ETH Instt
' . Technische Informatik und
Eidgendssische Technische Hochschule Ziirich Kommunikationsnetze
Swiss Federal Institute of Technology Zurich

MASTER THESIS

Privacy in Online Social Networks

Christoph Renner

<chrigi.renner@gmail.com>

Advisors

Dr. Thomas DUEBENDORFER, Google Switzerland GmbH
Martin BURKHART, ETH Zurich

Supervisor
Prof. Dr. Bernhard PLATTNER, ETH Zurich

Communication Systems Group (CSG)

Computer Engineering and Networks Laboratory (TIK)
Department of Information Technology and Electrical Engineering (D-ITET)
Swiss Federal Institute of Technology (ETH Zurich)

&

Google Switzerland GmbH

12.10.2009 - 12.04.2010

Acknowledgments

I would like to thank:

e Prof. Dr. Bernhard Plattner from ETH Zurich for supervising this thesis.
e Martin Burkhart for being my advisor from ETH Zurich.

e Dr. Thomas Duebendorfer for hosting me at Google and for supporting me with
valuable input, feedback and many fruitful discussions.

e Mark Weitzel and Tyrone W. Grandison from IBM for their feedback on the pro-
posals to extend OpenSocial.

e Sachin Shenoy and Shishir Birmiwal from Orkut for helping me work with Orkut.

e Lane LiaBraaten and Rahul Kulkarni from Google for their feedback on the OpenSo-
cial proposal.

e Jason Cooper from Google for integrating my change lists into the OpenSocial Java
Client.

e Google Switzerland GmbH and especially the Milliways team for providing a pro-
ductive work environment and excellent food.

Abstract

Online social networks penetrate today’s life more and more. Much appeal comes
form the personal data which is shared using those networks. This potentially sen-
sitive data can expose the users to threats such as embarrassment or identity theft.
This thesis, after looking at the current state of research in the field of privacy in
online social networks, proposes modifications to the OpenSocial specification to add
the first privacy features to this cross-platform API for applications interacting with
online social networks. Our proposals define access control lists and their use for al-
bums, media items and activities. These changes provide application developers the
necessary means to give the user more control over his data in online social networks
and more transparency of who can access that data. To demonstrate the usefulness
of the proposed changes, an Android application was created and the proposed API
was implemented as a part in Google’s social network platform Orkut.

Zusammenfassung

Soziale Netzwerke im Internet nehmen in der heutigen Zeit eine immer wichtigere
Rolle ein. Ein wichtiger Bestandteil dieser Netzwerke sind die personlichen Infor-
mationen, welche darin ausgetauscht werden. Diese moglicherweise heiklen Daten
konnen die Benutzer Risiken wie zum Beispiel Blossstellung oder Identitétsdiebstahl
aussetzen. Diese Arbeit begutachtet zuerst den aktuellen Stand der Forschung im
Gebiet von Privatsphire in sozialen Netzwerken und schldgt danach Erweiterungen
zum OpenSocial Standard vor. Diese Erweiterungen sind die ersten Datenschutzfunk-
tionen in diesem Plattform iibergreifenden Standard fiir Anwendungen fiir soziale
Netzwerke. Die Erweiterungen definieren Zugriffskontrolllisten fiir Albums, Media
Items und Activities, welche es Entwicklern erméglichen dem Benutzer mehr Kon-
trolle tiber seine Daten zu geben und ihm transparenter mitzuteilen wer auf seine
Daten zugreifen kann. Um die Niitzlichkeit dieser Erweiterungen aufzuzeigen wurde
eine Android Anwendungen geschrieben. Des weiteren wurden die vorgeschlagenen
Erweiterungen in Googles sozialem Netzwerk Orkut implementiert.

CONTENTS

Contents

1 Introduction

1.1 Online Social Networks
1.2 Risks in Online Social Networks
1.3 Problem Statement L
1.4 Outline e

Literature Review

2.1 Privacy Controls in APIs
2.1.1 Facebook RESTful APT
2.1.2 OpenSocial

2.2 Privacy Metrics e
2.2.1 Twosimple metrics.
2.2.2 Privacy Risk Score

2.3 Understanding the Sharing Model

OpenSocial

3.1 OpenSocial Data Specification
3.2 OpenSocial Gadget Specification
3.3 OpenSocial API Server Specification

Design of OpenSocial Privacy API

4.1 Privacy Levels in Online Social Networks
4.2 Proposal for OpenSocial Access Control Lists
4.3 Proposal for OpenSocial Activities Privacy API
4.4 Proposal for OpenSocial Albums and Media Items Privacy API
4.5 OpenSocial Privacy API for Profile Fields

10
11
11
12
13

15
15
16
16

CONTENTS 4
5 Evaluation 26
5.1 Comparison to existing APIs 26
5.2 Photocial - Photo Sharing Application for Android 27
5.3 Album Privacy APIin Orkut 29
Conclusion 30
Proposal for OpenSocial Access Control Lists 31
A1l Motivation e 31
A2 Overview e 31
A.3 Changes to the Social Data Specification 31
A4 Examples 36
OpenSocial Album/Media Item Privacy API Proposal 40
B.1 Motivation 40
B.2 Overview e 40
B.3 Semantics of access control lists oo 40
B.4 Changes to the Social Data Specification 41
B.5 Changes to the Social API Server Specification 42
B.6 Changes to the Gadget / JavaScript API Specification 43
B.7 Examples 44
Proposal for OpenSocial Activities Privacy API 52
C.l Overview o i e 52
C.2 Activity Stream Access Control in Social Network Services. 52
C.3 Changes to the Social Data Specification 52
C.4 Changes to the Social Server API Specification 53
C.5 Changes to the Gadget / JavaScript API Specification 54

CONTENTS

C.6 Examples

1 INTRODUCTION 6

1 Introduction

1.1 Online Social Networks

In the past few years online social networks have become highly popular. As of February
2010, Facebook had more than 400 million active users. Every day 50% of those active
users logged on to Facebook [9]. In most online social networks users create profiles
which often contain details about their personal lives. These profiles are shared with
friends, networks and sometimes also with strangers. Some online social networks also
provide a platform to share multimedia content like photos and videos. Facebook for
instance is one of the largest Photo Sharing Sites worldwide. Every month 3 billion
photos are being uploaded to Facebook [9].

1.2 Risks in Online Social Networks

The personal information shared in online social networks can harm the user in often
unexpected ways. For example, in the United States of America, knowing someone’s
birth date and state of birth is often enough to predict that person’s Social Security
Number. This might allow for identity theft because the Social Security Number is
often used for identification [3]. Photos uploaded to online social networks can also be
harmful for someone when they fall into the wrong hands. Uploading photos of a wild
party might be harmless when shared with friends who were also at that party but it
might not benefit the applicant if those photos fall into the hands of his recruiter.

A Google search for “lost job because of Facebook” shows that the threats of using
online social networks are real and nothing rare. Especially ranting about one’s boss
or job seems to be a pretty common reason for getting fired. A case which shows that
sharing photos can have harmful consequences is the story of Nathalie Blanchard who
has been on sick leave because of depression. She lost her insurance benefits because,
according to the insurance company, the photos on her Facebook profile prove that she
is no longer depressed [16].

1.3 Problem Statement

There’s a lot of confusion about what is handled as public, semi-public or private infor-
mation in online social networks. While several social networking sites offer data sharing
controls, there’s no standard way of checking and controlling which personal information
is shared with whom.

1 INTRODUCTION 7

1.4 Outline

While much of the privacy research in online social networks (see Section 2) is rather
theoretical, I wanted my thesis to have a practical impact which helps users to share
information in online social networks in a comfortable and secure way. To have this
impact OpenSocial seems to be a good platform to work with since it’s developed by
an open community where anyone can contribute. Changes to OpenSocial also have an
impact on a many online social network users due to the large number of providers which
support OpenSocial.

This thesis proposes an extension to the OpenSocial API specification to enable for
provider independent applications which give the user more transparency about who
gets access to his data. In addition to increased transparency the proposal also gives the
user more control over his data by offering a provider independent way to modify data
sharing settings.

This Master’s thesis will look at the current state of privacy controls in popular social
networks and propose new ways for controlling the personal privacy risk. Following a
privacy control analysis in popular social networks, a proposal to extend OpenSocial with
the first privacy features is presented. As a reference implementation those features were
implemented in the OpenSocial endpoint of Google’s social network Orkut. In order to
provide a use case to the proposed changes Photocial, a photo sharing application for
Android, was implemented.

2 LITERATURE REVIEW 8

2 Literature Review

With the online social networks gaining importance over the last few years, many research
papers have been written on privacy in online social networks. This section provides an
overview of the more relevant papers.

The social graph in online social networks is of significant interest to researchers
in various application domains such as marketing or psychology. Of course such social
graphs also contain privacy sensitive data and therefore these graphs cannot be published
in their raw form. Backstrom et al. show that anonymizing graphs by simply removing
identifiers does not guarantee privacy [4]. In [12], Kun Liu et al. propose an algorithm
which anonymizes a social graph to guarantee a certain degree of privacy while still
keeping the graph’s properties, which are of interest when analysing the graph.

Another research area is how to provide the user with controls to protect his privacy
by specifying which data should be accessible by whom. Maximilien et al. propose an
algorithm to compute a user’s privacy risk similar to the credit score which is used to
describe a person’s creditworthiness. This algorithm also allows to change the visibility
of information to adjust a user’s privacy risk to a certain value [14]. Bonneau et al. [5]
on the other hand describe how online social networks promote their privacy policies
and settings with a model in which the provider needs to satisfy the privacy aware
users by offering sufficient controls for privacy. Because even if the privacy aware users
are a minority of the user base they still influence the other users with blog posts or
news articles. Bonneau also shows that providing more privacy controls and making
more assurances about the user’s privacy being preserved can make less privacy aware
users less comfortable about using the service. Kelley et al. take another approach by
introducing a “Nutrition Label” for privacy. Similar to the nutrition facts label this
privacy label shows the user how an Internet site treats the user’s data. In contrast
to the privacy policies used today such as P3P [20] such a label could be more easily
understood by uneducated users.

