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Abstract

Denial of service attacks are an important topic in the whole area of networking.
In this work we develop and evaluate methods to detect and reduce the effects of a
particular kind of attack on wireless networks called jamming. Based on commer-
cial hardware and drivers, we concentrate on building an easily deployable system
for jamming detection, using the RSSI, physical rate and PDR. We also subject
the current rate switching algorithm Minstrel, to an in-depth study, aiming at
improving the achieved throughput during an attack.
The results of our indoor tests show a high probability to detect a constant jam-
ming adversary in almost all settings. This also includes mobile scenarios and
such with legitimate background traffic on the same channel, while producing no
overhead for the detection itself. In the cases, where the implementation has only
a reduced success, suggestions are made, how these situations could be included
in a future version.
Our improvements on Minstrel however, have only a small influence on the trans-
mission rate, demonstrating that its adaptivity is already very high. Still, some
enhancements are made and others theoretically discussed.

Im Bereich von Computernetzwerken sind Angriffe auf die Verfügbarkeit ein wichtiges
Thema. In dieser Arbeit entwickeln und bewerten wir Methoden um eine spezielle
Art von Angriff auf drahtlose Netzwerke (WLAN) zu Erkennen und ihre Auswirkun-
gen zu reduzieren. Wir fokussieren unsere Anstrengungen darauf mit handelsüblichen
Geräten ein leicht einsetzbares System zur Erkennung zu entwickeln bei dem wir
die RSSI, physikalische Rate und PDR als Kriterien verwenden. Desweiteren un-
terziehen wir den aktuellen Algorithmus zur Auswahl der physikalischen Rate -
Minstrel - einer detaillierten Studie, die das Ziel verfolgt, den Datendurchsatz
während eines Angriffs zu verbessern.
Die Ergebnisse unserer Tests, welche wir im Gebäudeinneren durchgeführten -
zeigen eine hohe Wahrscheinlichkeit, einen konstanten Angreifer in fast allen Situ-
ationen zu erkennen. Dies beinhaltet mobile Szenarien und solche mit sich korrekt
verhaltendem Verkehr anderer Stationen auf dem gleichen Kanal, ohne dass dies
zu zusätzlichem Datentransfer für die Erkennung führt. In den Fällen, in denen
unsere Implementation weniger erfolgreich ist, machen wir Vorschläge, wie diese
Situationen in einer zukünftigen Version abgedeckt werden können.
Unsere Verbesserungen für Minstrel haben jedoch nur einen geringen Einfluss auf
die Datenrate, was ein Beweis für die bereits vorhandene Anpassungsfähigkeit des
Algorithmus ist. Trotz allem führen einige Ideen zu einer Steigerung des Durch-
satzes, während weitere auf theoretischer Basis diskutiert werden.
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C.2 Zeitplan Häfelin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

12



1 Introduction

In this chapter, we talk about our motivations for the thesis and present detailed

assumptions and prerequisites regarding the considered system and attacker model.

All notations defined here remain constant throughout this document.

1.1 Motivation

For radio transmissions, denial of service is a prominent issue, because a lot of

important applications rely on wireless communication. The most common ones

are sensor networks, mobility and broadcast in general.

One type of denial of service is called jamming, in which the attacker interferes

with the physical transmission of the participants. The counter strategies can be

divided into two major parts: Jamming avoidance and jamming detection.

Jamming avoidance is strongly influenced by the military sector and their long

history with radio transmission. This led mainly to large spreading codes and

different kinds of frequency hopping1. Yet due to hardware restrictions and public

standards, none of these are applicable for jamming avoidance in common IEEE

802.11g networks.

Jamming detection on the other hand, relies mainly on observed characteristics

and relates them to each other to make a decision which then may or may not

lead to countermeasures by the users. Schafroth presented in his work [1] an idea

that considered a broad set of jammers and had a strong focus on mobility. The

1The focus lies in hiding the signal in a large frequency range. Spreading usually reduces
the signal strength for each frequency to a level that is lower than the noise. This leads to a
situation where an attacker is unable to determine the presence of a signal. Frequency hopping
uses a secret-depending algorithm that selects a very small part of the whole frequency range
on which the participants communicate with each other. The key for success is, that the
frequency changes faster than the amount of time, an attacker needs, to determine the one
currently used.
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1 Introduction

problem is that his implementation is impractical for real time detection and needs

additional tools to produce the measurements.

In addition to the jamming detection, he also showed, that the rate selection algo-

rithms he used failed to select a good rate under jamming and therefore reduced

the achievable throughput significantly.

Our goal is to adapt his approach for real-time use without the need for uncommon

equipment and to develop a rate selection algorithm that takes advantage of the

jamming detection results to provide a better performance during an attack.

1.2 Related Work

We divide our examination of related work into two parts. We start with jamming

detection, followed by rate switching.

1.2.1 Jamming Detection

Several studies were made and published regarding jamming detection for radio

transmissions in general and WLAN in particular.

Özcerit and Çakıroğlu present in [2] an anomaly based approach for wireless sensor

networks using the packet delivery ratio2 (PDR), the bad packet ratio3 and the

energy consumption over time. They use an initialization phase to determine the

conditions without the influence of jamming and compare the later measurements

to the initial distribution. The works of Schafroth [1] and of Xu, Trappe, Zhang

and Wood [3] use the signal strength, PDR, received signal strength indication

(RSSI) and carrier sense timing4. While [3] uses PDR/’signal strength’ and dis-

tance/PDR relations as consistency checks, [1] reduced the set of jammers while

adding movement and a threshold for the strength of the noise on the channel.

In case of a reactive jammer, Hamieh and Ben-Othman published an approach in

[4], that correlated bit errors of a message to their relative position in the message,

saying that the jammer reveals itself in the time he needs to react to a message,

thus influencing the distribution of errors in a message to detect the presence of an

2Defined as: ’delivered packets’/’sent packets’
3Defined as: ’erroneous packets’/’received packets’
4The average time, that a sender needs to wait for a channel to be idle.
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attacker, Strasser brought the relationship between the signal strength and error

probability up in [5].

1.2.2 Rate Switching

There are only few papers that suggest anti-jamming measurements that can be

easily applied to current systems and don’t affect the MAC or PHY layer.

In [6], the authors tested the rate adaptation algorithms AMRR, Onoe and Sam-

ple and showed that their performance could quite effectively by decrease with a

random jammer5. They propose an Anti-jamming Reinforcement System (ARES)

that basically just switches between rate adaptation and using a fixed rate. This

can help against such a jammer, as using a fixed rate outperforms the three tested

algorithms. The main reason for this is, that those three algorithms do not recover

fast enough while the jammer sleeps. However, fixed rates can only be used when

the environment does not change, which excludes mobility.

In [7], the ACK-Guided Immediate Link rate Estimation algorithm (AGILE) is

proposed. It uses an offline profile of Signal-to-Noise Ratio (SNR)6 associated

with the physical rate that performs best under these conditions. Any received

packet (including ACKs) will provide a SNR and with a look up in the profile, the

next rate is determined. The paper however does not account for jamming and

we assume that the profile created under normal conditions would not be optimal

under jamming. Moreover for different jammers also different profiles would be

needed in order to be able to detect not only jamming but the jammer type as

well.

In [8], the author compares different bitrate selection algorithms in an indoor en-

vironment without any jammer interference. He then presents the rate control

algorithm SampleRate that selects the best rate by maximizing the theoretical

throughput given the measured packet loss. The algorithm applies a sampling

technique to update the Packet Delivery Ratio (PDR) on the different physical

rates. This algorithm is the base for Minstrel7, the rate control algorithm used

in the Linux kernel 2.6.31.4. We discuss Minstrel in chapter 4, because it is the

5Is described in section 2.3
6Defined as SNR = Psignal/Pnoise
7http://wireless.kernel.org/en/developers/Documentation/mac80211/RateControl/minstrel
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1 Introduction

algorithm used for most of our tests.

1.3 Contribution

We have two goals in our thesis: The first one is the development and assessment

of a jamming detection algorithm that can be easily deployed on current systems.

The second is to determine, how different rate switching algorithms perform under

jamming and how we can improve Minstrel with the intend to make it more jam-

ming resistant. For this purpose, we select an IEEE 802.11g ad-hoc network and

consider constant jammers that reduce, but not completely disrupt, the through-

put.

Making use of the WLAN metrics reported by the operation system, we build an

algorithm that uses a no-jammer model as reference to evaluate current measure-

ments. We compare a set of different variations of our algorithm to study the

influence of internal factors on the detection success and demonstrate through the

results of these experiments the possibilities and problems with the reduced infor-

mations for jamming detection.

We test the rate switching algorithms AMRR, Onoe, SampleRate and Minstrel un-

der different jammers and show how Minstrel performs under bit, noise and frame

jamming. We elaborate several ideas to improve the performance of Minstrel under

these three jammers and test the following ideas:

• Using a smaller packet size.

• Changing interval duration and EWMALevel of Minstrel.

• Sampling less often.

• Dynamically adapt the sampling limits for each physical rate.

1.4 Outline

In this section, we present the structure of our report. In chapter 2, we will first give

an introduction to the underlying theory, upon which our work is based, followed

by a detailed description of the settings and attackers we considered and tested.

16



In chapter 3, we will discusses the problem of jamming detection. It starts with

some specific theory and then presents and evaluates two approaches to recognize

a jammed situation. The end are a comparison with [1] and multiple ideas for

possible follow-ups on the detection. In chapter 4, we will talk about our findings,

regarding the physical rate switching on the basis of the Minstrel algorithm. We

will start again with a small theory part, followed by some hypotheses to improve

the physical rate selection and the results of our tests. Chapter 5 recapitulates

our achievements and findings before we present some ideas for a combination of

jamming detection and rate switching in chapter 6. Along with some additional

informations, the appendix finally contains a copy of our assignment and time

schedules.

17



2 System and Attacker Model

2 System and Attacker Model

We first give a general introduction to WLAN, explaining some of the underlying

principles. Following that, we specify the settings and jammers we considered.

2.1 Technical Introduction

The purpose of this section is to give a quick introduction to the necessary knowl-

edge to help the reader understand the rest of the document. Detailed information

that is only relevant for either jamming detection or rate switching will be pre-

sented in their own chapter. If the reader is already knowledgeable about these

topics, he may skip this section. We will limit ourself to a broad level of under-

standing and assume, that the reader is familiar with the OSI model and has a

basic knowledge in data transmission and networking.

IEEE standard 802.11, WLAN, is one of the popular methods to transmit data

between different devices without the need of a physical connection. Other pos-

sibilities are Bluetooth and infrared (IR), each having its own advantages and

disadvantages. The standard defines 13 overlapping channels, each with a band-

width of 20 MHz (+1 MHz on each side as a buffer), covering the frequencies from

2.412 GHz up to 2.472 GHz. Japan added a 14th channel at 2.484 GHz, while

a lot of American countries only allow the use of channels 1 to 11. As shown in

figure 2.1, only three non-overlapping (four, counting the 14th) sections exist.

WLAN supports two operation modes: Infrastructure and ad-hoc. In infras-

tructure mode, a dedicated station, called access point (AP), acts as an interface

for the whole network. Every client registers with the AP to form a star shaped

18



Figure 2.1: Graphical representation the WLAN channel distribution. Source:
Wikipedia.

topology. The access point functions as a bridge, controlling the data flow in and

out of the network as well as the communication among clients. Ad-hoc mode

on the other hand forms a bi-directional graph with usually more edges than the

infrastructure mode. Ideally everyone is in transmission range of everyone else

and the topology becomes a complete graph, where everyone can directly send

messages to every other participant and where no hidden node problem exists. A

hidden node situation occurs, if there are three stations A, B and C of which A

and B see each other as well as B and C. A and C don’t see each other and thus

may interfere with each other at B.

On the physical layer, a carrier sense multiple access with collision avoid-

ance (CSMA/CA) system is used to reduce collisions of data frames. If a station

wants to send, it first listens to the channel for a predefined time. If no activity

is found, the channel is assumed to be idle and the station is allowed to transmit.

Otherwise, if the channel is busy, the station waits a certain back-off time and

tries again. The sender first reserves the channel for a short time, directly followed

by the rest of the MAC header1. It then transmits its payload and error correc-

tion code and waits for an acknowledgement (ACK) from the target station. If no

ACK is received, the station tries to send the message again, starting the process

all over. A listening station checks each message for the intended receiver. If it

is the target, it will examine the correctness of the frame, using the redundancy

checks included in the message header. If the information was received correctly,

the station will immediately send an acknowledgement to the sender.

1MAC frames have the following structure: < Frame control and duration (4 Byte) | Address
and sequence control (26 Byte) | Payload (0-2312 Byte) | Redundancy check (4 Byte) >.
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2 System and Attacker Model

According to IEEE 802.11g, which is the standard used in our experiments, a

frame can be modulated in two different ways with multiple subtypes, resulting

in 12 possibilities to encode a frame at the physical layer2. Each of these has a

different redundancy, enabling distinct physical transmission rates. The two

major modes are called direct-sequence spread spectrum (DSSS) and orthogonal

frequency-division multiplexing (OFDM).

