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Abstract

Back in 2004 Google has published an article ’MapReduce: Simplified Data Processing on
Large Clusters’. MapReduce is intended for processing and generating large data sets on a
large cluster of commodity machines. Shortly after the MapReduce article appeared, a basic
implementation of MapReduce was included in Apache Nutch. Soon that MapReduce imple-
mentation matured and was eventually taken out of Nutch into its own project, called Apache
Hadoop.

While most software engineers do not typically process terabytes of data, they may still face
the problem, that occasionally a batch job does not terminate as fast as desired or needs more
memory than a single commodity machine can possibly provide.An example of such a bor-
der case is the Transit Feed Converter, a batch processing pipeline used and developed at
Netcetera for converting public transport schedules. While the Transit Feed Converter was orig-
inally designed for processing smaller amounts of schedule data, the size of the schedule data
to process by the Transit Feed Converter has grown relatively fast. In addition, new output for-
mats, which require more complex computations than the original ones, have been added to the
Transit Feed Converter.

Having in mind that the data to process by the Transit Feed Converter will still grow and that it is
rather likely that further demanding computations will soon be added to the conversion pipeline,
we were curious about a scalable solution. Therefore, a prototype port of the Transit Feed Con-
verter from the single-threaded Python implementation to Hadoop/EC2 has been developed.
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Chapter 1

Introduction

1.0.1 Motivation

Netcetera’s Transit Feed Converter is a batch processing application, which has originally been
developed to convert public transport schedules from the HAFAS raw data format [haf09] to
a format optimized for mobile devices. The HAFAS raw data format is the format, in which
transit schedules are provided by most European public transport agencies, whereas the original
output format of the Transit Feed Converter is used by Netctera’s Wemlin. Wemlin is an iPhone
application, which provides transit schedule information to its users. The modular design of
the Transit Feed Converter, makes it possible to easily extend the batch processing application,
such that it can be used to import or export new formats or to enable it to extract specified
information from transit schedules.

Soon the Transit Feed Converter was extended by the ability to export data to the General
Transit Feed Specification (GTFS) [Pfe], which is a format suggested and used by Google. With
the new export format however, the data that was to process by the Transit Feed Converter has
rapidly grown. Further more, the export to GTFS involves more demanding computations than
the original exporter did. When it turned out that the amount of data that was to process by
the Transit Feed Converter was likely to grow further, it became obvious, that the Transit Feed
Converter was about to reach its limits. The main matter was that the processing time started
to increase dramatically, such that it was conceivable that the Transit Feed Converter would
soon be unable to deliver data within reasonable time. On the other hand, the in-memory data
representation was imminent to cause a memory starvation.

In the case of the Transit Feed Converter, the extension became a problem that has lead to
the need of a drastic refactoring in spite of the strict modular design. The example shows that
in addition to a modular design, a scalable architecture is required in order to get an optimally
reusable and versatile software product.

More concretely speaking, the individual building blocks of the software product should be able

1



CHAPTER 1. INTRODUCTION 2

to handle growing amounts of work in a graceful manner [Bon], given that the underlying (hard-
ware) platform is able to provide the necessary resources. Such a (hardware) platform, that is
able to provide the resources for scalable software is thus an extensible one and/or a dramati-
cally overdimensioned one. Whereas traditionally acquiring such a scalable (hardware) platform
is extremely costly and has therefore only been a option for larger businesses, a trend towards
building clusters of commodity hardware has enabled small and medium sized businesses to
maintain their own scalable platforms. While maintaining a cluster of commodity hardware is
an option even for smaller sized businesses, obtaining commodity computing resources from a
platform as a service provider, instead of acquiring the hardware, seems even more promising
for the following reasons.

• Sporadically occurring load peaks can be handled, as (theoretically) any number of re-
sources may be allocated temporarily.

• Resource planning (e.g. in a growing organization) becomes easier, as new computing
resources can be allocated within minutes.

1.0.2 Task Description

This thesis investigates the distribution of an existing transit schedule converter with the goal of
enabling the processing of larger data sets in reasonable time. The open-source MapReduce
implementation Hadoop was proposed as a distribution framework. However, other frameworks
and technologies are considered too.

Special attention needs to be paid to the choice of a suitable data structure and an appropriate
storage technology.

The thesis includes the design of a prototype MapReduce application and its data structures
to convert, analyze and enrich public transit data from HAFAS to GTFS. Further, the prototype
implementation is also presented in the thesis.

This thesis also investigates, how the advantages of the platform as a service may be exploited
in order to enable scalable batch processing, such that

• the investment in the development of software may be protected.

• batch processing tasks may be processed within reasonable time, if they would take too
long otherwise.



Chapter 2

Problem Description

2.1 Problem Specification

The existing Transit Feed Converter, a single threaded Python application, processes the sched-
ules not fast enough and consumes too much memory. The memory consumption of the Python
application causes an additional increase of the processing time or may even prevent the ap-
plication from terminating successfully. A distributed version should address both issues, while
being cost efficient. Cost efficiency is enabled by:

• A solution that is able to be run on low cost commodity computers.

• Using a distribution framework that simplifies the development of a distributed version
and reduces the development time.

Further attention has to be paid to the fact that not all parts of the Transit Feed Converter have
a linear complexity.

2.2 Requirements for a Viable Distribution Framework

For the given project it is desirable, but not necessary to find a solution that will allow for a
reasonable code sharing among the existing implementation and the new distributed version.
The framework should allow to reach a reasonable speedup for smaller data sets. On the other
hand, it should still be able to handle larger amounts of data, as the size of the input and
output data is very different for the various modules (cf. 5.2.6). The extensibility of the existing
architecture must be preserved. Maintaining the new implementation should be comparable in
costs to the existing version. This includes the ease of deployment. Also should any extension
be not much harder to write than before. Ideally the new solution should also be extensible by
serially programmed plug-ins.

3
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Further should a viable solution be based on a proven and preferably widespread technology,
which will assure the availability of documentation and support. Also should a viable solution
be as operating system and hardware independent as possible. The target platform are though
commodity computers as they are provided by Amazon EC2 (cf. 6.1). Other pros that a viable
framework could have are

• free availability

• source code availability

• teaching at local universities and universities of applied sciences

Preferably, a framework is used, that enforces the use of a programming model or of a design
pattern, as this would improve the extensibility and the collaboration among developers of the
batch processing application. An appropriate framework should also do the scheduling, handle
node outages and provide redundancy.



