
Semester Thesis at the Department of
Information Technology and Electrical Engineering

Spring Semester 2009

Optimization According to
Interactively Quantified User

Preferences

Simon Hügi & Björn Muntwyler

Professor: Prof. Dr. Eckart Zitzler
Advisor: Tamara Ulrich
Handout: Thursday, 12th of March, 2009
Due: Tuesday, 16th of June, 2009



ii



Acknowledgment

First of all, we want to thank our advisor, Tamara Ulrich, for her support and making
this thesis possible. Furthermore, we would like to thank Dimo Brockhoff and Johannes
Bader for sharing their rich experience in the area of multiobjective optimization.

A special thank you goes to Kaisa Miettinen for the idea of the interaction cycle, pointing
us in the right direction.

Zurich, June 16, 2009

Simon Hügi & Björn Muntwyler



iv CHAPTER 0. ACKNOWLEDGMENT



Abstract

An interactive optimization method is developed extending the existing PISA framework
to an interaction cycle. The user interaction is embedded into the EMO, executed after
a predefined amount of generations, asking for the preferences of the decision maker.
This allows an emphasized optimization and even focus changes during the search. A
presentation and interaction method has been developed to capture the user preferences.
Different proposals to process the received data into a weight distribution for the pareto
front, which can be interpreted by the PISA framework to continue the optimization
with new parameters, are discussed and applied. Additionally, the available framework
was improved with a history archive to enable a speed up during focus changes. At the
end, a dynamic behavior analysis completes this work.



vi CHAPTER 0. ABSTRACT



Contents

Acknowledgment iii

Abstract v

1 Introduction 1
1.1 Task Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background Knowledge 5
2.1 PISA - A Platform and Programming Language Independent Interface for

Search Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Variator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.4 Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Hypervolume Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The WDFS Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The WERA Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Interaction Methods 9
3.1 Our Interaction Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 How to Select the Points . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Processing of User Preferences 13
4.1 The Rays by Angle Bisector Approach (RABI) . . . . . . . . . . . . . . . 14

4.1.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1.2 Properties and Limitations . . . . . . . . . . . . . . . . . . . . . . 15

4.2 The Weights Linearly Interpolated Approach (WELI) . . . . . . . . . . . 17
4.2.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2.2 Properties and Limitations . . . . . . . . . . . . . . . . . . . . . . 20

4.3 The Scalarizing Function Approach (SIFA) . . . . . . . . . . . . . . . . . 21
4.3.1 Basic Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Comparison of the RABI and the WELI Approach . . . . . . . . . . . . . 23
4.5 The Influence of the Amount of Selected Points . . . . . . . . . . . . . . . 24



viii CONTENTS

5 Integration into the Monitor Module of PISA 27
5.1 The New Parameter File . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Adapting the Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 Main Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2.3 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1 Standard Input Interaction . . . . . . . . . . . . . . . . . . . . . . 34
5.3.2 File Input Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Saving the History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Dynamic Behavior 37
6.1 The Test Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Conclusion & Outlook 41

A PISA 43
A.1 PISA Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 PISA Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3 Parameter File Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B Framework 45
B.1 Changes to the WERA Selector . . . . . . . . . . . . . . . . . . . . . . . . 45
B.2 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
B.3 Start-Up Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



List of Figures

1.1 Before: The two step procedure. After the EMO process, the user inter-
action helped to find the one solution. . . . . . . . . . . . . . . . . . . . . 2

1.2 Interaction cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.1 How the presentation of solutions will be displayed to the user during the
user interaction step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Plot of the current population (black dots) for 3 different test cases, one
uniform and two with a focused region. In each case, there were 6 solutions
selected (red dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Plot of a uniform front with n = 10 weighted rays. This kind of weighted
rays are used in the WERA selector to affect the density of the sampled
solutions on the front. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 On the left side is the user rating depicted to each evaluated solution
(blue) on the front, and the resulting weighted rays. On the right side,
there is additionally the corresponding population after one interaction
round of only 20 generations. . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 On the left side is the user rating depicted to each evaluated solution
(blue) on the front and the resulting weighted rays on the right. . . . . . 16

4.4 Getting from one region of interest to another, starting in figure (4.3). . 17

4.5 On the left side are the evaluated points with the corresponding user rat-
ings. Note that the y-axis is the normalized weight and the x-axis denotes
the angle position of the solutions. On the right side is the continuous
weight distribution function resulting from the linear interpolation of the
dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.6 The depiction of the step, where the wdf is averaged over each ray. . . . 19

4.7 On the left side is the user rating depicted to each evaluated solution
(blue) on the front and the resulting weighted rays. On the right side,
there is additionally the corresponding population after one interaction
round of only 20 generations. . . . . . . . . . . . . . . . . . . . . . . . . . 19



x LIST OF FIGURES

4.8 Left: Illustration of the linear interpolation if all the data is in a small
angle interval. Here, the user evaluated 5 solutions according to (0, 0,
1, 2, 8). Right: Visualization of the limitation due to m and n on the
resolution of the weight distribution function due to averaging. . . . . . . 21

4.9 Illustration of problematic property of the used scalarizing function. Left:
2 evaluated solutions, Right: 4 evaluated solutions. . . . . . . . . . . . . 23

4.10 Focusing on a local area of the pareto front. Right: RABI approach,
middle and left: WELI approach. . . . . . . . . . . . . . . . . . . . . . . 24

4.11 Possible shape variations of the preference model for different values of
m. From top left to bottom right: m = 1,m = 2,m = 2,m = 3,m =
3,m = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 The monitor process creates 3 child processes. . . . . . . . . . . . . . . . . 30
5.2 Reset procedure (the arrows are labeled with state numbers). . . . . . . . 30
5.3 Main Loop: A round without user interaction (the arrows are labeled with

state numbers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Main Loop: A round with user interaction (the arrows are labeled with

state numbers). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.5 Termination (the arrows are labeled with state numbers). . . . . . . . . . 33

6.1 Example for two interaction cycles using the history archive. The Gaus-
sian distributions are plotted in gray, the resulting populations in red.
Left: 6 generations after interaction. Right: 14 generations after interac-
tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Example for two interaction cycles without history archive. The same
seed as in figure (6.1) is used. The progress after the same number of
generations is shown to compare the outcome. . . . . . . . . . . . . . . . . 39

6.3 The resulting distribution of generations needed to reach the region of the
preference point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



List of Tables

5.1 Input arguments for plotResultsExec. . . . . . . . . . . . . . . . . . . . . . 33
5.2 A typical input scenario for the WDFS selector. . . . . . . . . . . . . . . . 34
5.3 Input arguments for selWeraIAExec. . . . . . . . . . . . . . . . . . . . . . 35

6.1 The setup for the test case. Entries with an asterisk are replaced during
runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 Number of generations needed till the solutions are close to the new pref-
erence points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



xii LIST OF TABLES



Chapter 1

Introduction

“Most real-world engineering optimization problems are multiobjective in nature, since
they normally have several (possibly conflicting) objectives that must be satisfied at
the same time” [1]. As we have multiple criteria, which can’t be all optimized at the
same time1, the aim is not to find one single solution, but to find a set of compromise
solutions, i.e. each of these compromise solutions is in at least one criteria better than
any other, hence solutions which are trade-offs. There already exist such procedures for
Evolutionary Multiobjective Optimization (EMO), which were first hinted by Rosenberg
in the 1960s. But the big interest in such kind of optimization came in recent years [1].

There also exists the task of Multi-Criteria Decision Making (MCDM), where the
know-how of an expert is used to choose the one, preferable solution out of the set
of compromise solutions. Through interaction with the user, the MCDM procedure
captures the preference information to determine regions of interest in the optimization
space, to help the expert to make his / her decision of choosing a single solution in favor.
The interaction step is necessary, because all solutions of the set of compromise solutions
optimize the multiobjective problem in it’s own way. Hence, they cannot be compared
by any automated mechanism and therefore need to be evaluated by a human being.

Until now, these two steps above have strictly been separated. The use of those is
illustrated in figure (1.1). The first step on the left of the figure, while looking for the set
of solutions to the multiobjective problem, is the optimization step. EMO results in a set
of compromise solutions, which all optimize the problem, and hence are incomparable.
That’s why in a second step, after the EMO has reached the termination criteria, the user
interaction takes place, to capture the user’s preference model. With this knowledge,
the task of MCDM is performed on the set of incomparable solutions to select the one,
which fits the user’s preferences the most.

1This is because some objectives may be conflicting, i.e. optimizing one of these will lead to a
degradation of the other.



2 CHAPTER 1. INTRODUCTION

User
Interaction

Evolutionary
Multiobjective
Optimization

compromise solutions

Figure 1.1: Before: The two step procedure. After the EMO process, the user interaction
helped to find the one solution.

In this thesis, we try to combine these two steps from above. We include the user
interaction step into the search procedure in order to allow a focused optimization.
Hence, we can halt the EMO after a predefined number of generations to perform a user
interaction. This allows concentrating the search on a specific region of the pareto front,
which is in favor of the user. With this focus, the optimization procedure is continued
only in this selected region, and the whole loop starts over. This leads to the interaction
cycle illustrated in figure (1.2). With this method, we hope to be able to lower the
overall computing effort and time. It also allows us to use the whole population of the
evolutionary algorithm (EA) in one narrowed region, providing more potential choices
in favor for the user.















Figure 1.2: Interaction cycle

In the interaction cycle, the compromise solutions, which result from the EMO are
used to interact with the user. The steps selection of solutions and user interaction will



1.1. TASK DESCRIPTION 3

be discussed in chapter 3. As well, the basic idea of how the user interaction takes place,
how the current population of the EA is presented and how the preference model of the
user is captured is explained. In chapter 4, the step preference information processing is
explained. Here we develop and analyze different proposals of how to use the captured
preference model to convert it into an input argument, which can be used by the EA to
perform the focused optimization.