DSSS uses a pseudo random sequence to distribute the energy over the whole

frequency band of a channel. The resulting signal seems like noise but can be

de-spreaded back into the original form, using the same random sequence. Other

noise and signals are most likely to be cancelled out during the de-spreading. The

drawback is, that for it to work, the stations have to be synchronized during the

send and receive phases. An advantage is the possibility of code division, multiple

access (CDMA), which enables multiple transmissions over the same frequency

at the same time, if they use different spreading codes. DSSS has four different

redundancy ratios, resulting in the physical transmission rates of 1 Mb/s, 2 Mb/s,

5.5 Mb/s and 11 Mb/s.

OFDM uses the frequency range differently. While DSSS transmits one bit per

symbol, using the whole band, OFDM takes longer for each symbol but sends mul-

tiple bits in it. OFDM splits the signal band into 52 orthogonal carrier frequencies,

out of which four are used as pilot frequencies to help with the signal synchroniza-

tion and to monitor the channel condition. The remaining carriers make it possible

to transmit 48 bits per symbol, but since each one takes longer and requires an

additional intermission phase, the possible throughput is not 48 times as high as

with DSSS. Different carrier modulation schemes and error correction codes result

in the physical rates of 6 Mb/s, 9 Mb/s, 12 Mb/s, 18 Mb/s, 24 Mb/s, 36 Mb/s,

48 Mb/s and 54 Mb/s.

2Other 802.11 protocols use different physical data rates.
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2.2 System Model

For our work, we consider a scenario where two parties want to communicate with

each other via WLAN. They may or may not have a good connection and they may

or may not move around. If they move, they do so with walking speed and without

leaving the transmission range. Because the participants want to achieve the best

possible throughput, they are interested in detecting external sources disturbing

their communication so that they can take appropriate actions against them. It

is important to note, that disturbing means lowering the throughput significantly

without disrupting it3.

We assume, that every transmission takes place using UDP over the network layer,

which uses the IP protocol.

All testing done by us happened inside a building with each participant being rep-

resented by a Dell Latitude E6400 ATG laptop, equipped with a Netgear WG511T

wireless card, using an Atheros chip. We selected a basic Ubuntu 9.04 installation

as operating system with an ath5k v0.6.0 driver, using Minstrel as the default rate

switching algorithm.

Figure 2.2: Netgear WG511T wireless card.

The notation of the settings in the thesis obeys the following arrangements:

• Setting 1, as shown in figure 2.3, represents a good connection4 in which the

jammer only influences one of the nodes A and B5.

3(0 Mb/s < throughputdisturbed < 0.7 ∗ throughputundisturbed)
4We define a good connection as one, where Minstrel chooses the rate 36 Mb/s or higher for at
least 90% of the packets, while in the absence of a jammer.

5In the case of noise jamming, we define influence as a nonnegligible change in the RSSI of a
node. The signal strength of the bit jammers is set to a 5 dBm lower output strength while
the frame jammer reduced it by 25 dBm.
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• Setting 2, as shown in figure 2.4, represents a good connection in which the

jammer influences both nodes A and B.

• Setting 3, as shown in figure 2.5, represents a relatively bad connection6 in

which the jammer only influences one of the nodes.

• Setting 4, as shown in figure 2.6, represents a good connection in which the

jammer influences both nodes A and B but one more than the other.

Figure 2.3: Setting 1. The two nodes are about 35 meters apart on the same floor
and are in line of sight. The jammer is positioned around the corner.

We expect, that the results achieved with our installations can be generalised to

the broader setting description, because comparable tests in other locations as well

as experiments with movement gave us similar results.

2.3 Attacker model

This section describes possible attackers and which of these we used for our work.

Then we will explain how and with what hardware we implemented these different

jammers.

6We define a bad connection as one, where Minstrel chooses the rate 12 Mb/s or lower for at
least 90% of the packets, while in the absence of a jammer.
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Figure 2.4: Setting 2. The two nodes are about 35 meters apart on the same floor
and are in line of sight. The jammer is positioned right between them.

Figure 2.5: Setting 3. Node B is placed two floors below A with a small offset.
The jammer is positioned as in setting 1.
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Figure 2.6: Setting 4. The two nodes are about 35 meters apart on the same floor
and are in line of sight. The jammer is positioned at about a third of the way
between them.

2.3.1 Jamming Strategy

A jammer targets the communication between two or more parties and tries to

partially or completely interrupt it. To achieve this there are several strategies and

techniques to use. Some are simple and others more complex requiring advanced

and expensive hardware to be implemented. We now present our classification of

the different jamming strategies shown in figure 2.7.

First we divide the strategies by whether the jammer is reactive or not. Being

reactive means, that the jammer listens to the communication and then decides

what to do. The most basic form is to just listen if there is any communication and

on what frequency it takes place. Then the attacker starts jamming this frequency

for a short period of time and starts the next scan. It is called a follow jammer.

A reactive jammer is called smart, if it uses sophisticated methods to jam the

target. First we have those which analyse the received signal and try to send a

specially modulated signal to make decoding the resulting signal as hard as possible

for the intended receiver. But as this requires expensive hardware and is still only

possible in some scenarios, it is not used very often. An other smart strategy is to

decode the signal and then jam specific parts of transmitted packets. This could

for example be crucial parts of the packet header. Such a jammer we call a packet

jammer. The last smart jammer we considered jams single packets to attack the
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communication protocol itself. The attacked protocol has a weakness which can

be exploited to reduce the throughput7. The advantage of smart jammers is, that

they are harder to detect and consume less energy achieving the same throughput

degradation.

The non-reactive jammers are rather easy and cost-efficient to implement. We

divide this category into the constant, random and pulse jammers. Constant

jammers are the easiest to implement as they send at the same power all the time.

A slight variation would be the so called chirp jammer that does not use a constant

transmission power but linearly increases it until a certain level is reached and then

starts at the initial value again. The idea is to save energy by not transmitting

at high power all the time. The next category are random jammers, which are

constant jammers with a random active and sleep period. The idea again is to

save power, but still degrade the connection as much as possible. This can be very

effective against some rate switching algorithms and communication protocols as

they do not recover fast enough during the jammer’s sleep period. The last group

of attackers, the so called pulse jammers only jam a short period of time at very

high power and sleep for most of the time. The sleep period can either be fixed or

random.

Figure 2.7: Our classification of the different jamming strategies. Source: author’s
own

7E.g. jamming the ACKs on the MAC layer or disrupting TCP traffic to abuse its congestion
control.
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2.3.2 Jamming Technique

Each of the jamming strategies requires a jamming technique in order to be im-

plemented. They are shown in figure 2.8. These techniques are categorized in

two main groups. Noise jammers simply generate a random signal over a given

frequency range and we distinguish broadband noise and tone jammers. Tone

jammers only send on a single frequency, the smallest frequency range there is,

any other frequency range we classify as broadband noise. In [9] the author dif-

ferentiates between partial- and broadband, where partial-band jammers only jam

a subset of the available channels and broadband jam all. We decided to denote

both as broadband.

Jammers that use a modulated signal are split into two groups, bit and frame

jammers. A bit jammer generates a random bit sequence that is correctly mod-

ulated. In the case of WLAN, this means that one of the physical rates is used

and the signal is modulated accordingly. Frame jammers don’t just send a random

sequence of bits but send complete and correct frames. If the jamming signal is

strong enough, these frames will be decoded at a receiver and in the case of WLAN

hinder it from sending packets during this transmission. As the required signal

strength for decoding a frame is quite low, frame jammers are very energy efficient.

Figure 2.8: The categories of jamming techniques we distinguish. Source: author’s
own

2.3.3 Selected Jammers

We chose to use only non-reactive jammers, as we would have had to implement

a reactive jammer ourself, which is outside the scope of this work.
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We used a constant broadband noise, bit and frame jammer as done in the work

of Schafroth [1]. This allows a good comparison between the offline version elabo-

rated in his work and our online version of the jamming detection algorithm.

To implement these three jammers we used a R&S SMU200A Vector Signal Gen-

erator (cf. [10]) as depicted in figure 2.9. We used this device to generate white

noise with a range of 20 MHz around the centre frequency of the used WLAN

channel, which we adjusted for each experiment. For the bit and frame jammer we

used the capabilities of the signal generator to modulate IEEE 802.11g signals and

set the rate to 11 Mb/s using Complementary Code Keying (CCK) as physical

layer mode. For the frame jammer, we additionally set a pause of 0.1 ms after

each data frame8.

Figure 2.9: The Rhode & Schwarz SMU 200A Vector Signal Generator.

8A data frame has 1024 bytes of random data.
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3 Jamming Detection

In this part of the report, we first provide a short section, introducing parts of

WLAN theory that are only relevant for the jamming detection. After that, we

present our first approach that focuses on the channel capacity and data transmis-

sion rate to detect jamming. We discuss the reasons, why this approach isn’t good

enough to reach our goals and why we changed our focus to an approach using

the PDR, RSSI and physical rate as in Schafroth’s work [1]. After introducing the

concept, we present the implementation and an in-depth evaluation, followed by a

review of our findings.

3.1 Technical Introduction for Jamming

We present two topics in this section: The first is about the signal strength and

RSSI, showing their relation and dependencies with the noise strength. The second

deals with the capacity of a wireless channel which is important to understand the

first approach.

3.1.1 Signal Strength and RSSI

The signal strength and received signal strength indication (RSSI) are two im-

portant concepts which may sound similar but have large differences. The signal

strength refers to the magnitude of the electric field, while the RSSI is a vendor

specific value that is loosely defined as a measurement of power present in a re-

ceived radio signal.

Atheros and other manufacturers publish a table or formula to calculate RSSI,

signal and noise strength based on each other. However, our measurements didn’t

comply with these calculations.

In figure 3.1, we present a measurement of the RSSI in the presence of a noise
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jammer whose signal strength is gradually increased. We placed two nodes next

to each other in close proximity to the jamming device. The graph shows how the

RSSI goes down as the noise becomes stronger. Another important point is that

with increased noise strength, the frequency of RSSI jumps grows. These jumps

in the RSSI were always around 10 dBm large and even though they occurred in

both directions, heightening and reducing the RSSI, they were more likely to lower

the value. The third observation was, that the moment the jammer was powered

down, the RSSI jumped almost immediately to a very high value. In the measure-

ment shown in figure 3.1 the RSSI started around -25 dBm and went down to -50

dBm. As the jammer was switched off, the RSSI jumped to around -5 dBm and

took a few seconds before settling back to the starting value1.

Figure 3.1: The blue line shows the change in the RSSI of a node while being close
to a gradually increased noise jammer. The x indicate some of the observed jumps.

1See table A.1, to see how this can influence the measurements during a jamming period.
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Following these measurements we concluded, that Atheros bases the RSSI not only

on the signal and noise strength, but that the noise floor2 is adaptive too. This

means that the determination of the noise floor by the card can be influenced by

an attacker. Let’s take figure 3.1 as an example: In an undisturbed case, the noise

floor lies at -98 dBm, the noise level may be around -94 dBm and the RSSI at

-35 dBm. Now the noise jammer increases its output until it reaches -40 dBm.

Until here, the RSSI acts like the signal to noise ratio (SNR), as it decreases to a

value around -35 dBm. Now the jammer increases its output another 10 dBm, but

instead of the RSSI following this development, it stays around the old value but

starts to show jumps of 10 dBm. We think, that the wireless card adjusted the

noise floor to a new value, 10 dBm higher than the old one (that means around

-88 dBm). This shifts the value of the noise strength, which is determined by

comparing it to the noise floor. The same goes for the signal strength, resulting

in the RSSI being seemingly unchanged. But the calibration of the noise floor is

not stable, changing its value and thus triggering the observed RSSI jumps.

3.1.2 Channel Capacity

In an AWGN channel, the capacity is defined by the Shannon-Hartley theorem as:

C = B ∗ log2(1 + S/N)

C = channel capacity [bit/second]; B = bandwidth of the channel [hertz]; S = total

received signal power [watt] or [(volt)2]; N = total received noise power [watt] or

[(volt)2].

This equation enables the calculation of the maximum transmission rate for any

environment. It is however not possible to achieve it using the 802.11 protocol,

due to overheads in the protocol3, back off time and multi-path effects.

3.2 Throughput Based Algorithm

Our first approach focuses directly on the data transmission rate and the effective

use of the wireless medium to detect a jamming adversary.

2Usually defined as the imprecision through the noise of the card itself.
3This includes header data, redundancy and signal spreading.
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3.2.1 Concept

We designed this algorithm so that it doesn’t need a predefined threshold and

considers the data transmission rate directly, instead of looking at secondary char-

acteristics like the PDR.

The goal of all our jammers was to reduce the throughput of the communicating

nodes. This means, that every attacker either reduces the channel capacity (noise

jammer through an increased noise power) or achieves his goal by targeting the

communication directly (the frame jammer through the busy channel back-off and

the bit jammer through the bit-error rate.).

If one has exact values for the signal and noise strength, the maximum data trans-

mission rate can by calculated using the Shannon-Hartley theorem. Using the

same data we assume it to be possible to calculate the optimal encoding variant

and therefore the perfect physical rate. The overhead could be calculated based

on the 802.11 characteristics and then compared to the measured throughput.

As the nature of wireless communication is broadcast, every participant can know

how much of the capacity is actually used, which makes the conclusion fairly sim-

ple:

If the channel capacity worsens unexpectedly4, or if the observed data

transmission rate is significantly smaller than the theoretically possible

while at the same time there is a need to make use of the rest, then

there is a jammer present.

The last point requires either a detailed knowledge of the other nodes, or has to

be restricted to the times when the station itself wants to send something. It

is also necessary to take further steps in classifying jamming for this approach.

For example the presence of other wireless nodes on the same channel may be

considered jamming in an environment where no such things are expected (a sen-

sor network on a volcano, measuring the movement of the ground to predict an

4In the case of a sensor network it may very well be, that the weather changes, increasing
the noise strength and therefore reducing the capacity. Because of this, a change over time
threshold would need to be defined.
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eruption) while perfectly normal in an urban environment. Following this thought

process the setting has to be divided into the following cases:

1. No wireless communication other than from predefined participants is ex-

pected.

2. Correct behaviour (= following all specifications, especially the back off time

and frame length) is tolerated, even if it comes from a station that does not

belong to our network.

The first case can be ensured by proper sender and message authentication on

a software level, by hardware characteristics on the physical layer [11] or a few

known positions [12].

If the behaviour of stations is monitored, it is also possible to detect a station that

disregards an occupied channel (by cutting in while another station is talking),

endless sending (disregarding a maximum or allocated time slot), etc. which solves

the second case.