Chapter 3

Background

3.0.1 Viable Technologies

Processing computationally intensive batch jobs is traditionally a domain of dedicated super-
computers. This section discusses technologies, which are considered to be helpful for devel-
oping a high performance batch processing environment based on commodity nodes, such as
they are provided by EC2 (see 6.1). The discussion includes traditional and established build-
ing blocks of distributed systems, as well as some more recent environments, which are more
specialized in distributing batch processes. In High Performance Computing (HPC), a number
of architectures are distinguished. Commonly used architectures include Symmetric Multipro-
cessing (SMP), Massively Parallel Processing (MPP), Constellations and Clusters [DSS]. For
the eligibility of a software framework, it matters more than anything, whether or not the archi-
tecture has a shared memory. Therefore frameworks which depend on a platform with a shared
memory (SMP) are discussed separately from those targeted at systems without one, such as
MPPs, Clusters and Constellations.

3.0.2 Shared Memory Distributed System

A distributed system with a shared memory is probably the most comfortable solution from a
developer’s point of view. Due to the shared memory, such a system presents itself to the
programmer as a single system with a large number of CPUs, which it actually is. So all the
developer has to care for, is to split up his batch job into enough parallel running processes or
threads. Unless the job is embarrassingly parallel, this may not be trivial, though. Therefore,
APIs which support parallelization or programming languages specialized in parallelization are
important components of such high performance computers. Today, OpenMP is the de facto
standard and many platforms come with an implementation of OpenMP. OpenMP is a very
userfriendly parallelization framework, since the program written in OpenMP is developed very
much like its serial version. Indeed, an existing serial program can often be relatively easily

5



CHAPTER 3. BACKGROUND 6

parallelized using OpenMP [SGM+09]. A very important concept of OpenMP is the use of
annotations, through which the developers describe, roughly speaking, where parallelization is
possible and where synchronization is required. As an example, an annotated for-loop in C is
shown below.

void square(int* a, int N) {

#pragma omp parallel for

for (i = 0; i < N; i++)

a[i] = x*x;

}

Listing 3.1: OpenMP annotated for loop.

Obviously, this requires both, an OpenMP-capable compiler, as well as a runtime library in
order to work correctly. Another proven approach to parallelization is the use of specialized
programming languages, namely functional languages such as Haskell, Lisp, Erlang or Scala.
The analogon to the above example in Scala [Ode09], a language developed at EPFL, could
look as shown in the listing below.

def square(a: List[Int]): List[Int] = {

a.map(i => i*i)

}

Listing 3.2: A square function in Scala.

In addition to the pleasant programming models, there exists even a working and free software
package, DIPC [KSS], which is able to emulate a shared memory among linux2.2 nodes con-
nected via TCP1. The sudden disappearing of SMP-Architectures from top500.org’s list (Figure
3.1) of the fastest supercomputers in the early 2000s however, supposes that shared memory
based systems are hard to scale.

SMPs and parallelisation technologies have though an important meaning for the following rea-
sons.

• As the Transit Feed Converter has been fast enough for small data sets, it could be suffi-
cient to parallelise the batch processing application, such that it could exploit a multi-core
machine.

• The nodes of distributed Systems are often SMPs, such that parallelization technologies
as discussed above, are often combined with distribution frameworks (e.g. MPI).

1Of course, only the availability of a shared memory among a few nodes, does not yet make the group of nodes
an SMP system. In addition, means to launch processes or threads on other nodes, as well as means to choose
nodes for the processing of threads or processes are needed.
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Figure 3.1: The number of SMP-supercomputers from 1993 to 2005 in the top 500 list from
top500.org.

• Parallelization may even improve the performance of a program, when it is run on a single
processor system, since a parallel program may continue to do computations, even when
one part of the program is currently waiting for I/O.

3.0.3 Cluster

The programming models discussed in this section are possible candidates for distributed sys-
tems that do not (necessarily) dispose of a shared memory. These systems include Clusters,
Constellations, Grids and MPPs. Of course, these programming models could also be used on
SMPs.

The most commonly used framework in an HPC context is the Message Passing Interface (MPI).
To give an impression of how a program typically exploits parallelism using a message passing
infrastructure such as MPI, an equivalent to the square example, based on message passing,
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is sketched below. The program will consist of one master and an arbitrary number of slaves.
The master’s task is to supply its slaves with workload by sending messages to the slaves. In
the example the messages consist of a value from an input array and its index in the input array.
The master starts with sending such a message to each of the slaves. Then the master waits
for any slave to return a result. As soon as the master receives a result, it will insert the result
into the output array and provide further work to the slave if any is available. As soon as all
work has been submitted to the slaves, the master will just wait for the slaves to return their last
result. In pseudo code, the master would thus look like listed below. A working implementation
can be found in the appendix B.

master (){

foreach slave{

index ,value = get_next_index_value_pair ();

send((index ,value),slave)

}

while (work_available)

{

result ,slave = receive_message_from_any_slave ();

index ,value = get_next_index_value_pair ();

send((index ,value),slave);

output[result.index] = result.value;

}

foreach slave{

result ,slave = receive_message_from_any_slave ();

halt(slave);

output[result.index] = result.value;

}

}

Listing 3.3: A Master Process in Messageing.

The slave’s purpose is to simply do the calculation. In the given example all slaves simply have
to calculate the square of the value received. Finally, it will return the result, which contains the
squared of the value received and the index as received. The slave looks thus as follows.

slave (){

until (halted ){

work = receive_message_from_master ();

send((work.index ,work.value*work.value),master );

}
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}

Listing 3.4: A Slave Process using Messageing.

In MPI it is up to the user to decide which number of which processes are run on which node.
The above program however requires that exactly one master and at least one slave is run. Also
it is up to the user to deploy the binaries for the processes to the nodes. However, there exist
tools, which can assist the user doing this work. While MPPs offer proprietary tools, to users of
a selfmade cluster, the software OSCAR [dLSNG03] might be valuable.

Distributed Erlang

Erlang is different from most programming languages, in the aspect, that it comes with a builtin
distribution solution. The actor model on which Erlang is based, is perfectly suitable for distribut-
ing. Since actors, or rather processes, as they are called in Erlang, only interact via messaging
with other parts of the program, the distributed program looks almost exactly like the parallel
one and Erlang handles the transmission of the messages across a network invisibly.

