ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

A Software-Based
Trusted Platform Module

Master Thesis

Domenic Schroder

Department of Computer Science
ETH Zurich

Supervisors:
Prof. Bernhard Plattner
Mario Strasser

Abstract

The Trusted Computing Group has specified different commands
for a Trusted Computing Module (TPM). The latest specification is
version 1.2 and there are some new functionalities. One of them is the
delegation function.

Since 2004 there exists a TPM-Emulator which is in development.
This thesis is about the further development of this TPM-Emulator,
especially the delegation function and design a platform independent
build and test framework for the TPM-Emulator.

Contents

1

Introduction

1.1 Acknowledgements
1.2 Overview e
1.3 Chapter overview Lo oo

Trusted Platform Modules

2.1 Trusted Computing Group
2.2 Technical overview,
TPM-Emulator
3.1 History
3.2 Technical implementation
Delegation
4.1 Requirements Design
4.2 Requirements Implementation
4.3 TImplementation
4.4 Technical implementation delegation
441 Thecommands
Platform Independent
51 CMake o
5.1.1 The decision for CMake
5.1.2 CMake introduction
5.2 CMake implementation
5.2.1 Difficulties of platform independence
5.3 Windows
5.3.1 Build Environmento
5.3.2 Connection Sockets/Pipes
5.3.3 Logging
5.4 Driver- TDDL
5.4.1 Linux e
54.2 Windowso
5.4.3 Apple/Free- and Open-BSD
54.4 All together

10
10
10

12
12
14
15
15
17

6 Testing
6.1 TrouSerS
6.2 CTest .
6.3 Other .

7 Conclusion
7.1 Summary
7.2 Outlook

A Appendix

30
30
30
31

33
33
33

36

1 Introduction

1.1 Acknowledgements

I would like to thank my supervisor Mario Strasser for supporting me in this
master thesis. He helped a lot with competent answers to my questions. Also
I want to thank Professor Bernhard Plattner that we could do this master
thesis in his group and with his helpful suggestions.

1.2 Overview

In the area of trusted computing the Trusted Computing Group (TCG) has
specified Trusted Platform Module (TPM). There are a lot of different opin-
ions about the usability or danger of this TPM. Nevertheless there is an
increasing amount of TPMs in use in mobile phones and personal comput-
ers. And more and more there are virtual machines running with only one
TPM in the host system. A TPM is not designed to interact with multi-
ple machines. For all this reason the TPM-Emulator project was initiated
and developed further. This Emulator allows an easily usable TPM without
the whole issues described above for testing and experimenting. This en-
tirely in software running emulator is at the beginning of this thesis a linux
application, which is used in different labs and universities.

The goal of this thesis is to contribute to the TPM-Emulator project by
implementing the user management of the recent TPM specification 1.2 and
create a platform independent build and test framework.

1.3 Chapter overview

In the first chapter we will introduce the Trusted Computing Group and
their specification of a Trusted Platform Module(TPM). We will give an
overview of the functionality of a TPM. However since there are already
very good resources available about TPM and their inside and functionality
we just summarize the most important facts needed for understanding the
implementation details. As a beginning we present the currently existing
TPM-Emulator. After that the delegation functionality will be explained in
detail in Section 4, afterwards the design and implementation details of this
user- and right management system. In Section 5 we will talk about the
portability to other operating systems like Microsoft Windows and what
the problems of platform independents applications are and how we did
overcome these difficulties. In Section 6 we discuss the test framework, the

implemented test and future possibilities for testing. At last we propose
consecutively work.

2 Trusted Platform Modules

A Trusted Platform Module (TPM) consists of mainly three subsystems:
e the Root of Trust for Measurement,
e the Root of Trust for Storage and
e the Root of Trust for Reporting.

We will explain the functionality and the use of a TPM. We are aware that
a TPM can be used for much more things than only in connection with
an operation system in a PC, but for that we refer to a lot of good books
about TPM. For this thesis we look explicitly on computers, because our
TPM-Emulator is intended to run there. To get an overview we introduce
the Trusted Computing Group and with that Trusted Computing. That will
give the necessary information to look into more details to the TPM and
the emulation of this module in C-code.

2.1 Trusted Computing Group

The Trusted Computing Groups (TCG)[1] is a international industry stan-
dards group. They publish and maintain the specification for trusted com-
puting, among others the one for Trusted Platform Module (TPM).

The beginning of the TCG was in 1999. But it was not yet TCG, but
Compaq, HP, IBM, Intel and Microsoft founded the Trusted Computing
Platform Alliance (TCPA), the predecessor of the TCG. Quickly 200 other
members joined this group. As this group had such a rapid growth in mem-
bers the structure for decision taking did not fit any more.

In 2003 the Trusted Computing Group with different structures has been
founded which continues the goals of the TCPA.
The description of them self is the following:

The Trusted Computing Group (TCG) is a not-for-profit orga-
nization formed to develop, define and promote open, vendor-
neutral, industry standards for trusted computing building blocks
and software interfaces across multiple platforms. !

TPMs exists from different vendors in a lot of computers (IBM Thinkpad,
Mac, ...) and are also integrated in mobile phones. For example Windows

"http://www.trustedcomputinggroup.org/home

Vista and its application uses the TPM to de- and encrypt the hard drive,
BitLocker.

There are a lot of rumors about this module and his functionality and
the intention of this group. We will not talk about if a TPM is “good”
(whatever that means in this context) but about the technology used. For
what this technology is used is over the scope of this thesis.

2.2 Technical overview

A TPM is passive in the sense that the operation system has to call the
TPM and the TPM sends a response. As you can see in the Figure 1 some
entity sends the TPM a header, a data part and an authentication of header
and data. The TPM checks this and responds with the specified answer and
authenticates this answer.

—» Header Parameter Auth .

TPM

Header Parameter Auth

Figure 1: The communication of the TPM.

Despite all rumors a TPM cannot interrupt a running system or program
and is not intended to do so. It is a cryptographic device, which is used as
a root of trust for measurement, storage and reporting. It therefore can be
used to secure application such that they only run if the system is in specific
state.

In the following we will explain this citation:

The TPM is a microcontroller that stores keys, passwords and
digital certificates.?

The main components (see Figure 2) of a TPM are:

2http://www.trustedcomputinggroup.org/developers/trusted_platform_module/
faq

e Cryptographic Co-Processor
e HMAC Engine

e SHA-1 Engine

e Opt-In

e Non-Volatile Memory

e Key Generation

e Random number generator
e Power detection

e Execution Engine

e Volatile Memory

Trusted Platform Module (TPM

Figure 2: The components a TPM consists of.