The last remaining complication is a hidden node situation, where the network

topology leads to a situation where two stations, that don’t see each other, produce

interferences at a third station. This problem would have to be handled on a higher

level between all involved participants or by accepting the overhead of RTS/CTS5

through additional ’request to send’ and ’clear to send’ messages.

This combination of existing technology and concepts, combined with an approach

that targets the throughput directly made this idea promising.

3.2.2 Evaluation

As a preliminary test, we arranged two nodes as in setting 1. To account for the

knowledge of the transmission rate, a fixed traffic rate was used and instead of

calculating the channel capacity and overhead, we set it to the maximal measured

throughput without interferences.

All this made the detection itself a triviality, but had important implications for

the further development, especially for the characteristic based algorithm.

The first problem we encountered was the inability to get the exact values for the

5http://en.wikipedia.org/wiki/IEEE 802.11 RTS/CTS
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noise and signal strength, making a real implementation in our system an impos-

sibility. The second problem that revealed itself were the effects of mobility. As

soon as we moved one or both stations in walking-speed6, the throughput was

reduced. The point is, that the signal and noise strength aren’t influenced by the

movements and therefore the theoretical channel capacity remains unchanged.

We also tested the idea to simply filter the time of movement and only decide

while standing still. This would either require a movement detection like [12] or

external modules like GPS. Another possibility we thought of was that the stan-

dard deviation of the RSSI, throughput, PDR or physical rate would be different

while moving. The experiments however showed, that this idea doesn’t work.

This would lead to a lot of false positives and we would have needed to extend

the system model to account for all the extra hard- and software. The algorithm

would also create a transmission overhead through the exchange of channel situ-

ations at different positions. We therefore judged the approach to be insufficient

and changed our focus to the characteristic based algorithm.

3.3 Characteristic Based Algorithm

Our second approach focuses on transmission characteristics like the RSSI, physical

rate and PDR to detect a jamming adversary.

3.3.1 Concept

The basis for this approach lies in the observation made in [1]:

Depending on the manufacturer and model of a wireless card, there

exists a direct relationship for each physical rate, between the PDR

and signal strength pairs in the absence of a jammer. This domain is

disjoint from the PDR and signal strength pairs while suffering disrup-

tions by the environment.

6The effect on the distance was negligible and the line of sight was also not broken.
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[1] further uses the noise level as a different input which is compared to an envi-

ronment dependent threshold. The two evaluations are then combined to result in

a {jamming, no-jamming} decision.

To collect the informations, he used an offline approach, relying on wireless mon-

itoring tools. The signal strength value could be calculated from the reported

RSSI and the noise value, while the PDR came from comparing data frames with

acknowledgements from the receiver.

We decided to follow his conclusion and tried to adapt the algorithm, so that it can

be used in real-time without any special soft- or hardware requirements. Because

of that, we had to modify the approach to be compatible with the input available

through the operation system and debug mode of the rate switching algorithm.

The limitations of our online mode can be summarised in the following way:

• The noise strength is not available in ad-hoc mode.

• The RSSI reported is unstable and highly dependent on the noise level.

• Because of the retry chain Minstrel uses and a sometimes small number of

packets per physical rate, the PDR estimations are vague.

On the other hand, the shift in the RSSI enabled us to relate the three values and

produce charts like figure 3.2 that show a clear difference between jamming and

no-jamming measurements.

The core observation that is shown in figure 3.2 is, that the physical rate declines

faster during jamming as during the absence of an attacker. The reason is simply

that the bit and frame jammer reduce the PDR (and therefore the selected phys-

ical rate) without lowering the RSSI enough to make it seem like an undisturbed

connection with a low signal strength. The noise jammer is similar, because the

physical rate and RSSI change, due to an increased noise, is different from the one,

originating from a reduced signal strength.

Based on these measurements, we implemented our idea with different variations,

using the reduced data as input. We will show in the evaluation that it is - even

with less informations - possible to get good results in deciding between jamming

and no-jamming.
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Figure 3.2: Comparison of no-jammer points * to the jammer points +, x and N
on a PDR to RSSI metric for the physical rates 1 Mb/s up to 11 Mb/s.
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3.3.2 Implementation

We built the algorithm in a way that it takes an input, consisting of a batch com-

prising a MAC-address, a signal value and an array of integer pairs

([sig, (s1, t1), (s2, t2), ..., (s54, t54)]mac)
∗ and returns a decision resultmac consisting

of a decision {jamming, no-jamming, no-decision} and a certainty c = [0, 1]. The

MAC-address serves as identifier for each connection, while the signal sig is the

arithmetic average over repeatedly measured RSSI values. The certainty acts as

an additional information that shows roughly what percentage of the packets dur-

ing the last batch are enforcing the decision. Zero stands for a total uncertainty

that happens if the input provided no usable data, while a one means, that the

evaluation of all physical rates resulted in the returned decision. No-decision and a

confidence of zero are equivalent, enforcing the confidence as a way to show the ad-

vantage of this decision over a random choice between jamming and no-jamming.

Each integer-pair (si, ti) for i = {1|2|5.5|6|9|11|12|18|24|36|48|54} represents the

delta of transmitted packets on each of the physical rates separated into a success

si and try ti value with si <= ti.

The detection function itself has a threshold and a short-term memory. The thresh-

old Ti for i = {1|2|5.5|6|9|11|12|18|24|36|48|54} marks the area of PDR and RSSI

values which are observed in the absence of an adversary. See figure 3.3 for an

example, where the red line indicates the border of the threshold-domain7.

This threshold based approach makes sense, since the triple of physical rate, RSSI

and PDR lies very often outside these borders if a jammer is present, as we show

in figure 3.4. One can see, that the PDR has a very high dispersion, almost pro-

ducing a rectangular shape and thus strongly limiting the impact of this value for

the decision. Nonetheless, there are also physical rates in which the no-jamming

points form a different structure8, showing that the PDR is still important.

To determine the presence of a jammer, a series of measurements is compared

against the threshold. We do this by comparing each pair of [sig, (si, ti)] to the

7The reason for combining the rates of 2, 5.5 and 11 Mb/s lies in an almost perfect overlap.
We assume, that one of the reasons for this lies in the fact that they are all DSSS encoded.

8See figures A.2 and A.3.
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Figure 3.3: No-jammer hull of rate 9 Mb/s. It may be difficult to see, but the
number of points outside of the red line is less then 5% of the total.
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Figure 3.4: Jammer points vs. hull of rate 9 Mb/s.
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threshold Ti. We then decide on no-jammer if the set is inside the threshold. If it

is outside, it is filtered for a PDR equal to 1 or 0. Figure 3.2 showed already the

impossibility to clearly differentiate between jamming and no-jamming at these

edges. If the pair has a PDR of ]0,1[ and is outside the threshold, it is considered

to be jammed.

Each decision di for i = {1|2|5.5|6|9|11|12|18|24|36|48|54} with di = {jamming, no-

jamming, no-decision} is weighted by their factor fi = ti/i to account for the

relative time spent on the different rates. This way, we form the batch-decision

[d]mac out of the different di as a pair of the decision {jamming, no-jamming, no-

decision} and a value denoting the certainty c = [0, 1] of this decision. This

certainty is determined by the relation of the sum of fi that support the judge-

ment to the total of all fi.

Pseudo code for the process from input to current decision:

for(i={1|2|5.5|6|9|11|12|18|24|36|48|54})

d := decide(sig,succ,try)

if (d = jamming)

jam_c += try/i

elseif (d = no-jamming)

noj_c += try/i

else

nodec_c += try/i

endif

endfor

if (jam_c = noj_c = 0)

return {no-decision, 0}

elseif (jam_c >= noj_c)

return {jamming, jam_c/(jam_c + noj_c + nodec_c)}

else

return {no-jamming, noj_c/(jam_c + noj_c + nodec_c)}

endif

The new decision dmac is inserted into a buffer of fixed size, which exists sepa-

rately for each connection. The purpose of this is to function as a filter against

outliers and can have a different weight assigned for each of its n entries with the
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conditions that each weight is positive and the sum equals one.

Pseudo code for the filter of a connection:

buffer.insert(d)

for (each item in the buffer)

if (buffer.item.decision = jamming)

jam_c += buffer.item.certainty * weight[n]

elseif (buffer.item.decision = no-jamming)

noj_c += buffer.item.certainty * weight[n]

endif

n += 1

endfor

if (jam_c = noj_c = 0)

return {no-decision, 0}

elseif (jam_c >= noj_c)

return {jamming, jam_c}

else

return {no-jamming, noj_c}

endif

Following the descriptions above, the flow diagram in figure 3.5 gives another

way to illustrate the data flow.

After presenting how the algorithm itself is implemented, we now show, where and

how we collect the information for the input.

The RSSI value for each connection is built by repeated queries to the iw environ-

ment via the

$ iw dev wlan0 station dump

command. We also tried

$ iwconfig wlan0

and

$ ifconfig wlan0
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Figure 3.5: Sketch of the characteristic based algorithm for an evaluation circle of
a connection.

but because they can’t provide informations for each individual connection and also

don’t report the strength of the noise in ad-hoc mode, they gave us no additional

input.

We collected the PDR defining pairs (si, ti) by reading the debug output from the

Minstrel algorithm. Since it isn’t enabled per default, we have to activate the

debug mode through

$ sudo mount -t debugfs debugfs /sys/kernel/debug

After this, Minstrel will generate and update the rc stats file in the folder9:

/sys/kernel/debug/ieee80211/phy*/stations/*/

The text file10 contains a lot of information about each connection, but the only

points of interest to us are the delta of the success and attempts column between

two points in time, showing the new sent packages for each rate and their success:

(si, ti) = (successi new − successi old, attemptsi new − attemptsi old).

9The first * represents an integer. We observed a range from 0 to 2. The second * represents
a MAC-address in the format of .. : .. : .. : .. : .. : .. with each . standing for a hexadecimal
value from 0 to f.

10This example is taken from http://linuxwireless.org/en/developers/Documentation/
mac80211/RateControl/minstrel
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rate throughput ewma prob this prob this succ/attempt success attempts

P1 0.9 99.9 100.0 0( 0) 105 111

2 0.4 25.0 100.0 0( 0) 1 1

5.5 1.2 25.0 100.0 0( 0) 1 1

11 1.1 12.5 50.0 0( 0) 1 2

6 0.0 0.0 0.0 0( 0) 0 0

9 0.0 0.0 0.0 0( 0) 0 0

12 0.0 0.0 0.0 0( 0) 0 0

18 0.0 0.0 0.0 0( 0) 0 0

24 0.0 0.0 0.0 0( 0) 0 0

36 0.0 0.0 0.0 0( 0) 0 0

t48 16.0 40.9 88.8 0( 0) 9 10

T 54 16.2 91.1 91.2 115(126) 96429 109032

Total packet count:: ideal 5756 lookaround 641

3.3.3 Evaluation

In this section, we discuss the results for the implementation of the characteristic

based algorithm. As an introduction, we describe the different variants of the

algorithm, along with the parameters which were constant for all of them.

Following this, we will briefly repeat the different settings and our assumptions

before presenting the results.

3.3.3.1 Evaluation Variants

All tests were done by us with two nodes, called client and server. If not specified

otherwise, these two used iperf to send a UDP-stream to each other and the only

differences between the client and server are the amount of data they try to send

and their proximity to the jammer. While the client wants to transmit as much

as he can, the server tries to achieve only 1 Mb/s.

Following the implementation described above, the following parameters were ad-

justed to influence the outcome.
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Threshold *

The threshold plays the most significant role, since ti defines the area in which

points are recognized as not-jammed.

We recorded no-jammer data that covers the whole RSSI range as well as all

physical rates, but since the 48 Mb/s and 54 Mb/s rates don’t work11, only mea-

surements up to the 36 Mb/s rate are meaningful. This lead us to an additional

problem: Not only the no-jammer area of the 1 Mb/s rate, but especially the one

of 36 Mb/s grows large. While the other physical rates have a relatively narrow

RSSI range in which they are commonly selected, the 1 Mb/s rate covers the area

from the minimal value (little over -98 dBm) up to the lower limit of the 2 Mb/s

rate. This is even worse for the 36 Mb/s rate because due to the rates 48 Mb/s

and 54 Mb/s being unusable, the 36 Mb/s rate has to cover their conditions as

well. This is further worsened by the fact, that the borders between two physical

rates aren’t fix and there is a smooth transition between them, increasing the no-

jammer areas even further.

The problem with the 36 Mb/s rate is therefore, that it is simply too big, which

means, that not only no-jammer points are inside the area, but also a lot during

jamming. From this observation, we decided on a variant that ignores the 36 Mb/s

rate the same way as the 48 Mb/s and 54 Mb/s12.

The -base variation uses the 36 Mb/s rate, while -threshold considers only the

rates up to 24 Mb/s.

Weighting *

During the discussion about the use of the 36 Mb/s rate we also thought of another

possibility to counter the problem. In some prior tests, it was very noticeable that

the false negative rate was much higher than the false positive one13.

Therefore we assigned different weights to the intermediate results di, according

to their decisions.

The -base case is defined as using the same weights for jamming and no-jamming

decisions, while the variant -weight favours jamming decisions with a factor of

11This is an effect only observed in ad-hoc mode. We don’t know why that is but the biggest
part of the recordings there are probes from Minstrel to update the internal channel statistics.

12That means they always return no-decision.
13That means, that points outside the threshold were much more likely to be jammed, than an

inside point was to be not-jammed.
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Filtering *

Another way to handle outliers is the discussed buffer for each connection resulting

in a variable buffer size and their respective weights for the final decision. We tried

different values but concluded, that the order of the weights had only a negligible

influence. This made our first idea, to let the newest data have the biggest influence

while being kept in check by the older results, futile. Following this finding, we

assigned the same weight for every position in the buffer.

The -base case is defined as having a buffer with size one, while the variant -filter

shows the results for a buffer of size four with 0.25 as the weight for each item.