In [SF07] the authors say, ’. . . the step to convert an application running on a single node to
a fully distributed (multi-node) application is deceptively simple . . . ’. However, there are still
numerous pitfalls, which have to be taken into consideration. [SF07] [Wik94]

Most importantly for batch processing, for each piece of work, the node on which it should
be processed, has to be chosen. For simple batch tasks, this results in an implementation
similar to the master-worker model, which has been presented above. The code of an Erlang
implementation of the previously used example, which can be used as a template for simple
distributed batch processing programs, is listed in the appendix C. In the appendix C it is also
shown, how an environment for running such a distributed application, can be set up in incredibly
few steps. An advanced solution for scheduling (i.e. for choosing the node for a computation),
for the monitoring of tasks or for the rescheduling of failed tasks however, is not provided by
Erlang.

Also, Erlang is not the preferred language for writing the tasks which are to be executed on the
worker nodes. If these tasks are small enough, it does not matter whether they are optimally
parallelized, since several of these tasks can be run in parallel on one worker node, such that
the worker node can be utilized. Thus, it is more important that the tasks can be developed
easily, rather than that they are optimally parallelized. Therefore these tasks are preferably
written in an imperative language, which is of course possible. An example of an Erlang based
framework, which expects the user provided code to be written in an imperative language, is the
MapReduce implementation disco [dis] by Nokia or RabbitMQ.
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RPC

The idea of a service that allows to call a procedure on a remote host, has been around for
quite a while, at least since 1975 [Whi75]. Meanwhile many frameworks, which implement such
a service, have been developed. Some popular names are Sun RPC, DCOM, CORBA, XML-
RPC or SOAP to mention just a few.

With an RPC-like technology, it is relatively easy to implement a master-slave model as dis-
cussed previously. Further, RPC-like technologies are interesting, as at least one such frame-
work is available for almost every platform and every language. Though, today the most popular
RPC-like technologies like SOAP, XML-RPC or CORBA play an important role rather for making
systems interoperable than for batch processing.

MapReduce

MapReduce is a programming model, as well as a programming environment targeted at batch
processing of large data sets on large clusters and was first presented in [DG04]. Typically,
MapReduce is used to process data sized above 1TB on clusters with dozends, tens or even
thousands of nodes.

Figure 3.2: A reduce function applied on an array of number, with
the initial value v and the combining function f.

The MapReduce program-
ming model is inspired
by functional programming
languages such as LISP.
LISP provides two im-
portant higher-order func-
tions, one is map, the
other one is reduce. Other
functional programming lan-
guages have different names
for the reduce function, for
example fold, accumulate
or compress. The pur-
poses of the higher-order
functions map and reduce,
as they are known from
functional languages are the following.

• map: The map function accepts a function f, and a sequence s as input arguments.
The map function returns a new sequence with the same length as the input sequence s,
where the i-th element of the return sequence is the return value of f applied to the i-th
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value of the input sequence.

• reduce: The reduce function accepts a combining function f, a sequence s , an optional
initial value v and optionally a range. The range describes, which part of the sequence is
to be processed, but for simplicity, the range is neglected below. The combining function,
is a function which takes two arguments (a1 and a2) and ’combines’ them to a return
value. The reduce function will then be applied recursively on the values of the sequence,
such that in the i-th recursion, a1 is the i-th value of the sequence and a2 is set to the
combine-functions return value from the i+1-th recursion. The innermost combine-function
combines the last value in the sequence with the initial value. This is shown in the figure
3.2. There exist also various variations of the reduce-function, which are not discussed
here.

Following the denomination of LISP, the MapReduce model is based on two phases, the Map
and the Reduce phase. Each job programmed in the MapReduce model is split into those two
phases. The processing of the Map phase and of the Reduce phase have similarities to the
map function and the reduce function, respectively.

• Map: The Map phase is a transformation step, in which individual records are processed
independently by a user provided function. The user provided MapReduce Map function
looks as listed below.

void map(keytype key ,valuetype value){

// custom code

}

Listing 3.5: A MapReduce Map function (Pseudo code).

The MapReduce Map function does not have a return value like the user-provided func-
tions passed to the map functions of functional programming languages do. However, a
MapReduce Map function can emit any number of key-value pairs.

emit(key ,value);

Listing 3.6: Emitting a key-value pair in MapReduce (Pseudo code).

• Reduce: The Reduce phase is an aggregation step, in which values with a common key
are aggregated by a user-provided function as listed below.

void reduce(keytype key , Iterator <valuetype > it){

// custom code

}

Listing 3.7: A MapReduce Reduce function (Pseudo code).
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There also exists an optional Combine phase, which is similar to the Reduce phase and is exe-
cuted between the Map and the Reduce phase. The Combine phase is however not discussed
here for the sake of simplicity.

Now, that the Map and the Reduce phase are introduced, the reminder of this section will
discuss how the two phases are put together, where the user-provided functions get their input
from and how the model can be exploited to intuitively develop distributed batch processing
programs.

[DG04] also characterizes a distributed file system, called GFS, which by default is used to store
the input and the output of MapReduce jobs. The idea is to use the MapReduce worker nodes
also as the storage nodes of GFS, such that the MapReduce scheduler can try to run MapRe-
duce jobs on nodes of the MapReduce cluster, which are close to the data and ideally already
have the data locally. Further, the MapReduce framework saves communication, by assigning
not single key-value pairs to the worker nodes, but rather entire batches of key value pair, called
partitions. When the Map function spills out intermediate key-value pairs, they are also stored
in GFS. Before the processing continues, the intermediate key-value pairs are though sorted by
key, in order to assure that the Reducer will receive an iterator containing all values belonging to
one key. There may be more than one Reducer, if desired, such that the reduce process is also
parallelized. In this case, the MapReduce framework partitions the intermediate key-value pairs,
such that all values belonging to a given key are guaranteed to end up in the same partition.

Figure 3.3: The MapReduce model

[DG04] provides many sample MapReduce programs. Programming MapReduce is quite intu-
itive and higher level abstraction frameworks like Pig [ORS+08] make it even more natural.
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Dryad

Dryad is a distribution framework by Microsoft, described in [IBY+07]. It is considered to be
Microsoft’s response to Google’s MapReduce. For instance, in 2006, The New York Times has
cited Bill Gates, who was a Microsoft chairman at the time, saying: ”They did MapReduce; we
have this thing called Dryad that’s better,” [HM06]. Though, Dryad is definitely not a copy of
MapReduce, but it stands for a totally different concept.

In order to run a job in a Dryad environment, a graph has to be supplied to the Dryad cluster.
The nodes of this graph are executed on the nodes of the Dryad cluster, whereas the edges of
the graph specify the communication between the nodes, i.e. how many items are sent from one
node to another. Since this is usually not known initially, the graph can be modified at runtime.
Dryad offers a sophisticated framework for manipulating graphs, for example for joining two
graphs.