A TPM is not designated to enhance the cryptographic of some other ap-
plications, but it has the capability to do cryptographic functions in order
to be independent to create keys, calculates hashes and so on.

One of the enhancement a TPM has that it is independent of the ma-
chine. This means, that if the machine is corrupted, the TPM is not. Be-
cause of that, keys, passwords and digital certificates are saved in a secure
environment, even when the machine is not. Important is, that the TPM
does not give the passwords or keys out to a corrupted system. This is done
with measuring and reporting and storing this values in the Platform Con-
figuration Registers as described in the next chapter. The TPM can report
its state with signing the data with its public key. By evaluating this data
and the hash a remote entity can check in which state the machine is.

PCR

Platform Configuration Registers (PCR) are an important tool of the TPM.
When something is measured on the machine, then it is reported to the
TPM which stores this information in the PCR. There are at least 16 PCR.
By getting new information, the PCR are not overwritten, but the old value
will be hashed with the new value and afterwards safed in the PCR. With
this method every change cannot be reverted.

A TPM uses this PCR to seal storage or keys or commands in the dele-
gation function to a certain state in which the machine has to be. Or more
exactly which values has been reported to the TPM. We see how important
it is to have a trusted root of measurement in the machine. But this is out
of the scope of this thesis.

3 TPM-Emulator

3.1 History

The initial release was 2004 as a semester thesis by Mario Strasser at ETH.
At this time the TPM-Emulator was a kernel module and fully running in
the kernel. In 2005 Heiko Stamer joined the project and contributed the di-
rect anonymous attestation (DAA). At the end of 2006 the whole design was
changed and rewritten as a user-space daemon (TPMD) which is the actual
emulator and a kernel module (TPMD_DEV) that provides the character
device /dev/tpm for low-level compatibility with TPM device drivers.[10]
For accessing the TPM-Emulator TCG has specified[17] a device driver li-
brary. This usual way for accessing has been written for linux. In 2007
an install-tool based on Makefiles has been done. In 2008 the support for
OpenBSD has been added. This is only the kernel module, as all other
things run as well in linux as in OpenBSD. In the year several bug-fixes has
been made and missing functionalities has been added.

3.2 Technical implementation

The TPM-Emulator is parted in three parts (Figure 3). The first one is the
TPM-Emulator engine. This engine is the core of the TPM-Emulator. The
public APT consists of only 3 commands:

1. tpm_emulator_init()
2. tpm_-handle_command ()

3. tpm_emulator_shutdown()

The init command initializes the emulator. The handle command can be
used to execute any of the TPM commands. So this is the main command
to execute the commands which are given as numbers, as ordinals with all
the parameters in one byte array. Afterwards the emulator_shutdown shuts
down the emulator.

The cryptographic engine is a part which is only called by the TPM-
Emulator engine. For this reason it is easy to exchange the actual crypto-
graphic functions with others if necessary. The TPM-Emulator engine does
the unmarshalling and the decoding to afterwards execute the commands
and return the respond correctly marshalled and encoded. The key, data
and state storage are also inside this engine.

10

The TPM-Emulator Daemon (TPMD) is the connection to the opera-
tion system where the functions to communicate, log and interact with the
operation system is done. This part opens in linux a Unix domain socket
to interact with other processes and waits until an application connects and
sends the data to the TPM-Emulator engine. This part is also responsible
to save non-volatile data into a file on the hard drive.

The TDDL is the Trusted Computing Group Device Driver Library and
is specified as the usual way to interact with any TPM as you can see in
Figure 3. This TDDL is programmed as a usual device driver library.

TPM-
— Header Parameter Auth —
D Emu
a s lator
o
= | |
o [
- Header Parameter Auth -~ - 3
Crypto

Figure 3: Overview of the TPM emulator package.

In short we can say that at the beginning of this master thesis the TPM-
Emulator runs natively in linux and in Free- and Open-BSD. The TPMD
is the only platform dependent part of the TPM. The building process is
done with GNU Makefiles. For the cryptographic part the GNU Multiple
Precision Arithmetic Library (GMP) is needed. This library is usually used
in Linux.

11

4 Delegation
Authentication

The process of providing proof of claimed ownership of an object
or a subject’s claimed identity. 3

Authorization:
Granting a subject appropriate access to an object. 4

These two principles are mixed together in a TPM. The principle of autho-
rization and authentication is implemented as easy as possible in a TPM.
The only mechanism is a 160-bit value, the AuthValue. Everyone who can
send this value is authenticated and also authorized to use the commands
of a TPM (if they are available in the current state).
With this mechanism every process/user has to know this value to interact
with the TPM. This violates the principle of least privileges and in TPM
this shortcoming is addressed with the delegation model. This is new in the
specification of the TPM 1.2

The Figure 4 gives an overview. First only the owner knows a value to
connect in an authorized way to the TPM. He can create with his privileges
different privileges to other entities.

4.1 Requirements Design

The basic requirements from the specification [3] are the following:

1. Consumer does not have to know and remember the TPM owner pass-
word.

2. Role based administration and separation of duty.

3. TPM should support multiple trusted processes.

4. Trusted processes may require restrictions.

5. Maintain the current authorization structure and protocols.

In the following we will look on these specifications and explain them:

3TPM Main - Part 1 Design Principles, V 1.2, p. 33
4TPM Main - Part 1 Design Principles, V 1.2, p. 33

12

-4 0 — Header Parameter Auth |,

Ly
} 5 -— Header Parameter HMAC [+

Header Parameter Auth | o

% 1 | l Header Parameter HMAC =

Figure 4: Owner can give privileges to any entity.

Not everyone is owner It es convenient to give a consumer not full con-
trol of the TPM, but only of the parts he needs. With that delegation model
it is possible give away specific rights with just adding new delegations.

Role based Without giving full control in someones hand it is possible
to give as much delegation as needed, but not more and revoke it at any
time necessary. The roles are in TCG language so called families and the
authorisations are called delegations.

Multiple trusted processes As it is possible through the principles of
PCR-restrictions (Section 2.2) to separate the secrets of two trusted pro-
cesses which do not run at the same time the TPM supports this with the
delegation properties. Before this delegation model a trusted process needed
the TPM owner AuthValue and with that gains knowledge of every data in-
side the TPM. That is because the owner has every right.

13

Least privilege The principle of least privilege: A process or entity has
only access to the functions that it requires to complete a specific task. Ev-
ery ordinal, this means every command can be delegated to any family and
in connection with any PCR state.

Maintaining With this delegation model the existing functions, especially
all the already existing authorisation protocols (OSAP, OIAP), will work
without any changes. There are only new commands and functions which
we will describe in Section 4.3.