Global Settings *

The last variable that we could have changed is the time interval between two

evaluations. If it is too short, we assume that the fluctuations in the PDR become

too big, but if it is too long, the information may come too late for the intended

purpose. We set the interval time on one second which is pretty long for com-

puters, while still acceptable to humans and changes in the environment. It also

improves the stability of the RSSI and gives Minstrel enough time to create more

accurate PDR pairs that are neither 1 nor 0.

Summary *

For reference, we name the algorithm ocba for online characteristic based algo-

rithm. With the intend to study the influence of the variations, we split ocba into

four variants as shown in table 3.1.

The different settings are discussed more closely in section 2.2, but we will repeat

the notions and global settings of the algorithm in the following list that is valid

if not specified differently:

UDP throughput the client wants to achieve: 100 Mb/s (meaning ’as much as

possible’).

14We decided on the number four because it should demonstrate a trend without overpowering
everything else.
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name buffer size physical rates weight jamming/no-jamming
ocba-base 1 1 Mb/s - 36 Mb/s 1
ocba-filter 4 1 Mb/s - 36 Mb/s 1

ocba-threshold 1 1 Mb/s - 24 Mb/s 1
ocba-weight 1 1 Mb/s - 36 Mb/s 4

Table 3.1: Summary of the four variants.

UDP throughput the server wants to achieve: 1 Mb/s.

Time between two evaluations: 1 second.

A good connection: Minstrel chooses the rate 36 Mb/s or higher for at least

90% of the packets, while in the absence of a jammer.

A bad connection: Minstrel chooses the rate 12 Mb/s or lower for at least 90%

of the packets, while in the absence of a jammer.

Jammer influence on a node: Nonnegligible change in the RSSI during noise

jamming. The bit jammer uses a 5 dBm and the frame jammer a 25 dBm smaller

signal strength.

To clarify the meaning of each row in the evaluation tables, we describe them

here:

no dec: No decision. Number of times where the algorithm didn’t have enough

informations to decide and returned dmac = no-decision.

dec: Decisions. Number of times where the algorithm reached a decision dmac =

no-jamming or dmac = jamming.

correct: Number of times where the algorithm recognised the situation (jamming

vs. no-jamming) correctly, divided by the total number of decisions.

3.3.3.2 Setting 1

In the first setting, we used two static nodes that had a good connection with

each other and the jammer was only capable of interfering with the server. We

predicted that the client would give a more accurate result, since his packets are

the ones that are disturbed, lowering the PDR and physical rate despite leaving

the RSSI high. The server on the other hand should see a small reduction in the

rate through the destruction of client-ACKs but record a noticeable reduction of
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RSSI while staying on a high physical rate. In case of the frame jammer, the

packets of the client are damaged while the server should suffer mainly through

the carrier sensing.

client no dec dec correct correct dec no dec server
ocba-base 2 363 99% 97% 336 50 ocba-base
ocba-filter 1 365 100% 97% 351 35 ocba-filter

ocba-threshold 117 248 97% 25% 12 374 ocba-threshold
ocba-weight 2 363 99% 97% 336 50 ocba-weight

Table 3.2: Results for setting 1 without a jammer.

Table 3.2 shows no surprises for the absence of a jammer. The explanation for

the different results in the ocba-threshold algorithm for the client and server is

the rate usage. The client spent a similar amount of time on rate 36 Mb/s and

24 Mb/s, leaving the threshold variant with enough data to evaluate. The server

on the other hand used almost exclusively rate 36 Mb/s and changed this only

through outliers.

client no dec dec correct correct dec no dec server
ocba-base 15 339 98% 92% 364 12 ocba-base
ocba-filter 0 354 98% 92% 376 0 ocba-filter

ocba-threshold 15 339 99% 100% 345 31 ocba-threshold
ocba-weight 15 339 99% 93% 364 12 ocba-weight

Table 3.3: Results for setting 1 with noise jammer.

client no dec dec correct correct dec no dec server
ocba-base 10 365 60% 27% 340 61 ocba-base
ocba-filter 0 375 62% 30% 368 33 ocba-filter

ocba-threshold 84 291 96% 94% 117 284 ocba-threshold
ocba-weight 10 365 69% 30% 340 61 ocba-weight

Table 3.4: Results for setting 1 with bit jammer.

In the case of jamming, the client ratios are as high as assumed, following the

predicted schema of a reduced physical rate through a lowered PDR while keeping
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client no dec dec correct correct dec no dec server
ocba-base 185 283 91% 8% 153 336 ocba-base
ocba-filter 154 314 94% 7% 304 185 ocba-filter

ocba-threshold 185 283 99% 100% 28 461 ocba-threshold
ocba-weight 185 283 97% 12% 153 336 ocba-weight

Table 3.5: Results for setting 1 with frame jammer.

a high RSSI. It has to be noted, that the results of the bit jammer in table 3.4

strengthen the threshold approach, since it is the only variant that is not confused

through the use of the 36 Mb/s rate. The price for this is a large number of no-

decision results.

The server on the other hand shows a diverse picture. The case of the bit jammer

is similar to the one of the client and lies somewhat between the noise and the

frame jammer. As expected of the bit jammer, the RSSI is no different from the

no-jammer scenario, but the PDR is reduced. This is not detected in the 36 Mb/s

area due to it’s size presented in the implementation, but when Minstrel switches

to a lower rate, the other variants beside ocba-threshold pick it up and decide on

jamming too. The frame jammer results of table 3.4 show the expected difficulty.

The frame jammer did not lower the RSSI but exploited the carrier sensing, forcing

the server to wait. This lead to a large number of intervals in which no data was

transmitted15, producing a high number of no-decision results.

The part where our prediction was off, was in the case of the noise jammer for

the server. The correctness shows a good result, but because of a different reason:

The RSSI was influenced and also the expected jumps are visible, but the effect

was not as strong as we thought it would be. The noise jammer was strong enough

to interfere with the ACK packets from the client, reducing the PDR and physical

rate without being on a level, it would need to be for a constant RSSI shift.

3.3.3.3 Setting 2

In the second setting, we used the same two static nodes as before but this time,

the jammer interfered with both participants. We predicted that both, the server

and client, show no significant difference from each other and return success ratios

15A case not distinguishable from the time the server actually doesn’t have anything to send.
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similar to the server from setting 1.

Our prediction was correct as can be seen in the tables 3.6, 3.7 and 3.8. The

correctness is higher, because the data packets and the ACK messages both got

disrupted, lowering the physical rate even further. This is most obvious in the

bit jammer scenario where the 36 Mb/s rate was used only an almost negligible

amount of time. The frame jammer worked mainly through the carrier sensing,

leaving the physical rate at 36 Mb/s with a fairly high PDR and unchanged RSSI.

The reason for this lies in the jammer configuration: The frame jammer was strong

enough to cause back-offs, but not as strong, as he would need to be to produce

the same amount of bit errors as the other attackers.

client no dec dec correct correct dec no dec server
ocba-base 1 344 99% 100% 363 3 ocba-base
ocba-filter 0 345 100% 100% 366 0 ocba-filter

ocba-threshold 1 344 100% 100% 363 3 ocba-threshold
ocba-weight 1 344 100% 100% 363 3 ocba-weight

Table 3.6: Results for setting 2 with noise jammer.

client no dec dec correct correct dec no dec server
ocba-base 4 349 88% 100% 356 14 ocba-base
ocba-filter 0 353 92% 100% 370 0 ocba-filter

ocba-threshold 20 333 93% 100% 356 14 ocba-threshold
ocba-weight 4 349 93% 100% 356 14 ocba-weight

Table 3.7: Results for setting 2 with bit jammer.

client no dec dec correct correct dec no dec server
ocba-base 168 96 2% 2% 147 109 ocba-base
ocba-filter 101 163 3% 2% 150 106 ocba-filter

ocba-threshold 263 3 100% 100% 3 253 ocba-threshold
ocba-weight 168 96 2% 2% 147 109 ocba-weight

Table 3.8: Results for setting 2 with frame jammer.
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3.3.3.4 Setting 3

The third setting is similar to the first one in regards of the jammer position, but

due to a loss of the line of sight, the participants start with a bad connection.

We predicted, that the condition would leave the threshold variant with the same

results as the base. We further assumed, that the other versions would approach

the outcome of ocba-threshold in setting 1.

client no dec dec correct correct dec no dec server
ocba-base 0 304 98% 94% 322 1 ocba-base
ocba-filter 0 304 100% 96% 323 0 ocba-filter

ocba-threshold 19 304 98% 94% 322 1 ocba-threshold
ocba-weight 0 304 97% 93% 322 1 ocba-weight

Table 3.9: Results for setting 3 without a jammer.

client no dec dec correct correct dec no dec server
ocba-base 21 322 99% 94% 324 36 ocba-base
ocba-filter 0 343 99% 98% 360 0 ocba-filter

ocba-threshold 21 322 99% 94% 324 36 ocba-threshold
ocba-weight 21 322 99% 99% 324 36 ocba-weight

Table 3.10: Results for setting 3 with noise jammer.

The no-jammer table 3.9 shows the usual good results for each kind of the imple-

mentation. The same goes for the noise jammer, presented in 3.10.

For the bit jammer, the outcome is both good and bad: The ocba-base, ocba-filter

and ocba-weight case doubled their success ratio at the server, but the ocba-

threshold lost a third. The prediction that the different variants grow close was

confirmed and we also found a good situation to show the use of the weight vari-

ation: Compared to the others, ocba-weight had a 10% larger correctness. The

cause for this lies in the rate distribution. The measurement points were outside of

the area for each case except rate 18 Mb/s. There, the points lie perfectly inside,

resulting in a mixed view on the situation, leaving each batch with jammer and

no-jammer decisions which are then weighted against each other. The client didn’t

use the 18 Mb/s rate and thus achieved an almost perfect result.
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client no dec dec correct correct dec no dec server
ocba-base 6 274 100% 62% 273 21 ocba-base
ocba-filter 0 280 100% 64% 294 0 ocba-filter

ocba-threshold 6 274 100% 62% 273 21 ocba-threshold
ocba-weight 6 274 100% 73% 273 21 ocba-weight

Table 3.11: Results for setting 3 with bit jammer.

For the frame jamming we get a similar outcome as for the bit jamming. The

difference is, that this time the client also uses the 18 Mb/s rate from time to

time. This leads to a similar conclusion as before, demonstrating the use of the

weighting. On the other hand it might also lead to one of two different conclusions:

The first is, that the highest physical rate of a batch cannot be trusted the same

as the others, while the second possible explanation says, that it is just a subset

of physical rates that has special conditions making their results less trustworthy

than others. However, against the idea of a special subset of physical rates speak

the results of other settings where the 18 Mb/s rate was perfectly fine for jamming

detection. The reason for the worse server results lies in the distribution of the

rates. Client and server used pretty much the same physical rates, but the server

used the 18 Mb/s one significantly more often, thus giving the wrong decisions a

higher impact.

client no dec dec correct correct dec no dec server
ocba-base 8 254 72% 34% 229 45 ocba-base
ocba-filter 2 260 79% 24% 273 1 ocba-filter

ocba-threshold 8 254 72% 34% 229 45 ocba-threshold
ocba-weight 8 254 93% 48% 229 45 ocba-weight

Table 3.12: Results for setting 3 with frame jammer.

3.3.3.5 Moving

For the mobility tests, we positioned the nodes and jammer according to setting

1 and then carried the client up and down the hallway at walking speed. The

51



3 Jamming Detection

distance range was around 5 meters and we tried to keep the rhythm and way of

carriage constant for all measurements.

Through prior tests, we knew, that the movement reduces the throughput itself

and therefore we had to lower the energy output of the jammer, compared to the

statical tests. Otherwise the jammer would have been too strong and the traffic

reduced to zero, resulting in 100% no-decision results. We expected the no-jammer

to pose no problem but guessed that the jamming detection might give a lower

success ratio than before because of the reduced, external interferences.

In table 3.13 we show that even in mobile scenarios, the ocba provides correct

results. The physical rate is less stable and in average lower than in setting 1,

which is especially visible in the higher correctness and lower no-decision number

of ocba-threshold. The static server also suffers under the movements of the client,

but the results are still within acceptable bounds.

client no dec dec correct correct dec no dec server
ocba-base 10 328 98% 90% 316 41 ocba-base
ocba-filter 0 338 99% 92% 335 22 ocba-filter

ocba-threshold 252 86 79% 83% 172 185 ocba-threshold
ocba-weight 10 328 96% 87% 316 41 ocba-weight

Table 3.13: Results for moving without a jammer.

The results during jamming follow the same pattern: The ocba-threshold variant

gives the best correctness for the simple reason that the points of the 36 Mb/s

rate lie once again in the no-jammer area. With a large difference but still signif-

icant second is the ocba-weight implementation that tries to compensate for the

misjudgments of the 36 Mb/s rate through the jamming decisions of the other

physical rates. The client has the best success ratio during frame jamming, where

the physical rate is very diversely chosen and thus reducing the influence of the 36

Mb/s rate a lot. The server on the other hand is a little bit better than in setting

1, but still, only ocba-threshold delivers a good percentage of correct decisions.
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client no dec dec correct correct dec no dec server
ocba-base 7 266 42% 41% 281 10 ocba-base
ocba-filter 0 273 40% 40% 290 0 ocba-filter

ocba-threshold 28 245 82% 100% 160 131 ocba-threshold
ocba-weight 7 266 55% 51% 281 10 ocba-weight

Table 3.14: Results for moving with noise jammer.

client no dec dec correct correct dec no dec server
ocba-base 2 231 38% 26% 220 26 ocba-base
ocba-filter 0 233 35% 26% 226 20 ocba-filter

ocba-threshold 27 206 87% 81% 105 141 ocba-threshold
ocba-weight 2 231 53% 33% 220 26 ocba-weight

Table 3.15: Results for moving with bit jammer.

client no dec dec correct correct dec no dec server
ocba-base 64 174 68% 20% 113 134 ocba-base
ocba-filter 50 188 76% 23% 164 83 ocba-filter

ocba-threshold 65 173 98% 97% 35 212 ocba-threshold
ocba-weight 64 174 83% 26% 113 134 ocba-weight

Table 3.16: Results for moving with frame jammer.
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3.3.3.6 TCP and Background Traffic

TCP *

We assumed, that our implementation fits TCP as well as UDP and that the

results show only a negligible difference. To test this, we used setting 1 and let

both nodes try to transmit data as fast as they could.