Like most distribution frameworks, e.g. MPI, Dryad allows communication from any node to any
node, but the Dryad model forces the developer of a Dryad job to specify the communication
and encourages him to do so as early as possible.

Though the article, in which the Dryad model was originally published [IBY+07], does not dis-
cuss the impact of that model on scheduling, it can be assumed, that this model may be useful
for building an advanced scheduler, which would be able to minimize the traffic across Dryad
nodes.

Therefore Dryad is certainly one of the most interesting projects in the area of distributed batch
processing at the moment.

According to Microsoft Research, Dryad is already productively used internally at Microsoft.
[IBY+07] says, that most users would use LinQ [NBD+03] for programming Dryad jobs.

3.0.4 Comparison

Twiddling with numerous frameworks and technologies during the first approximately 8 weeks of
the project, has shown that for most batch processing problems, a simple master-worker model
is absolutely sufficient. Most batch processing problems can be split up fine enough that no
special scheduling is required. That is to say, for a large number of approximately equally small
pieces of work it is a good scheduling strategy, to simply provide the worker nodes with one
piece of work any time they complete one, even for a heterogeneous system. Never the less, it
is desirable to have a framework which handles the scheduling of splits of work. For example,
because a sophisticated framework would also reschedule splits of work that have failed. In
accordance with the previously defined requirements, but also considering the lessons learned
while evaluating frameworks the following feature-matrix has been elaborated. MapReduce
convinced in its feature richness and did not fail in any essential criterion, such that the step
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was dared to start the prototype implementation using the framework (Hadoop MapReduce),
which has originally been proposed.
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Free choice of the programming language x x
Specialized in batch processing x
Framework includes distributed storage x
Supports data-local processing x
Framework does scheduling x x
Appropriate for high-latency Ethernet x x x x
Free implementation available x x x
Runs on commodity nodes x x x x x
Framework splits the input data x
Good documentation x x x x x
Operating System independent x x

Table 3.1: Feature matrix for the discussed distribution technologies.
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Hadoop

Hadoop is a very comprehensive, Open Source and Java based implementation of the MapRe-
duce programming model as described under 3.0.3. Hadoop includes a distributed file-system
HDFS, which is inspired by the Google File System, which is characterized in the same paper
as MapReuce [DG04]. Further, Hadoop also includes a NoSQL database, which is designed to
behave similar to BigTable as specified in [CDG+08] and depends on the Hadoop Distributed
File System as its storage.

The most important characteristics of Hadoop, which have influenced the design of the prototype
Distributed Transit Feed Converter, are discussed below.

4.1 Hadoop Common

Hadoop Common has formerly been known as Hadoop Core and contains all essential software
needed to build a MapReduce cluster, as well as everything to develop, test and run MapReduce
jobs.

4.1.1 JobTracker

The JobTracker is the server, to which the Hadoop jobs are submitted. The node, on which
the JobTracker runs, is called the master node. The JobTracker is thus responsible for splitting
the submitted job input into smaller parts called splits and for assigning the splits to the worker
nodes or slave nodes. Each slave runs a TaskTracker instance. The function of the TaskTracker
is discussed later in this chapter. Before a split is assigned to any slave node, the JobTracker
sends the user-provided MapReduce program , with which the split is to be processed, to that
slave node (cf . figure 4.1). On the slave nodes, the splits are first processed by the user
submitted Map method. The split itself however is not sent to the worker node, but rather a
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reference to the split. This mechanisms are discussed more detailed below. When the user
submitted Map method emits key-value pairs, work for the Reduce method is created. The
assignment of those key-value output pairs, also called intermediates, to a so called partition is
done by the Partitioner on the slave nodes. The execution time, however is scheduled by the
JobTracker.

Figure 4.1: High level abstraction of the Hadoop environment.

4.1.2 InputFormat

Input data is specified by InputFormats in Hadoop. The InputFormat is responsible for splitting
the input data into InputSplits. Each InputSplit contains a list of the nodes on which the data
for this InputSplit is located and informs the JobTracker about the size of the InputSplit. This
information is used by the JobTracker for scheduling, trying to run as many computations locally.
The size of the splits, respectively the number of splits, into which an input source is divided is
determined by the InputFormat, but is configurable for some InputFormats. The InputFormat is
also responsible for providing the factory for creating the RecordReader instances on all slaves.

RecordReader

The RecordReader is run on each slave node, where a Map task is scheduled and is resposible
for retreiving the actual key-value pairs from the input source. This is illustrated in the figure 4.2.
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Figure 4.2: Reading input in Hadoop.

Most commonly, RecordReaders
read from a file, typically stored in
the Hadoop Distributed File Sys-
tem. A frequently used Recor-
dReader reads a file from the HDFS
line by line and spills out the line as
a value and the byte-offset of that
line within the file as a key. Since
the part of the file, for which a given
RecordReader instance is responsi-
ble, most likely does not end where
a line ends, the convention is that
the RecordReader reads on to the
first newline symbol after the part
it is actually responsible for. As a
consequence, all RecordReader In-
stances, but the one responsible for
the beginning of a file, only start
parsing the file after the first newline symbol within the part of the file for which they are re-
sponsible, as shown in the figure 4.3.

Partitioner

The main goal of the Partitioner is to keep the sizes of the partitions as balanced as possible,
while assuring that all intermediates with the same key arrive in the same partition. With the
knowledge about the expected output of a MapReduce job, a different partitioning strategy than
the default one might better reach this goal. Therefore users may provide custom Partitioners.

By default, a Partitioner called HashPartitioner is used, which simply uses a HashCode of the
key modulus the number of Partitions to create [Ven09]. The number of reduce tasks is retrieved
from the configuration.

Partitions are stored in HDFS, such that the JobTracker can try to execute the reduce jobs
locally. When a reduce task is scheduled, the user provided reduce-method is called once for
each key in the partition, which belongs to that reduce-task. Thereby the reduce-method also
receives a iterator, which iterates through all values of the key, for which the method has been
called. It is possible to schedule a reduce-job, before the Map phase has finished. In this case it
is unknown, whether the Partition is already complete or not. Therefore, the value-iterators will
simply block, after the last available value of a key has been retrieved, until either new values
arrive or the Map phase has terminated.
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Figure 4.3: Splitting a file into records.

4.1.3 TaskTracker

There is a TaskTracker server running on each slave node. When a MapReduce job is submitted
to the JobTracker, it initially distributes the MapReduce program, which is a Java jar-archive and
also the job configuration to all TaskTrackers. As soon as the TaskTracker has locally installed
and configured the MapReduce program, it is ready to receive tasks from the JobTracker and it
will start to process the tasks as soon as it receives any. The TaskTracker is also responsible
for reporting the JobTracker about the progress in processing the assigned tasks as well as for
reporting failures.