4.2 Requirements Implementation

1. Unlimited delegations
2. Revoking any delegation without side effects
3. Delegations inserting possible by OEM

4. Delegations inserting possible without TPM owner

Unlimited delegations We want to have unlimited delegations. As the
TPM has not unlimited space, there must be storage outside of the TPM.
But it should not be changed outside of the TPM and old delegations should
not be valid.

The solution is that an entity can create a delegation which is stored
outside of the TPM and the entity inserts this delegation when it is needed.
This raises different problems with verification and revocation which are
solved with the verification count as described in Section 4.4.

Revoking An owner must have anytime the possibility to revoke any del-
egation. It must be, that this revocation does not affect other delegation.
Old delegations must not be valid anymore. The owner should have the
possibility to revoke any family of delegation. This must also revoke or
invalidate any delegations which are stored outside of the TPM.

Delegation inserting It is convenient if it is possible to insert delegation
even without an owner. That allows OEM to do the seeding of the table
even during manufacturing. So before the TPM is turned on and an owner
takes ownership, the delegation can be inserted by anyone.

14

Attacks that attempt to burnout the TPM’s storage by writing many
delegations are prohibited by only allowing a limited number of writes before
an owner takes ownership.

4.3 Implementation

The previous requirements are fulfilled with the following implementation of
two tables. One is the so-called “Family Table” and the other is the “Dele-
gation Table”. We will give an overview of this table and explain afterwards
the functionalities of these parts.

The family table is a limited table. The limit is set by the manufacturer and
can be interrogated by the function: Get_capabilites. A row of the family
table consists of a family ID, the row label, family verification count and
the family flags.

The delegation table consists of a label, a family ID, a verification count
and the delegated capabilities. All of these entries are not sensitive. We will
go into detail later. To enable unlimited delegations there is the possibility
to create a so-called “blob”, which consists of a delegation row which is en-
crypted by a key of the TPM only known to the TPM.

The owner of a TPM can delegate some of his rights to another entity.
The owner of the platform can delegate commands with another 160-bit
secret value.

4.4 Technical implementation delegation

First we illustrate the concept of the delegation implementation and go into
the details of the implementation.
In the family table there are the following entries:

e tag

o family label

e verification count

o flags

In the delegation table there are the following entries:

e tag

15

Authdata

TPM-Key

VVC = Verification count

Figure 5: The delegation implementation as family and delegation table with the PCR
information

row label

PCR Info

e permissions

family 1D

verification count

e AuthValue

So every delegation belongs to a family. In the delegation is saved the Auth
value, you can say the password, and also the PCR information, which means
in which state the machine has to be to use this delegation.

We will show it on two examples. The first one is an entity which con-
nects via the network with an AuthValue and a blob and the second one is
an application which uses a key from the TPM. The commands are in Sec-
tion 4.4 explained in more detail. We will mention them in the examples.

Network Connection First the owner creates a new family row with the
ID 1 and creates for this family a delegation for the TPM_Examplel command
with e.g. the random AuthValue 0x010101..01. So the first command is the
TPM Delegate Manage to insert a new family and to create the owner dele-
gation the TPM CreateOwnerDelegation command. This command returns a

16

blob which the owner gives with the AuthValue to the entity. This entity
can load the blob into the TPM with TPM_LoadOwnerDelegation and the TPM
stores it in the delegation table. In our example it uses the blob directly
with the AuthValue with the TPM_DSAP to get an authorized session. The
TPM checks the blob. First if it is decrypted with the TPM key. Then it
looks up the family in the blob, checks the verification count of the blob with
the one in the family table. If this is all correct it is created a shared secret
with the AuthValue with the entity. With this shared secret they will create
a shared session to use the command. There it will be checked if the entity
is authorized to use this command. The owner can revoke this delegation
e.g. by disabling or deleting this family in the family table or just create a
new delegation and increment the verification count.

Local application First the owner creates a new family row with the
ID 2 (TPM Delegate Manage) and creates for this family with the command
TPM CreateKeyDelegation a new key delegation. To follow the requirements
suggestion the AuthValue will be 0x111..11. This is because the application
has no means to store this AuthValue in a secure way. The corrupted oper-
ation system and other corrupted applications will always find a way to get
this AuthValue. But this time we add a PCR definition. This means that
the machine has to been in a certain state where this process is running (e.g.
a new booted operation system and the process to encrypt the hard drive
is running). The TPM_CreateKeyDelegation returns a blob which the owner
stores with the TPM LoadOwnerDelegation in the TPM inside the delegation
table. Furthermore the process can connect to TPM_DSAP, create an autho-
rized session and will get the key if the machine is in the state saved in the

PCR.
4.4.1 The commands

In the following we will describe the main functions we implemented to
add the delegation functions to the TPM-Emulator. These commands are
described in the specification[5] and we implemented them in C code.

TPM_Delegate_Manage()

This is the most fundamental function for the whole delegation functionality.
The parameter opCode of this function decides if

e the function enables/disables the use of a family

17

e the function locks the tables until a owner is installed
e the function creates a new family
e or the function invalidates an existing family.

Enabling or disabling a family also enables respectively disables all the
delegations belonging to this family.

TPM Delegate_CreateKeyDelegation()

This command is to create a privilege to use a key. The output is a blob.
This function does not test if the key shall be used with these permissions.
This will be done if this blob is used calling TPM_DSAP.

TPM_Delegate_Create OwnerDelegation()

With this command the owner can delegate the use of commands. The func-
tion will create a blob, which can be used afterwards to create a authorized
session with TPM_DSAP or to load it in TPM Delegate LoadOwnerDelegation().
It is possible to increment the verification count. This would mean, that
every other delegation of this family will be invalid and only this delegation
can be used. This new delegation can be void, so every delegation is invalid.

TPM_Delegate_LoadOwnerDelegation()
This command takes a blob and saves the content internally in the delegation
table. This command can be executed before an owner is installed.

TPM Delegate_ReadTable()

This command is special on the first glance because there is no authorisa-
tion needed to execute this command. This command is used to verify the
tables. It outputs the public part (e.g. not the AuthValue) of the family
and delegation table.

TPM _Delegate_Update Verification()

This command is to update the verification count either in a blob or in the
intern delegation table. To change a blob the old blob has to be given as a
parameter and a new blob will be returned. For the intern delegation table

18

only the index has to be given. Of course it will be checked if this family is
not revoked or disabled.

TPM Delegate_VerifyDelegation()

This command returns if the given blob is valid or not.

