visualization capabilities some big steps where taken. The security
aspects of the testbed and some automation in scheduling experiments, if needed depending
on number of testbed users, will be worth a separate Semester Thesis; we give some hints in
the next section.

13

4. Possible testbed functionality extensions

There is much work to be done in order to improve the tested usability further. About lots of
points mentioned here, a whole semester thesis could be written.

Nodecontrol is the central software of this semester thesis and some of its possibilities are
described in this work. A first step, which must be taken as soon as many people are using the
software, is bug fixing. Several steps are taken to minimize bugs beginning from the script
language to excessive testing, however some bugs cannot be avoided. Performance might
become an issue for big experiments because most of the results are returned directly to the
server node and are kept in RAM until the experiment is finished. In order to facilitate
ensuing work on the software, the code is accurately documented and commented. A next
step is to further improve its abilities. For example the Click Modular Router[20] could be
integrated nicely. In a final step a generic script language describing experiments would be
desirable, like it is done in ORBIT. However the simplicity of the current software should be
kept.

If the future shows that a better way to collect data is needed, one might reiterate on the
software used in Emulab. The tools developed in this work can easily coexist with such a new
approach.

The visualization framework is currently mainly usable within a Ruby script. One could add
interfaces to use it with other API's. Then it could be further generalized such that it is as
simple to use with any network as it is currently with the TikNet. Additionally the
visualization of the asymmetric links is far from perfect because they often overlap for dense
graphs making it hard to read the numbers out of the picture. Finally, it would be nice to get
rid of the xfig libraries and do the whole process of creating the image in Ruby. A possible
extension could include the drawing of conflict graphs of a network.

Security is still an open problem. Our recommendation would be to have this issue treated in
the context of another semester thesis. A first step could include an actual entry server apart
from the testbed. Access on the testbed should only go through this to facilitate logging and
user management. Next steps could include an automated experiment scheduling along with
complete shutdown of nodes for idle periods.

14

Reference

[1] D. Kotz, C. Newport, R. S. Gray, J. Liu, Y. Yuan, and C. Elliott. “Experimental
evaluation of wireless simulation assumptions.” Proc. Of MSWiM 2004, October
2004.

[2] G. Sotiropoulos, “ Experimentation and evaluation of routing metrics for multi-hop
ad-hoc wireless networks on an indoor wireless testbed ”, Semester thesis ETH, June
2007

[3] G. Parissidis. Interference-aware routing in wireless multihop networks. PhD
Dissertation, ETH Zurich, April 2008

[4] K. Farkas, T. Hossmann, F. Legendre, B. Plattner. Link Quality Prediction in Mesh
Networks, Computer Communications, Elsevier, No. 31, pages 1497-1512, May 2008

[5] Emulab Network Emulation Testbed, http://www.emulab.net

[6] ORBIT, http://orbit-lab.org

[7] Ruby programming language, http://www.ruby-lang.org

[8] P. De, A. Raniwala, S. Sharma, T. Chiueh, “Design Considerations for a Multihop
Wireless Network Testbed ”, Stony Brook University, October 2005

[9] Roofnet, http://pdos.csail.mit.edu/roofnet

[10] mafwifi-ng, http://madwifi-project.org

[11] ViTAN, http://www.acticom.de/en/products/vitan/

[12] F. Fitzek P. Seeling M. Reisslein M. Zorzi, “Visualization Tool for Ad Hoc∗
Networks - ViTAN v1.1 ”, acticom GmbH, Arizona State University, Università di
Ferrara, February 2003

[13] Xfig, http://www.xfig.org/

[14] Fig Format 3.2 specification, http://epb.lbl.gov/xfig/fig-format.html

[15] Webmin, http://www.webmin.com

[16] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, B. Zill, “Estimation of
Link Interference in Static Multi-hop Wireless Networks”, University of Texas,
Austin & University of California, Berkeley, 2006

[17] TikNet wiki, http://tiknet.ee.ethz.ch

[18] Iperf project page, http://sourceforge.net/projects/iperf/

[19] J. C. Bicket, “Bit-rate Selection in Wireless Networks”, Massachusetts Institute of
Technology, February 2005

[20] Click project page, http://read.cs.ucla.edu/click/

15

Appendix

Most parts of this Appendix can be found in the TikNet wiki (tiknet.ee.ethz.ch visited:
June 2009).