4.1.4 Hadoop Distributed File System HDFS

HDFS is a distributed file system that stores its data in the local file systems of its data nodes.
Ideally, the data nodes are also the MapReduce slave nodes, as this allows MapReduce jobs
to read input data locally, if the HDFS is used as MapReduce input source. Besides the data
nodes, an HDFS cluster also consists of one NameNode, responsible for managing the names-
pace of the file system and regulating the access to files by clients. [Bor]
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Figure 4.4: The role of the Partitioner.

Qualities

• Recovery from Hardware Failure; HDFS is able to automatically recover from hardware
failure or from temporary outages, as long as the not accessible data is still replicated in
the cluster.

• Replication The degree of replication is user configurable. HDFS uses a user configured
bandwith for creating replicas of new data.

• Simple Coherency Model; HDFS assumes that a file once created, written, and closed
needs not be changed in order to simplify the implementation of the coherency and to im-
prove the throughput. This does not restrict MapReduce jobs, but improves their through-
put.

• Streaming Data Access; HDFS is optimized for streaming data access rather than for
random access to data. For example all RecordReaders in Hadoop Common, which read
from HDFS, access the HDFS streaming.

• Extensibility; It is possible to add data nodes on the fly.
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4.2 HBase

HBase is very different from relational databases like MySQL or DB2, not only in the point that
HBase does not support SQL or any other querying language, but especially in the fact that in
HBase all columns are organized in groups, called column families or just families. When a table
is created, only the column families have to be specified, whereas columns may be added and
removed dynamically and per row. When a column family of a given row is requested, HBase
returns a map, that maps column names to column values. Columns may be added to a family
of a given row by altering such a map and submitting it back to HBase [HBaa].

HBase does not manage the type of columns and only allows to store byte arrays in the columns.
Using the serialization feature of Java, it is however possible to store even complex types in
HBase. Rows are specified by a row key, which is also a byte array. The row key does not belong
to any family and other keys than the row key may not be specified. Not allowing secondary0

or foreign keys, HBase does not need to maintain any indices, but simply organizes its table
by sorting them by key, which is very advantageous in order to enable large numbers of rows.
First of all, maintaining indices for large numbers of rows may become very time intensive and
the indices may grow relatively large too, such that they would no longer fit into a single node’s
memory and as a consequence, they would no longer allow fast look-ups. The ability of HBase
to dynamically add columns to a family within a node may compensate the missing secondary
keys to some extend, this is discussed under 5.2.

As mentioned before, the architecture sketched above is inspired by Google’s BigTable [CDG+08],
HBase is though far away from being a clone of Googles BigTable [Geo]. For example, BigTable
enforces access control on a column family level, whereas HBase does not yet have that feature.

By default, HBase uses the Hadoop File System to store its data, which allows HBase to profit
from the replication feature of HDFS. More importantly, the distributed file system allows all
storage nodes, called HRegionServers [HBab] in HBase, to access all data.

A region of a table is a range of rows, which is stored in one, so called region file, for which one
or several HRegionServers are responsible, whereas the HBaseMaster is primarily in charge of
assigning regions to the HRegionServers. Further, the HBaseMaster also monitors the health of
each HRegionServer and tries to reassigns the Regions of HRegionServers that are no longer
reachable.

When the HBase is used as a Hadoop MapReduce source, the regions may be used as splits
and Hadoop is aware of the locality of each split. HBase only guarantees eventual consis-
tency [Vog09], using Zookeeper, which is a framework for easily implementing various degrees
of consistency. The inconsistency window is configurable, it is typically set to a value between
ten seconds and one minute. A too small inconsistency window may lead to a situation, where
HRegionServers are considered defective by mistake. Eventual Consistency is fine for working

0The support for secondary keys is currently in development, though.
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with Hadoop MapReduce, as well as for most batch processing applications. For applications
with spontaneous events though, HBase only offers an immature implementation of transac-
tions.
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Design

5.1 System Architecture Overview

The prototype is based on Hadoop MapReduce and uses the HBase NoSQL-database as its
main storage. The modular design has been adopted from the original single-threaded Python
based implementation. Since in the prototype data is stored in the distributed database rather
than passed along from one processing stage to the next, the system is no longer designed
as a pipeline. The pipeline stages from the Transit Feed Converter (TFC) are replaced by
modules in the prototype of the Distributed Transit Feed Converter (DTFC). The use of the
distributed database (HBase), instead of the pipeline allows a more flexible execution planning
of the individual modules, i.e. some modules may even be executed simultaneously. Of course,
some restrictions to the order of execution still exists. For example, data has to be imported
before it can be exported. The handling of those restrictions is discussed later on in this chapter.

Thanks to the use of the distributed database HBase, the planning of the data-structures is
straight forward and differs not much from designing a classic object oriented data model. The
data model is introduced in the next section and is followed by a a description of the modules of
the prototype.

5.2 Data Model

The data model has been designed to be able to fully represent the source data format (HAFAS).
On the other hand, the data model is also able to represent aspects of the data which are
only extracted during the conversion. An example of such data are the routes, which are also
discussed later in this chapter. Even though HBase is not a relational database, the tools and
paradigms for designing relational databases are still useful for sketching the data model. The
relational model, which has been used as a basis for designing the data model of the DTFC
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prototype is depicted in figure 5.1.

The most important difference between the relational data model and the corresponding data
model in HBase is caused by the fact that HBase does not allow secondary keys. Looking at
the so called junction tables, which are used to build so called many-to-many relationships in
relational databases e.g. Stations Routes in the figure 5.1, it becomes clear, that many-to-many
relationships depend on secondary keys in relational databases.

Instead of a secondary key, two junction tables could be used, one linking Routes to Stations
and another one linking Stations to Routes. This would not work though with HBase, as the
row identifier is required to be unique. Say, one would like to implement a junction table linking
Stations to Routes, called Stations Routes and there were two Routes R1 and R2, which belong
to the Station S1. Would an entry S1⇒ R1 be added to the table Stations Routes, it would be

Figure 5.1: Data model



CHAPTER 5. DESIGN 24

overwritten when the entry S1⇒ R2 is added.

However, HBase has another feature, which can be used to model many-to-many relationships,
namely the ability to dynamically add columns within a column family. Since each row may have
individual columns within a column family, a column can be added for each element the row
should be linked to. This is depicted for the above example in the figure 5.2.