TPM_DSAP()

This command is the supplement for the existing commands in TPM ver-
sion 1.1 TPM_0SAP and TPM_0IAP. This command creates the authorization
session handler. Not with a TPM owner token, but with a delegated Au-
thValue. This AuthValue corespondents either to a inserted blob or to a
row in the intern delegation table. This function generates a shared secret.
With this shared secret and the authorization session handler the following
commands can be used from the entity with the delegated token in the same
way as a TPM_OSAP session. As discussed in Section 2.2 the PCR values are
checked together with the AuthValue.

19

5 Platform Independent
5.1 CMake

CMake[8] is a cross-platform, open-source build system. It takes the code
and does not build the application(Figure 6, but generates native makefiles
and workspaces that can be used in the build system, in the environment of
the choice of the developer.

Code

Linux Makefile

CMake

Figure 6: CMake takes the code and creates Make-/Projectfiles

5.1.1 The decision for CMake

At the start of this master thesis the TPM-Emulator has been build by
Makefiles. They have been created and are now easy to use. It is possible
to use Makefiles in Microsoft Windows by using for example Cygwin[6]. We
asked ourself what requirements are needed and came to the following:

1. Must work in different operation systems.
2. Must be easy expendable to other operating systems.

3. The tool has be maintained for the next years.

S

. It would be very nice to have possibilities to test.

CMake fulfills all of these requirements as described in the next chapter.

20

5.1.2 CMake introduction

The big advantage is that CMake generates native Makefiles and workspaces.
So we can use the compiler environment of our choice. This leaves the
decision of the compiler environment for future work on other operation
systems to this developer.

The CMake application has at the moment the following binaries

5
e Windows

e Mac OSX

e Linux i386

e SunOS Sparc

o JIRIX64

e [RIX64 n32

e HUPX 9000

o AIX powerpc

This fulfills the first and the second part of the requirements very good as
it is possible to compile it on other systems, too.

There are a lot of applications which uses CMake (e.g. Blender, Gammu,
KDE, MySQL on Windows, MiKTeX). For example the developer of KDE
switched from autotool to CMake. They have written a document why they
did it and how it worked.® With this knowledge it is clear that CMake will
be maintained for a long time.

In CMake there is a module CTest. In Section 6.2 we go into the details
of CTest. This allows testing much better than we thought and the last
requirement is coped.

CMake is capable of creating Makefiles respectively project files for:
e Makefiles (GNU, NMake, Borland, MinGW, Unix, etc)

e KDevelop, Eclipse

Shttp://www.cmake.org/cmake/resources/software.html
Shttp://1lwn.net/Articles/188693/

21

e Visual Studio 6, 7, 8, 9 IDE
e Watcom WMake

In summary we see that with CMake the build process can be made much
easier and CMake also supports to install files, to create packages and other
pleasing functions. So we changed the Makefiles to CMake.

5.2 CMake implementation

We will introduce the main commands of CMake for this project. The com-
mands in CMake are case insensitive and independent of space. We wrote
the commands in uppercase letters with a space after the brackets. CMake
uses usually a file called CMakeLists.txt. The following commands are in
these files, or in subdirectories which are called by this first CMakeLists.txt.

PROJECT (TPM-Emulator)

This command sets the name of the project.

SET (Tpm_dir ${ PROJECT_-SOURCE_DIR} /tpm)

The "SET” command is used to define variables. We use them e.g. to set
the used directories.

IF (UNIX) / IF (WIN32)

The variables unix, win32, apple and cygwin are set automatically by CMake.
There are other variables which describe the system in which the build sys-
tem is running.

We use this command to use the corresponding files for the different op-
eration systems and to find special libraries if they are needed with the
commands SET (System "Win32") and

SET (System.dir ${PROJECT_SOURCEDIR}/windows) . We wrote a CMake
module to easy extend the find library command (see Appendix)).

MESSAGE (STATUS ”System is ${System}”)

This command outputs a status message, which is just displayed. There are
the following different states

e STATUS

22

e FATAL_ERROR
e SEND_ERROR

FIND_LIBRARY (Gmp_library NAMES gmp)

This command searches in the paths for libraries of the operation systems
and on the ones inputed to CMake for gmp and saves the name in the
variable ” Gmp_library”.

INCLUDE_DIRECTORIES (${Tpm._dir})

This adds the given directory to those searched by the compiler to include
files.

FILE (GLOB Tpm 7${Tpm_dir}/*.[h—c]”)

This creates an array of all the header and code files in the chosen directory.
The recommended way to import files is to write them in the CMakeLists.txt
and not to import them with a regular expression. The reason for this is,
that if a file is deleted or added the CMakeLists.txt is not changed and
therefore is not built again. CMake adds the CMakeLists.txt as a target.
So if the CMakeLists.txt is changed, the project respectively the Makefile
will be rebuilt and the new files are added. We choose the command FILE
because by implementing another operation system it is convenient to just
add a whole directory with all its files without copying every file name in
the CMakeLists.txt.

ADD_DEFINITIONS (” -Wall ...”)

This adds the flags to the compilation of the source files.

ADD_EXECUTABLE (${Tpm} ...)

This command takes code files and with all the previous definitions creates
the needed target. One of the big advantage of CMake is, that it creates
the targets by checking the included file in the source and header files of the
code. By changing one file not every other has to be recompiled. Usually
this is done manually and it is a lot of work.

For further information we refer to [9], the man page and to the complete
CMake-Code for the TPM-Emulator in Appendix.

23

5.2.1 Difficulties of platform independence

There are popular difficulties of platform independence applications. Most of
them are well-known to developers like endianness, the addressing-problem,
differences in compilers and problems with libraries. Usually the interprocess-
communication and the logging is platform dependant, as well as the user-
and right management. As the reader can see in Section 5.3 we changed
the whole interprocess-communication (Section 5.3.2) and the logging sys-
tem (Section 5.3.3). As the TPM-Emulator runs as an application, the user
management is easy to manage.

5.3 Windows

As a proof of concept we ported the TPM-Emulator to Microsoft Windows
XP. There were different problems arising by porting. Some of them will be
explained in detail. The main problems are the compilers, the differences
in saving log entries and the decision which compiler should be used. The
decision which design is used for Microsoft Windows were sometimes easy,
sometimes difficult. We will show one of such a decision in detail: The
decision how the interprocess communication should be done.

First we will see which build environment has been chosen.

5.3.1 Build Environment

As written before in Section 5.1.2 CMake is capable of using a lot of different
compilers (it even creates project files for Visual Studio). There are some
differences from the Borland Compiler to the GNU Compiler. As there were
already some commands which only work with the GNU compiler we decided
not to rewrite these commands but to use the GNU Compiler (gcc).