nodecontrol (user documentation)
nodecontrol action [arguments] affectedNodes

Actions:
 help - get specific help ('nodecontrol help [action]')
 ping - pings nodes from the current machine
 test - tests ssh connection to each node
 silent - kills the wlan interface
 reboot - reboots nodes
 set - sets new wlan interface
 stat - prints wlan related information
 exec - executes remote commands on nodes
 tudp - broadcast measurements
 iperf - link measurements (under developement)
 tshark - collect packages

Nodes:
 Specifies the affected nodes by a comma separated list (no spaces).
 Accepted values are integers, ranges or simply the keyword 'all'
 Example: 1,5..10

Placeholders:
 Any executed command can contain placeholders affecting each node
differently:
 %id - will be replaced with the node number (1,2,3...)
 %host - replaced by the node host name of the wired interface (tik-
wifi1, tik-wifi2,...)
 %id0 - replaced with a two digit id (01,02,...20)

help

A good starting point. nodecontrol help lists you a list of actions, whereas nodecontrol help
[action] prints action specific information.

nodecontrol help [action]

ping/test/silent/reboot

a first step to get an overview over the shape of the testbed.

nodecontrol test all

nodecontrol ping all

16

set

Use set to create a new VAP and interface on a set of nodes. After a reboot any changes are
lost.

tik-wifi4:~# nodecontrol help set
Usage: nodecontrol set [arguments] [nodes]

Creates a NEW wlaninterface on given nodes and deletes the previous one

Arguments:
 interface athX
 wlandev wifiX
 mac XX:XX:XX:XX:XX:XX
 mode {sta|adhoc|ap|monitor|wds|ahdemo}
 nosbeacon
 modulation {11a|11b|11g}
 essid
 channel see 'wlanconfig ath1 list chan'
 rate 54M (or 11M on 11b)
 ip 10.0.0.%id
 netmask 255.255.255.0
 ifconfig additional arguments for ifconfig
 iwconfig additional arguments for iwconfig

Any of the following keywords will be replaced for each node:
 %host - specifies the hostname (tik-wifi7)
 %id - specifies the id (7)
 %0id - specifies a two digit id (07) good for scripting MAC

Examples:
 nodecontrol set mode adhoc 1..5
 - sets nodes 1-5 in adhoc mode
 nodecontrol set mode ap txpower 15 iwconfig 'frag 512' 10
 - creates AccessPoint on node 10 with limited power
 nodecontrol set mode adhoc nosbeacon 12..16
 - nodes do not send beacons but are still part of the network

To use the default options just run set without additional arguments:

nodecontrol set [nodes]

More correct: ‘set’ assumes default values for every unspecified argument. Currently the
default values are as follows (likely to change):

interface ath1
wlandev wifi0
mac 00:19:5B:00:00:%0id
mode adhoc
modulation 11b
essid tik-grid
channel 1
rate 11M
ip 10.0.0.%id
netmask 255.255.255.0
ifconfig ""

17

iwconfig ""

stat
Usage: nodecontrol stat [keyword] [nodes]

Prints a list of wlan related information (iw-/ifconfig stuff).
An optional keyword acts as a filter.

Examples:
 nodecontrol stat freq all
 - prints an overview over used frequencies

exec
nodecontrol exec [-l][-q][-s] "script" [nodes]

Executes a (bash) script on every node. This is done in parallel by
default without displayed stdio during execution. Alternatively it can
be processed sequentially with direct output.

Arguments
 -l/--local: Execute on the server and not on the client, (eg. ping)
 -q/--quiet: only print exit state
 -s/--sequential: run node after node with direct output

tudp
Usage: nodecontrol tudp [arguments] [listeners] senders

Executes broadcast measurements on a set of nodes. If no listeners are
provided
listeners=senders is assumed

Arguments
 mode {sequential|parallel|pairwise|BIR} defines the order of the senders
 - sequential sending is default. parallel might not perfectly start
at the same time.
 BIR as a special case additionally calculate the broadcast
interference ratio
 sender "tudp sender arguments"
 receiver "tudp receiver arguments"
 log "prefix"
 - creates logfiles of the receivers(listeners) labeled
[prefix]_nodeX.log
 png "pictureName"
 - creates a picture named [pictureName].png/.xfig

Example
 nodecontrol tudp log "myExperiment" png "myPic" 1..4
 - broadcast measurement on nodes 1 to 4 creates logfiles
 labeled myExperiment_nodeX.log and writes a picture to

18

 myPic.png containing the a link overview
 nodecontrol tudp mode parallel 1..4 5,6
 - broadcast measurement sent from node 5 and 6 in parallel.
 Packets are received at nodes 1 to 4 and no logfiles are written.
 nodecontrol tudp mode bir 1..4
 - calculated the broadcaste interference ratio (BIR) on all possible
 links between node 1 to 4.

tshark
Usage: nodecontrol tshark [tshark argument] [nodes]

Arguments
 per default all packages of the subnet are caputred or whatever
 specified here.