Our prediction was correct in case of the no-, bit and frame jamming for the client

and server, although the server correctness for the bit jammer was better than in

setting 1, because the 36 Mb/s rate was used less.

client no dec dec correct correct dec no dec server
ocba-base 51 835 100% 99% 761 130 ocba-base
ocba-filter 16 870 100% 100% 809 82 ocba-filter

ocba-threshold 880 6 0% 0% 6 885 ocba-threshold
ocba-weight 51 835 99% 99% 761 130 ocba-weight

Table 3.17: Results for TCP without a jammer.

client no dec dec correct correct dec no dec server
ocba-base 14 283 100% 62% 280 24 ocba-base
ocba-filter 0 297 100% 62% 294 10 ocba-filter

ocba-threshold 14 283 100% 98% 203 101 ocba-threshold
ocba-weight 14 283 100% 68% 280 24 ocba-weight

Table 3.18: Results for TCP with bit jammer.

client no dec dec correct correct dec no dec server
ocba-base 393 185 99% 8% 13 556 ocba-base
ocba-filter 304 274 100% 13% 556 4 ocba-filter

ocba-threshold 394 184 100% 100% 1 568 ocba-threshold
ocba-weight 393 185 99% 8% 13 556 ocba-weight

Table 3.19: Results for TCP with frame jammer.

The noise on the other hand was different. While client and server detected the

noise jammer very well in setting 1, this time the server had large difficulties, doing

so. Our analysis showed, that the server used the physical rates 18 Mb/s up to
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36 Mb/s and that all the measurement points were well inside the threshold. The

reason for this lies in a RSSI shift. In setting 1, the server reported a RSSI of -60

dBm, while this time, the RSSI lied around -75 dBm. It seems obvious to us, that

this time, the RSSI shift worked against us, pushing the PDR and physical rate

measurements in the no-jammer areas.

client no dec dec correct correct dec no dec server
ocba-base 2 269 100% 9% 255 20 ocba-base
ocba-filter 1 270 100% 7% 275 0 ocba-filter

ocba-threshold 2 269 100% 11% 221 54 ocba-threshold
ocba-weight 2 269 100% 11% 255 20 ocba-weight

Table 3.20: Results for TCP with noise jammer.

Background Traffic *

The last test we conducted had the aim to prove, that our approaches are capable

to distinguish valid traffic on the same frequency from frame jamming. To do

so, we placed the transmitting nodes at the positions of setting 1, giving them

a good connection. Then we placed two additional nodes, each one right next

to one of the others. These additional stations were set to transmit with the

maximum transmission rate possible, using UDP. The test stations were adjusted

to try achieving a throughput of 1 Mb/s at the server and maximum at the client.

Due to the good connection and the carrier sensing we assumed that client and

server would keep the physical rate high, while the PDR would also stay in the

no-jammer ranges, since the additional traffic respects the protocol and doesn’t

produce a hidden station situation.

The correctness was as high as we hoped for, while the grown number of no-

decision results come from the times where the channel was kept busy by the

additional nodes. The ocba-threshold shows once again the problem of leaving a

usable physical rate out of calculation, but that was to be expected and therefore

not alarming.
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client no dec dec correct correct dec no dec server
ocba-base 506 209 99% 99% 298 496 ocba-base
ocba-filter 490 225 99% 99% 308 486 ocba-filter

ocba-threshold 713 2 0% 40% 10 784 ocba-threshold
ocba-weight 506 209 99% 98% 298 496 ocba-weight

Table 3.21: Results for setting 1 with background traffic instead of a jammer.

3.3.4 Review

In this section, we make a review of the different variants and various influences.

This will lead directly to new hypotheses and possible follow-ups, which we present

in section 3.4.

Base Results *

Overall, the results show that our approach and implementation succeeded in de-

tecting jamming, while staying correct in the absence of an adversary. In the

no-jammer cases, the success ratio was between 98% and 100% during good con-

nectivity16. In the cases of asymmetrical settings, the client had better results,

while no significant difference could be found in setting 2. This also means, that

the throughput doesn’t influence the result as long as the transmission rate is

bigger than zero. Even in the cases where the ocba-base variant didn’t work, at

least one of the others showed promising results as we will discuss in the following

paragraphs.

Influence of Filtering *

Looking at all test results, we found a clear trend when compared to the ocba-base

variant:

(correctocba−base < 50%) → (correctocba−filter < correctocba−base)

(correctocba−base ≥ 50%) → (correctocba−filter ≥ correctocba−base)

Since the variant was designed to reduce the effect of outliers, this is exactly what

we expected. The rule we stated above has only one exception, and that are

measurements with a lot of no-decision results. All the other variants immediately

16The server ratio in setting 3 and the moving scenario was a bit lower, but these results were
discussed in the specific settings.
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accepted this, while the filter provided a few more seconds in which the correct

decision lingered on.

Influence of the Threshold Decision *

Out of all variations, the decision to ignore the 36 Mb/s had the biggest influence

on the correctness. For every kind of jamming, concentrating on the rates only

up to 24 Mb/s gave astonishing results. The problem is, that this variation is

not practical in the way we used it here. The high number of no-decisions during

jamming and no-jamming alike shows this, because the maximal physical rate (36

Mb/s) is also picked during jamming and even more without external disturbances.

Additionally, setting 3 questioned the fixation on the 36 Mb/s rate, compared to

the highest physical rate of each individual batch.

Combining these arguments, we believe that this point needs a closer evaluation

for future projects. It has to be tested if the assumption of the maximal batch

rate holds, and if, how the algorithm should use this information. Simply ignoring

the highest rate each time (as long as there is data about other physical rates)

could lead to a lot of wrong decisions due to outliers, meaning that some sort of

additional weight would have to be implemented and determined.

Influence of the Weighting *

As we expected, in case of jamming, the success ratio and especially the confidence

were superior, when compared to the ocba-base variant. The surprising point is,

that the results during no-jamming were not significantly worse, with a maximal

difference of 3%. Judging from these results we assume, that the factor four was

too low, and that the use of a higher value would increase the jamming detection

greatly with little influence in the absence of an attacker. To determine the optimal

factor, one will have to rank the jamming and no-jamming cases according to their

importance and then compare the false positive and false negative decisions for

each variation. Yet we predict, that the outcome will be highly influenced by other

possible additions. This means, that the results for the same factor will probably

be very different if filtering or a threshold modification is used at the same time,

especially since the threshold variant needs to have its own factor determined.
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Comparison with Schafroth [1] *

Since our work was largely influenced by [1], we directly compare the parts where

this is possible and discuss the differences in the other cases. To do this, we will

consider the results of his transmitter and receiver based algorithm during frame

jamming with our performance. This includes setting 1 and 2, mobility, the use of

TCP instead of UDP and the experiment with background traffic.

In his evaluation, Schafroth didn’t use a parallel traffic as we did and therefore

differentiated the jammer position in separate ’near the sender’ and ’near the re-

ceiver’ cases. His ’in between’ on the other hand can be compared directly to our

setting 2 so we start with that.

In the case of the frame jammer being placed in the middle of the two nodes, both

the transmitter and receiver based algorithm achieved a 98.04% correctness to

detect jamming. As discussed in the specific paragraph, we achieved a 100% cor-

rectness with the ocba-threshold variant, but because of the enormous use of the

36 Mb/s rate and the diversity in our PDR numbers, our other variations didn’t

detect it (around 2% success). For the other two jammer positions, Schafroth’s

correctness ranged from 97.06% to 98.15%. As explained before, the result for

the server is slightly better than in setting 1, but with 7% to 12% (not counting

ocba-threshold) still nowhere as good. The detection done by the far away node

(client in our case) on the other hand is comparable to [1] with a range of 91% in

case of ocba-base up to 99% for ocba-threshold.

The effects of mobility are hard to compare, because we used a different walking

path. The results however show that our algorithms give a broader correctness

range than his, meaning that our worst, ocba-base, only achieved 68%, while

Schafroth’s transmitter-based approach returned 84.42%. On the other hand, his

receiver-based variation only got up to 93.06%, while our ocba-threshold reached

98% correctness (we used the client results on our site, since the server problems

with the frame jammer were already explained).

The other settings and studies can be summarised as follow:

The question if the correctness differs for TCP and UDP was answered equally,

with the result that the upper layer protocol didn’t matter for the jamming detec-
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tion. His perfect score in case of the noise and bit jammer were explained by the

use of a noise threshold while we only had the physical rate / RSSI correlation.

Nonetheless, we still achieved a correctness of over 90% most of the time. The

results on background traffic can’t be compared because Schafroth used it to build

a hidden node situation while we actively avoided this case.

3.4 Possible Follow-ups

In this section, we present some ideas that may be pursued on the basis of our

results to gain a higher correctness for jamming detection.

Setting *

We tested our approach only for constant jammers, but in theory, most jammers

reduce the PDR one way or another and thus influence the physical rate. We

couldn’t test it, but we see no reason why it shouldn’t work with any kind of jam-

mer that targets the data transmission instead of the protocol. Also we only used

nodes in ad-hoc mode but expect it to produce comparable results in infrastructure

mode. The infrastructure mode would also make it possible to study the physical

rates of 48 Mb/s and 54 Mb/s and their no-jammer thresholds. Further studies

could also be made to inspect different hardware and their interdependencies17.

Lastly, the rate selection algorithm we used was Minstrel, but the question if the

whole idea only works with this specific algorithm or if it has a larger validity, is

still open.

Algorithm *

To improve the correctness, we already suggested some variations in the review

parts. As an additional measurement, the RSSI itself could be used in the sense,

that a rapid change over time would reveal the presence of a jammer. With such

an additional module, the noise jammer during the TCP tests would have been

detected at the server due to the RSSI shift from -60 dBm to -75 dBm. A fixed

threshold is impossible, but if we assume a non-disturbed setup phase and no

17For example, is it only important what type of card the sending node uses or does the receivers
card matter too?
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movement, it is easy to implement. An additional suggestion that may reduce the

PDR diversity and therefore strengthen this measurement could be the use of a

fixed threshold for a minimal value of ti that is needed for a physical rate to be

considered for the detection. The reason for this is our observation that the PDR

that Minstrel reports closes in asymptotically to the real PDR as more packets

are transmitted on a specific physical rate. Our last idea is not to use discrete

physical rates as input but average values like in [1]. Further than that, we don’t

think, that our algorithm can be improved substantially without adding additional

measurements like the noise strength or the bad packet ratio. Still, a combination

of all tested variations, together with more precisely tuned threshold areas and

factors might prove to be enough for every common situation.

In an environment where all possible measurements are available, a combination

with the approach to use the channel capacity might further improve the correct-

ness and certainty of the decisions, adding the possibility to detect jamming even

without any throughput at all.

3.5 Recommended Implementation

In the case, that someone wants to implement our approach directly, we present

the following recommendations as a starting point.

name buffer size physical rates weight jamming/no-jamming
ocba-suggestion 5 1 Mb/s - 36 Mb/s 6

Table 3.22: Suggested configuration.

In case of a planned use in infrastructure mode, the physical rates considered

should include all from 1 Mb/s up to 54 Mb/s. For the interval between two

evaluations we suggest to choose more than one second, but this is probably fixed

through external requirements. As a compromise with the ocba-threshold variant

we recommend to add an additional weight in the process from the different di

to the batch-decision [d]mac. This weight should ensure that no physical rate -

regardless of its ti value - has more than 49% influence in the final decision.

We also recommend the implementation of a module to detect large changes in
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the RSSI, since especially the jumps discussed in section 3.1.1 are a strong hint

for the presence of an attacker.
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4 Rate Switching

In this chapter we evaluate the performance of different existing rate switching

algorithms under jamming and elaborate ideas for improvements. First we will

give an overview on the technical background of rate switching and introduce the

algorithms AMRR, Onoe, SampleRate and Minstrel. After a short part on com-

paring these algorithms we will examine the performance of Minstrel in different

jamming scenarios and then explain and test some of our improvement ideas.

4.1 Technical Background

With the support of different physical rates the problem arises to chose the best

physical rate for transmitting. With not only different encoding schemes but

as well different modulations, the problem became more difficult to be solved

effectively with a minimal overhead.

While the first rate control algorithms were fairly simple and only increased or

decreased the physical rate by one depending on a simple rule, newer algorithms

are more sophisticated and use different measures to determine the current channel

quality and then try to choose the best rate. Some algorithms use the SNR to look

up the best rate, others try to evaluate the packet losses or look at the achievable

throughput. The main problem all face is that they should adapt fast to changed

channel and environment conditions and have as few overhead as possible. While in

a static environment the theoretical best can be determined, changing conditions

as mobility, changes in the environment or a jammer can affect this optimum.

Therefore, an algorithm has to be able to adapt to these changes. The faster the

adaptation is, the less time is spent on a non-optimal rate.

In [7] the authors developed an algorithm that tries to determine the best physical

rate for each individual packet. Therefore they created an offline profile of the
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SNR and the according rate to use. Now all that is needed is an incoming packet,

e.g. an ACK, to measure the current SNR. So basically if the first packet is sent

at the lowest physical rate, all following packets will have an up to date SNR from

the previous ACK.

But what they did not consider in their work are jamming scenarios. As a jammer

affects the SNR at the receiver in another way than at the sender, these profiles

become futile, unless the sender knows the SNR at the receiver1.