To use the gcc we decided to use MinGW Makefiles[7]. MinGW is a
“Minimalistic GNU for Windows” to use gcc and GNU Binutils in the de-
velopment of native Microsoft Windows applications. There are other envi-
ronments for using gce in Microsoft Windows as Cgwin but the advantages
of MinGW were the following;:

e It is easy to install. It is just a binary and includes everything you need
to just compile the Makefiles. This is different to e.g. Cygwin, where
you have to choose from different packages until you have everything
you need.

e MinGW does not need additional libraries. So there is no unnecessary
overhead for linking or augmenting the final binary.

24

As the TPM-Emulator should be easy to compile for a developer and easy
to use for testing for a normal user this is the best choice. Every developer
can with the CMake build system use the build environment he knows,
but a normal user can just follow the instruction or use the precompiled
executable.

5.3.2 Connection Sockets/Pipes

The implementation for linux for the interprocess communication uses the
unix sockets. They are available for linux, unix, Apple, Free-BSD and others.
But not for Microsoft Windows. Microsoft Windows has sockets, but “only”
the usual network sockets. The starting point is, that we have a server, the
TPM-Emulator, and different clients who will send requests which the TPM-
Emulator must answer to this specific client.

There are different possibilities for Interprocess Communication in Win-
dows (IPC)[15]. First we list them and explain about the pros and cons and
then present our choice for the TPM-Emulator in Microsoft Windows.

Clipboard

Everyone knows the clipboard but nobody would think of it as an interpro-
cess communication possibility, but in fact it is. But it is only usable with
user interaction and we mention it just for completeness.

Dynamic Data Exchange

Dynamic Data Exchange (DDE) can be thought as extension to clipboard.
It is old and not efficient, so it is only used when an existing application
only supports DDE.

File handler

Every file can be used for interprocess communication. It is implementable
at every operating system. As this is only the use of a file as a memory
location, there are better methods for shared memory. One problem of
using files for IPC for our TPM-Emulator would be the synchronization.

Mailslots

Mailslots behave, like the name says, as mails on the internet. A server
creates a mailslot and another process sends messages to the mailslot server.

25

These are only one way communication, perfect for broadcast but as there
are no confirmations and responds, this is no good solution for interaction
from client to server.

Named Pipe

Named pipe exists in unix etc. Is in Windows a client-server communication,
the passive mode is similar to the unix domain sockets. They are handled
like a file (as in unix before). They are not permanent, so this is what we
want. To connect you have to know the path, like //.//pipe//‘ ‘name of
the pipe’’. They are inter- and intramachine interprocess communitations.
There exists different modes like half duplex or full-duplex.

Most of the IPC are not suitable for the TPM-Emulator. At last the
decision was between sockets and pipes. As the Microsoft Windows sockets
uses different commands than Unix sockets reusing the code is not possible
neither with sockets nor named pipes. Sockets are more intended for com-
munication with different machines, although named pipes are also capable,
so named pipes are a little bit better suited for our purpose.

5.3.3 Logging

In every unix-like operating system one of the easiest and best possibility to
write a log is to use the syslog. As the TPM-Emulator will be mainly used
for developers to debug and test their application, a good logging system is
essential.

Microsoft Windows XP knows an Event Logger[16]. We adapted the func-
tion in the TPM-Emulator to write to the Event Logger instead of syslog.
With the command init_log() the TPM-Emulator register an Event Source
(the default is “Application”). After initialization the function tpm_log()
takes as parameter the priority and the message. It writes a new event into
the registered source. The ability to write debug messages is implemented
as it was in syslog.

It is also possible to start the TPM-Emulator not as service but as ap-

plication. For this use case there is the possibility to write the log to the
console where the TPM-Emulator is started and not only in the Event Log.

26

5.4 Driver - TDDL

TCG specifies a way to access a TPM, the so-called TPM Device Driver
Library (TDDL). It is the user mode interface. It ensures that different im-
plementations of the TCG software stack can communicate with any TPM
and it provides a operation system independent interface for TPM applica-
tions. The TDDL is the connection to the kernel mode. There is only one
instance of a TDDL, as the multithreeaded components are applied higher
in the stack. So this enforces a single threaded access to the TPM. There
are only a few command sets we implemented. See also Section 5.4.2.

5.4.1 Linux

TPM- T
Emu o\
lator =
o
— _
Unix Sockets
e 1+ Syog |

Figure 7: Linux implementation for the TPM-Emulator

In linux the 1ibtddl.so library has been done by Mario Strasser in 2006
and uses the unix sockets instead of the hardware access as it would be
for a TPM-Chip. By using this library every linux program will access the
TPM-Emulator instead of a TPM-Chip.

5.4.2 Windows

For this master thesis we wrote a TDDL for windows. In Microsoft Windows
XP most program use the ifxtpm.dll.

Ifxtpm.dll is from Infineon Technologies AG and belongs to their TPM
Software Driver. This library is provided in software based on Infineon’s
TPM software stack. Several manufacturers are infineon-based even if they
are not from Infineon itself. So by exchanging this library in Microsoft

27

TPM-
Emu 0
lator =
o
= Named Pipes
e 1 b Eventlog |

Figure 8: Windows implementation for the TPM-Emulator

Windows XP in most cases the TPM-Emulator will be used instead of a
TPM-Chip. If this will not work it is possible to run an application which
tells which libraries are used. By replacing the TPM library every TPM
holding the specification of the TDDL by the TCG will work.

In the following we look on the implementation of the device driver library.
The main commands are to open and close the device, transmit and receive
data and get the capabilities of the TPM. Actually, by open and close the
library opens respectively closes the named pipe to the TPM-Emulator.
The receiving and the sending of data is consequentially only sending the
bytes over the named pipe to the TPM-Emulator. The TPM-Emulator then
marshals the data according to the data of tpmd.c (Section 2.2). With this,
the library is as small as possible.

This library writes important events and errors to the Event Log, as the
TPM-Emulator does.

5.4.3 Apple/Free- and Open-BSD

It is easy to port the TPM-Emulator to Apple, Free- and Open-BSD. Most
of the code will work just out of the box. Only for the kernel module there
has to be done some adjustment. But CMake will work without problems,
so the building process is easy.

5.4.4 All together

The TPM-Emulator runs now in Linux, Mac, Free-BSD, Open-BSD and
in Microsoft Windows. Only in Linux is a written device driver interface

28

Daemon | Syslog | Unix-Sockets | Kernel-Modul | TDDL
Free-_BSD
Windows | Servic E:;‘t/ Named Pipyr o J

Figure 9: Comparison of OS

as a kernel module. It is possible to change this written module for Mac,
Free-BSD and Open-BSD. But this is not done yet.

29

6 Testing

As this master thesis consists to a big part in software engineering testing is
important. We chose tests which are not only self-written, but are as much
as possible from third parties to really check if our implementation is com-
patible to the specification. This is possible because the main requirements
come from the TCG as described in Section 2.1.