Example
 nodecontrol tshark 1..3
 - caputes all packages of the subnet on nodes 1 to 3 and
 prompts for an output file for the log-file

ssh

Every node in the TikNet is accessable via ssh. The hostnames range from tik-wifi1 up to
something around tik-wifi20.

Login without password

• Login as user or root to the entry server. If you are within the ETH network this is tik-
wifi4 (you need a password). For externals the server is currently pc-4094.ethz.ch

ssh -C root@pc-4094.ethz.ch

• From there you can login as root with ssh root@tik-wifiX to all the machines that
belong to the TikNet, without having to type a password.

Note that for now no other combination is possible

• you cannot login to another machine and from there to the others (without password)

• you cannot login as user to the other machines (without password)

Webmin

Webmin is a web-based interface for system administration for Unix. Using any browser that
supports tables and forms (and Java for the File Manager module), you can setup user
accounts, Apache, DNS, file sharing and so on.

19

Webmin consists of a simple web server, and a number of CGI programs which directly
update system files like /etc/inetd.conf and /etc/passwd. The web server and all CGI
programs are written in Perl version 5, and use no non-standard Perl modules.

http://www.webmin.com/

Usage

Webmin is accessable on every node on the default port 10000. You can access the entry
node as follows (note that you might get a warning because the ssl certificate is self signed).

• https://pc-4094.ethz.ch:10000/

Coding remarks

The module is located in

> cat /etc/webmin/miniserv.conf | grep ^root
root=/usr/local/share/webmin-1.470

To install it manually place the nodecontrol folder into the mentioned folder, purge the
webmin cache and add the module to the trusted ones.

rm /etc/webmin/module.infos.cache
nano /etc/webmin/webmin.acl

Basic infos are found under http://doxfer.com/Webmin/ModuleDevelopment.

Setup a new tik node

The following guide is meant to setup a fresh debian environement as part of the tik-net.
Most commands need to be executed as root (su).

basic access

To change the hostname permanently edit the hostname file and run the startup script (tik
nodes are labeled tik-wifi1 to tik-wifi20):

nano /etc/hostname

/etc/init.d/hostname.sh

Allow remote access from tik-wifi4 via ssh without tiping the password (not only for comfort
reasons, this is required by some scripts to work):

20

http://www.webmin.com/
http://doxfer.com/Webmin/ModuleDevelopment
https://pc-4094.ethz.ch:10000/

scp tik-wifi4:/home/user/.ssh/id_rsa.pub /root/.ssh/user@tik-
wifi4.pub

cat /root/.ssh/user@tik-wifi4.pub >>
/root/.ssh/authorized_keys

keep you system up2date
apt-get update && apt-get -y upgrade

eventually also upgrade the kernel headers

apt-get dist-upgrade

Madwifi - wireless drivers

Fist make sure you have the non-free sources: edit the sources.list

nano /etc/apt/sources.list

...and add the following lines if they are not yet present:

Unstable

deb ftp://ftp.au.debian.org/debian unstable main contrib non-
free

deb-src ftp://ftp.au.debian.org/debian unstable main contrib
non-free

Testing

deb ftp://ftp.au.debian.org/debian testing main contrib non-
free

deb-src ftp://ftp.au.debian.org/debian testing main contrib
non-free

Stable

deb ftp://ftp.au.debian.org/debian stable main contrib non-
free

deb-src ftp://ftp.au.debian.org/debian stable main contrib
non-free

(re)add madwifi drivers (also if they get lost after kernel upgrade):

apt-get update && apt-get -y install madwifi-source madwifi-
tools

m-a prepare

m-a a-i madwifi

21

reboot (oder modprobe athX)

In cases where apt-get fails (because the system is terribly outdated) try to increase its cache:
fix apt-get update memory problem: add

APT::Cache-Limit "16777216";

to /etc/apt/apt.conf.d/70debconf

Additional software

To get a basic set of tools we use the debian dispo.