In today’s web based applications like online social networks, the users need to ul-
timately trust the service provider not to misuse the users’ information. Once the user
sends the data to the provider’s server the user cannot control in which way the provider
will actually use the data. Leucio Antonio Cutillo et al. proposed a decentralized social
networking service [7]. In contrast to other peer to peer networks they use the social
graph to ensure collaboration by assuming that users with a “friend” relationship are
willing to help each other.

Almost all methods to protect the user’s privacy only work under the assumption
that an attacker is limited to certain types of attacks. Wondracek et al. show in their

2 LITERATURE REVIEW 9

tech report [21] what can be achieved when one finds a new method to undermine the
user’s privacy. They use a well-known technique of web browser history stealing [11] to
determine the group membership of a user. Using this group membership information
they have a good chance to de-anonymize the user. Because the used history stealing
attack can be performed by any website the user visits, any of those websites can possibly
de-anonymize the user.

2.1 Privacy Controls in APIs

When Facebook launched its Facebook Platform in 2007 this dramatically changed Face-
book’s nature. It transformed from a website which was maintained by Facebook to a
platform on which companies and software developers can write applications which use
the social structures to provide services to Facebook members. Soon after this launch
Google announced OpenSocial, a similar application programming interface (API) which
is described in Section 3. In addition to the initial APIs which allowed for applications to
run within the online social network provider’s website, APIs for directly communicating
with the social network were added to enable for applications to run on other servers to
connect with social networks. In addition to web applications also desktop applications
and applications running on mobile phones can use those server to server APIs which
allow for many interesting applications. This section gives an overview about the privacy
controls available to third party developers using those APIs.

2.1.1 Facebook RESTful API

Facebook provides a proprietary RESTful API, which allows developers to interact with
the Facebook platform. For some methods, it supports all of the privacy controls provided
by Facebook’s web interface.

One method that supports the full set of privacy options also provided by the web
interface is the photos.createAlbum method, which is for creating new albums. It
has two parameters to control the visibility of the new album: visible and privacy.
The visible parameter can be one of friends, friends-of-friends, networks or
everyone. The visible parameter is only supported for legacy reasons, new applications
should use the more powerful privacy parameter. The privacy parameter consists of
key/value pairs which are described in Table 1. This parameter is more complex than
the visible parameter but is able to represent all the privacy settings which can be
specified using the web UL

Unfortunately, the photos.getAlbums method which retrieves the user’s albums does

2 LITERATURE REVIEW 10

Key \ Value

value One of EVERYONE, CUSTOM, ALL_FRIENDS, NETWORKS_FRIENDS,
FRIENDS_OF _FRIENDS or SELF.

friends | For CUSTOM settings, specifies which users can see the album. Can be one
of EVERYONE, NETWORKS_FRIENDS (when the album can be seen by net-
works and friends), FRIENDS_OF _FRIENDS, ALL_FRIENDS, SOME_FRIENDS,
SELF, or NO_FRIENDS (when the object can be seen by a network only).
networks | For CUSTOM settings, a comma-separated list of network IDs that can see

the album.

allow When friends is set to SOME_FRIENDS, a comma-separated list of user IDs
and friend list IDs which can see the album.

deny When friends is set to SOME_FRIENDS, a comma-separated list of user IDs

and friend list IDs which cannot see the album.

Table 1: The privacy parameter to create albums using the Facebook RESTful API

not return a field which is able to represent the more complex privacy settings. Instead
it only returns a visible field which can be one of friends, friends-of-friends,
networks, everyone or custom. If visible equals custom no further information is
provided. This is especially annoying because an application cannot distinguish between
an album being shared with a lot of people in networks and an album not shared at
all because both cases are mapped to custom. This is even true for albums which were
created by the application itself because one cannot be sure that the user has not changed
the setting using another application or the web UL

Some other methods are also missing the appropriate parameters to support the
same privacy functionality as is provided by the web Ul. Status updated as an example
can individually be controlled by privacy settings but the methods status.set and
users.setStatus have no arguments to specify who should be able to see the status
update.

2.1.2 OpenSocial

In contrast to the previously discussed APIs, OpenSocial is a set of APIs which is not
being developed by a single online social network. See Chapter 3 for a high level overview
over OpenSocial.

Unfortunately OpenSocial was not designed with privacy in mind. It provides no way
to access privacy settings. It does not provide any information about who can access

2 LITERATURE REVIEW 11

which resource and also does not allow to specify with whom a resource is shared. When
creating a new resource it also does not allow to differ from the default privacy setting,
which is in general not known and not specified in OpenSocial.

However, MySpace provides access to privacy settings for albums through their
OpenSocial implementation in a proprietary extension [15]. The API allows to retrieve
and set the privacy level for albums which specifies who can view the photos inside that
album. Possible values for the privacy level are me, friendsonly and everyone. me
allows only the person who uploaded the photo to view it, friendsonly allows all the
friends of the user who uploaded the photo to view it and everyone lets everyone in the
Internet view the photo. Unfortunately, this proprietary extension is only supported by
MySpace and not part of the OpenSocial standard and therefore cannot be used across
different platforms.

2.2 Privacy Metrics

Measuring privacy in social networks is a difficult task. It’s not inherently clear which
information can lead to considerable damage such as identity theft. Other risks are even
harder to assess: comments and pictures which are harmless for some people can be
harmful for others. One possible example is criticism against a government or religion.
In some cultures and countries such criticism is widely accepted whereas in other places
someone can get in severe troubles for doing so.

2.2.1 Two simple metrics

One common approach to define risk is by the following formula:
risk = negative consequence X likelihood (1)

the problem with using this definition in the context of online social networks is that
often consequence and likelihood are both unknown. For example how can one define
the consequence of leaking an embarrassing picture? The consequences could range from
just feeling embarrassed in front of friends to ruining one’s career if one occupies an
important position in economics or politics. An often mentioned danger of using online
social networks is that when posting information about vacations abroad, burglars could
use this information to learn when a house is uninhabited to decide when to rob the
house [2]. On the internet countless news reports and blog posts can be found stating
that this is possible but no statistics about how often this actually happens have been
found. Not even a single case for which this method has been used was found.

2 LITERATURE REVIEW 12

An even simpler metric to measure privacy is the number of people which can access
the information at a given time. Of course this metric can only ensure a certain privacy
level when the number of people with access is small enough such that the user which
shares the information knows and trusts all of them. However this metric is often used
in the real world. Most people discuss private information in a train because they know
that only the people in the same compartment will hear them talking whereas they would
never discuss the same things when talking into a microphone such that everyone in the
train can listen. To interpret this metric someone, at best the sharing person itself, must
assess the risk of sharing the information with a group of people of that size. In addition
to the size, the composition of the group needs also to be taken into consideration but
the simple metric of the group size still conveys a feeling for how “public” or “private”
some piece of information is.

2.2.2 Privacy Risk Score

Maximilien et al. from the IBM Almaden Research Center define the privacy risk for a
user based on sensitivity and visibility of profile items which are derived from sharing
settings of the users [14]. The model used for this computation is a social network in
which each of the IV users has n profile items. For each item ¢ the user can choose
whether he wants to share that item. These sharing settings can be represented as a
binary n x N matrix R where R(i,j) is the entry in the i-th row and j-th column. The
profile item ¢ of the user j is shared if R(i,j) = 1.

They define the privacy risk score based on the following two premises:

1. the more sensitive data a user reveals, the higher his privacy risk is

2. the more people know some piece of information about the user, the higher his
privacy risk is

From these two premises follows their definition of the privacy risk as a monotonically
increasing function of two parameters: the sensitivity and visibility of the user’s profile
items. The sensitivity of profile item 7 is denoted as 3; and P;; stands for the visibility
of that item ¢ of the user j. The privacy risk PR(j) for the user j is then expressed as
the sum of the individual privacy risks of each profile item of that user. To compute the
risk of a single profile item the product of its visibility with its sensitivity is used. This
leads to the following equation:

PR(j) = Z B;P;j (2)

2 LITERATURE REVIEW 13

The sensitivity (§; is computed as the proportion of users which are reluctant to share

the profile item 4:
_ N —|Ri|

Bi = N (3)

where |R;| is the number of users which share item 4. This is exactly the numbers of
users j who have set R(7,j) = 1. The visibility Pj; is an estimate of the probability that
R(i,j) = 1. The simplest way to express the visibility of an item is to set Pj; = R(3, j)
which is the observed visibility. The drawback of this simple solution is that the sharing
settings of all users must be known to compute the privacy risk score of a single user.
In [13] Kun Liu et al. extend this metric by using a probabilistic model to compute the
privacy risk score based on the sharing settings of a subset of the users.

An interesting feature of this metric introduced by Maximilien et al. [14] is that it
enables the propagation of privacy settings among users. One can compare a user’s
privacy risk to the aggregated privacy risk of the user’s social graph. If the user’s
privacy risk is too high, possible privacy settings can be proposed to the user to match
the desired privacy risk score. They wrote the Privacy-aware MarketPlace (PaMP)
Facebook application [6] as a proof of concept implementation using Equation 2 as a
definition for a privacy risk score.

2.3 Understanding the Sharing Model

To have control over his personal data in the online social network the user needs,
in addition to using the privacy controls provided by the online social network, also to
understand how the underlaying sharing model works. Due to lack of documentation one
can often only understand the sharing model by performing experiments. For example:
I wondered whether the action of tagging someone in a photo in Facebook transfers
some rights to the user who is tagged. This section describes what I did to answer this
question and what I found out.