In chapter 5 we discuss how we adapt and use the existing PISA2 framework to even
enable this interaction cycle and speed up the EMO.

1.1 Task Description

In order to fulfill the above ambitions, the following tasks had to be completed:

• Extensive literature study

• Adapting the existing PISA framework to perform this interaction cycle and to
include an archive solution to speed up focus transitions

• Identifying methods to select and present a representative choice of solutions

• Finding a suitable interaction method to capture the user’s preference model

• Developing methods to process the user’s preference model into a weight distribu-
tion, which is suitable as a parameter for the EMO procedure

• Analyze the dynamical behavior of the interaction cycle and the influence of the
developed archive solution

2PISA is a EA framework developed by ETH Zurich, which will be explained later in section 2.1



4 CHAPTER 1. INTRODUCTION



Chapter 2

Background Knowledge

2.1 PISA - A Platform and Programming Language Inde-
pendent Interface for Search Algorithms

The PISA framework was developed at the Computer Engineering and Networks Lab-
oratory (TIK), ETH Zurich, by Stefan Bleuler, Marco Lausmanns, Lothar Thiele and
Eckart Zitzler [2]. Its main idea is to divide evolutionary (multiobjective) algorithms
into two separated parts:

• problem-specific: Representation of candidate solutions and variation operators.

• problem-independent: Selection operators.

2.1.1 Variator

The representation of candidate solutions is the way how individuals are defined in the
context of an evolutionary optimization, i.e. a mapping from the original problem to the
problem solving space [3], which is highly problem specific.

The variation of a population is a stochastic process, that aims to create new indi-
viduals (the offsprings) from old ones [3]. There are two operators: a unary operator
(taking one individual of the population as input) is usually called mutation, whereas
recombination is a binary operator (taking two individuals as input).

A program implementing the representation of solutions and variation operators is
called variator.

2.1.2 Selector

The selection is rather a deterministic process, consisting of two steps: Mating selection
tries to select better individuals as parents for the next generation [3]. Environmental
selection, however, is applied on the resulting offspring generation, where solutions with
higher quality have higher chances to survive.

A program implementation of the selection procedure of individuals is called selector.



6 CHAPTER 2. BACKGROUND KNOWLEDGE

2.1.3 The Framework

PISA defines an interface between the variator and the selector. This means, that
both programs are able to interact with each other communicating with text files. The
notation for their names used in this paper can be found in the appendix, A.1. The
location where these files can be found is denoted as communication directory.

The different population sizes are defined in the configuration file cfg:

alpha initial population size
mu parent population size
lambda offspring population size
dim number of objectives

There are four different files for the exchange of the populations. The variator cre-
ates an initial population (with size alpha), which is saved in the file ini right at the
beginning of the initialization. During the optimization phase, its offspring population
(with size lambda) is written to the file var. Both files contain for each individual an
identification number (index) and its objective values. The selector writes its selected
parent population (with size mu) to the file sel, which contains only the indices of the in-
dividuals. The archive population written to arc comprises solutions the selector would
like to keep.

To synchronize both processes, the state file sta is used. PISA defines the following
states:

State Set by Action Next State

0 V Create initial population 1
1 V Create sample 2
2 S Variate sample 3
3 V Create sample 2
4 V Terminate variator 5
5 V Variator terminated -
6 S Terminate selector 7
7 S Selector terminated -
8 V Reset variator 9
9 V Variator reset
10 S Reset selector 11
11 S Selector reset

2.1.4 Monitor

The monitor is an additional program that was also developed at the TIK by Lothar
Thiele [4]. If the monitor is used, the variator and the selector do not communicate
directly, but the monitor “sits in between” these programs and regulates the control



2.2. THE HYPERVOLUME INDICATOR 7

and data flow. Each program has its own communication directory in place of sharing
the same. The monitor controls the states of both programs and moves the produced
output files from one side to the other at the right time. This offers several possibilities
to influence the optimization.1

2.2 The Hypervolume Indicator

The term “hypervolume” is basically a generalization of the 3-dimensional term “vol-
ume”. It is used in the case of more than three dimensions. The hypervolume is always
expressed in dependence of a reference point and a set of solutions.

The hypervolume indicator is a measure that can be used to redefine the pareto
dominance: If the objective functions fi(z), i ∈ {1, . . . , k}, z ∈ Rk, are to be minimized,
a selector preferably chooses those solutions that maximize the hypervolume indicator [5].

The hypervolume indicator can be weighted to give those solutions with a larger
weight a higher change of been selected (see [6] for more details). As the major drawback
of the hypervolume indicator is its high computation effort, the value can be approxi-
mated using the Monte Carlo sampling method [5]. This permits even more possibilities
to articulate user preferences by sampling regions with different numbers of samples.

2.3 The WDFS Selector

This selector offers the possibility to articulate user preferences by sampling the weighted
hypervolume [7]. The simple idea is to sample the objective space randomly according to
the possible multivariate distributions in order to estimate the hypervolume indicator.
The parameter file contains these distributions (as shown in appendix A.3), the seed and
the number of total samples nrOfSamples.

Gaussian distribution

• Preference point µ = (µ1, . . . , µk)T ∈ Rk

• Direction t = (t1, . . . , tk)T ∈ Rk, |t| 6= 0

• Standard deviation σε ∈ R describing the widespread of the solutions

• Standard deviation σt ∈ R in direction of ±t

• Covariance matrix C = σ2
ε · I + σ2

t · t·t
T

|t|

These parameters describe the multivariate Gaussian distribution

w(z) =
1√

(2π)k det(C)
· e−

1
2
(z−µ)TC−1(z−µ).

1This issue is explained latter in chapter 5.



8 CHAPTER 2. BACKGROUND KNOWLEDGE

Uniform distribution

• Lower bound bl = (bl1, . . . , b
l
k)
T ∈ Rk

• Upper bound bu = (bu1 , . . . , b
u
k)T ∈ Rk

This results in the multivariate uniform distribution

w(z) =

{ ∏
i

1
bui −bli

, z ∈
[
bl1, b

u
1

]
× . . .×

[
blk, b

u
k

]
0 , else

.

Exponential distribution

Not used in our framework.

All distributions can be combined together. The user can give each one a different weight
factor α ∈ [0, 1]. This number determines how many samples are used for the specific
distribution.

2.4 The WERA Selector

This selector weights the hypervolume according to weighted rays [8]. In our thesis,
we limit ourselves to 2 objectives. As one can see in figure (4.1), the objective space
is subdivided in rays. Each of these rays has a weight assigned, which will be used to
weight the hypervolume in this part of the pareto front.

The WERA parameter file contains the seed and all data needed to construct these
weighted rays. The line of interest in this file is the following.

rays 0 0 α0 w1 α1 w2 α2 w3 α3 · · · wn αn
where to each ray, spanning from αi−1 to αi, the weight wi is assigned, i ∈ {1, ..., n},

while n ≥ 1, n ∈ N denotes the number of rays. The angles αi are measured in a positive
mathematical direction. The first two zeros refer to the center of the rays.



Chapter 3

Interaction Methods

After performing the evolutionary multiobjective optimization step, one is always con-
fronted with a set of compromise solutions1.

This chapter refers to the modality of how to interact with the user, how to capture
his / her preference model and how to present the current state to the user in order
to even get some information containing his / her expertise. To be able to guide and
focus the search on a specific region of the pareto front, this step is essential to even
know where this special region of interest might be. Especially, we want to capture the
know-how of the user without making any assumptions about the problem itself. The
procedure should be totally problem-independent. There are various ways to perform
an interactive articulation of preference information from the user [9]. In general, there
are specific questions necessary to find the focus of interest.

While working through the technical literature we noticed that most of them do not
make a problem-independent entry, or even make assumptions about the value function2

of the user [9]. In [10] for example, they used a set of yes or no questions on a set of
pairwise comparisons of solution vectors to establish the experts utility function3. Or
in [12], where they use local trade-off ratios to reflect the user’s favoritism between two
criteria. But like many other papers too, throughout [10] and [12] it is assumed that the
objective functions are either concave, or differentiable and concave.

But in the end, we needed something which is easy for the user to understand and
predict, which does not make any assumptions about the value function or objective
functions. The complexity of the user interaction method should remain low and espe-
cially should not exceed the capabilities of the user.

1Compromise solutions are solutions, which all minimize the multiobjective problem and for that
reason are incomparable without human interaction.

2A value function is a function, describing the user’s preference model.
3According to wiktionary [11], a utility function is a mathematical function, which assigns a real

number to every element of the outcome space in order to collect the user’s preference model.



10 CHAPTER 3. INTERACTION METHODS

3.1 Our Interaction Method

3.1.1 Basic Idea

After performing the evolutionary multiobjective optimization procedure for the specified
amount of generations, the resulting population is passed on in the interaction cycle4 to
the next instance, the solution selection and user interaction.

The current solution received should be evaluated by the user, in order to be able to
focus on a specific region of the pareto front5. But as the population size is way to big
to be evaluated one-by-one, the amount of solutions to evaluate can be specified by the
user. The interaction procedure should then select a representative choice of solutions
from the current population, i.e. more solutions should be chosen in regions of high
population density, than in regions of low density. The selection is then presented to the
user, who can rate each of the selected solutions with a weight between 0 and 10. Hence,
the user can submit his / her expertise in an easy way to the interaction procedure in
order to focus the optimization on a region of interest, rather then optimizing over the
entire front.