Often it is not necessary to be able to look up many-to-many relations in both directions, when it
is required, the second table, in the example this is the table Routes, would also need a column
entry per relative row from the first table.

The above reflections have lead to an HBase setup with the tables described next.

5.2.1 Stations

The table Stations is used to store the names and further information, such as the geographical
location of a public transport station.

5.2.2 Stops

The table Stops holds information about the arrival and the departure time of a certain transit
mean at a given station.

Figure 5.2: Many-to-many relationships in a relational database and in HBase.
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5.2.3 Calendar

This table stores a so called bitfield describing the availabilities of services (trips). The bitfield
is a 256 bits long bit-string, where a boolean 1 at the i-th position denotes that a service (trip)
related to that bitfield is available on the day i days after the day on which the timetable has
become valid. The relation between rows of the table Calendar and rows of the table Trips is
stored in the table Trips.

5.2.4 Agencies

The table Agencies simply maps transport agency names to agency ids.

5.2.5 Routes

The table Routes lists for each route the trips which belong to that route. A route is a set of trips
that is considered as a single service.

5.2.6 Trips

The table Trips relates a trip to its stops and to the trips calendar. A trip is a sequence of at least
two stops of a specific transport service.

In addition to the tables described above, a number of temporary tables are used when pro-
cessing the data.

5.3 Import Modules

Each import job reads from one file only. This approach is the most compatible one with the
MapReduce model, as MapReduce jobs may only have one input source. As a workaround, it
is sometimes possible to use a multi-file input format or to read files with another API than the
MapReduce API, e.g. the HDFS-API. The use of the multi-file input format is rather complicated
though and does not work in all cases. Reading files with another API than the MapReduce-API
has the disadvantage that these files are not split by the MapReduce framework. In most cases
this leads to reading more data than actually needed. In the case, where an importer modules
of the prototype DTFC needs to aggregate data from several imput files, all files (but maybe
one) are first read into an HBase table. Such, that during a later import job, data can easily be
aggregated using the ability to randomly access HBase rows.
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5.3.1 Import Agencies

The Import Agencies module simply fills the Agencies table. Since it has very little input data
( 2000 Bytes), no effort is made to distribute this module. Instead, the import module will run
simultaneously with other modules.

5.3.2 Import Bitfields

Import Bitfields is a very simple module consisting of one single Mapper, which receives lines
from the bitfield file as input records. The records are parsed and directly written into the Calen-
dar table, such that the Mapper emits no output records. This design follows an example posted
in the Hadoop Wiki [Day]. The modules Import Coordinates and Import Stations are designed
alike.

5.3.3 Import Trips

The trips form the core of the schedule and cause the largest amount of input data. Therefore
it was essential to carefully design this module. Other than in the amount of input data, it also
differs in the type of records which the Mapper processes. Unlike all other input files, the file
which Import Trips reads from, is not simply line-record based, but one single Trip consists of
several lines, therefore a custom record reader is required for the Import Trips module. Further,
the Import Trips will not only create the Trips, but also the Stops, as they are implicitly declared
within the Trips in the HAFAS raw data format. The Import Trips module will read and write from
the Calendar HBase table, since the Trips reference the Calendar entries, but also implicitly
define new ones.

5.4 Station Name Mapper

The Station Name Mapper simply changes the name of stations according to a small set of
rules. It consists of a single MapReduce Map phase and no Reduce phase. Its MapReduce
input source is the Stations table, the outputs are written back to the table rather than spilled
out into a MapReduce sink.

A few sample replacement rules are listed in the table 5.1 below.

5.5 Near Stations Merger
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replace any occurrence of replace by

ank. ankomst
afg. afgang
Byv. Byvej
Borgm. Borgmester
Brdr. Brødrene
Bygd. Bygaden
Dronn. Dronning
Gl. Gammel
g.
h.

Table 5.1: Sample replacement, specific to the
schedules from the Danish Rejseplanen.

The Near Stations Merger module
merges all stations, which are geograph-
ically located near to each other. The
trivial approach to solving this problem
is by comparing each Station to all other
Stations. This is a typical handshake
situation. A way to scalably implement
this comparison, is to run several cycles,
such that in each cycle all stations are
compared to a fraction of the stations.
In the illustration 5.3, these fractions are
called batches.

Only in the first cycle, all stations are
used as input for the Mapper. In the
second cycle the stations, which appear
in a previously processed batch, are no
longer used as the input for the Mapper
jobs, as they have already been com-
pared to all other stations.

The output of the Mappers are key-value pairs for each pair of stations, which are found to be
near to each other. The smaller station (numerically smaller Id) is the key and the larger station
is used as the value. The key-value pair can be interpreted as ’The station represented by the
key replaces the station represented by the value’. In the Reduce phase all values belonging to
one key are simply combined and written to the table ’Replaces’.

Since the resulting table is relatively small, the remaining work is done serially. The resulting
table is thus essentially a dictionary, with the key being the station which is meant to replace all
stations listed in the dictionary’s value-list for that key. In the serial processing part, it is iterated
through each such key-value pair. For each pair, with the key S1 it is checked whether any of
the stations that are replaced, are listed to replace another Station. If such a Station is meant
to replace further stations, those further stations are appended to the value-list of the key S1.
This replacement is done recursively.

5.6 Routes Extractor

As there is no such concept as routes (see 5.2.5) in the HAFAS rawdata format, routes have to
be guessed before they may be exported to GTFS. Therefore a heuristic has been developed
and implemented in the Transit Feed Converter. For the DTFC the very same heuristic is used.

The Routes Extractor starts by creating so called buckets of trips. In a bucket, trips (see 5.2.6)
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Figure 5.3: Near Stations Merger

are collected that have both, the same line name and the same mean of transport. Grouping
items with a common attribute, is a typical task for the Reducer, since HBase is used, though no
Reducer is required. Using the attribute, in this case the line name plus the mean of transport
as a row-specifier, HBase may be used in order to create those buckets as well. So this job can
be implemented as a very simple Map phase. This part is referred to as ’stage 0’ of the Routes
Extractor.

Next, each bucket is analyzed separately. Each trip in the bucket is compared to each other trip.
In a comparison of a tripi to a tripj , the percentageSharedStationsij is computed as follows

percentageSharedStationsij = #commonStations(tripi,tripj)
#stations(tripj)

.

A sample percentageSharedStations matrix is shown in the table 5.3 for the trips listed in the
table 5.2.
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Trip 1
Station 1
Station 2
Station 4

Trip2
Station 1
Station 5

Trip 3

Station 2
Station 4
Station 5
Station 6

Table 5.2: List of trips.