6.1 TrouSerS

TrouSerS is a open-source TCG Software Stack. TrouSerS was launched
by IBM in 2004 and consists of a TCG Software Stack (TSS) and a TSS
Core Services daemon. After installing these parts it is possible to use all
the TPM-Commands from TrouSerS and the TCG tests. These tests are
for testing hardware TPM. We tested the newly implemented delegation
functions and all tests succeeded in our TPM-Emulator.

6.2 CTest

CTest[12] is a part of CMake, which adds the functionality of testing to
CMake. It can be used to run tests, but also to perform memory check,
coverage and to submit the results do a CDash[13] or Dart[14] dashboard
system. At the moment the feature to export the tests are not important for
us, but could be used in the future. We use CTest to run tests for developers
and to add a simple way for others to add tests by their own.

The syntax is the same as in CMake in Section 5.1.2. It is possible to
outsource the tests and include the additional file, but as there are only a
few tests at the moment we put these tests at the end of the main CMake-
Lists.txt.

With the command ENABLE TESTING () the CTest part of CMake is loaded
and enabled. It is now possible to add tests, test directories or to start
scripts. Adding a test is done with the following command
ADD_TEST(SimpleTest ${PROJECT_SOURCE DIR}/tests/simpletest paramterl).
With this command a new test “SimpleTest” is added. CTest will start
the executable /project_source_dir/tests/simpletest with the parameterl
which can be defined as a variable in the CMakeLists.txt or read from a file.
As we produced Makefiles with CMake we start the test by just executing
make test in our build directory. The output will be analog to Figure 10.

30

$cd /tpm—emulator/build_linux

$make test

Running test ...

Start processing tests

Test project

/tpm—emulator /build_linux
1/ 2 Testing SimpleTest xxx Failed
2/ 2 Testing SimpleTest2 Passed

50% tests passed, 1 tests failed out of 2

The following tests FAILED:
1 — SimpleTest (Failed)

Figure 10: CTests running

6.3 Other

All of these tests explained before do not run in Microsoft Windows XP, be-
cuase TrouSerS is a linux tool. As the only changes to the TPM-Emulator
are in the file tpm_emulator_config.h and tpmd.c we do not have to test the
whole emulator part of the emulator, but only these interfaces. We wrote
the TDDL (Section 5.4.2) for windows and this had to be tested too.

We tested all of this with the instrument it will be used afterwards: A
third party application, the TPM/J[11]. TPM/J is a cross-platform object-
orientated AP using Java to access the TPM. It was developed as part of the
research project on Trusted Computing at MIT. It is intended to be used as
a platform independent tool for any programmer to access the TPM with
handy Java classes. By using TPM driver object to access the TPM they
were able to support multiple platforms without requiring the programmer
to change any code.” We chose this tool to do the tests as it is open-source
and therefore easy to debug. It is possible to print all communication from
the tool to the TPM to the terminal and see what is going on.

We could access from this Java application the TDDL which connected
to the TPM-Emulator instead of a real TPM and it responded back to the
application. Without changing anything on the application but by only re-
placing the device driver library, the ifxtpm.dll, it is now possible to interact

"http://tpmj.sourceforge.net

31

with the TPM-Emulator.

This proves that the TPMD is running correctly, that the TDDL is
running as expected for the TPMD and for the third party application. As
the TDDL has only a small interface to the TPMD we could test every

command and the application always reacted as it would if there were a real
TPM.

32

7 Conclusion

7.1 Summary

The aim of my master thesis was to design and implement the delegation
function into the TPM-Emulator and to develop a platform independent
build and test framework.

We can state that this main goal is reached as the delegation function is now
fully implemented and tested with a third-party tool to test “real” TPM,
TrouSerS and all tests succeeded.

We changed the build system to a platform independent, CMake, and
implemented CTest for further testing. Going further we built as a proof
of concept a TPM-Emulator in Microsoft Windows XP, wrote the TPMD,
adjusted the libraries and wrote a TDDL and tried with a third-party ap-
plication from MIT and the TPM-Emulator reacted as expected.

7.2 Outlook

A future work will be to insert the tests from the Frauenhofer Institute.
Another will be to use the TPM-Emulator in a virtual machine. There are
different problems with that, but should be possible without changing the
design of the TPM-Emulator.

The portability to other Microsoft Windows Version like Vista and Win-
dows 7 can be done. Other very interesting thesis including the TPM-
Emulator are to include the TPM-Emulator into a virtual machine and de-
sign how to anchor this TPM-Emulator instances into the host system and
this TPM-Chip.

33

References

[1] TCG - Trusted Computing Group
Homepage with all the ressources and specifications.
http://www.trustedcomputinggroup.com

[2] Kent Yoder et al.
TrouSerS - Open-source TCG Software Stack.
http://trousers.sourceforge.net/.

[3] Trusted Computing Group
Part 1 - Design Principles
http://www.trustedcomputinggroup.org/resources/tpm_main_
specification

[4] Trusted Computing Group
Part 2 - TPM Structures
http://www.trustedcomputinggroup.org/resources/tpm_main_
specification

[5] Trusted Computing Group
Part 3 - Commands
http://www.trustedcomputinggroup.org/resources/tpm_main_
specification

[6] Cygwin.
Website of Cygwin, a Linux-like environment for Windows.
http://www.cygwin.com

[7] Minimalistic GNU for Windows
http://wuw.mingw.org/

[8] CMake.
Website of CMake, cross-platform, open-source build system
http://www.cmake.org

[9] CMake Documentation for CMake 2.8
Website of CMake, the documentation for version 2.8
http://www.cmake.org/cmake/help/cmake-2-8-docs.html

[10] Mario Strasser et al.
Software-based TPM Emulator for Linux.
http://developer.berlios.de/projects/tpm-emulator.

34

[11] TPM/J - Trusted Computing at MIT.
http://projects.csail.mit.edu/tc/tpmj/.

[12] CTest: Testing to from CMake
http://wuw.cmake.org/Wiki/CMake_Testing_With_CTest

[13] CDash: Web-based software testing server
http://www.cdash.org/

[14] Dart: Open-source, distributed, software quality system
http://public.kitware.com/Dart/

[15] MSDN - Interprocess Communication
http://msdn.microsoft.com/en-us/library/aa365574(VS.85)
.aspx

[16] MSDN - Event log
http://msdn.microsoft.com/en-us/library/aa385780(VS.85)
.aspx

[17] Trusted Computing Group.
TPM Software Stack (TSS) Specification, Version 1.2, p. 42.
http://www.trustedcomputinggroup.org/developers/software\
_stack/specifications.