The selected solutions are presented in the objective space, like illustrated in figure
(3.1). This only suits for problems with 3 criteria or less. For higher order multiobjective
problems one might need new approaches to present the solutions. One possibility could
be to evaluate each solution in multiple steps, giving partial weights with respect to one
or two objectives at the time. Notice, that in this interaction method, it is simple to
evaluate the solutions in the case of only two or possibly three objective functions. But
as soon as the amount of criteria grows, this task will get rapidly more difficult.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

objective 1

ob
je

ct
iv

e 
2

Number of points selected: 5
USER: Give each point a rate between 0 and 10

Figure 3.1: How the presentation of solutions will be displayed to the user during the
user interaction step.

4Explanation of the interaction cycle, see chapter 1.
5As a part of the assembly of evolutionary multiobjective optimization and decision making.



3.1. OUR INTERACTION METHOD 11

As a remark, the presented interaction method is a trade-off between reasonability
and precision. The more solutions are evaluated by the user, the more precise is the
captured preference model. But with many evaluations, the effort and time needed to
handle the interaction step grows too.

Here’s an example of such a user interaction procedure using the WERA selector’s
interaction protocol. In the meantime, the plot (3.1) is shown for visualization of the
selected solutions.

User Interaction #1
************************
Interaction Method (wdfs | wera | unif | help | exit): wera

Choose approach ( rabi | sifa | weli | help | skip ): rabi
Chosen approach does not require a scalarizing function!
Number of points to rate: 5
Number of rays determined by number of evaluated points.
#rays = 5

Rate each point [0, 10]:

weight for point: 0.99821 x 0.00089614: 0
weight for point: 0.94607 x 0.027337: 1
weight for point: 0.79627 x 0.10766: 8
weight for point: 0.6324 x 0.20476: 7
weight for point: 0.45908 x 0.32246: 0

START execution of approach 1:
rays 0 0 0 0 0.83195 12.5 4.4304 100 12.3353 87.5 25.782 0 90

Continue (s)earch or redo (w)era interaction: s

Additionally, one could enter skip, which would jump over the user interaction
procedure and continue the optimization with the same parameters used in the previous
WERA optimization round.

3.1.2 How to Select the Points

In order to be able to present m6 solutions to the user, the procedure has to make a
representative collection of population members from the current solution pool. For the
following discussion, it is assumed that the population is sorted on the 2-dimensional
pareto front from right to left.

Assuming the population size is alpha, the members of this population are stored
in the array called populationMember and we need to select m of those to present to
the user. The algorithm first computes a step size parameter called stepSize. Then
the routine traverses through the whole population, selecting those solutions having an

6m denotes the amount of solutions to be evaluated. It is specified at the beginning of each interaction
by the user



12 CHAPTER 3. INTERACTION METHODS

index which is divisible by stepSize without remainder. Additionally the first and last
one within the population are chosen as well.

Generally speaking, the procedure steps through the whole population, and chooses
m population members. It makes sure that the selected solutions are equidistant from
each other, in terms of number of solutions in between two choices.

Here is the pseudo code of the selection algorithm:

1: stepSize = round
(

alpha
(m−1)

)
;

2: selectedPoints( 1 ) = populationMember( first );
3: for i from 2 to (m− 1) do
4: selectedPoints( i ) = populationMember( (i− 1) · stepSize );
5: end for
6: selectedPoints( m ) = populationMemeber( last );

This algorithm will make sure that the presented solution points are a representative
description of the whole population. This means that in regions of high population den-
sity, the algorithm’s choices will be close to each other than in regions of low population
densities. Figure (3.2) illustrates some examples of populations (black dots) and the
corresponding points selected by the algorithm above (red dots).

.0 .2 .4 .6 .8 1.0
.0

.2

.4

.6

.8

1.0

objective 1

ob
je

ct
iv

e 
2

.0 .2 .4 .6 .8 1.0
.0

.2

.4

.6

.8

1.0

objective 1

ob
je

ct
iv

e 
2

.0 .2 .4 .6 .8 1.0

.2

.4

.6

.8

objective 1

ob
je

ct
iv

e 
2

Figure 3.2: Plot of the current population (black dots) for 3 different test cases, one
uniform and two with a focused region. In each case, there were 6 solutions selected (red
dots).



Chapter 4

Processing of User Preferences

In this chapter we will introduce different proposals how the collected preference data is
processed in order to fit the used selectors requirements. This is necessary to establish
a focus on the region of the user’s interest. The established approaches, which will
be introduced in the next few chapters below, are all specified to be applied to the
WERA selector. This selector was established and explained in [8]. The most important
property, which should be known here is the input argument “rays”, needed by WERA
to build and weight the new rays. It is defined as a string containing the edges and
weights of each ray. A general form of the parameter “rays” can be written as

rays 0 0 α0 w1 α1 w2 α2 w3 α3 · · · wnαn

while the weights wi are assigned to the ray ri, spanning from the angles αi−1 to αi,
i ∈ {1, ..., n}, n ≥ 1, n ∈ N being the number of rays. α0 is mostly zero degrees, and αn
90 degrees1. The angles are measured in a mathematical positive direction, i.e. going
from 0 to 90 degrees is the same as traversing the front from right to left. The first two
numbers, here 0 0, specify the intersection of the cones, but are not of further interest
here. In figure (4.1) is an example of this selector and its weighted rays depicted, where
the number of weighted rays n is 10 and the parameter used for this plot is:

rays 0 0 0 6.4615 9 21.5385 18 37.5 27 54.1739 36 71.3043 45 88.6957 54 92.6261 . . .
. . . 63 73 72 52.4857 81 29.2143 90

1For this thesis, this is always true.



14 CHAPTER 4. PROCESSING OF USER PREFERENCES

Figure 4.1: Plot of a uniform front with n = 10 weighted rays. This kind of weighted
rays are used in the WERA selector to affect the density of the sampled solutions on the
front.

But how can we assign the captured preference model to these weighted rays? How
can we determine the angles and the corresponding weights? – In the following couple
of subchapters, we discuss two different proposals with their properties and limitations.
In the end, we briefly look at an approach using scalarizing functions, which actually is
more of an idea for future work.

4.1 The Rays by Angle Bisector Approach (RABI)

4.1.1 Basic Idea

This is the simplest approach, which we implemented. At first, the user can specify the
amount of points m from the current population2. For the evaluation of the selected
points, the user assigns weights wi, i ∈ {1, ...,m} between 0 and 10 to each of these
points pi according to his preference model, as discussed in chapter (3.1.1).

The basic idea of the RABI approach is to assign one ray to each of the points pi,
which is weighted proportional to the ratings given by the user. That for, the algorithm
will compute the angle bisector between each of the selected points, which determines the
boarders between each of the rays. Then, the weights wi assigned to pi are normalized

2This population was determined by the evolutionary multiobjective optimization procedure before
this user interaction, as mentioned in chapter 3.1.



4.1. THE RAYS BY ANGLE BISECTOR APPROACH (RABI) 15

to wni, such that they sum to one. The resulting normalized weight is then assigned to
the ray containing that particular point pi to which wi was assigned to by the user in
the first place.

As a last step, the weights are stretched, such that they span from 0 to 100. This is
necessary to fit the requirements of the WERA selector.

In figure (4.2) the whole process of the RABI approach is depicted. For the sake of
simplicity, the population from which we start is uniform distributed, which leads to a
more or less uniform distribution of the selected points3 as well. In this case, the user
defined 4 solutions to be evaluated. The weights (1, 3, 9, 4) are assigned to them, parsing
the front from right to left. On the right hand side is the resulting population after
optimizing with respect to the just assigned weighted rays. As one can see, the WERA
selector used the given weights quite well to influence the population density.

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

RABI approach: 4 selected solutions
normalized weights: [0.0588, 0.1765, 0.5294, 0.2353]

9

3

1

4

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WERA:

-

Figure 4.2: On the left side is the user rating depicted to each evaluated solution (blue)
on the front, and the resulting weighted rays. On the right side, there is additionally
the corresponding population after one interaction round of only 20 generations.

4.1.2 Properties and Limitations

A main property of the RABI approach is that to each evaluated solution, there is one
ray assigned to, while the angle bisector between two points is limiting the width of
each ray. This fact is very important to understand the dynamics of this approach over
multiple interaction rounds. The simplicity of this approach also allows the user to easily
predict the weighted rays, which will result from the user’s input.

3See section 3.1 for how these solutions are selected.



16 CHAPTER 4. PROCESSING OF USER PREFERENCES

When the current population is uniform distributed over the front, the selected points
are uniform distributed too. Hence, all rays, except for the first and last one, are all
of the same size4, as can be seen in figure (4.2). This leads to a first beam focusing
according to the user’s preferences.

This approach delivers the possibility to switch between focus regions in at least two
steps. Now lets assume the population is concentrated in one region, like it is shown in
figure (4.3), from the users previous preference model. But this time, the user changes
his mind in the following interaction step and wants to switch the region of interest to
an other part of the pareto front. So one needs to specify, like depicted on the left of
figure (4.3), in which direction the user likes to go. Hence he / she assigns the most
right selected point the highest rating. The resulting weight distribution assigned to the
rays will look like the one given in figure (4.3).

After a next interaction round, the most of the population’s solutions will be con-
centrated within the most right ray of figure 4.3). In a second step, the focus can then
be narrowed to the region of interest by weighting the new solutions accordingly. See
figure (4.4) for illustration. On the left is the resulting population and a new possible
weight distribution which would narrow down the region of interest. After the one more
EMO step, the population will look like illustrated on the right of figure (4.4).

0.25 0.5 0.75 1

.25

.5

.75

1.0

objective 1

ob
je

ct
iv

e 
2

1

2

3

10

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

-

Figure 4.3: On the left side is the user rating depicted to each evaluated solution (blue)
on the front and the resulting weighted rays on the right.

4This ray size also depends on the shape of the front.



4.2. THE WEIGHTS LINEARLY INTERPOLATED APPROACH (WELI) 17

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Weight distribution for selection of new generations:

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Weight distribution for selection of new generations:

-

Figure 4.4: Getting from one region of interest to another, starting in figure (4.3).