Trip 1 Trip 2 Trip 3

Trip 1 1 0.5 0.5
Trip 2 0.33 1 0.25
Trip 3 0.67 0.5 1

Table 5.3: Sample percentageShared-
Stations matrix.

Now, a directed graph is initialized with the trips of the current bucket as its vertices and without
any edges. Then the percentageSharedStations matrix is processed row by row. For each
row i, a dictionary destinationIntensity is created. The destinationIntensity dictionary maps the
values of the current row from the percentageSharedStations matrix to the list of column indices
at which those values occur. For the first row of the above example the destinationIntensity
dictionary is shown in Table 5.4.

1 Trip1

0.5
Trip 2
Trip 3

Table 5.4: The destinationIntensity for
the first row of the persentageShared-
Stations matrix in Table 5.3.

The dictionary is then sorted by key and iterated, such
that the largest keys are processed first. For each trip j
of a given key in the destinationIntensity dictionary, the
heuristic tries to add an edge from trip i to trip j and the
weight is the dictionary key. As soon as one edge has
been added, the iteration is aborted and the next row of
the percentageSharedStations matrix is processed. An
edge is successfully added, if it does not add loops to
the graph. This part is named ’stage 1’ of the Routes
Extractor and the distributed version of it is implemented as a Map phase.

In a third Map phase, each graph is processed by one Map method. During this phase, the graph
is partitioned into unconnected subgraphs. For each subgraph, a new route will be created.

5.7 Data Flow

The figure 5.7 gives an overview of the source of the incoming and the destination of the outgo-
ing data for each of the above discussed modules.



CHAPTER 5. DESIGN 30

Figure 5.4: Data flow graph of the previously discussed modules.

5.8 Execution Order Dependencies

The figure 5.8 depicts the data dependencies among the module. The dashed lines group
modules which are executed simultaneously in the test setup (cf. 7). The arrows (a b)
denote b depends on data computed by a. The lines (a b) denote a and b may not be
executed simultaneously, because at least one module changes data which is processed by the
other one, but the actual execution order does not matter.
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Figure 5.5: Execution order dependencies.
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Implementation

6.1 EC2

The prototype is created for the EC2 platform, which is one of the Amazon Web Services (AWS).
AWS customers can allocate and manage EC2 computing nodes using an API or a web inter-
face. Typically, a set of shell scripts provided by Amazon is used to allocate and manage EC2
resources.

Figure 6.1: The welcome screen of the virtual machine from which
a Hadoop/HDFS/HBase cluster can be launched easily.

Amazon offers a set of
EC2 node types differing
in the amount of CPU
power and in the size of
their memory and hard
disk. When an instance
is allocated, the user se-
lects an instance type and
also a disk image, called
an AMI in AWS, contain-
ing an Operating System
compatible to the selected
instance type and usually
also preinstalled applica-
tions.

The pricing of AWS is es-
pecially attractive, if the re-
sources are only acquired
shortly, while doing a com-
putation. After booting an
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EC2 node though, it usually needs first being customized, before any computation may be done.
In order to simplify this process, AWS offers the possibility to store a customized AMI [aws].

Some configuration however, is preferably done, whenever the EC2 nodes boot. For example,
when a parameter is preferred to be adjustable. In the case of the prototype DTFC, it is the
HDFS block size and the number of nodes, that are desired to be adjustable. Adjusting such
configuration requires often operations on several, or on all nodes of the Hadoop cluster. Fur-
ther, they may require administrative operations like stopping and starting services in a defined
order. Trying to do this manually, just for running a batch job and loosing everything after ter-
minating the cluster, is a silly idea, not only because it is extremely time-consuming, but also
because the chances of making a mistake are extremely high. Therefore, it is unavoidable to
automate the setup of an Hadoop/HDFS/HBase cluster on EC2.

As a basis, a set of scripts provided by Cloudera, Inc., plus an AMI also provided by Cloudera,
has been useful. For the prototype DTFC, the scripts needed to be slightly modified. Further,
scripts for installing and managing HBase, have been added.

In order to make the scripts easier accessible, a set of scripts has been installed on a virtual
machine. A screen shot of the running virtual machine is depicted in the figure 6.1. The scripts
are briefly described in the appendix A. Using the scripts, as they are installed on the virtual
machine, a Hadoop/HDFS/HBase cluster is ready in about seven minutes.

As a very convenient alternative, to using scripts and AMIs from Cloudera and possibly ex-
tending them, Aamazon offers another AWS product, called Amazon Elastic MapReduce, which
automatically sets up Hadoop clusters and runs Hadoop MapReduce jobs on the cluster. The
user of Amazon Elastic MapReduce uses a simple web frontend to submit the Hadoop MapRe-
duce programs and input data. Amazon Elastic MapReduce does not offer support for HBase,
though. Thus, the prototype DTFC may not be used with it.

6.2 Datastructure

The HBase API has turned out to be rather inconvenient. Using the HBase API has lead to
rather unreadable code and very long lines. So, a wrapper class for the HBase class HTable, as
well as a class to represent the HBase rows, have been created. The following features of the
HTable wrapper class helped to simplify the working with HBase.

• A table is created by calling the constructor. If the table already exists, the existing table is
simply opened.

• Objects are serialized or desirialized when they are stored or written in a column, respec-
tively.

• Supports strings as row, column and family identifiers.
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Further, there is an issue with HBase, when an iterator1 is not touched for a while2, it is reset,
such that it looks, as if the iterator had already walked through the entire table. When the
wrapper class is iterated, it automatically handles this issue, such that the iteration continues
normally, even in the case of a time-out.

In order to reach a reasonable write speed, it is important that small changes are collected in a
buffer until they reach a reasonable size (e.g. 1 MB), before they are sent to the HBase. The
wrapper class does this automatically, unless the user forces it to send an item directly.

Though, there remain a few issues that may not be worked around using a simple wrapper class.
The largest problem is the enormous memory consumption of HBase, when a large number of
changes is submitted to the HBase. Another limitation is that it is seems to be impossible to
retrieve a list of cololumn specifiers for a given row and a specified family, without receiving the
values of the columns. This is a disadvantage, as each single value may be relatively large (e.g.
an integer array with thousands of entries) and is preferably only loaded when definitely needed.