At first the Facebook Help Centre [8] was searched for an answer. The only relevant
information found was the answer to the question: “I am able to view a non-friend’s
entire photo album by clicking through from a photo that my friend is tagged in. Is
this violating their privacy settings?” and its answer: “It’s important to remember that
the ‘tagging’ feature does not allow users to see photos that they wouldn’t normally be
able to see. ...”. From this statement one could expect that someone cannot access a
private photo of someone else in which he is tagged. To see whether this expectation
matches Facebook’s actual behavior I conducted a small experiment with two accounts
in a friend relationship. They need to be friends such they can tag each other in their
photos. Using one account I created a new album with the privacy setting “Only me”

2 LITERATURE REVIEW 14

which makes the album and the photos in that album only visible to the account which
creates the album and uploads the photo. Than I tagged the user which has no access
to this album in a photo which I uploaded into that album. The user which has been
tagged then got a notification that he has been tagged with a link to the photo which is
now accessible to him because of the “tagging” feature. This behavior seems to conflict
with the statement made in the Help Centre.

Although some notification that the user who is being tagged gets access to the
private photo would be a nice feature it still makes sense to grant the user access to the
photo since the owner explicitly tagged him. However a second experiment showed that
in addition to being able to view the image he also gets the right to tag new persons
in that photo. Those people then also get access to the photo and could possibly tag
further people to pass on the right to access the photo without giving the owner a chance
to prevent that. All he sees are notifications that some people have been tagged in his
photo.

3 OPENSOCIAL 15

3 OpenSocial

OpenSocial [19] is a set of common APIs to write applications which interact with an on-
line social network initially released by Google in 2007. When OpenSocial was announced
publicly already 18 sites which have about 200 million users in total have committed to
support OpenSocial [10]. As of November 2008, one year after the launch, OpenSocial
was supported by 20 sites with 600 million users [1]. Since it’s launch, the APT specifica-
tion was developed by a community which treats it like an open source software project.
The four basic principles are:

e Participation is open to anyone
e Decisions are made on the spec list (not behind closed doors)
e All proceedings are captured in a public archive

e Individuals represent themselves, not companies

The OpenSocial 1.0 specification [18] is divided in three parts: Data Specification,
API Server Specification and Gadget Specification. The following three sections provide
a short overview over the Data, Gadget and API Server Specification.

3.1 OpenSocial Data Specification

The OpenSocial Data Specification defines some basic data types such as Boolean,
Domain-Name, Object-Id and more complex data types which are defined as objects
which contain fields which map from a name to a value. Values used in such objects can
have any type defined by OpenSocial. This includes other objects, arrays of any type
and basic types such as booleans and strings.

To give an example of such a data object, the Album type is used. Table 2 shows
the structure of an album as it is defined in OpenSocial 1.0. The album object bundles
information about the album like owner, title, description, thumbnail and the location
which should be associated with this album and some statistic information about the
contents of the album like the number of media items, their mime-types or media types.
Possible media types are image, video or audio. The id field is used to specify the album
in methods which operate on an album.

3 OPENSOCIAL 16

| Field Name | Field Type Description
description string Description of the album
id Object-1d Unique identifier for the album.
location Address Location corresponding to the album.
medialtemCount | integer Number of items in the album.

mediaMimeType | Array <string> | Array of strings identifying the mime-types of
media items in the Album.

mediaType Array <string> | Array of Medialtem types, types are one of: au-
dio, image, video.

ownerld Object-1d ID of the owner of the album.

thumbnailUrl string URL to a thumbnail cover of the album.

title string The title of the album.

Table 2: The OpenSocial Album Type as defined in OpenSocial 1.0

3.2 OpenSocial Gadget Specification

Gadgets are software components which can be embedded into various contexts such as
standalone web pages, web applications or even other gadgets. The context in which
they are embedded is denoted “container”. They’re written in HTML, CSS, JavaScript
and XML.

The Gadget XML specifies which features a Gadget requires. This can be a specific
OpenSocial version or OpenSocial features which are optional for the container to sup-
port. The Gadget XML usually also contains links to HTML and CSS files which usually
define the UI of the Gadget and JavaScript code which provides the program logic be-
hind the Gadget. The OpenSocial Gadget specification also provides a JavaScript API
to access data which is stored in the container. All the JavaScript API parts which are
relevant for this thesis are a direct mapping to the respective API Server parts which
are described in the next section.

3.3 OpenSocial API Server Specification

The OpenSocial API Server specification defines two protocols to interact with OpenSo-
cial container servers outside of gadgets on a web page: A RESTful protocol which must
be supported by all servers compatible to the specification and the RPC protocol which
is optional. Both protocols basically support the same operations and data representa-
tions. All types can be represented either in JSON, XML or Atom / AtomPub. The

3 OPENSOCIAL 17

’ Service \ Description
Cache Used to manage the resources cached by the container.
System Retrieve information about supported services and operations.
People Gives access to data about users of the container. E.g. retrieving a
user’s friend list or updating profile information.
Groups Groups are sets of users of the container.
Activities Activities are short summaries or notifications of timestamped events.

AppData AppData provides a data store that applications can use to read and
write user-specific data.

Albums An Album is a collection of media items.
Medialtems | A Medialtem represents an image, movie or audio file.
Messages The Messages service allows to send messages to users.

Table 3: OpenSocial API Server Services

specification describes a generic set of mapping rules to the data from one format to
another. I'll primarily use the RPC protocol and the JSON data representation in this
documentation.

The API functions are divided into services. Each service provides access to a certain
type of data within the container. See Table 3 for a list of available services. The majority
of the methods provided by those services are data oriented. The four most important
methods provided by almost all services are get, update, create and delete. The get
method retrieves one or several resources. When retrieving a collection, e.g. all friends
of a user, get has built in support for pagination, that is it allows for fetching only a
subset of the collection specified by start index and number of elements. Every resource
returned by the get method has a unique ID which can be used to delete the resource via
the delete method and modify it using the update method. Some create operations
are just as simple as calling create with the resource to create as argument but when
additional data, which is not part of the actual resource, needs to be uploaded it is a
bit more complex than that. One such case is creating a new media item for an image.
The image data itself is not part of the resource which contains only text information.
Instead the resource contains a URL which can be used to fetch the image. To upload an
image one has three available methods: Two Step Upload, Shortcut Upload and Multi-
Part Upload. To be standard compliant, the server needs to implement the Two Step
Upload. The two other methods are optional. In the Two Step Upload method at first
the image data is sent to the server using the HIT'TP POST method. The server then
returns a skeleton media item which can be used to add additional data using the update
method. When using the Shortcut Upload Method one also uses the POST method to

3 OPENSOCIAL 18

upload the image but passes all the additional media item data in the query string of
that POST request. These two methods are easy to map to the REST API but could
also be implemented by an RPC endpoint. The Multi-Part Upload on the other hand
was designed to be used exclusively in the RPC API. The body of the HI'TP request
consists of a MIME Multipart message. One part consists of the normal RPC payload,
which can contain links to other parts of the Multipart message. To upload a photo one
needs to create a multipart message where one part is the method medialtems.create
and the other part contains the image data.

4 DESIGN OF OPENSOCIAL PRIVACY API 19

4 Design of OpenSocial Privacy API

During this thesis three proposals to modify the OpenSocial specification have been
sent to the OpenSocial and Gadgets Specification Discussion forum [17]. This chapter
describes the design of these proposals which are attached to this report as appendices.

While designing the OpenSocial Privacy API the main objective was to create a sim-
ple API which is nevertheless powerful enough to support the sharing settings supported
by today’s online social networks. In addition to supporting today’s sharing settings,
possible future sharing settings were also kept in mind. The API should be simple to use
for developers who write applications using OpenSocial such that they can implement
features using the privacy API without much effort. If the API is too complicated the
majority of developers probably wouldn’t use it. In addition to being easy to use on the
client side the API should also be easy implementable for OpenSocial containers to get
the support of the OpenSocial community to increase the chances that the API will be
included in the next version of the OpenSocial specification. Once the API is part of the
specification, online social networks are also more likely to implement the privacy API
if it’s possible without much effort.

In addition to being simple, making the proposal generic enough to be reused in
different parts provided by OpenSocial was another main goal. Therefore the proposal
has been split in three parts: one describing a generic ACL structure for OpenSocial and
two providing access controls to media items and activities using this generic ACL. A
fourth proposal which uses ACLs to control access to profile information was declared
as further work. However the last section of this chapter gives some thoughts on how to
define such an API.

The proposal to extend the OpenSocial specification was first based on version 0.9
of the OpenSocial specification. During this thesis the OpenSocial community released
version 1.0 of the specification, which in contrast to version 0.9 is split into several parts
which are described in Section 3. As a consequence of the release of version 1.0, the
proposal had to be rewritten to match the new structure and use the augmented BNF
syntax, also introduced in OpenSocial 1.0, to describe the data structures.

4.1 Privacy Levels in Online Social Networks

In order to create an API which supports the privacy settings supported by the online
social network sites in their web Uls, the Uls of a few important online social network
sites have been examined. The survey conducted during this thesis, does also include
online social network sites which do not support OpenSocial to get a broader overview

4 DESIGN OF OPENSOCIAL PRIVACY API 20

’ \ Orkut \ MySpace \ Hi5 \ Netlog \ Flickr \ StudiVZ \ Facebook ‘

Everybody

All Users

Friends of Friends
Friends Only
Family

Me Only

Selected Friends
Email

Others

X
v
X
v
X
X
X
X

XNNXXNUX X
XXX NUX XX
XXX WX WX XN
XAXKXNSNIX XN
XXX NXNXNX
WX SNAXSNNNX

X

Table 4: Privacy levels for photo albums

about the possible sharing settings.

Table 4 shows the available sharing options of some online social networks with
support for photo sharing. “Everybody” stands for everybody with access to the Internet
whereas “All Users” stands for everybody who has a profile on the online social network.
The difference between these two sharing levels is often negligible since everybody can
create a profile without much effort. However search engines cannot index albums which
require a profile to be visible and those albums therefore do not show up in search
results. “Friends Only” includes those users which are in a friendship relation within
the social graph of the person who creates the album. “Friends of Friends” means all
the friends and their friends. In the social graph of the owner that are all the users who
have a distance of at most two to the owner. “Family” is the set of users which are in a
family relationship with the owner. Flickr does not require that “Family” is a subset of
“Friends”. Any contact can be flagged as being part of the “Family” group. “Me Only”
allows no one else than the owner to see the album and its contents. Using “Selected
Friends” the owner can specify a subset of his friends which gets access to the album
and using “Email” access can be given to someone without a profile by sending him
an Email. In addition to the sharing options in Table 4 Facebook also supports more
advanced sharing settings which are described at the end of this section.