[18] Steven Kinney Trusted Platform Module Basics

[19] Silberschatz, Galvin, Gagne System Concepts - Sixth edition Wiley,
2003

[20] Norbert Pohlmann, Helmut Reimer
Trusted Computing - Ein Weg zu neuen IT-Sicherheitsarchitekturen
vieweg, 2008

[21] Jonathan M. McCune, Bryan Parno, Adrian Perrig, Michael K. Reiter,
Hiroshi Isozaki
Flicker: An execution Infrastructure for TCB Minimization
http://www.ece.cmu.edu/~jmmccune/papers/mccune_parno_
perrig_reiter_isozaki_eurosys08.pdf

35

A Appendix

Manual

We will show how to compile the TPM-Emulator in Windows.

First MinGW and CMake has to be installed. As in Figure 11 create
MinSys Files by choosing a build directory. We propose to use a directory
with the prefix “build_”. If you call it otherwise the command make dist will
add your build directory too by creating a package. After pressing configure
two times you can generate the Makefiles or change the library path or other
variables. This is not necessary.

Now you can generate the Makefiles in your chosen build directory, in
the Figure it is build_window.

The next step is to open MinGW and change to the build directory. The
command make will create the tpmd and if available in the operating system
the TDDL as you can see in Figure 11.

The file ifxtpm.d1l has to be copyied to C:/Windows/System32. We do

not do it automatically, because if there is a TPM in use, it is not clear what
will not work anymore, so we leave this to the user who knows what he is
doing.
The last step is to execute the tpmd.exe in the command line or with a link.
By the first start you have to start in clear mode. For further information
we refer to the Readme from the linux tpmd. The output will be as in Fig-
ure 13.

To create packages with all the source file you can use the command
make dist from CPack. The output as you can see in Figure 14 will be
a compressed file with everything from the project directory without any
directory with the prefix “build_“ and without svn or other version control
tools.

36

i)

File Tools Options Help

Where is the source code: I‘nents and Settings/sdomenic/My Documents,tpm/sdomenic/abgabe/ Browse Source... |
Where to build the binaries: |;sfsdomenicﬂ'~‘ly Documents,/tpm fsdomenic/abgabe fbuild_window LI Browse Build. .. |

Search: I |Simple Views LI qp Add Entry I 2% Remove Entry |

MName

Specify the generator for this project

& Use default native compilers
" Specify native compilers

‘I " Specify toolchain file for cross-compiling _>|
Prest " Specify options for cross-compiling

< Back | Finish | Cancel

Figure 11: CMake-gui in Microsoft Windows

37

MINGW32:/c/Documents and Settings/sdomenic/My Documents/tpm/sdomenic/:

U

cd build_window

2
L
L
8
[
L
¥
8
L
L
¥
[
L
L
L3
[
L
¥
8
L
L
¥
[
L
¥
8
L
L
¥
[
L
L
8
L
L
¥
8

[9721 Built target tpmd
[188x1

Creating library file: libifxtpm.dll.a
[188:1 Built target ifxtpm

3

Figure 12: Build with make in Microsoft Windows

38

\WINDOWS\system32\cmd.exe - tpmd.exe -df dear

enicsabgabe>cd build window

enicsahgabesbuild ulndnu)tpmd exe —df

enic-ahgahe/tpn/tpm_(_data.c:117
enic/ahgabe/tpm/tpm_startup.c
enic/abgabestpm/tpm_testing.c
enicsahgabestpm/tpm_testing.
enic/abgabetpm/tpm_testing.c
enic-abgabe tpm/tpm_testing.c
enic/abgabetpm/tpm_testing.c
enic~abhgahe/tpm/tpn_testing.c
enic/ahgabe/tpm/tpm_testing.c
enlc/abgaha/tpm/tpm te“tlng c
enic-ahgabe/tpm/tpm_tes

Ik O 0T L0 0D e ()

SV rr wn e rn e e me

?
7.
?
7
7
?
7
1
15

enic-abgahe tpm/tpm_testing.c
enic/abgabe/tpm/tpm_testing.c
enic-abhgahestpm/tpm_testin
enicsahgabestpm/tpm_testing.
enic/abgabetpm/tpm_testing.c
enic/ahgabe tpm/tpm_testing.c
enic/abgabetpm/tpm_testing.c
enic-abhgahe/tpm/tpn_testing.c
enic/abgabe/tpm/tpm_testing.c
enic~abhgahe/tpm/tpn_testing.c
enicsahgabe/tpm/tpm_tes
enic/abgabe tpm/tpm_tes
enic/ahgabe tpm/tpm_testing.c
enic/abgabetpm/tpm_testing.c
enic-abgabe tpm/tpm_testing.c
enic/abgabetpm/tpm_startup.c
enic-abgabe windows tpnd.c:384
enic/ahgabe/vindows/tpnd .

Inf
Info

Info

clear
startup mode = ‘clear’
init dl]._‘ q l-andum
staring loo
1n1t1a11"1ng TPM enulator: 1
tpm_emulator_init{>
initializing TPH data to default values
TPM_Init{>
TPM_Self TestFulld)
tpn_test_prng(d

2482, 2518
1263, 1175
5} 651

run_f
run_34:
tpm_test_shal{>
tpm_test_hmac{)
: tpm_test_rsa EK(
tpm_rsa_generate_key()
testing endorsement key
tpm_rsa_sign<RSA_SSA PKCSl _SHAl>
sa_verif y(RSA_SSA_PKCE1_SHAL>
sa_sign{RSA_SSA_PKCS1_DER)
a_verify(RSA_SSA_PKCE1_DER>
sa_encrypt (RSA_ES_PHCSU15)
za_decrypt (RSA_ES_PKCEU15)>
fy plain text
sa_encrypt (RSA_ES_OAEP_SHAL>
za_decrypt (REA_ES_OAEP_SHAL>
fy plain text
—Test succeeded
TPM_Startupdl>
initializing pipe ““.“Zpipestpmd

:338: Debug: waiting for connections...

Figure 13: Starting the tpmd in Microsoft Windows

6 make dist

CPack
GPac
CPac

eate_package using TBZ2
stall projects
Install directory:
CPac. ompress package
GPac Finalize package
CPack: Package C:/Documents
Built target dist

and Setting:

e

CMakeCache . Ext
CHakeFiles
CPackConfig.cmake

CPackSourceConfig.cnake
CTestTestfile.cmake
Makefile

3

C:/Documents and Settings/sdomenic/My Documents tpm/sdomenic/abgabe

domenic/My Documents/tpm/sdomenic/abgabe build_windowsTPM_Emulato

TPH_Emulator—-8.5.1-8ource.tar.hbz2Z tpmd.exe

windous

cmake_install.cmake

Figure 14: Creating packages with CPack in Microsoft Windows.