A major limitation of the RABI method is that the resolution of the weight distri-
bution over the rays is completely determined from the amount of evaluated solutions.
Additionally, the big jumps between two successive rays is a bit of a problem. If we
consider the test problem of figure (4.2), where the two middle solutions got the weights
3 and 9, assigned by the user. In this RABI approach, the solutions in between get
either a 9 or a 3, instead of a weight between 9 and 3, like one would expect.
This will be considered in the following approach.

4.2 The Weights Linearly Interpolated Approach (WELI)

4.2.1 Basic Idea

This procedure is a renovation of the previous one. Similar to the RABI approach, the
user conveys the amount m of points pi, i ∈ {1, ...,m} he / she would like to evaluate. In
the next step, the user rates these points with weights wi between 0 and 10. In contrast
to RABI, the resulting weights will here be squared5. This will assure that the difference
between solutions in favor of the expert and such rather uninteresting for further analysis
gets more significant for the computations within the WELI approach. The resulting
weights get normalized to wni, such that they sum to one just like before.

Additionally, the user needs to specify n, the amount of rays. This will determine
in how many parts the weight-distribution should be subdivided. The bigger n, the
smoother it will get. But this will be mentioned in more detail later on.

5This can be applied to all the other approaches too, if desired.



18 CHAPTER 4. PROCESSING OF USER PREFERENCES

The WELI starts with the computation of the angles ai of each point pi. These
angles will be used to describe the expert’s preference model in the position versus
weight domain. This step is necessary to construct a continuous weight-distribution
function. In other words, one can imagine that the approach is drawing a plot with
the x-axis labeled with the angles between 0 and 90 degrees, characterizing the angular
position of pi in the objective space, and the y-axis labeled with the user ratings wni.
Hence, for each point pi we get a dot at the position (ai, wni).

This step is illustrated on the left side of figure (4.5). We assumed the same test
problem as in figure (4.2) and the same ratings (1, 3, 9, 4). Consider the fact, that in the
figure below, the weights are already normalized to wni.

In order to finally obtain the continuous weight-distribution function, the key fea-
ture of WELI is to connect these dots (ai, wni) with each other in terms of a linear
interpolation6. This step can be seen proceeding from left to right in figure (4.5).

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

positive angle

w
ei

gh
t f

or
 s

ol
ut

io
n 

at
 c

or
re

sp
on

di
ng

 a
ng

le
 p

os
iti

on

angle vs. weight domain for linear interpolation

1

3

9

4

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

positive angle

w
ei

gh
t f

or
 s

ol
ut

io
n 

at
 c

or
re

sp
on

di
ng

 a
ng

le
 p

os
iti

on

selected solutions in angle vs. weight domain & their linear interpolation

-

Figure 4.5: On the left side are the evaluated points with the corresponding user ratings.
Note that the y-axis is the normalized weight and the x-axis denotes the angle position of
the solutions. On the right side is the continuous weight distribution function resulting
from the linear interpolation of the dots.

As a last step, the determined function is subdivided in n parts, n being the number
of rays. Within each of these parts, the weight distribution function is averaged to a
constant value, which then will be assigned to the corresponding ray. This step can be
verified in figure (4.6).

6For further analysis of the WELI approach, one could try to use different kinds of interpolation
methods, e.g. a polynomial interpolation.



4.2. THE WEIGHTS LINEARLY INTERPOLATED APPROACH (WELI) 19

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

positive angle

no
rm

al
iz

ed
 w

ei
gh

t

angle vs. weight domain for linear interpolation

Figure 4.6: The depiction of the step, where the wdf is averaged over each ray.

To match the requirements of the WERA selector, the determined discrete weight
distribution function is stretched, such that it spans from 0 to 100.

The resulting weighted rays of the WELI approach is depicted in figure (4.7). On the
left side are the selected points, to which the user assigned the weights (1, 3, 9, 4) and
the resulting weighted rays. On the right side of figure (4.7) is the resulting population
after one further interaction round. Same as in figure (4.2), the population density on
the right hand side of figure (4.7) adapted the weighted rays well.

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

4

9

3

1

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

-

Figure 4.7: On the left side is the user rating depicted to each evaluated solution (blue)
on the front and the resulting weighted rays. On the right side, there is additionally the
corresponding population after one interaction round of only 20 generations.



20 CHAPTER 4. PROCESSING OF USER PREFERENCES

4.2.2 Properties and Limitations

The WELI approach assures that the areas between two successive solutions with signi-
ficantly different weights has a continuous weight transition. Lets consider an example.
If the user assigns a weight of magnitude 1 to a selected solution p1 and to a subsequent
solution p2, he / she assigns a weight of magnitude 5, all possible solutions among these
two will get a weight somewhere between 1 and 5. So this seems quite reasonable.

Now what happens, if all the evaluated solutions are in the center of the pareto front?
How are the edges of the weight distribution handled during the linear interpolation? -
This can be done in various ways, one could for example decay the weights towards zero.
But this would complicate our goal to be able to move our region of interest from one
area of the pareto front to another, even though we don’t have any solutions from the
new, desired region available. Hence, the weights at the edges of the weight distributions
of the available data is held constant, as illustrated on the left hand side of figure (4.8).

Even though this approach seems to enable an unlimited resolution, in reality it
doesn’t. First of all, we cannot have more than 100 rays. This follows from the imple-
mentation of WELI. If it is desired to have more rays, this is no big deal, but it has to
be edited within the source code, as the used weight array currently has at most 101
slots.

Further, if two points within one ray have two significantly different weights, the
algorithm will not be able to reflect exactly the same weight distribution as the user’s
preference model. This is because the algorithm will average the weights within each
ray. This can happen if we have a lot of points within a small region of focus, and n,
the number of rays, is too small. On the right hand side of figure (4.8) is an illustration
of this limitation7. Here m = 5, n = 6 and the weights assigned by the user to the
selected points (blue) are (1, 5, 10, 3, 1), parsing the pareto front from right to left. One
can circumvent this by just increase the number of rays, such that no evaluated solutions
with significantly different weights are in the same ray.

An additional question came up concerning the reliability of the WELI approach.
Due to the fact that the weights are normalized to wni, such that

∑
∀iwni = 1, and the

possible scenario when many low weighted solutions may be very close to each other at
one end of the pareto front, and one very high weighted solution may be located at the
opposite end of the pareto front, if this could lead to an unexpected weight distribution
function. But this is actually no problem, as long as the weights of those solutions,
which are very close to each other, don’t vary to much. The density of evaluated solu-
tions doesn’t change the weights within the rays parameter, neither before nor after the
normalization.

7Note that the first two points on the right hand side of the pareto front are very close to each other.



4.3. THE SCALARIZING FUNCTION APPROACH (SIFA) 21

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Figure 4.8: Left: Illustration of the linear interpolation if all the data is in a small
angle interval. Here, the user evaluated 5 solutions according to (0, 0, 1, 2, 8). Right:
Visualization of the limitation due to m and n on the resolution of the weight distribution
function due to averaging.

4.3 The Scalarizing Function Approach (SIFA)

We also made the effort to develop a third approach, called the SIFA. Here, we tried
to use scalarizing functions to reconstruct the preference model of the user in form of a
continuous weight distribution function.

According to [9], a scalarizing function in general can be used to transfer a multiob-
jective problem into a single objective problem, for which there exist many optimization
methods. ‘In most scalarizing functions, preference information of the decision maker is
taken into consideration.” [13]

We thought of two different scalarizing functions. The first one was the “Weighted
Tchebycheff scalarizing function” which is defined as

s∞(z, f(xj),w) = max
1≤k≤dim

{wk · (fk(xj)− zk)}

where z is the vector of the preference point8. In our case, as our multiobjective
optimization problem is a minimization problem, i.e. min {f1(x), f2(x)}, and we want
our front to move towards the origin of the search space, we choose z = (0, 0). The
vector f(xj) is the objective vector of the point xj , and w = (w1, w2) is a weight vector,
with wi ≥ 0,∀i and

∑
∀iwi = 1.

The second function we tried, is the weighted-sum scalarizing function, defined as

8A preference point refers to a location in the objective space, towards which we try to optimize.



22 CHAPTER 4. PROCESSING OF USER PREFERENCES

sl(z, f(xj),w) =
dim∑
k=1

{wk · (fk(xj)− zk)}

with z, f and w as above.

4.3.1 Basic Idea

This approach is less intuitive than the ones described above. It starts the same way
as the WELI approach. The expert specifies an amount n of points to select from the
current population and a quantity of rays.

The SIFA applies a scalarizing functions to the objective vectors of the selected
points. Then, we need a transition from these scalarizing functions to the weighting of
the hypervolume.

The weight w1 is chosen as an array of weights with values spanning from 0 to 1 and
w2 = 1 − w1. Each value of w1 together with w2 = 1 − w1 represents a straight line in
the objective space, from which we initially wanted to read off equipotential weighted
solutions.

A possible algorithm to user scalarizing functions in this context could be the fol-
lowing:

1: compute s(z, f(xj),w),∀j
2: normalize s(z, f(xj),w) to sn(z, f(xj),w), ∀j
3: diff(xj) = ‖sn(z, f(xj),w)‖2 − ‖weights(xj)‖2, ∀j
4: (wc,1, wc,2) = minw1,w2 diff(xj)

while s denotes the chosen scalarizing function, weights the weight vector captured
from the user interaction and diff refers to the difference taken from the weights and
the normalized scalarizing function sn. In this algorithm, we look for the weight pair
wc,1, wc,2

9, which minimizes the diff(xj) function. Then one could use the scalarizing
function with wc,1, wc,2 to weight the hypervolume directly10.