While the privacy settings for albums can be compared relatively easy it’s a bit
harder for privacy settings for profile information. While doing a short examination
of the possibilities with eight of the most important online social network sites allow
to control the visibility of profile information, those two main concepts were observed:
sharing of groups and hiding of individual items. Facebook, MySpace and StudiVZ use
the concept of sharing groups, which means that the profile items are assigned to groups

4 DESIGN OF OPENSOCIAL PRIVACY API 21

such as “Basic Info”, “Contact Info”, “Interests”, “Friends” et cetera. Some of these
groups have a fixed visibility and for the other groups the user can choose with whom
he wants to share the fields of this group. The sharing settings from which the user
can choose are for all sites except Facebook a subset of the privacy levels from Table 4.
Facebook again allows more complex sharing levels which are described at the end of
this section. Orkut, Hi5, Netlog, LinkedIn and Xing follow another approach: on those
sites some profile items have a fixed visibility whereas the visibility of the other profile
items can be restricted individually.

For both albums and profile information, Facebook supports more complex sharing
rules than the other reviewed online social network sites. Those rules consist of a whitelist
and a blacklist. Access is granted to anyone who is in the whitelist unless he’s also in
the blacklist. The whitelist can be either one of “Friends of Friends”, “Only Friends”,
“Only me” or a list of individual friends and friend lists. Using the blacklist one can
exclude individual friends or friend lists from getting access.

4.2 Proposal for OpenSocial Access Control Lists

While designing a generic OpenSocial Access Control List which can be used to control
access to different resources in different online social networks the two main issues which
had to be solved were:

e define sharing model

e define entities one can share content with

The hardest problem while defining the sharing model was to find the correct trade-
off between power and simplicity. It’s easy to define a simple API such as the MySpace
extension to support album access control as described in Section 2.1.2. However such a
simple API is very limited since not even friend lists can be used to share a resource. One
could on the other hand also define an API which uses iptables like rules to determine
whether someone can access a resource. Each rule could decide to allow, deny access
or pass the decision to the next rule. If no rule matches, a default policy would apply.
Such an API is very powerful but it comes with complexity as a drawback. If the
sharing model of the online social network does not use a similar representation it’s
hard to map from those rules to the online social network’s internal access control lists.
The container’s sharing model is likely to be less powerful and therefore only a small
set of the access control lists which are supported by this complex API can be used to
represent valid sharing settings for that network and therefore the API must also provide
information about which ACLs are valid for a given container which would make it even

4 DESIGN OF OPENSOCIAL PRIVACY API 22

more difficult to use such an API to modify ACLs. It is also difficult to explain such
an ACL to the user which makes it hard to create a Ul which can be understood by
the average user. As described in Section 4.1 most current online social networks only
allow for a whitelist which grants access to sets of users or external users via Email. The
only exception which was found is Facebook which also supports to blacklist certain sets
of users. Since Facebook is not likely to implement the OpenSocial standard and the
average user is not likely to use such custom sharing settings a simpler ACL was preferred
to a more powerful while still supporting more complex settings: the ACL consists of
a whitelist which grants access to the resource to sets of users or external contacts. To
support more complex settings which cannot be expressed using any of the sets of users
proposed, a custom entry is defined which contains a textual description about the set
and possibly also the number of users in that set. With this trade-off the API can be
kept reasonably simple for cases which are considered to be common while still providing
some information to the user in cases of more complex sharing settings.

To decide which entities should be supported to share items with, the results of the
survey which are described in Section 4.1 were used to determine which entities are used
to share items with in today’s online social networks. This are the entities “Everybody”,
“All Users”, “Friends of Friends”, “Friends Only”, “Me Only”, “Selected Friends” and
“Kmail” as defined in Section 4.1. “Family” is only supported by Flickr, which in not
an OpenSocial container, but support for this entity was added because we expect that
additional online social networks will support sharing with one’s family in the future.
“Everybody”, “All Users”, “Me Only” and “Family” are represented by the predefined
OpenSocial groups named “@everybody”, “@all”, “@self” and “@family”. “Friends
Only” and “Friends of Friends” can be represented by the predefined group “@friends”
which can be parametrized using a parameter which defines the network distance within
which a user is considered to be a friend. Single users can be represented by their user
IDs and multiple users which are members of an OpenSocial group using that group’s
ID. In addition to sharing via Email we also proposed to add support for sharing data
with someone using that person’s telephone number (for sharing by SMS). This might
become useful in the future when more people connect to online social networks using
their mobile phones. Those external contacts are being specified by the Email address
and the phone number respective.

To provide a simple metric on how “public” or “private” an ACL’s resource is, the
server can provide the number of users who get access to the resource because of single
entries and also the ACL as a whole. This metric can be computed on the server
much more easily than on the client because the client would need to fetch all the sets
whereas the server already has this information available. In some cases the online social
network does not want to disclose the number of users for certain sets as for example

4 DESIGN OF OPENSOCIAL PRIVACY API 23

the number of registered users might be confidential. In this case the server can provide
an approximation and mark it as such.

Since in OpenSocial all the more complex data types are objects consisting of fields,
the proposed ACL contains also a list which specifies which fields the ACL applies to.
This makes it possible to have different ACLs for different fields of an object. This is
especially useful for privacy settings for profile items as described in Section 4.5. The
proposal which contains the details of the proposed ACL can be found in Appendix A.
This proposal was submitted to the OpenSocial community on February 28th 2010.

4.3 Proposal for OpenSocial Activities Privacy API

The proposal for an OpenSocial Activities Privacy API described in Appendix C is a
good example to show how to use the proposed ACL to describe access control settings
for a simple service. Only three small extensions are required. To attach the ACL to
the activity, an array of ACLs is added to the activity data structure to hold all the
ACLs attached to an activity. Multiple ACLs are attached such that different parts of
the activity can have different ACLs. Since the ACLs are only meta data of the activity
and therefore for many applications not of much use, developers might often not want
to receive and send the ACLs. Therefore an optional boolean parameter was added
to all the functions which retrieve or modify activities. This parameter can be used
to explicitly request the ACLs when retrieving activities. In case of a function which
modifies or creates an activity the added parameter specifies whether the activity sent
by the client contains ACLs. The final change is to add a new function to retrieve the
supported ACL entry types. This is needed when someone wants to modify an ACL
to know which types of sharing are supported by the sharing model of the online social
network. Some networks might for example not support to share data with someone who
is not a member of the online social network.

4.4 Proposal for OpenSocial Albums and Media Items Privacy API

An API for access control to media items, such as photos, videos or audio files, is more
complex than the API for activities because in addition to the media items there also
exists the album which contains the media items. From this structure it follows that
access control can happen on both levels. In today’s online social networks access control
happens only on the album level. This means that the album and all its media items have
the same sharing settings. The one exception, found during this thesis, is the sharing
model of Facebook which allows to share a single photo with someone by tagging him
in that photo as described in Section 2.3. Since it can be expected that with additional

4 DESIGN OF OPENSOCIAL PRIVACY API 24

features other online social networks will do access control to photos on a per photo level,
the API was designed to allow access control on the media item level. To allow that the
media items and also the albums have ACLs. The ACL of the album is the default ACL
for all the media items in that album which applies when the media item does not have
an ACL attached itself. This way a client which wants to read the ACL does not need to
distinguish between containers which support access control on the media item level and
those which only support it on the album level. If the container supports access control
only on the album level, no media item has an ACL attached and therefore the album’s
ACL specifies who gets access to the media item. Using this semantic it’s important to
distinguish between a media item with an empty ACL attached and a media item with
no ACL attached. An empty ACL means that no one gets access to the media item
whereas no ACL means that the album’s ACL applies. Table 5 shows how access rights
are determined for media items and albums based on the ACLs attached to the album
and media item.

’ ACL ‘ not present ‘ without entries ‘ with entries

album ACL undefined only owner has access | ACL applies

media item | album’s ACL applies | only owner has access | ACL applies

Table 5: Interpreting ACLs for albums and media items

This model can be implemented by applying the proposed changes for the activi-
ties service to both the albums and the media items service and using the semantics
from above to define how the ACLs are interpreted. The full proposal can be found in
Appendix B.

4.5 OpenSocial Privacy API for Profile Fields

When it comes to sharing settings for profile items, every online social network has its
own model. Some networks allow to specify the sharing level for single items whereas
other networks assign profile items to groups and for each group the user can specify a
sharing level. These groups, which will be denoted as hidden groups, are not important
to read ACLs but become very important once one wants to modify the ACLs. If the
hidden groups are not known to the client application it might try to set the sharing
settings for the profile items to values which no longer satisfy the constraint that all the
items in one hidden group have the same ACL. Since those ACLs cannot be mapped to
a valid sharing setting supported by the server, the server has two options: reject the
new settings (possibly with an error message) or adjust the requested settings according

4 DESIGN OF OPENSOCIAL PRIVACY API 25

to some rule such that the hidden group constraints are met. Both options are not
particularly good ones. Rejecting inconsistent settings makes it hard to change any
ACLs without knowing the hidden groups. Adjusting the settings to meet the constraints
might have unpredictable and harmful effects because it might not result in the sharing
setting which the user intended. Instead of adding additional meta information such
that the hidden group constraints can be met the following approach can be used: for
every hidden group an ACL is attached to the profile which represents the ACL for this
hidden group. As long as only the ACL entries are modified and the fields to which the
ACLs are assigned to stay the same the hidden group constraints are met.

5 EVALUATION 26

5 Evaluation

5.1 Comparison to existing APIs

To the best of our knowledge, the proposed API is the first API to access user data across
different online social networks which provides sharing controls. Once the proposed
API is implemented by OpenSocial containers, it will allow for provider independent
applications which provide the user with transparency of who has access to his data and
control over which entities the data is shared with. This is not possible at the moment
because if an online social network provides privacy features in its API those features
are limited to this particular provider such that the application needs to use all these
different APIs. Many online social networks do not provide such an API at all which
will hopefully change once the proposed API is part of OpenSocial.