39

CMake: CMakeList.txt

PROJECT(TPM_Emulator)
CMAKE MINIMUM REQUIRED(VERSION 2.6)

HHHBHHR AR
#CONFIGURATION#
HHHBHHR AR
SET(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS TRUE)

SET(${PROJECT_NAME} MAJOR_VERSION 0)
SET($Major ${${PROJECT_NAME} MAJOR VERSION})
SET(${PROJECT_NAME} MINOR VERSION 5)
SET(${PROJECT_NAME} BUILD VERSION 1)

HAHHHHH
#CPack#
HHHBHHH

Implement the package system

SET(CPACK_PACKAGE_VERSION_MAJOR ${${PROJECT_NAME} MAJOR VERSION})

SET(CPACK_PACKAGE_VERSION MINOR ${${PROJECT_NAME} MINOR VERSION})

SET(CPACK_SOURCE_GENERATOR "TBZ2")

#SET (CPACK_SOURCE_PACKAGE_FILE NAME "${PROJECT NAME}-${Major}-source")

SET(CPACK_ SOURCE IGNORE FILES "/build. */;/.bzr/;~$;/.svn/;${CPACK_SOURCE_IGNORE_FILES}")
#A "better" command

ADD CUSTOM TARGET(dist COMMAND ${CMAKE_MAKE_PROGRAM} package source)

INCLUDE(CPack)

SET(Crypto_dir ${PROJECT_SOURCE_DIR}/crypto)
SET(Tpm_dir ${PROJECT_SOURCE_DIR}/tpm)
#CHECK INCLUDE FILES(tpm version.h TPM VERSION H)

SET(CMAKE_MODULE_PATH ${PROJECT_SOURCE_DIR}/cmake modules)
IF(UNIX)
SET(Tpmd_user "tss")
SET(Tpmd_group "tss"
SET(Store_dir "/var/lib/tpm")
IF(APPLE)
SET(System "Apple")
ELSE(APPLE)
SET(System "linux")
SET(System_dir ${PROJECT_SOURCE_DIR}/linux)
ENDIF(APPLE)
ELSE(UNIX)
IF(WIN32)
SET(System "Win32")
INCLUDE(FindADVAPI)
IF (Advapi32 found)
LINK LIBRARIES(advapi32)
else (Advapi32 found)
MESSAGE (FATAL ERROR "Advapi32 not found, abort")
ENDIF(Advapi32 found)

40

SET(CMAKE_LIBRARY_PATH "${PROJECT_SOURCE_DIR}/gmp")
SET(CMAKE_INCLUDE_PATH ${PROJECT_SOURCE_DIR}/gmp)
SET(System_dir ${PROJECT_SOURCE_DIR}/windows)
#Worked with msys Makefiles

ELSE(WIN32)
SET(System "Unknown")
MESSAGE(WARNING "System unknown, try linux")
SET(System_dir ${PROJECT_SOURCE_DIR}/linux)

ENDIF(WIN32)

ENDIF(UNIX)

MESSAGE(STATUS "System is recognised as ${System}.")

INCLUDE(FindGMP)
IF(Gmp found)
MESSAGE(STATUS "GMP ready to use")
INCLUDE DIRECTORIES("${Gmp_h}")
LINK DIRECTORIES ("${Gmp_h}")
ELSE(Gmp_ found)
MESSAGE (FATAL ERROR "GMP not found, abort")
ENDIF(Gmp_ found)

HAHBHHHRAH AR

#The real work#

e e g

#include dir

INCLUDE DIRECTORIES("${PROJECT_SOURCE_DIR}/crypto")

INCLUDE DIRECTORIES("${PROJECT_SOURCE_DIR}/tpm")

INCLUDE DIRECTORIES(${System_dir})

MESSAGE(STATUS "${PROJECT_SOURCE_DIR}/${System}")

ADD DEFINITIONS("-Wall -Werror -Wno-unused -Wpointer-arith
-Wcast-align -Wwrite-strings -Wsign-compare -Wno-multichar")

#To turn of Werror uncomment the following 2 lines

#MESSAGE(Turned off werror!!)

#ADD DEFINITIONS("-Wall -Wno-unused -Wpointer-arith -Wcast-align
#-Wwrite-strings -Wsign-compare -Wno-multichar")

ADD DEFINITIONS("-g -I.. -I. -02 -fno-strict-aliasing")

#TARGET LINK LIBRARIES
LINK LIBRARIES(gmp)

#Importing like this you have to call cmake yourself by adding or removing files!
file(GLOB Crypto "${Crypto_dir}/*.[h|c]")

file(GLOB Tpm "${Tpm_dir}/*.[h|c]")

file(GLOB Tpmd "${System_dir}/*.[h|c]")

HHEHRHHH
#Do it#
HEHAHHH
ADD EXECUTABLE(tpmd ${Tpmd} ${Tpm} ${Crypto})

#ADD DIR to store files:

41

FILE(MAKE DIRECTORY "${Store dir}")
INSTALL(TARGETS tpmd DESTINATION /usr/sbin
PERMISSIONS OWNER EXECUTE OWNER WRITE OWNER READ
GROUP_EXECUTE GROUP_READ
WORLD_EXECUTE WORLD_READ
)

I

#TDDL#

T

#This calls the CMakelLists.txt in the system/tddl

MESSAGE (STATUS "Search for TDDL in ${System dir}")

IF(EXISTS "${System_dir}/tddl" AND IS DIRECTORY "${System dir}/tddl")
ADD SUBDIRECTORY(${System}/tddl)

ENDIF()

RS
#Testing#
R

ENABLE_TESTING()

ADD TEST(SimpleTest ${PROJECT_SOURCE_DIR}/tests/simpletest)
ADD TEST(SimpleTest2 ${PROJECT_SOURCE_DIR}/tests/simpletest return_true)

42

CMake: Module for Windows to find library
#Find gmp.h and the gmp library

FIND PATH(Gmp h NAMES gmp.h)
FIND_LIBRARY (Gmp_library NAMES gmp)

IF(Gmp_h)

MESSAGE(STATUS "gmp.h found")
glse(Gmp_h)

MESSAGE(STATUS "gmp.h NOT found")
ENDLF(Gmp_h)

IF(Gmp_Llibrary)

MESSAGE(STATUS "GMP library found")
ELSE(Gmp_library)

MESSAGE([STATUS "GMP Library NOT found")
ENDIF(Gmp_library)

IF(Gmp_h AND Gmp_library)

SET (Gmp_found TRLUE)
ENDIF(Gmp_h AND Gmp_library)

43