We actually had no success with the above functions and there are no scalarizing
functions known which would fit our requirements to communicate the preference model
over scalarizing functions to a weighted hypervolume. The problem is that depending
on the user ratings, diff(xj) will get very big, even if we use (wc,1, wc,2), which actu-
ally is minimizing it. One would need a scalarizing function, having more degrees of
freedom, which would increase the complexity of the whole procedure. An alternative
method could be to present fewer solutions to the user, such that all possible preference
models can be characterized by the scalarizing function. But in our case, e.g. using
the “Weighted Tchebycheff scalarizing function”, we could only present two solutions to
evaluate.

9The c in the indices refers to the fact that this weight pair has been chosen.
10This approach was no further considered in this thesis, as there was no such selector available at

that time



4.4. COMPARISON OF THE RABI AND THE WELI APPROACH 23

To get a better understanding of why the proposed scalarizing functions can’t work,
see figure (4.9). As one can see on the left side, where only two solutions have been
presented, the plot shows all possible permutations11. But if more than two solutions
are rated just like on the right hand side of figure (4.9), where 4 solutions have been
chosen, not all possible constellations of preference models are possible to characterize
using the available s(z, f(xj),w). That’s why a scalarizing function having more degrees
of freedom is necessary to use this kind of proposal.

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position ( angle )

sc
al

ar
iz

in
g 

fu
nc

tio
n

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

position ( angle )

sc
al

ar
iz

in
g 

fu
nc

tio
n

Figure 4.9: Illustration of problematic property of the used scalarizing function. Left: 2
evaluated solutions, Right: 4 evaluated solutions.

4.4 Comparison of the RABI and the WELI Approach

First of all let us mention that both approaches work just fine with almost any kind of
input from the user. The difference between the two is especially with regards to number
of rays and the resolution of the weight distribution.

Both approaches allow a transition from one region of interest to another in at most
two steps, like illustrated in chapter 4.1.2. One should note that if the user want’s
to exclusively optimize in a local area of interest, the edges of the evaluated solutions
around this area have to get a weight of magnitude zero. This is necessary in order to
make sure that the selector will weight the hypervolume in those regions of the pareto
front accordingly. If the user applies the RABI approach for this step, a more or less
uniform distribution in this area of interest is achieved12, while with the WELI approach,
the user will receive a population density which is tapered towards the periphery of this
region of interest. In figure (4.10) one can see such examples. On the left side, we used

11Here, a permutation refers to a possible preference model as one solution has a higher rating than
another.

12depending on the shape of the front.



24 CHAPTER 4. PROCESSING OF USER PREFERENCES

the RABI approach evaluating five solutions according to (0, 0, 10, 0, 0), which leads to
a heavyside shaped weight distribution. In the middle and on the right of figure (4.10),
we used the WELI approach. First we also evaluated five solutions with the same
preference model as we used in the RABI approach. Then we evaluated ten solutions in
order to imitate the shape of the heavyside function. This illustrates what happens on
the edges of the focused regions. The preference information for the far right plot was
(0, 0, 0, 0, 0, 10, 10, 0, 0, 0).

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WERA:

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WERA:

0 0.25 0.5 0.75 1 1.25 1.5
.0

.25

.5

.75

1.0

1.25

1.5

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WERA:

Figure 4.10: Focusing on a local area of the pareto front. Right: RABI approach, middle
and left: WELI approach.

This is due to the fact of linear interpolation used in the WELI approach, like men-
tioned before in chapter 4.1.2 and 4.2.2.

Another difference is that the RABI approach, in contrast to the WELI, can adopt
significantly different user ratings, no matter how close to each other the evaluated
solutions are. In RABI, the width of the rays is just adjusted, as it uses the angle
bisector to define them. But the WELI approach has equidistant rays, in which the
solution ratings would get averaged, if the amount of rays is too small to account those
separately.

4.5 The Influence of the Amount of Selected Points

The specified amount m of selected solutions, to which the user is supposed to assign
weights to, determines what kind of shapes the preference model can have. The possible
shapes for different m will be visualized using weighted rays just like those used by the
WERA selector. It just makes it much easier to understand

If m = 1, there are not that many possibilities for a weight assignment. As only one
solution is evaluated, the direct consequence is that the whole front will get the same
weight, leading to a uniform distribution.

If m = 2, one can only highlight the edges of the front, or make a uniform weight
assignment just like above.

If m = 3, the possibilities increase significantly. All possibilities we had for m < 3



4.5. THE INFLUENCE OF THE AMOUNT OF SELECTED POINTS 25

still remain. Additionally, we can highlight either both edges or only a middle part of
the front. The precise shape, like the gradient of the slope, depends on how far or close
the evaluated solutions are to each other and on the position of those solutions on the
pareto front.

If m ≥ 4, again, the possibilities from above remain. The bigger m, the more shapes
are possible. But the most important feature of choosing a high value for m is that the
user can submit a even more precise image of his preference model. On the other hand
the expenditure of time grows enormously.

In figure (4.11) is an illustration of the shape variations for different values of m.

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 1

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 2

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 2

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 2

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 3

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

position ( angle )

pr
ef

er
en

ce
 m

od
el

m = 5

Figure 4.11: Possible shape variations of the preference model for different values of m.
From top left to bottom right: m = 1,m = 2,m = 2,m = 3,m = 3,m = 5.



26 CHAPTER 4. PROCESSING OF USER PREFERENCES



Chapter 5

Integration into the Monitor
Module of PISA

The monitor module [4] of PISA [2] is the starting point for the integration of the user
interaction into the search procedure. In a usual setup a variator and a selector would
co-operate directly by sharing the same PISA files. The advantage of the monitor is that
it acts as an interface between the two processes and it is therefore able to control the
whole optimization procedure.1

The existing module has to be adapted in order to fulfill the desired functionalities.
Namely, these are:

• The user should be able to choose between the two supplied selectors WERA [8]
and WDFS [7].

• The user interaction should gather the preferences of the interacting user.

• The currently achieved front should be presented to the user.

• A history archive should keep non-dominated solutions from previous rounds. If
the user decides to change the region in the objective space, the new area should
be reachable in a small number of generations.

• The monitor will loose some of its original functionalities which are not needed for
the new implementation:

– There is just one round, i.e. the variator will be reset only at the beginning.

– The user states2 will be replaced.

– The archive handling3 will be managed in a new way.

– The output handling4 will be different.
1As mentioned in section 2.1.
2monitor user.c: state{1,2,3} user() removed.
3monitor user.c: paretoset join(), dominates() removed.
4monitor user.c: appendOutput(), outputAll(), outputOnline(), outputOffline() removed.



28 CHAPTER 5. INTEGRATION INTO THE MONITOR MODULE OF PISA

5.1 The New Parameter File

There are several new features which require their own parameters. Thus, the parameter
file of the monitor looks quite different. Instead of calling the monitor process with the
specified arguments for one variator and one selector, these parameters are stored within
the parameter file too. So the execution command for the monitor changes to:

./monitor monParamFile monOutputDir poll

The first argument monParamFile is the file name for the parameter file of the mo-
nitor. The second argument monOutputDir is the output directory, to where text files
containing populations and plots will be saved. The polling interval poll in seconds de-
termines how long the process (or its children variator, selector WERA, selector WDFS)
waits until it checks the state files again.

The new parameter file monParamFile consists of following entries, which are all
required:

seed The pseudo-random number generator of the monitor is initialized with this value.
As the variator is reset only once, the first random value5 is used for the seed of
the variator.

numberOfRuns removed

numberOfGenerations The maximal number of generations nG for the whole opti-
mization procedure. If this number is reached, the process will exit. If the variator
has a similar parameter, one has to make sure that the value of the variator is at
least as large as the value of the monitor. Otherwise, the variator would terminate
too early.

userInteraction This integer value nui ∈ (0, nG] specifies after how many generations
the user interaction should take place.

interactionType The interaction type can be either stdin or file. The former type
reads the new preferences from standard input, the latter from a text file.

interactionFile The file name of the input file in the case of file-interaction.

maxHistorySize The maximum size of the history archive. If the value is negative,
the size is not limited.

savePlots If set to 1, the plot of the current solutions will be saved to the output
directory monOutputDir.

outputType removed

5calling srand().



5.2. ADAPTING THE PROTOCOL 29

outputSet This parameter is used in a little bit different way as originally intended.
Its value nos ∈ (0, ng] determines after how many generations the program should
write the current generated offspring population file to the output directory of the
monitor, which is monOutputDir.

debug If set to 1, debug information is written to the standard output.

varProblem The problem of the variator. This parameter is required in order to draw
the pareto front properly. If the problem is unknown, no pareto front will be
plotted.

varExecPath Path to the executable of the variator.6

varParamFile Path to the parameter file of the variator.

varPisaPath Path to the PISA communication directory of the variator.

selWdfsExecPath Path to the executable of the WDFS selector.

selWdfsParamFile Path to the parameter file of the WDFS selector.

selWdfsPisaPath Path to the PISA communication directory of the WDFS selector.

selWeraExecPath Path to the executable of the WERA selector.

selWeraParamFile Path to the parameter file of the WERA selector.

selWeraPisaPath Path to the PISA communication directory of the WERA selector.

selWeraIAExec Path to the interaction executable of the WERA selector.

plotResultsExec Path to the plotResult executable.

5.2 Adapting the Protocol

5.2.1 Initialization

At the beginning of the program, the parameter file of the monitor and the configuration
files of the variator and the selectors are read in. For a clean start up, the states are
initialized with their reset values.

As it is easier to start just one program, the current process creates new child pro-
cesses for the variator and both selectors as illustrated in figure (5.1).7 That’s the reason
why their execution paths have to be declared in the parameter file.

Next, the parameter files of the selectors are stored temporarily in order to restore
them during the termination phase.