Compared to the APIs provided by Flickr and MySpace for privacy settings for
photos, the proposed API is much more flexible. As it is to be expected from proprietary
APIs, both APIs provide just the sharing settings which are supported by their web Uls:
MySpace allows to choose between shared with no one, shared with friends only and
shared with everyone with access to the internet. Flickr in addition also allows to share
the photo with your family. Family and friends can be combined such that the photo
is shared with friends and family. The proposed API on the other hand supports also
sharing with groups which can consist of an arbitrary set of users. Sharing with individual
online social network users and external users is also supported. One might argue that
those proprietary APIs don’t need to support sharing settings which are not supported
by the sharing sharing model of the online social network because only the settings which
are supported by the online social network can be used. However such limited APIs make
it hard to modify the sharing model without breaking existing applications which use
the old API. The Facebook API is less likely to cause this kind of problems because,
as described in Section 2.1.1, its privacy part is much more flexible. Unfortunately, the
Facebook API supports two formats for privacy settings. One allows for fine grained
control whereas the other one is similar to the one used by MySpace and not able to
represent all the sharing settings which are available in the web UI. Even worse, some
functions support both formats whereas some other functions which operate on the same
resources only support the limited format. One example for this is that when creating
a new photo album one can use the complex setting whereas only the simple format is
returned when one fetches the albums of a user. This makes it very hard to use the more
complex privacy settings because these complex settings cannot be displayed to the user
after retrieving the albums from the server. The API proposed in this thesis does not
have this problem because all methods use the same format for privacy settings.

5 EVALUATION 27

5.2 Photocial - Photo Sharing Application for Android

To support the proposals which extend OpenSocial with privacy features I wanted to
create an example application to provide a use case to show that those API extensions
enable for features to support the user in sharing his photos on online social networks
in a comfortable and secure manner. I decided to write an Android application because
Android phones often come with built in photo cameras. This and the fact that such
phones are often connected to the internet make the process of taking a picture and
uploading it to online social networks particularly convenient.

I defined the following main objectives for the application: it should be transparent
with whom the photo is being shared and the user should have the necessary controls
to choose with whom it is shared. This transparency and control should come without
interfering with the process of the user uploading a photo. To achieve the desired trans-
parency, control and simplicity the basic work flow is as follows: the user takes a photo
and chooses to share it using Photocial. He then is presented with a screen showing
the picture and the list of online social networks to which he is connected. For each
network, the album name and its sharing setting is displayed (see Figure 1). By clicking
on the network, the user can choose another album or create a new one. To simplify the
switching between different sharing scenarios one can create profiles. For each of these
profiles Photocial remembers the last used choice of albums to upload to.

While implementing Photocial I faced a few challenges: While the Android SDK
provides neat APIs for many frequent tasks needed to write mobile applications, it also
has some peculiarities which I, especially in the beginning, had to cope with. One of them
is that Android by default destroys all the Ul components when the phone configuration
changes, which is for example the case when the screen is being rotated from portrait
to landscape mode. After the configuration has been changed the Ul will be recreated
automatically . This means that when one has a background thread which performs some
action and after finishing updates the UI, one needs to be really careful with keeping
references to anything within the Ul. When the background thread keeps references
to old UI components, this might cause two potential problems: one problem is the
increased memory usage because the garbage collector cannot collect those objects. This
is a serious problem because on Android, memory is a limited resource and dealing with
images can already cause exceptions because the process runs out of memory if one is not
careful. The second and even more serious problem is that the background thread will
update the UI which is no longer displayed and the currently displayed Ul components
will not be updated. To simplify creating background tasks which depend on having
references to Ul elements I created a base class which can be detached from the Ul when
the Ul is being destroyed and reattached once the new Ul was created. While the task

5 EVALUATION 28

B @ 7:32pm

Custom

MySpace - Holiday Pictures
shared with Friends (123)

Orkut - My Pictures
not shared

Facebook - Mobile Uploads
shared with Friends (13)

Figure 1: Photocial screen to share image

is not attached to any UI, operations to change the UI, are queued for execution when
the task is attached to the new Ul. Even though no references to the UI remain when
the screen was rotated, the application still crashed from time to time when the screen
was rotated. The problem was that garbage collection did not collect the unreachable
objects before the preview image was being displayed and the process therefore run out of
memory. Unfortunately, I did not find another solution to fix this other than to catch the
exception, tell the system that it would be a good moment to do garbage collection and
retry loading the image. Although this solution does not seem like a particularly good one
it still fixed the problem. To communicate with OpenSocial containers there exists a Java
library available at http://code.google.com/p/opensocial-java-client/ which can
be used on Android. The problem with this library was that when I started working
on Photocial it was pretty outdated. Media items and albums for example were not yet
supported. However during this time it was rewritten with a completely new design,
so I decided to use the new, very experimental, version. To use the library I had to
implement three-legged OAuth support and fix some bugs. Almost all of these changes
have been included in the open source project.

Photocial now consists of about 5600 lines of Java code and more than 500 lines of
XML files which contain the layout of the Ul and the strings which would need to be

http://code.google.com/p/opensocial-java-client/

5 EVALUATION 29

translated if one wanted to translate Photocial into another language. I plan to release
Photocial as open source and distribute it on the Android Market.

5.3 Album Privacy API in Orkut

To add a new feature to OpenSocial it is generally expected that, in addition to sending a
proposal to the OpenSocial and Gadgets Specification Discussion forum [17], also a proof
of concept implementation is provided. To increase the chances that the proposed API
changes will be included into the next version of the OpenSocial specification, the read
only part of the albums API has been implemented as a part of the Orkut OpenSocial
RPC endpoint.

After receiving a few hints at where the code is located and how to start a local
Orkut server by Orkut developers, the changes which touched 9 files and added 4 new
files were implemented. After some minor changes during the code review process the
code was submitted to the Google code repository.

6 CONCLUSION 30

6 Conclusion
This Master’s thesis consists of three major contributions:

e three proposals to extend OpenSocial
e an Android application to provide a use case for this extensions

e proof of concept implementation of the extensions in Orkut

The proposed changes to the OpenSocial specification constitute the first privacy features
in OpenSocial once included in the standard. Those changes are split in three proposals:
The first proposal introduces a generic access control list designed in an extensible way
such that it can be reused for access control lists in many parts of OpenSocial. The two
other proposals use this access control list to control access to albums/media items and
activities. Photocial, the Android photo sharing application written during this thesis,
represents a good use case to show how such an API can be used to protect the user’s
privacy when sharing pictures in online social networks. To make our proposal stronger
we created a proof of concept implementation of our extensions in Google’s online social
network Orkut as required by the OpenSocial community

Future Work

1. Our proposal could be extended to cover privacy settings for profile fields. The
tricky thing is the hidden constraints of fields that have common sharing settings
and can’t be changed independently. An approach like the one described in Sec-
tion 4.5 could be used to address this.

2. The Android application could be extended to include activities, browsing of al-
bums, privacy warnings etc.

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 31

A Proposal for OpenSocial Access Control Lists

Authors: Christoph Renner, Thomas Duebendorfer <api.duebendorfer@google.com>
Version of proposal document: 1.0 (March 24th, 2010)

This API proposal is compliant with the Open Social 1.0 API specification.

Acknowledgements to Mark Weitzel from IBM, Rahul Kulkarni and Sachin Shenoy from
Orkut, Lane LiaBraaten from Google, Tyrone W. Grandison from IBM Almaden and
Martin Burkhart from ETH Zurich for their feedback.

A.1 DMotivation

Sharing information is one of the most important features of online social networks. Such
shared information is often personal and only intended to be shared with certain users
or groups of users. Unintended leakage of personal information can result in damage of
someone’s reputation, identity theft or can have other bad effects for the user. To share
information in a comfortable and secure way the user needs to know with whom per-
sonal data is shared and must be able to restrict who can access it. Many online social
networks provide such functionality in their Web Uls. This proposal will add privacy
controls to OpenSocial by defining syntax and semantics of access control lists and op-
erations on them. Providing privacy controls across multiple social network services in a
standardized way makes it easier for developers to incorporate privacy friendly features
in their applications, which will give the user better transparency of and control over
personal information.

A.2 Overview

This proposal extends the OpenSocial Social Data Specification 1.0 with an ACL data
object that can be used in resources to support access control lists.

A.3 Changes to the Social Data Specification
Acl

Add new Acl data object under Additional Social Data.

An ACL is always attached to a resource or a part of a resource which has an owner. By

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 32

default every ACL contains an implicit entry for the owner which can be overridden by
adding an explicit ACL entry for the owner.

Field Name

Field Type

Description

entries

Array<Acl-Entry>

The ACL grants subjects access to the ob-
ject, which this acl is attached to, according
to the entries in this array.

numberOfPeople

Number-Of-People

Optional. The number of people who get ac-
cess because of this ACL. This field helps to
indicate to the user how “private” or “pub-
lic” a shared item is. It’s more efficient
to compute this on the server than on the
client.

The server must ignore this field in requests
from the client.

fields

Array<string>

Optional. If an ACL applies only to certain
fields of a resource, this array contains the
field names of those fields. If fields is not set
or empty the ACL applies to all fields except
for those for which an explicit ACL exists. A
resource cannot have multiple ACLs for the
same field.

This field cannot be changed by the client.
The server must ignore this field in requests
from the client.

Acl-Entry

Add new Acl-Entry data object under Additional Social Data.

An Acl-Entry grants access to a set of subjects. The following table describes valid fields

for Acl-Entries.

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 33

Field Name

Field Type

Description

type

Acl-Entry-Type

The type of this ACL entry.
This field must always be set to one of
the predefined values.

accessorld

string

An accessor ID where applicable. The
following list describes the meaning de-
pending on the type:

USER: The User-1D.