Another approach is to use the PDR to determine what rate is best to use. This

however always has some overhead as the PDR depends on the used physical rate

and can not be estimated good enough for other rates. While older algorithms

as Onoe and AMRR used the PDR just to switch to either the next higher or

next lower rate, SampleRate and it’s successor Minstrel use the PDR to do online

profiling and estimate the currently possible throughput for each rate. To do so,

they use sampling packets sent at random rates to check the conditions. This

allows the algorithm to find the best rate in a short time. We now give a short

introduction to the algorithms AMRR, Onoe, SampleRate and Minstrel, those

familiar with them may as well skip these parts.

AMRR

This algorithm uses the given Multi Rate Retry (MRR) functionality of the Hard-

ware Abstraction Layer (HAL) of Atheros WLAN chipsets. It sets up the pairs of

rates and retry counts as

[(r0, 1), (r0 − 1, 1), (r0 − 2, 1), (0, 1)]

where the first value denotes the number of the physical rate used and the second

value in each bracket is the retry count, r0 is determined by the performance of

the algorithm in the previous interval using the last physical rate r0. If there were

more failures than a given threshold, the rate will be reduced by one and if there

were more than a certain amount of successful transmissions, then the rate will be

increased. For the exact implementation details we refer to [13].

1The SNR could be included in the header of each packet, but then it would no longer conform
to the IEEE 802.11 standard.
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Onoe

This algorithm tries to find the highest physical rate with less than 50% packet

loss. The idea comes from the fact that 802.11b networks only use the rates 1,

2, 5.5 and 11 Mb/s where the next lower rate is always outperformed when there

is less than 50% packet loss. For the 802.11g rates the algorithm is less optimal

as the rates are closer together than by a factor of two. We could not find any

references on this algorithm as all the referenced URLs are offline. Perhaps the only

remaining documentation are the comments in the source code found in MadWifi.

SampleRate

SampleRate starts sending at the highest available physical rate. After four suc-

cessive transmission failures the algorithm will lower the bitrate. In addition Sam-

pleRate sends packets on random rates to do sampling. A lower rate is only

sampled if its lossless transmission time is lower then the average transmission

time of the current rate in the last interval of 10 seconds. No rate that had four

successive transmission failures in this interval is used. In [8] the implementation

is described in more detail.

Minstrel

Minstrel2 keeps for each physical rate a record of the number of packets it at-

tempted to send on this rate and the number of those that were successful. In

addition it stores for each rate the number of successful and total transmissions in

the current interval of 100ms, the resulting current PDR and the EWMA 3 of the

PDR. The EWMA is calculated as follows:

EWMAnew = α ∗ EWMAold + (100− α) ∗ PDRcurrent.

In Minstrel α is called the EWMALevel and is by default 75, meaning the old

EWMA accounts for 75% and the current PDR for 25% to the new EWMA.

To determine the next physical rate a sample will be sent on, the algorithm uses

2http://linuxwireless.org/en/developers/Documentation/mac80211/RateControl/minstrel
3exponentially weighted moving average
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a sample table where each row contains all possible rates randomly permuted. As

there is no benefit in sending packets at lower than the current rate while the

current rate still has a high PDR, the randomly chosen rate to send the sample

on will only be used if it could provide more throughput, assuming it would have

no transmission failures. If this is not the case, the sample is deferred and the

current rate is used instead. To avoid burst sampling, two deferred samples count

as one actually sent sample. The default setting is to send 10% of the packets on

a sample rate if MRR is enabled or 5% otherwise.

How to set up the Multi Rate Retry Chain (MRRC) is another important factor

for the performance of a rate switching algorithm. Minstrel uses three different

MRRCs, one for all normal packets, one for sampling packets at a higher than

the current rate and one for sampling packets at a lower rate. The rates used

are similar but are arranged differently in each chain. There are the rates that

have the best throughput, the second best throughput and the highest probabil-

ity. Additionally a random rate4 and as well the lowest rate are used. The three

chains are shown in table 4.1 and the rates are used from top (first rate) down

to the bottom (4th rate) with a variable number of retries on each rate. The left

column is for samples with a lower physical rate than the current one, the middle

column is for sampling at higher rates and when no sample is sent the chain to

the right is used. This setup allows Minstrel to sample at lower rates as soon as

Try Sample Rate Normal Rate
random < best random > best

1 Best throughput Random rate Best throughput
2 Random rate Best throughput Next best throughput
3 Best probability Best probability Best probability
4 Lowest baserate Lowest baserate Lowest baserate

Table 4.1: Multi Rate Retry Chains of the Minstrel rate control algorithm. Source:
http://linuxwireless.org/

the current rate gets worse and transmission failures occur. While in practice this

strategy seems to yield good results, in theory there are some flaws to this. A

rate should only be sampled when its maximum throughput is higher than the

throughput on the current rate. For higher rates this always holds, but they usu-

4Sometimes also called sample rate.
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ally have more transmission failures decreasing the throughput and sampling often

will waste throughput.

In normal situations it is more likely that the rates close to the current one will

become the best and therefore should be sampled more often than the others. It

is useless to sample on lower rates when the link is good and when the link gets

worse not all lower rates should be sampled with the same frequency. The lower

the rate is, the less it should be sampled. The same holds for higher rates, less

sampling the higher the rate is.

In the case of a jammer, where the link quality can change fast, this strategy

could decrease the throughput, but if a jamming detection algorithm is available

the strategy can be adjusted. An idea is to use two tables5 and switch between

these when the jammer is turned on or off. This allows the rate control algorithm

to swiftly switch back to higher rates. The faster the jamming detection works

the faster the transmission is back at full speed. However, when the decision takes

too long the rate control algorithm will have altered the table already rendering it

useless to switch to the other table.

In this case the sampling could be adapted to send additional sampling packets

on the previously best rate as soon as the jammer is detected. This could help to

switch back faster when the jammer is turned off.

Measurement Duration

The WLAN channel suffers a lot from short term variations independent of the

presence of an attacker. But we assume, that the long-term performance does not

change during each of our experiments. To get reliable results we have to adjust

the duration of our experiments accordingly.

We run a long experiment to evaluate what duration each test should have for

reliable results. In the figures 4.1 - 4.3 we show the confidence intervals for different

test durations using the physical rate 36 Mb/s under a frame jammer. While the 60

seconds tests still vary by up to 30%, with a duration of 5 minutes the variation is

down to less then 10%. The tests support our assumption and allow us to compare

the performance of the rate switching algorithm to the best physical rate.

5The table contains throughput, PDR, EWMA, success and attempts
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Figure 4.1: The throughput reached in 15 one minute tests using 36 Mb/s under
a frame jammer. The error bars indicate the 5% confidence interval.

Figure 4.2: The throughput reached in 15 two minute tests using 36 Mb/s under
a frame jammer. The error bars indicate the 5% confidence interval.
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Figure 4.3: The throughput reached in 15 five minute tests using 36 Mb/s under
a frame jammer. The error bars indicate the 5% confidence interval.
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4.2 Comparing Existing Algorithms

We want to compare Minstrel, AMRR, Onoe and SampleRate by their performance

under different jamming scenarios. For this we installed the MadWifi6 driver on

the sender laptop so we could switch between the different algorithms.

When we tried to test the algorithms, we found that in ad-hoc mode AMRR, Onoe

and SampleRate did not work. So after several failed attempts we decided to use

an access point for this comparison. The basic setup was still the same, except

that now the receiver was linked over an access point with a 100 Mb/s Ethernet

connection. A side-effect was that for these experiments all physical rates worked.

After a few experiments we found that comparing the different algorithms was

not as easy as we thought. For the experiments we ran one minute tests with the

four rate control algorithms and each fixed rate. The fixed rates were tested using

ath5k and Minstrel. We used the same jammer settings for all physical rates and

algorithms. As shown in figure 4.4 two of the algorithms seem to have outper-

formed the best fixed rate, what is rather unlikely in this static setting. Therefore

we investigated this issue further and found the problem to be the reloading of the

wireless module that is necessary to switch between the different algorithms. The

effect the jammer has on the performance of the WLAN channel changed when

reloading the module.

We ran an additional series of experiments where we used Minstrel and the physi-

cal rates 5.5 Mb/s and 24 Mb/s to show that reloading the wireless module under

jamming has an effect on the throughput. For this we used a frame jammer at

-25 dBm and the setting 4. Figure 4.5 - 4.7 show the average throughput for Min-

strel, 5.5 Mb/s and 24 Mb/s and the corresponding 5% confidence interval. Each

average is taken from 30 ten seconds intervals to calculate the confidence interval.

While the 5.5 Mb/s rate is quite stable the performance of the 24 Mb/s rate as well

as of Minstrel varies a lot between the different tests. As the confidence intervals

are mostly small we can conclude that not only restarting the jammer but as well

reloading the wireless module or restarting the sender effects the throughput over

WLAN.

As there is no possibility to change the rate control algorithm without reloading

the wireless module we tried to find another way to compare the algorithms. The

6http://madwifi-project.org/
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Figure 4.4: Performance of Minstrel, AMRR, Onoe and SampleRate under a noise
jammer in a two minute test. The error bars indicate the 5% confidence interval.

Figure 4.5: The throughput in Mbit/s that was reached in ten separate five minute
tests under frame jamming using Minstrel and reloading the wireless module after
each test. The error bars indicate the 5% confidence interval.
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Figure 4.6: The throughput in Mbit/s that was reached in ten separate five minute
tests under frame jamming using the fixed rate 5.5 Mb/s and reloading the wireless
module after each test. The error bars indicate the 5% confidence interval.

Figure 4.7: The throughput in Mbit/s that was reached in ten separate five minute
tests under frame jamming using the fixed rate 24 Mb/s and reloading the wireless
module after each test. The error bars indicate the 5% confidence interval.
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only real comparison probably would be to run hundreds of tests and reload the

wireless module before each test. This would allow averaging out the variations.

However, as this would take more time than we had left to achieve reliable values,

we had to drop this method and took a different approach. Instead of doing a

great number of test we wanted to compare the relative performance of the differ-

ent algorithms. We compared the throughput the rate control algorithm reached

with the one of the best fixed rate. The performance of the fixed rates should

be independent of the currently loaded rate control algorithm and give us a good

estimation how well each algorithm performed.

But the next series of experiments showed that we were wrong, as illustrated in

figure 4.8. In the Linux kernel7 the rate control algorithm has to handle fixed rates

itself and therefore would have to check if a fixed rate was set. But as AMRR and

Onoe fail to do so, the fixed rate is simply ignored and the rate control is used all

the time. This forced us to drop this method as well and leave the comparison of

these algorithms unfinished.

Figure 4.8: The rates on the x-axis denote the fixed physical rate that was set for
the test, but the throughput is too high for the rates and shows that the set rates
are not actually used when Onoe is loaded.

7Version 2.6.31.4
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4.3 Minstrel Performance Evaluation

In this section we evaluate the performance of Minstrel under different jammers in

an ad-hoc network. The setup for the following tests is,if not mentioned otherwise,

described in section 2.2 as setting 2. In all tests node B (client) tries to send 100

Mbit/s UDP traffic using the maximum packet size.

4.3.1 No Jammer

To have some reference values for the actual jammer tests we first ran the experi-

ment without any interference from the jammer. This allows us to see how much

throughput actually can be achieved with this hard- and software setting.

Figure 4.9: Throughput reached in a one minute test without any jammer in
Mbit/s. The error bars indicate the 5% confidence interval.

Rather unexpected we found that even when no jammer was present the physical

rates 48 Mb/s and 54 Mb/s performed poorly and reached in this test only 0.68

Mbit/s and 1.39 Mbit/s respectively as shown in figure 4.9. We assumed the out-

come would be closer to the tests in infrastructure mode listed in table 4.2.

As we could not find an explanation for this, we investigated this issue further and
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Rf 1 2 5.5 11 6 9 12 18 24 36 48 54
Rm 0.9 1.8 4.5 8.0 5.1 7.3 9.5 13.3 16.8 22.4 26.9 29.0

Table 4.2: Rf stands for the physical rate and Rm denotes the measured throughput
in Mbit/s.

found, that even when the two machines are on top of each other and hence the

cards just a few centimetres apart, the throughput is really low on the two highest

rates. However, as the rates work fine in infrastructure mode we assume the prob-

lem is caused by the implementation of the ad-hoc mode and is software related.

Investigating this issue further would have been out of scope and we therefore just

excluded these two rates from our tests.

It still needs to be discussed how this issue interfered with our tests. While for the

other fixed rates there is no influence at all, the performance of the rate switching

algorithm does suffer. As the rates do work sometimes for a short time period and

then again fail completely, the sample packets Minstrel sends will be sent success-

fully now and then and Minstrel will switch to this rate and be able to send a

burst of packets on this rate which increases it’s EWMA. But after a short period

of time the rate will stop working again and no packets will be delivered, reducing

the throughput to zero for several hundred milliseconds. This decreases the overall

performance of Minstrel.

While this is a quite severe issue when no jammer is present, it has less effect

when a noise or bit jammer is active. As long as the jammer is not too weak the

rates 48 Mb/s and 54 Mb/s will stop working as their forward error correction

only allows few errors. For a frame jammer it depends on the setting. If the frame

jammer targets the sender the two highest rates will still work from time to time

and reduce the performance of the algorithm. If the target is the receiver and the

sender can’t hear the frame jammer the situation is similar to a bit jammer and

the algorithm should work as if all rates would function properly.
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4.3.2 Noise Jammer

Now that we’ve seen the case where no jammer is present we can move on and take

a look at a scenario with a noise jammer8. For this test we set the noise jammer to

-10 dBm transmission power. In figure 4.10 one can see the throughput diagram.

Figure 4.10: Throughput reached in a one minute tests under noise jamming in
Mbit/s.

While the physical rates with stronger forward error correction (FEC) are unaf-

fected by the jammer, the higher rates that have less correction bits reach a lot

less throughput. As well a difference makes the modulation scheme used. While

the OFDM rates 24 Mb/s and 36 Mb/s lose 55% and 80% of their throughput,

the DSSS rate 11M that has no error correction bits has a loss of only 24%.