6All file paths can be expressed relatively.
7See appendix B.2 for further advantages.



30 CHAPTER 5. INTEGRATION INTO THE MONITOR MODULE OF PISA

Monitor

Variator WERA SelectorWDFS Selector

Figure 5.1: The monitor process creates 3 child processes.

Furthermore, a first user interaction is processed. The program forces the user to
employ one or more uniform distributions using the WDFS selector in order to find
preferably well distributed solutions as close to the front as possible.8

The variator and the WDFS selector are reset as a final step of the initialization
phase (see figure (5.2)).

Figure 5.2: Reset procedure (the arrows are labeled with state numbers).

8This step is actually only done for the standard input method. As this is the default method, only
this case is considered.



5.2. ADAPTING THE PROTOCOL 31

5.2.2 Main Loop

Within the main loop the evolutionary multiobjective optimization is processed. As in
the PISA framework, this is basically done by moving the output file of the variator
(var9) to the selector side and moving the output files of the current selector (sel and
arc) to the variator side (this process is visualized in figure (5.3)). During these itera-
tions, the state variable currentGeneration is incremented after each finished iteration.
At this stage, only one selector is interaction with the monitor while the other is sleep-
ing. During a user interaction, the selectors can be exchanged according to the new
preferences.

Figure 5.3: Main Loop: A round without user interaction (the arrows are labeled with
state numbers).

Whenever this counter currentGeneration is a multiple of userInteraction10, i.e.

currentGeneration ≡ k · userInteraction, k ∈ N,

the interaction with the user begins (as shown in figure (5.4)). The exact procedure is
covered in section 5.3. After a successful user interaction, the newly chosen selector is
reset (resetSel).

It is important that the selector parses the parameter file and the other PISA files
(cfg, ini, ...) in PISA state 1, otherwise the update of the selector doesn’t work.11. If

9The used notation is dsecribed in appendix A.1.
10See section 5.1, parameter userInteraction.
11Selector WERA had to be corrected for this purpose. See appendix B.1.



32 CHAPTER 5. INTEGRATION INTO THE MONITOR MODULE OF PISA

copyVariate

mainLoop

variation

Variator (Var)

Monitor (Mon)

Selector (Sel)

2

3

checkConditions

Var.var -> Sel.var

Sel.sel -> Var.sel
Mon.hist -> Var.arc

Terminate

Continue

userInteraction

reset Selector

10

11

init Selector

copyArchiveSelected

1

2

Figure 5.4: Main Loop: A round with user interaction (the arrows are labeled with state
numbers).

the selector reads the files at the startup only, and not within its state machine loop, a
possible change of those files will never affect the selector. A workaround could be to
terminate the selector and restart it, but this would take more time.

5.2.3 Termination

The termination of the program is determined explicitly if the user wishes to exit or
implicitly if the maximum number of generations (numberOfGenerations) is reached.

The backups of the parameter files are restored and if alpha had to be changed in
the configuration files, the original value will also be recovered.

Finally, the monitor initiates the termination of the variator and the selectors (figure
(5.5)).



5.3. INTERACTION 33

Termination

exit Variator exit Selectors

exit Monitor
Variator

Monitor

Selectors

4

5

10

11

Figure 5.5: Termination (the arrows are labeled with state numbers).

5.3 Interaction

The first step of the user interaction is the presentation of the current solutions, i.e. the
offspring population of the last variation. The control of the program is passed to the
external executable specified by plotResultsExec. This program is called with the string
arguments described in table (5.1). It needs so many information only because it plots
the pareto front, which is problem-dependent. The parameter file of the current selector
is used to draw the chosen distributions.

Argument Meaning Possible values

ia method Interaction Method wera or wdfs
number Current Generation
var file Variation file var
param file Parameter file of the selector
save plots Save plots to monOutputDir 1=yes or 0=no
ia type Interaction Type stdin or file
problem Variator Problem ZDT{1, . . . , 6}, DTLZ{1, 2, 3, 4, 7}

Table 5.1: Input arguments for plotResultsExec.

After the presentation, the user is able to choose between the two selectors WDFS
and WERA. In the case of the WERA selector, the new parameters are calculated from
the preferences as explained in chapter 4. The parameters of the WDFS selector are
entered directly, which needs knowledge about the several possible distributions. These
distributions and their parameters are described in section 2.3.

Before resetting the newly chosen selector, the monitor creates a new ini file for the
selector containing the population of the history archive.12 If the new population size
alpha is different from the old one, the configuration file cfg will be updated with this
new value.

12See section 5.4.



34 CHAPTER 5. INTEGRATION INTO THE MONITOR MODULE OF PISA

The newly obtained parameters for the selector are written to the output log file
monOutputDir/log.txt after each successful interaction with the user. This enables the
possibility to comprehend the decision-making later.

5.3.1 Standard Input Interaction

The default interaction type stdin13 is used whenever direct interaction is required. In
most scenarios, the user does’t know the exact outcome of an optimization procedure.
This method enables the user to set his / her preferences after each interaction cycle.
In the case of two objectives, the current set of solutions is presented in a mathematical
plot.

The parameters for the WDFS selector are read from the standard input. The user
can determine the number of distributions first and then enter the specifications. Table
(5.2) is an example of such an input. If the number of distributions is equal to zero,
the old parameters are reused. After the verification of the data, the parameters are
replaced in the parameter file of the WDFS selector.

Uniform Distributions Gaussian Distributions

User Interaction #0

************************

Number of uniform distributions: 2

Parameter Set 1:

alpha (between 0 and 1): 0.75

lower bound:

lower(1): 0

lower(2): 0

upper bound:

upper(1): 0.5

upper(2): 0.5

Parameter Set 2:

alpha (between 0 and 1): 0.25

lower bound:

lower(1): 0

lower(2): 0.5

upper bound:

upper(1): 1

upper(2): 1

update selector’s parameter file

User Interaction #1

************************

Interaction Method (wdfs | wera | unif | exit): wdfs

Number of preference points: 2

Parameter Set 1:

alpha (between 0 and 1): 1

vector mu:

mu(1): 0.81

mu(2): 0.1

vector dir:

dir(1): 1

dir(2): 0

sigma_eps: 0.01

sigma_t: 0.05

Parameter Set 2:

alpha (between 0 and 1): 0.5

vector mu:

mu(1): 0.11

mu(2): 0.67

vector dir:

dir(1): 0

dir(2): 1

sigma_eps: 0.01

sigma_t: 0.05

Table 5.2: A typical input scenario for the WDFS selector.

In the case the user decided the WERA selector, the external program selWera-
IAExec is called (input arguments are specified in table (5.3). The program gets the
new preferences from the user directly. This process is covered in chapter 3. Afterwards,

13See section 5.1, parameter interactionType.



5.4. SAVING THE HISTORY 35

the new parameters for the WERA selector are calculated as mentioned in chapter 4
and the parameter file is updated accordingly.

Argument Meaning

var file Variation file var
param file Parameter file of the WERA selector

Table 5.3: Input arguments for selWeraIAExec.

Fading of Previous Parameters

During the input of Gaussian parameter sets, it is possible to fade out the old distribu-
tions instead of disappearing directly. This regression is controlled with these operands:

• Fade-out factor f ∈ (0, 1)

• Threshold T ∈ (0, 1]

For each old parameter set, its weight α is multiplied with f . If α · f > T , the new value
is updated, otherwise the parameter set is removed.

5.3.2 File Input Interaction

The interaction type file simplifies automatic test cases, but requires more knowledge
about possible outcomes. This is because the choice of preferences is actually done before
the interaction.

The input file contains in each line a parameter set for each interaction and looks
like14:

‘round’ WS PosInt WS ‘method’ WS MSTR WS PSTR

The positive integer indicates the interaction cycle beginning from 0. More than one
distributions per round are allowed, but they have to be for the same selector. MSTR can
either be ‘wdfs’ or ‘wera’ indicating the preferred selector. If MSTR is equal to ‘exit’,
the monitor will exit immediately. The last string PSTR contains the distribution for the
specified selector. Contrary to the standard input method, the parameter values are not
checked for their correctness.

5.4 Saving the History

The history archive is a feature to improve the performance of the optimization. The
basic idea is to add all non-dominated elements of the current offspring population to
this archive before the interaction takes place. While the newly chosen selector is reset,

14See appendix A.3 for further details.



36 CHAPTER 5. INTEGRATION INTO THE MONITOR MODULE OF PISA

this history archive becomes the initial population. As a consequence the selector must
be able to read the new configuration after the reset.

Even though the selector might not have been used during the last optimization
procedure, it has a good initial population thanks to the history archive. A further
advantage is that the initial population is not too concentrated on a specific region in
the case the user entered these preferences. This is important if the user is unsteady
about his / her statements and would like to focus the search on a different region.15 The
process of refocusing should be done in possibly few generations to increase performance.

The normal procedure of the PISA protocol is to move the archive file arc from
the selector to the variator side.16 This step has to be modified. The archive file of
the selector contains the indices of those individuals the variator should keep. As the
variator must not remove the individuals of the history archive as well, both populations
are merged together and written to the archive file of the variator.

For the next optimization round, the initial population size alpha is updated accord-
ing to the new size of the history archive. The monitor has to make sure that this value
does not drop below the parent population size mu. As long as the current history size
is lower than mu, dominated solutions are added to this archive as well. But this is only
the case in early interaction rounds as the archive size is increasing relatively fast.

If the size of the history list gets larger than maxHistorySize, the archive has to be
reduced. This is done with the WDFS selector:

• The history archive is written to the ini file of the selector.

• The user has to enter a uniform distribution.

• The WDFS selector is reset and started for one cycle.

• All elements in the archive that aren’t in the resulting population in file sel will
be removed.