GROUP: The Group-ID. To indicate
a group with just the owner, use @self.
EXTERNAL_CONTACT: The con-
tact, see table “Accessor Types” for
valid values.

This field must be set if type
is GROUP, USER or EXTER-
NAL_CONTACT.

accessorType

Accessor-Type

Specifies the accessor type if the Acl-
Entry-Type is not specific enough.

This field must be set if type equals
EXTERNAL_CONTACT. For all other

types it is optional.

accessorRights

Array<Accessor-Right>

Optional. Default: [“GET”, “POST”,
“PUT”, “DELETE”] for the implicit
owner in the ACL for the whole
resource (fields not set), [“GET”,
“PUT?”] for the implicit owner in field
specifyc ACLs and [“GET”] otherwise.
“DELETE” and “POST” can only be
used in ACLs for the whole resource be-
cause these operations can only be per-
formed on the resource as a whole.

description

string

A human readable description of the
people to whom this entry grants ac-
cess.

This field must be set if type equals
CUSTOM.

numberOfPeople

Number-Of-People

Optional. The number of people who
get access because of this ACL entry.
The server must ignore this field in re-
quests from the client.

networkDistance

integer

Optional. Containers MAY support
the network distance field, which modi-
fies (@friends, etc.) to include the tran-
sitive closure of all friends up to the
specified distance away.

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 34

Acl-Entry-Type

Add new Acl-Entry-Type data object under Additional Social Data.

Specifies the type of an ACL entry.

Acl-Entry-Type = "GROUP" / "USER" / "EXTERNAL_CONTACT" / "CUSTOM"

Those values are described in the following table and expressed from the viewpoint of
the owner of the resource.

Acl-Entry-Type description

GROUP A group as defined in OpenSocial 1.0.

USER A single social network service user.
EXTERNAL_CONTACT | A contact which is not a user of the social network service.
CUSTOM This value must only be used if none of the above is ap-

propriate. It indicates a proprietary extension. Standard
compliant clients can show the description to the user
but the interpretation of all the other fields, including
additional proprietary fields, depends on the container’s
implementation.

Group ID

Change the Group ID section to the following:

The group ID must only contain alphanumeric (A-Za-z0-9) characters, underscore (_),
dot(.) or dash(-), and must uniquely identify the group in a container.

Group-ID = Object-Id / "@self" / "@friends" / "@all" / "Qeverybody" /
"@family"

The following table describes the predefined Group-IDs.

Group-ID | description

@self When used in the context of a user, this group contains only that user.
@friends Contains all the user’s friends.
@all Contains all the users in that container.

@everybody | Contains all Internet users.
@family Contains all the users which belong to a user’s family.

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 35

Accessor-Type

Add new Accessor-Type data object under Additional Social Data.

Specifies the type of accessor more precisely than the type field. For Acl-Entry-Type
EXTERNAL_CONTACT, Table 6 lists a few proposed values. Other values can be used
as a proprietary extension using a prefix starting with a lowercase letter.

Accessor-Type = "MAILTQO" / "PHONE" / Custom-Accessor-Type
Custom-Accessor-Type = LOALPHA TEXT

Accessor-Type | description accessorld

MAILTO Shared via email e.g. by sending a link. an email address

PHONE Shared with someone who is specified by his | a phone number
phone number e.g. by sending a text message.

Table 6: Accessor Types

Accessor-Right

Add new Accessor-Right data object under Additional Social Data.

Accessor-Right = "GET" / "POST" / "PUT" / "DELETE"

Grants the permission to perform the same-named REST method or its corresponding
RPC call on the resource. This means that “GET” gives read access, “PUT” allows to

modify fields of the resource (including removing the field), “DELETE” grants the right
to delete the resource and “POST” allows to create new resources.

Number-Of-People

Add new Number-Of-People data object under Additional Social Data.

Field Name | Field Type | Description

count integer An integer describing the number of people. Can be
an approximation in which case isApproximate needs
to be set to true.

isApproximate | Boolean Optional. True if count is not an exact number but
an estimate. Defaults to “false”.

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 36

Supported Acl Entry Type

Add new Supported-Acl-Entry-Type data object under Additional Social Data.

Field Name | Field Type Description
type Acl-Entry-Type A supported Acl-Entry-Type.
accessorld Array<Group-ID> Optional. If type is GROUP this field con-

tains predefined Group-ID values (@friends,
@family, etc) which are supported to be
used as accessor IDs.

accessorType | Array<Accesor-Type> | Optional.
If type is EXTERNAL_CONTACT this field
contains supported accessorType values.

A.4 Examples

Shared with all friends, the user with ID example.tld.user.1234
XML

<acls>
<entries>
<type>GROUP</type>
<accessorId>@friends</accessorId>
<number0fPeople><count>125</count></number0fPeople>
</entries>
<entries>
<type>USER</type>
<number0fPeople><count>1</count></number0fPeople>
<accessorId>example.org.user.1234</accessorId>
</entries>
<number0fPeople><count>126</count></number0fPeople>
</acls>

JSON

"acls": [{
"entries": [{
"type": "GROUP",
"accessorId": "Q@friends",

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS 37

"number0fPeople": {"count": 125}

A
Iltypell . ||USER" s
"numberOfPeople": {"count": 1},
"accessorId": "example.org.user.1234"
H,

"number0fPeople": {"count": 1263}
]

Resource is shared with everyone except field “email” which is kept private. Since the
second ACL contains no entries it grants access only to the implicit owner.

XML

<acls>
<entries>
<type>GROUP</type>
<accessorId>@all</accessorId>
<number0fPeople>
<count>1000000</count>
<isApproximate>true</isApproximate>
</number0fPeople>
</entries>
</acls>
<acls>
<fields>email</fields>
</acls>

JSON

"acls": [{
"entries": [{
"type": "GROUP",
"accessorId": "@all",
"number0fPeople": {
"count": 1000000,
"isApproximate": true
}
1,
"number0fPeople": {

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS

"count": 1000000,
"isApproximate": true
}
3, q
"fields": ["email"]

3]

Shared with all users and someone which is not a user of the social network

XML

<acls>

<entries>
<type>GROUP</type>
<accessorId>@all</accessorId>
<number0fPeople>

<count>1000000</count>
<isApproximate>true</isApproximate>

</number0fPeople>

</entries>

<entries>
<type>EXTERNAL_CONTACT</type>
<accessorType>MAILTO</accessorType>
<number0fPeople><count>1</count></number0fPeople>
<accessorId>joe@mailhost.tld</accessorId>

</entries>

<numberOfPeople>
<count>1000000</count>
<isApproximate>true</isApproximate>

</number0fPeople>

</acls>

JSON

"acls": [{
"entries": [{
"type": "GROUP",
"accessorId": "@all",
"numberOfPeople": {
"count": 1000000,

A PROPOSAL FOR OPENSOCIAL ACCESS CONTROL LISTS

39

H

"isApproximate": true

b
oA
"type": "EXTERNAL_CONTACT",
"accessorType": "MAILTO",
"accessorId": "joe@mailhost.tld",
"number0fPeople": {"count": 1}
H,
"number0fPeople": {
"count": 1000000,
"isApproximate": true

¥

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 40

B OpenSocial Album/Media Item Privacy API Proposal

Authors: Christoph Renner, Thomas Duebendorfer <api.duebendorfer@google.com>
Version of proposal document: 1.0 (March 24th, 2010)
This API proposal is compliant with the Open Social 1.0 API specification.

Acknowledgements to Rahul Kulkarni, Sachin Shenoy from Orkut, Lane LiaBraaten
from Google, Tyrone W. Grandison from IBM Almaden and Martin Burkhart from
ETH Zurich for their feedback.

B.1 Motivation

Sharing of media items such as photos or videos has become an important feature of
many social network services. Sharing media items is an important privacy issue be-
cause they can reveal a lot of personal information to recruiters, insurance companies
and others who might use this information negatively. While many social network ser-
vices have implemented media item access control functionality in their Web UI or in
a proprietary API, currently no such access controls exist in OpenSocial. Providing
privacy controls across multiple social network services in a standardized way makes it
easier for developers to incorporate privacy features in their applications, which will give
the user better transparency of and control over personal information.

B.2 Overview

This proposal extends the Medialtems and Albums Service as defined in the OpenSo-
cial 1.0 specification to retrieve and modify access control settings for media items and
albums. It builds on the proposal “Proposal for an OpenSocial ACL”.

B.3 Semantics of access control lists

Our proposal is to add a new field called “acl” (access control lists) to the Album data
object. In addition, we propose to add the same field to the Medialtem data object,
which allows one to use different access control lists for media items in an album. All
media items in an album share the same ACLs as the album by default unless an ACL
is returned in a Medialtem response.

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 41

The following table describes the meaning of missing, empty and non empty acl fields
for albums and media items.

ACL not present without entries ‘ with entries

album ACL undefined only owner has access | ACL applies
media item | album’s ACL applies | only owner has access | ACL applies

For example, if the album is shared with everyone and the media item’s has an ACL but
contains no entries, then only the owner can access that media item. If the album’s ACL
contains no entries and a media item in that album is shared with someone that person
gets access only to this media item but not to the whole album.

B.4 Changes to the Social Data Specification
Album

Add new optional field acl to Album.

Field Name | Field Type | Description
acl Array<Acl> | Optional Access control lists which describes access to
that album and the default access for media items in
that album.
Medialtem

Add new optional field acl to Medialtem.

Field Name | Field Type | Description

acl Array<Acl> | Optional. Access control lists which grants access to
that media item. When this field is present access is
only granted to all the subjects for which an entry in
one of these ACLs exists.

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 42

B.5 Changes to the Social API Server Specification

Get Albums Request Parameters

Name | Type Description
acl Boolean | Specifies whether to include the ACLs in the response. Defaults
to “false”.

Update Album Request Parameters

Name | Type Description

acl Boolean | Specifies whether the request intends to change the ACLs. When
set to “true” and the Album in the data parameter does not con-
tain an acl field, the container MUST set the Album’s ACLs to a
reasonable default value. Defaults to “false”.