Minstrel lies with 9.6 Mbit/s between the best and second best fixed rate that were

18 Mb/s with a throughput of 13.2 Mbit/s and the 12 Mb/s rate that reached 9.3

Mbit/s. This means that Minstrel reached 73% of the best fixed rate. While this

value first seems to be quite low, one has to consider that 10% of the packets are

sent at another than the best rate to get sample data. But still these 73% allow

for improvement.

8How we realized the noise jammer with our hardware is described in chapter 2.3
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4.3.3 Bit Jammer

Next we ran our experiments with a bit jammer where Minstrel only reached 0.91

Mbit/s while the fixed rates were nearly unaffected by the jammer. Only the 36

Mb/s rate had it’s throughput reduced by 18%. First we thought this was the

normal behaviour of Minstrel under a bit jammer.

We thought that the problem could be either the throughput calculation or the

initialization of the PDR to zero. By changing the initial PDR value to 100% and

using, instead of the theoretical throughput, values actually reached in tests, we

suddenly had a great improvement in performance. However, as we investigated

this issue further we found that Minstrel did not initialize correctly and could not

use any but the lowest physical rate.

With this knowledge we could actually check before the tests whether Minstrel can

use all rates correctly and avoid this issue affecting the test results. The rerun of

the bit jammer test was with a slightly different setup, the jammer was now placed

at a distance of about 22m from the sender and about 13m from the receiver as it

can be seen in figure 2.6 and the transmission power was set to -7 dBm.

The best physical rate in this scenario was 12 Mb/s with a throughput of 3.81

Mbit/s while Minstrel only reached 58% of this value as one can see in figure 4.11.

However, it is still a gain of 200% over using the lowest physical rate.

In contrast to the results found in [1], where the DSSS modulation seemed robust

against bit jamming and the 1 Mb/s and 2 Mb/s rates still reached about 90% of

their maximal throughput when the OFDM rates 6 Mb/s and 9 Mb/s were down

at about 10%, in this test the 1 Mb/s and 2 Mb/s rates only reach about 50%

while the OFDM rates 6 Mb/s and 9 Mb/s as well have about 50% and therefore

outperform the DSSS rates.

4.3.4 Frame Jammer

The frame jammer9 is different to the others, as it does not try to hinder the

stations from receiving but from sending packets. To do so the frame jammer

needs to target the sender.

For this test we used a low transmission power of just -33 dBm in setting 4 to

9The frame jammer is explained in more detail in chapter 2.2
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Figure 4.11: Performance under bit jamming in a five minute experiment using
different fixed rates and the rate control algorithm Minstrel.
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ensure that the jammer’s interference with normal packets is not too strong. But

the client will send less packets as the channel is sensed to be busy. This means

that even when the throughput is low the PDR is still rather high and therefore

all rates have a lower throughput as shown in figure 4.12.

While the best physical rate in this test was 18 Mb/s with a throughput of 6.78

Mbit/s, Minstrel only used 24 Mb/s and higher rates as it can be seen in figure

4.14, that shows the total number of packets Minstrel sent on each rate and the

number of successful transmissions. One possible explanation for this behaviour

is, that because the frame jammer sends at 11 Mb/s the channel is busy for a long

time and the legitimate sender sends most packets separately and has to wait after

it finishes sending a packet. This reduces the channel capacity more for the higher

rates than it does for the lower rates an thus the throughput calculation done by

Minstrel is no longer correct.

If the frame jammer only jams the receiver it is actually quite similar to a bit

jammer. To show this we used setting 1 and set the transmission power to -25

dBm. As expected, in this test only the higher rates suffered from a throughput

loss as shown in figure 4.13

4.3.5 Review on Minstrel’s Performance

In setting 1, where the jammer is not in line of sight of the sender and much further

away from it then from the receiver, frame and bit jammer have a similar effect

and require about the same transmission power to achieve the same throughput

degradation. The noise jammer requires more power for the same effect. Minstrel

reaches between 50% and 80% of the throughput the best physical rate achieves.

In setting 4 the frame jammer is in line of sight of both stations and has a different

influence on the throughput. It requires less transmission power to degrade the

overall throughput to the same level as in setting 1 and all physical rates are

affected. Minstrel performs worse in this scenario and only reaches about 20% of

the best physical rate. For the same effect on the throughput the bit and noise

jammer need a higher transmission power than in setting 1, but Minstrel still

reaches about 50% to 80% of the throughput of the best physical rate.
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Figure 4.12: The throughput in Mbit/s during one minute tests using different
fixed rates and the rate control algorithm Minstrel. Both stations are under weak
frame jamming.

Figure 4.13: The throughput in Mbit/s during one minute tests using different
fixed rates and the rate control algorithm Minstrel. Only the receiver is under
frame jamming.
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Figure 4.14: The number of successful and failed transmissions during a one minute
time interval under a frame jammer using Minstrel.

4.4 Improvement Ideas

We showed so far, that Minstrel does not perform as well as the best fixed rate

in a static setting under jamming. In this chapter we now discuss and test some

ideas to improve the performance of Minstrel under jamming without decreasing

its flexibility too much.

To implement the different algorithms on the same machine we used different ker-

nel versions10 and compiled each with a different adapted version of Minstrel. This

simplified the experiments as we did not have to change the machine for each test

and allowed us to keep the positions exactly the same during the experiments.

Switching between two algorithms required rebooting the system, what as well

reloads the wireless module and as discussed in section 4.1 this affects the impact

the jammer has on the communication. This means that we can’t directly compare

the different algorithms by the achieved throughput. We came up with two differ-

ent measurements on how optimal the algorithms are. First we have the already

10The kernel versions used are 2.6.31.4-7 and these minor changes to the kernel should not have
had any influence on the outcome of the experiments.
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addressed ratio between the measured throughput for the algorithm and the best

fixed rate. We will refer to it as the Max-Throughput-Ratio (MTR). We assume,

that this ratio is a good indication which algorithm performs better as long as the

throughput of the best fixed rate is about the same. The more these values differ

in the different tests the less we can say about its significance.

We looked at another ratio to evaluate the tests but it could not provide a reli-

able measure for the algorithms performance, because the recorded data did not

match the measured results11. We assume that this could be due to incorrectly

reported data by the hardware, but could not verify this. While the data reported

by Minstrel does differ from the packets we monitored with an additional laptop,

we could not find any pattern that would support our assumption.

4.4.1 Packet Size

As found in [14], under some jamming scenarios a smaller packet size can increase

the throughput. The basic idea is, that a smaller packet has a higher probability of

being received correctly than a larger packet which may increase the throughput.

To test this with our jammer settings we did a series of experiments where we

tested 4 different packet sizes with 4 different jammer settings12. The tests had

a duration of one minute for each packet size and rate. In addition to the fixed

rates we used the Minstrel rate control algorithm. The result was, that for all

three different jammer settings a smaller packet size decreases the throughput.

The best performance was reached in all scenarios with 1470 bytes13 of data per

packet. In Figure 4.15 the throughput reached with Minstrel and at different fixed

rates under a noise jammer is shown.

4.4.2 Less Samples

As discussed above in section 4.1, Minstrel does not yet sample in an optimal way.

To improve the performance, the amount of samples has to be reduced.

The first algorithm we implemented takes an approach that only works in our

11While we measured a PDR of 60% for the physical rate 11 Mb/s when testing the algorithm,
the physical rate 11 Mb/s actually performed poorly and only reached 0.5 Mbit/s.

12No jammer, noise jammer, bit jammer and frame jammer with the setting 2.
13Not including the headers which are an additional 30 bytes.
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Figure 4.15: The throughput in Mbit/s that was reached in one minute tests under
noise jamming using different packet sizes and rates.

setting. It ignores the physical rates 48 Mb/s and 54 Mb/s as these don’t func-

tion correctly. Sampling and transmitting at these rates only decreases the over

all throughput and should therefore be avoided. However, the version we tested

prevented the algorithm from sending normal packets at 48 Mb/s and 54 Mb/s

but still sampled at these rates. We will refer to it as Minstrelno48no54.

In the tests, Minstrelno48no54 did not perform well, most likely it did not make any

difference at all as the jammer was strong enough to kill all sample packets sent

on the two highest rates. If the sampling on these rates would be disabled as well,

then there could be an improvement, as sampling these two rates is useless when

they don’t work properly. We did not rerun the tests with a corrected version as

we assume that in general these rates will work and the algorithm would only be

useful, when these rates do not work. The idea to implement it correctly is to just

select a new sample rate until it isn’t one of the broken rates.

Another idea is to just reduce the total amount of sample packets that are sent.

This would increase the throughput when the connection is stable but as well

increases the time it takes to switch to another rate. And in the current imple-

mentation it may even cause some unwanted rate changes as a few successfully
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4 Rate Switching

transmitted sample packets could be enough to change to a higher rate while this

rate still suffers significant packet loss. To avoid this, a new throughput estimation

should only be calculated after enough sample packets were sent. How high this

threshold should be would have to be determined in additional experiments. This

version of Minstrel will be referred to as Minstrelless. To implement this version of

Minstrel we reduced the number of samples sent from the default 10% to 1%.

All tests showed that Minstrelless does improve the throughput in a static environ-

ment. The MTR increased by up to 25%. In figure 4.16 Minstrelless is compared

to the original version by how many transmission failures occurred on what rate.

It is clearly visible that there are a lot less failed transmissions on higher rates

where the sampling is done, and this increases the throughput.

Figure 4.16: Number of packets sent at the different rates using Minstrel and
Minstrelless. That actually less samples are sent can be seen by the low numbers of
sent packets at high rates.

A more sophisticated approach, to which we will refer as Minstreldyn, would be to

set dynamic sample limits on the different rates to decrease the overall samples

sent. To avoid that the samples are just sent on a rate with a higher limit one

could adjust the sampling rate or increase the sample count even when the limit is

reached and no sample was sent. The latter would allow for dynamic adaptation
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of the limits without worrying about the overall sample count. How to set these

limits optimal would require more tests.

Minstreldyn should allow to send less samples in total but still react fast on changed

channel conditions. We therefore set the sample limits for each rate depending on

its distance to the current rate14. The further away from the current rate the less

samples are sent in each interval.

Physical Rate 1 2 5.5 11 6 9 12 18 24 36 48 54
Number 1 2 3 4 5 6 7 8 9 10 11 12

Table 4.3: The ordering of the rates used in Minstrel and for calculating the distance
in Minstreldyn.

The test using Minstreldyn did not work well. Mainly because the sample limits we

used are not working as intended and only on the highest rat there are significant

less samples sent. This can be seen in figure 4.17 for the bit jammer test. Instead

of the intended 4:2:1:0 ratio the three lower rates still seem to be used nearly the

same amount of the time. This and the worse conditions may explain the lower

MTR that can be seen in table 4.4.

jammer Minstrel Minstreldyn
noise 75% 75%
bit 79% 65%

frame 80% 76%

Table 4.4: For Minstrel and Minstreldyn, the MTR measured under noise, bit and
frame jamming.

4.4.3 Packet Delivery Ratio

Another point that should be discussed is the estimation of the PDR that currently

is implemented using an EWMA where the last value accounts for 75%15. The

PDR of the last interval is calculated using the number of successfully transmitted

packets and the number of transmission attempts. The PDR of the new interval

14The distance is the difference between the number of the physical rates, the numbers can be
found in table 4.3

15This value will be denoted as EWMALevel

85



4 Rate Switching

Figure 4.17: The percentage of packets sent at each of the higher rates, most as
sample packets, using Minstrel and Minstreldyn under bit jamming.

always accounts for 25% to the new PDR value, no matter if only one or hundreds

of packets were sent. Especially with sampling this can lead to bad decisions. As

often only few samples are sent in each interval, these samples are weighted to

much compared to the regularly sent packets. This leads to a too high estimation

for the PDR and the algorithm is likely to switch to this higher rate and then

will have to spend some intervals on this wrongly chosen rate until the PDR again

dropped to its real value.

The solution that probably comes up first is to collect the samples until a minimal

number of tries is reached avoiding that single packets have a too strong influence

on the PDR. Another possibility would be to adjust the EWMALevel to the number

of packets that were transmitted. This would ensure that every packet has an

influence on the PDR in the interval it was sent but ensure that this influence is

not too strong.

We also considered that in a static environment the PDR changes slower than in

a mobile setting. This leads to the conclusion that if mobility could be detected it

might be of use to adapt the EWMALevel accordingly, lowering it when mobility is

detected allowing for faster changes and raising it to ignore short-term variations
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when the conditions are stable.

For this we tried to implement a simple mobility detection that monitors the

physical rate changes and assumed that frequent rate changes indicate mobility.

While this worked well for a non-jammed environment, it completely failed as soon

as a jammer was turned on. And as implementing a good mobility detector was

not in the scope of this thesis, we dropped this approach and just assumed that

we would have such a detector16 and separated the two scenarios of mobile and

static environment for our experiments. This allowed us to simply use an increased

EWMALevel for the test in the static setting. We call this version Minstrelhigh and

used an EWMALevel of 90 instead of the default 75.

Another factor that has influence on the reaction time and the accuracy of the

estimated PDR is the interval duration. Increasing the duration of an interval

will reduce the influence of short-term variations but also decrease the algorithms

flexibility. With a mobility detector the interval period could be increased when

the machines are stationary and allow for a better estimation of the actual PDR.

The last variation of Minstrel we tested is referred to as Minstrelpdr. It uses an

EWMALevel that is dependent on the PDR and has a different value for each rate.

It gives new measurements less weight if the PDR is low. We tested Minstrelhigh,

Minstrellong, Minstrelpdr and the original version of Minstrel under a noise-, bit-

and frame-jammer scenario.