apt-get -y install iperf tshark tcpdump ruby macchanger

Additional tools, not so easily available, are the following:

tudp

most simple way is to just use the precompiled version of node 4 (since its standalone & I
don’t have a clue where to get the sources from):

scp tik-wifi4:/usr/local/bin/tudp /usr/local/bin/tudp

click

In order to get the newest click version ckeckout the pit repository. First make sure git and
basic labraries for compiling are installed.

apt-get install git-core build-essential

then get the repo & compile:

git clone git://read.cs.ucla.edu/git/click /home/user/click

cd /home/user/click

./configure

make -j2

make install

Similary you get the additional click-packages http://www.read.cs.ucla.edu/click/git.

mgen

get the newest version online: http://cs.itd.nrl.navy.mil/work/mgen/ or directly
http://downloads.pf.itd.nrl.navy.mil/mgen/. Then move the binary to the local bin folder.

wget http://downloads.pf.itd.nrl.navy.mil/mgen/mgen4/linux-
mgen-4.2b4.tgz

22

http://downloads.pf.itd.nrl.navy.mil/mgen/
http://cs.itd.nrl.navy.mil/work/mgen/
http://www.read.cs.ucla.edu/click/git

tar -xzf linux-mgen-4.2b4.tgz

cp MGEN/mgen /usr/local/bin/mgen

webmin

get the newest version on the official page. get and install the precompiled deb package like

wget http://prdownloads.sourceforge.net/webadmin/webmin_1.470_all.deb
dpkg -i webmin_1.470_all.deb

Then its accessable over https://tik-wifiX:10000/.

new entry node

If a new node needs to act as an entry server, several additional steps are needed.

ssh

Export the public key to all tik nodes as described above.

nodecontrol

Nodecontrol depends only on Ruby stdlib. However if one wants to use the png output
functionality xfig libs are needed.

apt-get install ruby xfig

Move the script to /usr/local/bin or create a link.

In order to use it with webmin, install the nodecontrol module nodecontrol.wbm.gz manually
or

1. Login to Webmin as root, and go to Webmin → Webmin Configuration → Webmin
Modules

2. Select the From ftp or http URL option, and enter the URL of nodecontrol.wbm.gz
into the adjacent text box

3. Click the Install Module button

Security

Currently security is an issue on the TikNet because every experimentor needs root access. A
better solution is shortly described here in order to give some ideas about a future work. Till
then everyone working on the testbed is asked to follow the following rules.

23

http://tiknet.ee.ethz.ch/lib/exe/fetch.php?id=home%3Aongoing_work%3Aproj2%3Anewnode&cache=cache&media=home:ongoing_work:proj2:nodecontrol.wbm.gz
https://tik-wifiX:10000/
http://webmin.com/download.html

guidelines

• On tik-wifi4: do not save any data to /root or anywhere else on the system.
If you need to save files create a new user

adduser [your_ee_username]

and then save any data to /home/your_ee_username/

• On any other node: do not save data anywhere except /home/user/ and do not create
new users. /home/user is likely to be purged, so make sure you aggregate all your data
on tik-wifi4

privacy and use policy

• Receiving: You may listen to and monitor anything you like. You may not disclose,
on purpose or accidently, the IP addresses or DNS names of connections used by
others. If contemplating disclosing the applications used by others, or similarly private
information, you must first get explicit approval from testbed-ops. In case of any
doubt about disclosure, contact testbed-ops. If you happen to observe any other
information that a user would expect to be private, such as plaintext Web passwords
or account names, you will not exploit that information, and you will take care not to
let it leak out publicly, e.g., in log files.

• Transmitting (1): Do not transmit on channels that another experiment on the testbed
is using, unless it’s your own. Check the wiki page for maintenance work/experiments
currently done.

• Transmitting (2): Do not flood a wireless network with non-responsive traffic for any
significant period of time. The following channels are “production networks” used by
others at this location, so are more restricted. You may not send “large” amounts of
traffic on them, and may send only low rates of non-responsive traffic.

— mostly taken from Emulab

would be nice

• A separated entry server apart from the nodes (no wireless). All user management and
logging happens on this node.

• No root login possible, a user account is required (manually or automatically for a
given slot)

• login on nodes (root) is only possible from the entry node

• Automated purging of experimenatiton data on nodes.

24

http://www.emulab.net/

	tudp
	click
	mgen
	webmin
	ssh
	nodecontrol