Get Medialtems Request Parameters

Name | Type Description
acl Boolean | Specifies whether to include the ACLs in the response. Defaults
to “false”.

Update Medialtem Request Parameters

Name | Type Description

acl Boolean | Specifies whether the request intends to change the ACLs. When
set to “true” and the Medialtem in the data parameter does not
contain an acl field, the container MUST delete that media item’s
ACLs such that the media item inherits the ACLs of its album.
Defaults to “false”.

Retrieve a list of supported ACL entry types for albums

Containers MAY support requests for a list of supported ACL-Type values for albums.
Requests and responses use the following values:

REST-HTTP-Method = "GET"

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 43

REST-URI-Fragment = "/albums/@supportedAclEntryTypes"
REST-Query-Parameters = null
REST-Request-Payload = null
RPC-Method = "albums.getSupportedAclEntryTypes"
RPC-Request-Parameters = null

Return-0Object Array<Supported-Acl-Entry-Type>

Retrieve a list of supported ACL entry types for media items

Containers MAY support requests for a list of supported ACL entry types for media
items. If setting ACLs per media item is not supported the container should return an
empty array. Requests and responses use the following values:

REST-HTTP-Method = "GET"
REST-URI-Fragment "/medialtems/@supportedAclEntryTypes"

REST-Query-Parameters = null
REST-Request-Payload = null
RPC-Method = "medialtems.getSupportedAclEntryTypes"
RPC-Request-Parameters = null

Return-0Object Array<Supported-Acl-Entry-Type>

B.6 Changes to the Gadget / JavaScript API Specification
osapi.albums.getSupported AclEntryTypes
Signature

<static> { osapi.Request } osapi.albums.getSupported AclEntryTypes()

Description
Builds a request to retrieve all supported ACL entry types for albums.

Parameters
This method takes no parameters.

Returns

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 44

An osapi.Request to retrieve all supported ACL entry types for albums. Executing this
request MUST return an array<Supported-Acl-Entry-Type>.

osapi.medialtems.getSupported AclEntryTypes

Signature
<static> { osapi.Request } osapi.medialtems.getSupportedAclEntryTypes()

Description
Builds a request to retrieve all supported ACL entry types for media items.

Parameters
This method takes no parameters.

Returns
An osapi.Request to retrieve all supported ACL entry types for media items. Executing
this request MUST return an array<Supported-Acl-Entry-Type>.

B.7 Examples
Requesting albums with access control lists
A request for the user’s album list, which contains two albums with the following ACLs:

e First Album

— Shared with all friends

— Shared with user example.org.user.1234
e Second Album

— Shared with all users of that social network service. That service does not
want to disclose the exact number of users.

— Shared with external contact joe@mailhost.tld via email.
REST request
GET /albums/@me/@self?acl=true

REST response

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL

45

<response xmlns="http://ns.opensocial.org/2008/opensocial">
<startIndex>1</startIndex>
<itemsPerPage>10</itemsPerPage>
<totalResults>2</totalResults>
<entry>
<caption>First Album</caption>
<id>example.org.album.123456</id>
<thumbnailUrl>
http://example.org/images/album_123456.png
</thumbnailUrl>
<acl>
<entries>
<type>GROUP</type>
<accessorId>@friends</accessorId>
<number0fPeople><count>125</count></number0fPeople>
</entries>
<entries>
<type>USER</type>
<number0fPeople><count>1</count></number0fPeople>
<accessorId>example.org.user.1234</accessorId>
</entries>
<number0fPeople><count>126</count></number0fPeople>
</acl>
</entry>
<entry>
<caption>Second Album</caption>
<id>example.org.album.654321</id>
<thumbnailUrl>
http://example.org/images/album_654321.png
</thumbnailUrl>
<acl>
<entries>
<type>GROUP</type>
<accessorId>@all</accessorId>
<number0fPeople>
<count>1000000</count>
<isApproximate>true</isApproximate>
</number0fPeople>
</entries>
<entries>

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL

46

<type>EXTERNAL_CONTACT</type>
<accessorType>MAILTO</accessorType>
<number0fPeople><count>1</count></number0fPeople>
<accessorId>joe@mailhost.tld</accessorId>
</entries>
<number0fPeople>
<count>1000000</count>
<isApproximate>true</isApproximate>
</number0fPeople>
</acl>
</entry>
</response>

JSON-RPC request

{
"method": "albums.get",
"id": "myalbums",
"params": {
"userId": "@me",
"groupId": "@self",
"acl": "true"
}
3

JSON-RPC response

"id": "myalbums",
"result": {
"startIndex": O,
"itemsPerPage": 10,
"totalResults": 2,
"list": [{
"caption": "First Album",
"id": "example.org.album.123456",
"thumbnailUrl": "http:\/\/example.org/images/album_123456.png",
"acl": [{
"entries": [{

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL

47

"type": "GROUP",

"accessorId": "@friends",
"numberOfPeople": {"count": 125}
3.1
"type": "USER",
"numberOfPeople": {"count": 1},
"accessorId": "example.org.user.1234"
3,
"number0fPeople": {"count": 1263}
3]
oA
"caption": "Second Album",

"id": "example.org.album.654321",
"thumbnailUrl": "http:\/\/example.org/images/album_654321.png",
"acl": [{
"entries": [{
"type": "GROUP",
"accessorId": "@all",
"number0fPeople": {
"count": 1000000,
"isApproximate": true
b
3 A
"type": "EXTERNAL_CONTACT",
"accessorType": "MAILTO",
"accessorId": "joe@mailhost.tld",
"number0fPeople": {"count": 1}
3,
"number0fPeople": {
"count": 1000000,
"isApproximate": true
3
31

Request a single media item with ACL

A sample media item shared with friends and friends of friends.

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 48

REST request

GET /medialtems/@me/@self/example.org.album.123456/
example.org.image.1234%7acl=true

REST response

<mediaitem xmlns="http://ns.opensocial.org/2008/opensocial">
<id>example.org.image.1234</id>
<thumbnailUrl>http://example.org/images/1234-tn.png</thumbnailUrl>
<type>image</type>
<url>http://example.org/images/1234.png</url>
<albumId>example.org.album.123456</albumId>
<acl>
<entries>
<type>GROUP</type>
<accessorId>@friends</accessorId>
<networkDistance>2</networkDistance>
<number0fPeople><count>589</count></number0fPeople>
</entries>
</acl>
</mediaitem>

JSON-RPC request

{
"method": "medialtems.get",
"id": "firstalbum",
"params": {
"id": ["example.org.image.1234"],
"acl": "true"
b
+

JSON-RPC response

"id": "firstalbum",
"result": {

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL 49

"id": "example.org.image.1234",
"thumbnailUrl": "http:\/\/example.org\/images\/1234-tn.png",
"type": "image",
"url": "http:\/\/example.org\/images\/1234.png",
"albumId": "example.org.album.123456",
"acl": [{
"entries": [{
"type": "GROUP",
"accessorId": "@friends",
"networkDistance": 2,
"number0fPeople": {"count": 589}
H,
"number0fPeople": {"count": 589}
]

Delete a media item’s ACLs

Deletes the ACLs of a media item. As a consequence, the ACLs from the album will be
inherited by default.

REST request

PUT /medialtems/@me/@self/example.org.album.123456/
example.org.image.1234%acl=true

<mediaitem xmlns="http://ns.opensocial.org/2008/opensocial">
<id>example.org.image.1234</id>
<thumbnailUrl>http://example.org/images/1234-tn.png</thumbnailUrl>
<type>image</type>
<url>http://example.org/images/1234.png</url>
<albumId>example.org.album.123456</albumId>

</mediaitem>

JSON-RPC request

"method": "medialtems.update",

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL

50

"id": "empty list",
"params": {
"id": ["example.org.image.1234"],
"acl": "true",
"data": {
"id": "example.org.image.1234",
"thumbnailUrl": "http:\/\/example.org\/images\/1234-tn.png",
"type": "image",
"url": "http:\/\/example.org\/images\/1234.png",
"albumId": "example.org.album.123456"

Requesting supported ACL entry types for albums
REST request

GET /albums/@supportedAclEntryTypes

REST response

<supportedaclentrytype>
<type>USER</type>
</supportedaclentrytype>
<supportedaclentrytype>
<type>GROUP</type>
<accessorId>@friends</accessorId>
<accessorId>@all</accessorId>
<accessorId>@self</accessorId>
</supportedaclentrytype>
<supportedaclentrytype>
<type>EXTERNAL_CONTACT</type>
<accessorType>MAILTO</accessorType>
</supportedaclentrytype>

JSON-RPC request

B OPENSOCIAL ALBUM/MEDIA ITEM PRIVACY API PROPOSAL

"method": "albums.getSupportedAclEntryTypes",
"id": "someid"

JSON-RPC response

{
"id": "someid",
"result": [{
Iltype n . |IUSER"
oA

"type": "GROUP",

"accessorId": ["@friends", "@all", "@self"]
oA

"type": "EXTERNAL_CONTACT",

"accessorType": ["MAILTO"]
}]

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API 52

C Proposal for OpenSocial Activities Privacy API

Authors: Christoph Renner, Thomas Duebendorfer <api.duebendorfer@google.com>
Version of proposal document: 0.2 (March 24th, 2010)

This API proposal is compliant with the Open Social 1.0 API specification.

C.1 Overview

This proposal extends the Activities service as defined in the OpenSocial 1.0 specification
to retrieve and modify access control settings. It builds on the proposal “Proposal for
an OpenSocial ACL”.

C.2 Activity Stream Access Control in Social Network Services

Although activities have the potential to reveal privacy sensitive information, the OpenSo-
cial 1.0 API does not allow to control to whom an activity will be shown on an activity
basis. This feature is not widely available in online social network’s WebUIs either. The
only provider we found to support that feature is Facebook which supports fine grained
access control settings for individual status updates, links and other posts. Even though
it is quite early to define a standard before this feature is available in several major
online social networks, it would be nice to support that functionality by including it in
the OpenSocial specification. In addition to the control that this proposal gives to the
user, it also enables the application developers to be more transparent about to whom
they reveal information by posting to the user’s activities.