Figures 4.18(a) - 4.18(d) show the throughput reached by each of the four version

of minstrel under noise jamming. While in this test the higher EWMALevel had the

best MTR, under the other jammers it did not perform that well. The dynamic

PDR seems to be worse than the original version as it has a much lower average

MTR. The best algorithm is the one using an interval of 1 second instead the

default 100ms. The MTRs for all jammers can be found in table 4.5

4.4.4 Throughput Estimation

Minstrel estimates the throughput on the basis of the estimated PDR and the

perfect transmission time. As discussed earlier in this chapter and as shown in

table 4.2 the achievable throughput is for the higher rates lower than expected.

Taking this into account could help to maximize the throughput in some scenarios.

16It could be implemented for example with GPS or any other localization technique.

87



4 Rate Switching

Figure 4.18: Performance of the different rate switching versions of Minstrel under
noise jamming. The error bars indicate the 5% confidence interval.

jammer Minstrel Minstrelhigh Minstrellong Minstreldynamic

noise 71% 85% 64% 57%
bit 84% 76% 87% 61%

frame 57% 65% 68% 60%

Table 4.5: The MTR reached under different jammers for the original Minstrel and
three variations we implemented. ’high’ stands for the higher EWMALevel, ’long’ for
the longer interval and ’dynamic’ for the dynamically adapted EWMALevel.
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In our setup the two highest physical rates reached an even lower throughput as

shown in table 4.6. For this measurement we put the sender and receiver as close

to each other as possible to achieve the best possible connection.

Rf 1 2 5.5 11 6 9 12 18 24 36 48 54
Rm 0.9 1.8 4.3 7.0 5.0 7.4 9.5 13.2 16.7 22.3 9.0 6.4

Table 4.6: The measured throughput matrix in Mbit/s for a 802.11g ad-hoc net-
work, where Rf stands for the physical rate and Rm denotes the measured through-
put.

4.4.5 History Management

Minstrel adjusts the PDR only when a packet is sent on a given rate and as Minstrel

in practice does not send samples on lower rates, their data is often inaccurate.

This means that when the conditions get worse Minstrel may drop directly to the

lowest rate and it then basically has to sample its way back to the optimal rate as

if there would be no data at all.

A simple but inefficient solution would be to just sample lower rates as well, but

as sampling lower rates is only useful when the conditions get worse, it would

decrease the throughput for most common cases and should not be used. Instead,

we could do an estimation of the PDR of lower rates depending on the PDR of

the current rate. A simple estimation is to just assume that lower rates will have

at least the same PDR as the current rate17. This should work quite well within

the same modulation, but estimating the PDR of a rate with another modulation

might be more problematic. Especially with different jammers the situation can

get complex.

4.5 Review on Rate Switching

While previous rate switching approaches would drop to a too low rate under

jamming and regenerate slowly during a sleep period of the jammer as shown in

[6], we showed that Minstrel does perform well under bit and noise jamming as

17This assumption is based on the fact that lower rates have better error correction codes and
therefore should be less prone to bit errors.
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4 Rate Switching

it often chooses one of the best rates and reached in all our tests at least 50% of

the throughput of the best fixed rate. Thanks to its high sampling rate Minstrel

recovers within a short amount of time18. When we tested Minstrel under a frame

jammer it only reached a MTR between 20% and 60%. We found that Minstrel still

could be improved under all jammers, while the tests without a jammer showed

that it already is close to the optimum in such situations.

We discussed the trade-off between overhead and fast adaptation to changes in

the environment regarding our tests. We worked out several ideas to improve

the performance under jamming, implemented some of them and evaluated their

performance with a series of experiments.

We showed that it is possible to increase the MTR by up to 25% when reducing

the number of samples sent. In some scenarios the throughput could be increased

as well by extending the interval period or raising the EWMALevel. If the samples

are not distributed equally but adapted to the probability that these rates will

become better in the next interval this could again improve the performance while

reducing the flexibility just a little. The best distribution of samples is yet to be

determined and probably differs whether or not a jammer present.

18The EWMA used ensures that it only takes a few intervals of 100ms to switch back to the
best rate
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4.6 Possible Follow-Ups

In this section we give an outlook on what could be done to further improve the

performance of rate switching under jamming.

Sampling Strategies

We showed that sampling less often does improve the throughput in a static set-

ting. Now the next step would be to evaluate different sampling strategies under

different jammers and in mobile scenarios. Mobility detection could also give a big

performance improvement.

Weight of Samples

We believe that single packets are weighted too much in the current implementation

of Minstrel. This may lead to unfortunate decisions and decrease the throughput.

It could help to collect samples until a certain number of samples is available to

get a better estimation of the PDR. Another approach would be to use a higher

EWMALevel if there is only little sample data.

Throughput Estimation

Currently Minstrel uses the lossless transmission time and the estimated PDR to

calculate the achievable throughput. But for higher rates this throughput cal-

culation is incorrect. It should be looked into this issue to find better ways of

calculating the throughput, especially in the case of a frame jammer.

History Management

Another problem Minstrel has is, that the PDR of lower rates often is not updated

for a long time and therefore often inaccurate. We believe that the PDR of lower

rates can be roughly estimated at least for the same modulation scheme to improve

their precision.
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5 Conclusion

We’ve shown that it is possible to detect jamming in real-time and without trans-

mission overhead using only the limited informations that the operation system

provides. The real difficulty is the detection of a frame jammer as it attacks not

the PDR but the protocol itself. We also discussed different positive points, disad-

vantages and possible improvements of Minstrel and compared their performance

to fixed physical rates.

In addition to that, we were able to show the different requirements in sense of

timing for the two topics of rate switching and jamming detection. Rate switch-

ing has to be fast and highly adaptive to account for mobile scenarios, while the

jamming detection relies on large intervals to calculate the channel characteristics

with the highest possible precision.
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6 Outlook

We suggest to implement a jamming-aware rate switching algorithm that adjusts

its rate selection to the jamming scenario it faces. This would additionally require

a differentiation of the attackers. For the sample strategy this could mean that the

algorithm keeps track of Minstrel’s PDR table and switches between two versions

whether there is jamming or not. To make this possible, Minstrel would need to

backup its table long enough for the jamming detection to raise the alarm. This

would prevent a constant jammer from corruption of the physical rate statistics.

Another way that Minstrel could profit from jamming detection is an adaptive

EMWALevel as it was shown, that a higher value is less responsive to outliers

which reduce the throughput due to a suboptimal choice of the physical rate.

Another point of interest would be a new reporting mechanism. Whatever rate

switching algorithm is used, it naturally has a lot of informations about the chan-

nel situation and characteristics. A small improvement in the precision and only

a few more measurements (like the bad packet ratio) would highly increase the

possibilities of jamming detection.

We can also imagine to include the jamming detection directly into the rate switch-

ing algorithm as all the data is already there and calculation overheads are small

compared to the time a wireless card needs to transmit a package. This would

greatly increase the performance of the jamming identification as the rate switch-

ing algorithm could select exactly those physical rates, the detection part needs

more informations about. As an idea to reduce a possible slow-down of the trans-

mission rate due to the calculations, we would suggest to try and store a few

multiple retry chains in advance, instead of generating each in real-time.
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A Additional Measurements

Figure A.1: Results of RSSI jumps because of jamming in comparison to the
threshold.
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A Additional Measurements

Figure A.2: No-jammer hull of rate 24Mb/s.
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Figure A.3: No-jammer hull of rate 36Mb/s.
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Introduction 
 
Wireless technologies like IEEE 802.11, Bluetooth, Zigbee, Wimax have gained tremendous 
popularity in the recent past. A fundamental threat with these technologies is however denial-
of-service attacks to the medium access (so called jamming attacks). In contrast to their 
wired counterparts, wireless networks are highly vulnerable to such attacks as they operate 
over a shared medium and attackers can simply deny access to the medium by sending ma-
licious radio frequency (RF) signals that interfere with the regular communication. 
 
Jamming attacks affect particularly the performance of wireless networks that adopt a dy-
namic physical rate switching scheme, as for example IEEE 802.11. Dynamic rate switching 
algorithms are designed to decrease the physical rate when frame losses occur in order to 
increase the robustness of the transmissions. This approach is beneficial when the cause of 
frame losses is due to elevated signal attenuation between the sender and receiver as it in-
creases the overall probability of successful packet reception. However, this performs poorly 
in the presence of a jammer. Prior studies indicate that the highest throughput is achieved 
when using higher physical rates.  
 
Goal 
 
The goal of this thesis is to design and implement a dynamic wireless rate switching algo-
rithm for mobile networks that is aware of jamming and remains robust in its presence. The 
problem can be decomposed in two work packages: 

1. Detecting the presence of jamming (Dietmar Schediwie) 
2. Selecting the best channel and optimal physical rate that offers the best throughput 

(Nicolas Häfelin) 
A requirement for the grade 5.0 is to implement the detection (D. Schediwie) and selection 
(N. Häfelin) algorithms on Linux and to show empirically their effectiveness over traditional 
packet loss or signal strength based algorithms under various environmental conditions and 
jammer models.  
 
Tasks 
 
The tasks of the thesis are: 
 



 
    
 

2/2 

1. Review the literature on jamming detection, jamming prevention, and adaptive wire-
less rate switching algorithms for wireless LANs. (D. Schediwie and N. Häfelin) 

2. Analyze the IEEE 802.11 channel selection and wireless rate switching algorithms in 
Linux (which do not account for jamming) and study in the lab how they behave under 
different jamming models. (D. Schediwie and N. Häfelin) 

3. Develop a jamming detection algorithm that accounts for different jamming models. 
(D. Schediwie) 

4. Develop a jamming-aware wireless rate switching algorithm that remains robust when 
jamming occurs. (N. Häfelin) 

5. Implement your jamming detection algorithm on Linux for IEEE 802.11 radios. (D. 
Schediwie) 

6. Implement your channel selection and wireless rate switching algorithm on Linux for 
IEEE 802.11 radios. (N. Häfelin) 

7. Evaluate the jamming detection and selection algorithms with realistic measurements 
including mobility and different jamming models and compare the obtained through-
put with jamming-agnostic IEEE 802.11 radio stacks (D. Schediwie and N. Häfelin) 

 
Deliverables 
 

• At the end of the second week, a detailed time schedule of the thesis must be given 
and discussed with the main advisor. 

• At half time of the master thesis, a short discussion of 15 minutes with the supervisor 
and the advisors will take place. The students have to talk about the major aspects of 
the ongoing work. At this point, the students should already have a preliminary ver-
sion of the written report, including a table of contents. This preliminary version 
should be brought along to the short discussion. 

• At the end of the thesis, a presentation of 20 minutes must be given at armasuisse  
and at ETH Zürich. The presentations should give an overview as well as the most 
important contributions of the work. If possible, a demonstrator should be presented 
at this time. 

• The final report should be written in English but may be written in German. It must 
contain a summary written in both English and German, the assignment and the time 
schedule. Its structure should include an introduction, an analysis of related work, and 
a complete documentation of all used software tools. Four written copies of the final 
report must be delivered to the main advisor. 
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C Time Table

Kalenderwoche Mo Tätigkeit
41 05.10.09 Literaturüberblick
42 12.10.09 Literaturüberblick beenden
43 19.10.09 Testsetup aufbauen
44 26.10.09 Messung 1. Experimentreihe fertig
45 02.11.09 Auswerten, Theorie und Alorithmus entwerfen
46 09.11.09 Auswerten, Theorie und Alorithmus entwerfen
47 16.11.09 Implementation
48 23.11.09 Testreihe
49 30.11.09 Ergebnisse Analysieren und Algorithmus verbessern
50 07.12.09 Ergebnisse Analysieren und Algorithmus verbessern
51 14.12.09 Implementierung anpassen
52 21.12.09 Testreihe
53 28.12.09 Bisherige Ergebnisse Auswerten, Gerüst für Arbeit
1 04.01.10 Mid-Präsentation
2 11.01.10 Ergebnisse Analysieren und Algorithmus verbessern
3 18.01.10 Implementation
4 25.01.10 Testreihe
5 01.02.10 Ergebnisse Analysieren
6 08.02.10 Beide Teile Zusammenfügen
7 15.02.10 Testen, Debuggen
8 22.02.10 Debuggen, Testen, Messen
9 01.03.10 Messung der Endgültigen Ergebnisse, Auswertung
10 08.03.10 Messungen abschliessen, schreiben anfangen
11 15.03.10 Schreiben der Arbeit
12 22.03.10 Schreiben abschliessen
13 29.03.10 Puffer
14 05.04.10 Abgabe Report

Table C.1: Zeitplan Schediwie
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Kalenderwoche Mo
41 05.10.09 Literaturüberblick
42 12.10.09 Literaturüberblick beenden
43 19.10.09 Testsetup aufbauen
44 26.10.09 Messung 1. Experimentreihe fertig
45 02.11.09 Auswertung der Ergebnisse
46 09.11.09 Entwickeln eines Algorithmus für Rate Switching under Jamming
47 16.11.09 Implementierung des Algorithmus auf Linux
48 23.11.09 Implementierung des Algorithmus auf Linux
49 30.11.09 Testen der ersten Version unter Jamming
50 07.12.09 Ergebnisse Analysieren und Algorithmus verbessern
51 14.12.09 Implementierung anpassen
52 21.12.09 Neue Version Testen
53 28.12.09 Puffer
1 04.01.10 Mid-Präsentation
2 11.01.10 Algorithmus feintunen
3 18.01.10 Neue Version Testen
4 25.01.10 Analyse der Ergebnisse
5 01.02.10 Puffer
6 08.02.10 Beide Teile Zusammenfügen
7 15.02.10 Testen der kombinierten Version
8 22.02.10 Analyse der Ergebnisse & feintunen
9 01.03.10 Letzte Testreihen
10 08.03.10 Messungen abschliessen, schreiben anfangen
11 15.03.10 Schreiben der Arbeit
12 22.03.10 Schreiben abschliessen
13 29.03.10 Puffer
14 05.04.10 End-Präsentationen, späteste Abgabe Report

Table C.2: Zeitplan Häfelin
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