5.5 Portability

The new monitor application was developed and tested on a Linux distribution although
the PISA aims to be platform-independent. As mentioned in section 5.2.1, the monitor
starts its children in order to increase comfort. But the creation of a new process is very
system-dependent. Although this functionality has been implemented for Windows® as
well, it has never been tested. It would be possible to remove this feature and start the
several processes manually or alternatively with the help of a script file.

15Chapter 6 analyses the dynamic behavior in detail.
16Figure (5.3), function copyArchiveSelected.



Chapter 6

Dynamic Behavior

6.1 The Test Setup

For our test case, the ZDT1 [14] test problem is used with these configurations:

cfg dtlz param.txt javasel param.txt

alpha 40

mu 40

lambda 40

dim 2

problem ZDT1

seed *

number_decision_variables 2

maxgen 1000

outputfile ../variator/dtlz/dtlz_output.txt

individual_mutation_probability 1

individual_recombination_probability 1

variable_mutation_probability 1

variable_swap_probability 0.5

variable_recombination_probability 1

eta_mutation 20

eta_recombination 15

use_symmetric_recombination 1

seed 1000

nrOfSamples 30000

dist *

Table 6.1: The setup for the test case. Entries with an asterisk are replaced during
runtime.

Only the WDFS selector is used in this test scenario. A user interaction is done
every 50th generation with the following distributions:

1. round: uniform distribution: w(z) =
{

1, z ∈ [0, 1]× [0, 1]
0, else

2. round: Gaussian distribution: µ1 = (0.81, 0.10)T , t1 = (1, 0)T , σε = 0.01, σt = 0.05

3. round: Gaussian distribution: µ2 = (0.11, 0.67)T , t2 = (0, 1)T , σε = 0.01, σt = 0.05

The preference points µ1,µ2 are close to the pareto front. An example of the dis-
tributions and resulting solutions is shown in figure (6.1). The monitor is started 12
times with different seeds. The same procedure is repeated without the history archive



38 CHAPTER 6. DYNAMIC BEHAVIOR

implemented. In this case, the offspring population file var of the variator is taken as
new initial population file ini for the selector. This is why alpha has to be equal to
lambda for this test case, which seems to be a condition of the DTLZ variator anyway.

To automate the test procedure, the interaction type is set to file. The input file
contains the distribution parameters for each round. This is the resulting input file based
on the distributions above:

round 0 method wdfs dist uni 1.0 lower 0.0 0.0 upper 1.0 1.0

round 1 method wdfs dist gau 1.0 mu 0.81 0.10 dir 1.0 0.0 sigma_eps 0.01 sigma_t 0.05

round 2 method wdfs dist gau 1.0 mu 0.11 0.67 dir 0.0 1.0 sigma_eps 0.01 sigma_t 0.05

round 3 method exit

6.2 Test Results

The parameter outputSet of the monitor is set to 1 which means that after every genera-
tion the offspring population is written to the output directory. The files are read in and
analyzed. For each seed the number after how many generations 90% of the solutions
are close to the preference point is calculated. The closeness is defined as a circle around
the middle point µ2:

(z1 − µ2,1)2 + (z2 − µ2,2)2 ≤ 0.9 · 3
√
σ2
ε + σ2

t

with history 11 14 11 13 9 13 12 19 11 11 11 12
without history 40 27 43 41 32 24 47 24 31 45 28 34

Table 6.2: Number of generations needed till the solutions are close to the new preference
points.

Figure (6.2) is a visualization of the numerical results from table (6.2). The median
is plotted in red. For the monitor with history archive, it takes 11.4167 generations on
average to come close to the preference point, whereas without history archive, 34.6667
generations are needed.



6.2. TEST RESULTS 39

.0 .2 .4 .6 .8 1.0 1.2
.0

.2

.4

.6

.8

1.0

1.2

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WDFS:
gau 1.0 mu 0.81 0.1 dir 1.0 0.0 sigma_eps 0.01 sigma_t 0.05

.0 .2 .4 .6 .8 1.0 1.2
.0

.2

.4

.6

.8

1.0

1.2

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WDFS:
gau 1.0 mu 0.11 0.67 dir 0.0 1.0 sigma_eps 0.01 sigma_t 0.05

Figure 6.1: Example for two interaction cycles using the history archive. The Gaussian
distributions are plotted in gray, the resulting populations in red. Left: 6 generations
after interaction. Right: 14 generations after interaction.

.0 .2 .4 .6 .8 1.0 1.2
.0

.2

.4

.6

.8

1.0

1.2

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WDFS:
gau 1.0 mu 0.81 0.1 dir 1.0 0.0 sigma_eps 0.01 sigma_t 0.05

.0 .2 .4 .6 .8 1.0 1.2
.0

.2

.4

.6

.8

1.0

1.2

objective 1

ob
je

ct
iv

e 
2

Results of previous generations doing WDFS:
gau 1.0 mu 0.11 0.67 dir 0.0 1.0 sigma_eps 0.01 sigma_t 0.05

Figure 6.2: Example for two interaction cycles without history archive. The same seed
as in figure (6.1) is used. The progress after the same number of generations is shown
to compare the outcome.



40 CHAPTER 6. DYNAMIC BEHAVIOR

10

15

20

25

30

35

40

45

1 2

G
en

er
at

io
n

s

 

 

Without History ArchiveWith History Archive

Figure 6.3: The resulting distribution of generations needed to reach the region of the
preference point.



Chapter 7

Conclusion & Outlook

Originally, the EMO and MCDM steps were separated into two parts. In this thesis, we
designed an interaction cycle embedding the user interaction into the EMO procedure.
This enables the expert to perform a focused optimization after each specified amount of
generations within the EMO. We developed a suitable interaction method and different
proposals how to process the captured preference model, such that the used selector can
interpret them. Additionally, our framework provides a history archive, which offers a
speed up during focus changes.

Emphasizing the population in a specific spot of the pareto front delivers more po-
tential solutions to choose from. So far, this focusing had to be done before the op-
timization, which required a profound knowledge of the problem. The new approach
allows a complete new proceeding. Our framework enables the user to educate him- /
herself about the problem during the search procedure. This makes the decision making
more efficient, especially for high-complexity problems, as the user can change his region
of interest during runtime.

It seems to be difficult to find test cases, which compare our interaction cycle with
existing methods. Due to the fact that the user can change his / her preferences within
the optimization procedure, similar conditions for comparison are required.

The RABI (Rays by Angle Bisector), WELI (Weights Linearly Interpolated) and
SIFA (Scalarizing Function Approach) approaches are proposed to process the captured
preferences. Up to a few limitations, the first two proposals work nicely to transform
the user ratings into a weight distribution for the pareto front. The latter one couldn’t
age, as no suitable scalarizing function was available at that time.

The analysis of the dynamic behavior disclosed the essential need of a history solution.
Changing the focus region with the implemented history needs approximately three times
less generations to change to a new area of interest on the pareto-front, using the ZDT1
problem.

For further work in this area, we propose that this framework should be tested with
more complex problems, which would evaluate the usefulness for real world problems.
It would be interesting, if one could expand this procedure to more than two objectives,
involving the adaption of the WERA selector and user interaction method.



42 CHAPTER 7. CONCLUSION & OUTLOOK

To realize the SIFA approach, profound research is needed to find suitable scalar-
izing functions. For our requirements they need more degrees of freedom to enable a
representation of all possible user preferences.



Appendix A

PISA

A.1 PISA Files

In the following, we use this notation taken from PISA [2].

cfg configuration file
sta state file
ini initial population file
var offspring population file
sel selected individuals file
arc archived individuals file

A.2 PISA Sizes

The configuration file for each selector and variator contains the following values: The

alpha initial population size
mu parent population size
lambda offspring population size
dim number of objectives

user has to make sure, that the corresponding values are the same for each program.

A.3 Parameter File Syntax

The notation is same as in the PISA specification [2].

WS := (Space | Newline | Tab)+
Digit := ‘0-9’
Exp := (‘E’ | ‘e’) (‘+’? | (‘-’?) Digit+



44 APPENDIX A. PISA

PosInt := ‘1-9’ Digit*
Float := (Digit+ ‘.’ Digit*) | (‘.’ Digit+ Exp?) | (Digit+ Exp)
MSTR := (‘wdfs’ | ‘wera’ | ‘exit’)
PSTR := (PWDFS | PWERA)
PWDFS := (PGAU | PUNI)

WDFS Selector

The parameters (µ1, . . . µk)T , (t1, . . . tk)T , σε, σt and (bl1, . . . b
l
k)
T , (bu1 , . . . b

u
k)T have the

format:

PGAU := ‘dist gau’ WS Float WS ‘mu’ WS Float+ WS ‘dir’ WS
Float+ WS ‘sigma_eps’ Float ‘sigma_t’ Float

PUNI := ‘dist uni’ WS Float WS ‘lower’ WS Float+ WS ‘upper’
WS Float+

WERA Selector

PWERA := ‘rays’ WS (PosInt WS)+ Float (WS Float WS Float)+



Appendix B

Framework

B.1 Changes to the WERA Selector

The original WERA selector doesn’t read the configuration file cfg in state 1 but before.
So we had to move this step to the state machine loop:

StateMachine.java:

public void run() {

...

if (state == 1) /* inital selection */

{

io.initialize(ParameterSet.getParameterFileName(), ParameterSet.getCommFilePath());

popNew.empty();

if (io.readIni(popNew, ParameterSet.getDim(), ParameterSet.getAlpha()) == false) {

iteration();

state = 2;

io.writeFlag(stateFile, state);

}

}

...

}

As the function readCfgFile() called from function io.initialize() only updates
the PISA sizes if they are not set1, the values are reset to zero before the configuration
file is read.

1The values alpha, mu, lambda and dim are not set if they are all equal to zero.