C.3 Changes to the Social Data Specification
Activity

Add new optional field acl to Activity.

Field Name | Field Type | Description
acl Array<Acl> | Optional Access control lists which grant access to that
activity.

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API 53

C.4 Changes to the Social Server API Specification

Get Activities Request Parameters

Add new parameter ‘acl’.
Name | Type Description
acl Boolean | Specifies whether to include the ACLs in the response. Defaults

to “false”.

Update Activities

Request Parameters

Add new parameter ‘acl’.
Name | Type Description
acl Boolean | Specifies whether the request intends to change the ACL. When

set to “true” and the Activity in the activity parameter does not
contain an acl field, the container MUST set the Activity’s ACL
to a reasonable default value. Defaults to “false”.

Retrieve a list of supported ACL entry types for activities

Containers MAY support requests for a list of supported ACL-Type values for activities.
Requests and responses use the following values:

REST-HTTP-Method
REST-URI-Fragment

REST-Query-Parameters
REST-Request-Payload

RPC-Method

=N GETII
"/activities/@supportedAclEntryTypes"
null

null

= "activities.getSupportedAclEntryTypes"

RPC-Request-Parameters = null

Return-0Object

= Array<Supported-Acl-Entry-Type>

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API

54

C.5 Changes to the Gadget / JavaScript API Specification
osapi.activities.getSupported AclEntryTypes
Signature

<static> { osapi.Request } osapi.activities.getSupported AclEntryTypes()

Description
Builds a request to retrieve all supported ACL entry types for activities.

Parameters
This method takes no parameters.

Returns

An osapi.Request to retrieve all supported ACL entry types for activities.

this request MUST return an arrayjSupported-Acl-Entry-Type;,.

C.6 Examples
Create an activity with ACL

Create an activity which is only visible to friends.

REST request
POST /activities/@me/@self

<activity xmlns="http://ns.opensocial.org/2008/opensocial">
<title>some activity</title>
<body>activity details</body>
<acl>
<entries>
<type>GROUP</type>
<accessorId>@friends</accessorId>
</entries>
</acl>
</activity>

JSON-RPC request

{

Executing

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API 55

"method": "activities.create",
llidll . llkeyll
"params": {

"userId": "@me",

"groupId": "@self",
"activity": {

"title": "some activity",
"body": "activity details",
"acl" . [{

"entries": [{
"type": "GROUP",
"accessorId": "@friends"
1
H

Retrieve activities with ACL

Request the viewers activities. The first activity can be seen by all users of the container
whereas the second activity is only visible to friends.

REST request
GET /activities/@me/@self?acl=true
REST response

<response xmlns="http://ns.opensocial.org/2008/opensocial">

<startIndex>1</startIndex>
<itemsPerPage>2</itemsPerPage>
<totalResults>2</totalResults>
<entry>

<id>example.org.activity.1</id>

<title>first activity</title>

<acl>

<entries>
<type>GROUP</type>

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API

<accessorId>@all</accessorId>
</entries>
</acl>
</entry>
<entry>
<id>example.org.activity.2</id>
<title>second activity</title>
<acl>
<entries>
<type>GROUP</type>
<accessorId>@friends</accessorId>
</entries>
</acl>
</entry>
</response>

JSON-RPC request

{
"method": "activities.get",
"id": "my_activities",
"params": {
"a.C]." . ||truell
X
b

JSON-RPC response

"id": "my_activities",
"result": {
"startIndex": 1,
"itemsPerPage": 2,
"totalResults": 2,
"entry": [
{
"id": "example.org.activity.1",
"title": "first activity",
llaclll . [{

C PROPOSAL FOR OPENSOCIAL ACTIVITIES PRIVACY API

o7

"entries": [{
"type": "GROUP",
"accessorId": "@all"
}
]
1 Aq
"id": "example.org.activity.2",
"title": "second activity",
"acl": [{
"entries": [{
"type": "GROUP",
"accessorId": "@friends"
}]
]
}

REFERENCES o8

References

1]

Opensocial is 1 and reach is 600 million users at 20 sites. http://blogs.sun.com/
socialsite/entry/opensocial_is_1.

Please rob me. http://pleaserobme.con/.

Alessandro Acquisti and Ralph Gross. Predicting social security numbers from
public data. Proceedings of the National Academy of Sciences, 106(27):10975-10980,
July 2009.

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg. Wherefore art thou r3579x7?:
anonymized social networks, hidden patterns, and structural steganography. In
WWW °07: Proceedings of the 16th international conference on World Wide Web,
pages 181-190, New York, NY, USA, 2007. ACM.

Joseph Bonneau and Séren Preibusch. The privacy jungle: On the market for
data protection in social networks. In The FEighth Workshop on the Economics of
Information Security (WEIS 2009), 2009.

IBM Almaden Research Center. Privacy-aware market place facebook application.
http://apps.facebook.com/p_a_m_p.

Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook: Feasibility of
transitive cooperation for privacy on a decentralized social network. In 10th IEFEFE

International Symposium on a World of Wireless, Mobile and Multimedia Networks,
WOWMOM 2009, Kos Island, Greece, 15-19 June, 2009, pages 1-6, 2009.

Facebook. Facebook help centre. http://www.facebook.com/help/.

Facebook. Facebook statistics. http://www.facebook.com/press/info.php?
statistics, 2010.

Google. Google launches opensocial to spread social applications across the web.
http://wuw.google.com/intl/en/press/pressrel/opensocial.html, 2007.

Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. Protecting
browser state from web privacy attacks. In WWW ’06: Proceedings of the 15th
international conference on World Wide Web, pages 737-744, New York, NY, USA,
2006. ACM.

Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In SIG-
MOD °08: Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 93—106, New York, NY, USA, 2008. ACM.

http://blogs.sun.com/socialsite/entry/opensocial_is_1
http://blogs.sun.com/socialsite/entry/opensocial_is_1
http://pleaserobme.com/
http://apps.facebook.com/p_a_m_p
http://www.facebook.com/help/
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.google.com/intl/en/press/pressrel/opensocial.html

REFERENCES 99

[13]

[14]

Kun Liu and Evimaria Terzi. A framework for computing the privacy scores of
users in online social networks. In ICDM ’09: Proceedings of the 2009 Ninth IEEE
International Conference on Data Mining, pages 288297, Washington, DC, USA,
2009. IEEE Computer Society.

E. Michael Maximilien, Tyrone Grandison, Kun Liu, Tony Sun, Dwayne Richardson,
and Sherry Guo. Enabling privacy as a fundamental construct for social networks. In
Proceedings IEEE CSE’09, 12th IEEE International Conference on Computational
Science and Engineering, August 29-31, 2009, Vancouver, BC, Canada, pages 1015—
1020, 2009.

MySpace. Opensocial v0.9 albums - myspace open platform: Documentation
wiki. http://wiki.developer.myspace.com/index.php?title=0penSocial_vO.
9_Albums#Notes, 2010.

NY Daily News. Nathalie blanchard loses benefits over facebook beach
photos. http://www.nydailynews.com/news/world/2009/11/22/2009-11-22_
nathalie_blanchard_loses_benefits_over_facebook_beach_photos.html.

OpenSocial. Opensocial and gadgets specification discussion. http://groups.
google.com/group/opensocial-and-gadgets-spec.

OpenSocial. Opensocial specs. http://www.opensocial.org/specs, 2010.
OpenSocial. Opensocial website. http://www.opensocial.org, 2010.

World Wide Web Consortium (W3C). Platform for privacy preferences (p3p)
project. http://www.w3.org/P3P/.

Gilbert Wondracek, Thorsten Holz, Engin Kirda, and Kruegel Christopher. A prac-
tical attack to de-anonymize social network users. Technical report, International
Secure Systems Lab, 2010.

http://wiki.developer.myspace.com/index.php?title=OpenSocial_v0.9_Albums#Notes
http://wiki.developer.myspace.com/index.php?title=OpenSocial_v0.9_Albums#Notes
http://www.nydailynews.com/news/world/2009/11/22/2009-11-22_nathalie_blanchard_loses_benefits_over_facebook_beach_photos.html
http://www.nydailynews.com/news/world/2009/11/22/2009-11-22_nathalie_blanchard_loses_benefits_over_facebook_beach_photos.html
http://groups.google.com/group/opensocial-and-gadgets-spec
http://groups.google.com/group/opensocial-and-gadgets-spec
http://www.opensocial.org/specs
http://www.opensocial.org
http://www.w3.org/P3P/

	Introduction
	Online Social Networks
	Risks in Online Social Networks
	Problem Statement
	Outline

	Literature Review
	Privacy Controls in APIs
	Facebook RESTful API
	OpenSocial

	Privacy Metrics
	Two simple metrics
	Privacy Risk Score

	Understanding the Sharing Model

	OpenSocial
	OpenSocial Data Specification
	OpenSocial Gadget Specification
	OpenSocial API Server Specification

	Design of OpenSocial Privacy API
	Privacy Levels in Online Social Networks
	Proposal for OpenSocial Access Control Lists
	Proposal for OpenSocial Activities Privacy API
	Proposal for OpenSocial Albums and Media Items Privacy API
	OpenSocial Privacy API for Profile Fields

	Evaluation
	Comparison to existing APIs
	Photocial - Photo Sharing Application for Android
	Album Privacy API in Orkut

	Conclusion
	Proposal for OpenSocial Access Control Lists
	Motivation
	Overview
	Changes to the Social Data Specification
	Examples

	OpenSocial Album/Media Item Privacy API Proposal
	Motivation
	Overview
	Semantics of access control lists
	Changes to the Social Data Specification
	Changes to the Social API Server Specification
	Changes to the Gadget / JavaScript API Specification
	Examples

	Proposal for OpenSocial Activities Privacy API
	Overview
	Activity Stream Access Control in Social Network Services
	Changes to the Social Data Specification
	Changes to the Social Server API Specification
	Changes to the Gadget / JavaScript API Specification
	Examples