46 APPENDIX B. FRAMEWORK

IO.java:

private void readCfgFile() throws Exception {

...

// reset sizes alpha, mu, lambda and dim to zero

ParameterSet.resetSizes();

...

}

B.2 System Requirements

As mentioned in section 5.3, the new monitor program uses external functionalities
of MATLAB®, which are compiled as standalone applications. For this purpose, the
MATLAB® CompilerTM is required [15]. This means, that the Compiler Runtime
must be installed in order to run the resulting executables.2. The “main” functions
plotResult.m and wera.m are compiled with this command:

mcc -mv plotResults/plotResults.m -d plotResults/
mcc -mv wera/wera.m -d wera/

The resulting binaries are refered to plotResultsExec and selWeraIAExec. They re-
quire the MATLAB® runtime libraries for a successful execution. These libraries are
installed together with the MATLAB® CompilerTM. But the programs need exact
knowledge about the location of the libraries. This is done by the environmental vari-
able LD LIBRARY PATH. For a Linux distribution, this would typically look like:

MATLAB_CR_PATH=/usr/share/matlab/mcr/v79;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/runtime/glnxa64

:$MATLAB_CR_PATH/bin/glnxa64

:$MATLAB_CR_PATH/sys/os/glnxa64

:$MATLAB_CR_PATH/sys/java/jre/glnxa64/jre/lib/amd64/

:$MATLAB_CR_PATH/sys/java/jre/glnxa64/jre/lib/amd64/native_threads

:$MATLAB_CR_PATH/sys/java/jre/glnxa64/jre/lib/amd64/server;

export LD_LIBRARY_PATH

Both selectors are implemented in Java and work with the MATLAB® BuilderTM

JA [16]. The environmental variable LD LIBRARY PATH has to be extended with the
directories of the runtime libraries of the MATLAB® BuilderTM JA:

2The MATLAB® command mcrinstaller displays the path to the installation file.



B.3. START-UP SCRIPT 47

MATLAB_ROOT_PATH=/usr/share/matlab;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/sys/os/glnxa64

:$MATLAB_ROOT_PATH/bin/glnxa64

:$MATLAB_ROOT_PATH/extern/lib/glnxa64

:$MATLAB_ROOT_PATH/sys/java/jre/glnxa64/jre/lib/amd64/native_threads

:$MATLAB_ROOT_PATH/sys/java/jre/glnxa64/jre/lib/amd64/server

:$MATLAB_ROOT_PATH/sys/java/jre/glnxa64/jre/lib/amd64;

export LD_LIBRARY_PATH

If one path is missing, an error-free execution is not guaranteed. The procedure of
setting the right variables seems to be a bit complicated. For this reason, the monitor
is started with a shell script, which sets all required environmental variables. Then, the
monitor creates its child processes, which inherit these variables. This script is shown
in the next section.

B.3 Start-Up Script

#!/bin/bash

# killing old processes ########################################################

type pkill > /dev/null

if [ $? != 0 ]; then

exit

fi

pkill -f hype_wera

pkill -f hype_wdfs

pkill -f dtlz

# getting processor information ################################################

uname -m | grep 64 > /dev/null

if [ $? = 0 ]; then

glnx="glnxa64";

arch="amd64";

else

glnx="glnx86";

arch="i386";

fi

# setting up environmental variables ###########################################

# MATLAB

MATLAB_ROOT_PATH=/usr/share/matlab;

MATLAB_CR_PATH=/usr/share/matlab/mcr/v79;

# PATH

PATH=$PATH:$MATLAB_ROOT_PATH/bin;

PATH=$PATH:$MATLAB_ROOT_PATH/bin/$glnx;

PATH=$PATH:$MATLAB_ROOT_PATH/toolbox/compiler/mcr/compiler;

export PATH



48 APPENDIX B. FRAMEWORK

#echo "PATH: $PATH"

# Libraries for matlab runtime

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/sys/os/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/bin/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/extern/lib/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/sys/java/jre/$glnx/jre/lib/

$arch/native_threads;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/sys/java/jre/$glnx/jre/lib/

$arch/server;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_ROOT_PATH/sys/java/jre/$glnx/jre/lib/

$arch;

# Libraries for matlab compiler runtime

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/runtime/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/bin/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/sys/os/$glnx;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/sys/java/jre/$glnx/jre/lib/

$arch/

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/sys/java/jre/$glnx/jre/lib/

$arch/native_threads;

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$MATLAB_CR_PATH/sys/java/jre/$glnx/jre/lib/

$arch/server;

export LD_LIBRARY_PATH

#echo "LD_LIBRARY_PATH: $LD_LIBRARY_PATH"

# X11

XAPPLRESDIR=$MATLAB_ROOT_PATH/X11/app-defaults

export XAPPLRESDIR

#echo "XAPPLRESDIR: $XAPPLRESDIR"

# setting up parameters ########################################################

monParam="monitor_param.txt"

monOutputDir="pisa_files/"

if [ $# = 0 ]; then

poll=0.5

else

poll=$1

fi

echo " monParam: $monParam"

echo " monOutputDir: $monOutputDir"

echo " polling: $poll"

echo " monitor started..."

# starting process #############################################################

bin/monitor $monParam $monOutputDir $poll



Bibliography

[1] C. A. Coello, “A short tutorial on evolutionary multiobjective optimization,” 2001.

[2] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler, “PISA—A Platform and Pro-
gramming Language Independent Interface for Search Algorithms,” in Conference
on Evolutionary Multi-Criterion Optimization (EMO 2003), ser. LNCS, C. M. Fon-
seca et al., Eds., vol. 2632. Berlin: Springer, 2003, pp. 494–508.

[3] A. Eiben and J. Smith, Introduction to Evolutionary Computation - Chapter 2,
1st ed., ser. Natural Computing Series. Springer, 2003.

[4] L. Thiele, “Using the monitor in pisa,” Computer Engineering and Networks Lab
(TIK), ETH Zurich.

[5] J. Bader and E. Zitzler, “A Hypervolume-Based Multiobjective Optimizer for High-
Dimensional Objective Spaces,” in Conference on Multiple Objective and Goal Pro-
gramming (MOPGP 2008), ser. Lecture Notes in Economics and Mathematical
Systems. Springer, 2009, to appear.

[6] E. Zitzler, D. Brockhoff, and L. Thiele, “The Hypervolume Indicator Revisited: On
the Design of Pareto-compliant Indicators Via Weighted Integration,” in Conference
on Evolutionary Multi-Criterion Optimization (EMO 2007), ser. LNCS, S. Obayashi
et al., Eds., vol. 4403. Berlin: Springer, 2007, pp. 862–876.

[7] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Articulating User Preferences
in Many-Objective Problems by Sampling the Weighted Hypervolume,” in Genetic
and Evolutionary Computation Conference (GECCO 2009), G. Raidl et al., Eds.
ACM, 2009, to appear.

[8] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Investigating and Exploiting the
Bias of the Weighted Hypervolume to Articulate User Preferences,” in Genetic and
Evolutionary Computation Conference (GECCO 2009), G. Raidl et al., Eds. ACM,
2009, to appear.

[9] P. Korhonen, Multiple Criteria Decision Analysis: State of the Art Surveys - Chap-
ter 16. Springer New York, 2005, vol. Volume 78.



50 BIBLIOGRAPHY

[10] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler, “Articulating User Preferences
in Many-Objective Problems by Sampling the Weighted Hypervolume,” in Genetic
and Evolutionary Computation Conference (GECCO 2009), G. Raidl et al., Eds.
ACM, 2009, to appear.

[11] [Online]. Available: http://en.wiktionary.org/wiki/utility function

[12] A. M. Geoffrion and A. F. J. S. Dyer, “An interactive approach for multi-criterion
optimization, with an application to the operation of an academic department,”
Management science 1972 19: 357-368, 1972.

[13] K. Miettinen and M. M. Mäkelä, “On scalarizing functions in multiobjective opti-
mization,” OR Spectrum, pp. 193 – 213, 2002.

[14] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolu-
tionary multi-objective optimization,” in Evolutionary Computation Based Multi-
Criteria Optimization: Theoretical Advances and Applications, Springer-Verlag,
2005.

[15] [Online]. Available: http://www.mathworks.com/access/helpdesk/help/toolbox/
compiler/

[16] [Online]. Available: http://www.mathworks.com/access/helpdesk/help/toolbox/
javabuilder/

http://en.wiktionary.org/wiki/utility_function
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/
http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/
http://www.mathworks.com/access/helpdesk/help/toolbox/javabuilder/

	Acknowledgment
	Abstract
	Introduction
	Task Description

	Background Knowledge
	PISA - A Platform and Programming Language Independent Interface for Search Algorithms
	Variator
	Selector
	The Framework
	Monitor

	The Hypervolume Indicator
	The WDFS Selector
	The WERA Selector

	Interaction Methods
	Our Interaction Method
	Basic Idea
	How to Select the Points


	Processing of User Preferences
	The Rays by Angle Bisector Approach (RABI)
	Basic Idea
	Properties and Limitations

	The Weights Linearly Interpolated Approach (WELI)
	Basic Idea
	Properties and Limitations

	The Scalarizing Function Approach (SIFA)
	Basic Idea

	Comparison of the RABI and the WELI Approach
	The Influence of the Amount of Selected Points

	Integration into the Monitor Module of PISA
	The New Parameter File
	Adapting the Protocol
	Initialization
	Main Loop
	Termination

	Interaction
	Standard Input Interaction
	File Input Interaction

	Saving the History
	Portability

	Dynamic Behavior
	The Test Setup
	Test Results

	Conclusion & Outlook
	PISA
	PISA Files
	PISA Sizes
	Parameter File Syntax

	Framework
	Changes to the WERA Selector
	System Requirements
	Start-Up Script