6.3 Modules

6.3.1 Import Modules

In order to be able to fully parallelize and distribute the import process, the input data is loaded
into the HDFS, using the HDFS command line tools, before importing data into the HBase.
Under EC2 the input data is usually copied from the simple storage (s3), another AWS product.
Hadoop would also support reading input directly from s3, but this would require the data to be
stored unpacked in s3, further s3 is much slower than HDFS, which uses the slaves’ local disks
as a storage.

All import modules, but the Import Trips module, simply use the TextInputFormat, which is pro-
vided by Hadoop and feeds the text line by line to the Map methods. The Import Trips module
requires records which span several lines. A sample record for the Import Trips is listed below.

513000301 Østerbakken Adsbøl 00822 00822 % 00388 00015_

533000400 Nybøl v kirken 00827 00827 % 00388 00015_

537001801 Vestermark/Bosager 00835 00835 % 00388 00015_

537001800 Arnkilgade v Sønderb 00835 -00835 % 00388 00015_

537001802 Arnkilgade/Helgoland 00835 -00835 % 00388 00015_

537000101 Løngang/Rebslagergad 00835 -00835 % 00388 00015_

537000100 Sønderborg Busst. 00844 % 00388 00015_

*Z 00389 00015_ % 00389 00015_

*L 10 503004300 537000100 00645 00738 % 00389 00015_

*R 1 537000100 503004300 537000100 00645 00738 % 00389 00015_

*G 013 503004300 537000100 00645 00738 % 00389 00015_

*A VE 503004300 537000100 000005 00645 00738 % 00389 00015_

1Table iterators are actually called Scanners in HBase.
2The time after which the iteration must continue seems to be the same as the inconsistency window. (see 4.2)
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503004300 Frøslev-Padborg Skol 00645 % 00389 00015_

503004302 Frøslevvej (Padborg) -00645 00645 % 00389 00015_

503005600 Nørregade v Hasselha -00647 00647 % 00389 00015_

503005400 Padborg St (bus) -00650 00650 % 00389 00015_

503005404 Jernbanegade 19/24 P -00650 00650 % 00389 00015_

503005403 Jernbanegade 54/57 P -00651 00651 % 00389 00015_

503005402 Padborgvej/Rønshave -00651 00651 % 00389 00015_

503004700 Bov, Hærvejen v kirk -00652 00652 % 00389 00015_

503005001 Bov, Padborgvej v Øs -00652 00652 % 00389 00015_

503005000 Smedeby, Padborgvej -00652 00652 % 00389 00015_

513000401 Rinkenæs Syd -00710 00710 % 00389 00015_

513000400 Rinkenæs -00710 00710 % 00389 00015_

513001400 Alnor, Egernsund Bro -00712 00712 % 00389 00015_

537001801 Vestermark/Bosager 00733 -00733 % 00389 00015_

537001800 Arnkilgade v Sønderb 00733 -00733 % 00389 00015_

537001802 Arnkilgade/Helgoland 00733 -00733 % 00389 00015_

537000101 Løngang/Rebslagergad 00733 -00733 % 00389 00015_

537000100 Sønderborg Busst. 00738 % 00389 00015_

*Z 00390 00015_ % 00390 00015_

*L 10 503001600 537000100 00849 00944 % 00390 00015_

*R 1 537000100 503001600 537000100 00849 00944 % 00390 00015_

*G 013 503001600 537000100 00849 00944 % 00390 00015_

*A VE 503001600 537000100 000002 00849 00944 % 00390 00015_

503001600 Kruså Busst. 00849 % 00390 00015_

503002100 Kruså, Flensborgvej 00850 00850 % 00390 00015_

Listing 6.1: Excerpt from the file fplan, which is the input for the Import Trips module. The ex-
cerpt contains one complete record, plus a fraction of its predecessor and successor record.
A new record starts with ’<newline>*Z’.

Writing a custom Hadoop MapReduce InputFormat is straight forward, however when also a
custom RecordReader is required, it may be rather delicate to implement an efficient one. An
efficient RecordReader is an essential part of the entire MapReduce process. Some important
points to consider when writing a RecordReader are listed below.

• Read reasonable portions from the input stream.

• Offer data to the record consumer as soon as possible.

• Inform the framework as soon as possible when a record is complete.

Further, it is important to thoroughly test a RecordReader before productively using it, as it
happens very easily that a RecordReader would skip a Record or insert one twice, because
records usually do not end where the split ends. In the case of the Import Trips module, the
RecordReader requires two buffers. More concretely speaking, when the RecordReader pro-
cesses the buffer into which it has read data from the input stream, it will eventually reach the
end of the buffer, but it will not always be able to tell whether the currently processed data is still
part of the current record, or whether it is already part of a new record. This is for example the
case, when a buffer ends with the character-sequence ’<newline>*’ (A new record starts with
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’<newline>*Z’). The fact that this situation occurs relatively rarely, increases that such a situ-
ation is overseen in the test-cases, but is still reasonably likely to occur when several hundred
megabytes of input data are processed.

6.3.2 Near Stations Merger

During the design phase, the batches (cf. 5.5) were intended to be processed one after another,
since each batch would be able to utilize the cluster. This design decision was also encouraged
by the design of Hadoop and Hbase. Due to the way scanners3 work in HBase, it is only known
where the successive batch starts, after the current batch has been fully read. This is to say,
there is no easy way to figure out, which the key of the n-th, 2n-th, 3n-th etc. row is, other than
iterating through the rows. As this iteration is done anyway by the slaves during the Map phase,
there is no reason to do an extra iteration on the master, which would unnecessarily load the
HBase. According to the principles of MapReduce, side-effects should be avoided. This means
in particular, that nothing that has been computed as part of the Map or of the Reduce phase,
should be used by another node of the cluster. The fact that Hadoop needs a long time to setup
a MapReduce job (ca. 30 seconds), however has lead to a dramatic increase of the processing
time as the number of batches grows. So, it was eventually decided that the jobs for batches
would be submitted as soon as the preceding batch has been iterated through by any Mapper.
For this purpose, an XML-RPC server is installed on the Hadoop master, to which the slave
connects as a client and calls a method in order to inform the master about the location of the
next batch. The master handles synchronization issues and assures that all batches are only
processed once.

6.3.3 Routes Extractor

The implementation of the Routes Extractor was straight forward, there were very few changes
necessary to get a distributed version from the serial one. As this fact already seemed apparent
at design-time, the port of the Python implementation has been performed in two steps. In the
first step, the application was ported to Java using HBase as the main storage. Later, it was
very easy to simply replace a few loops by Map jobs in order to fully distribute the application.

There was an issue though, namely the memory consumption caused by committing changes to
HBase. The original plan was to store the percentageSharedStations matrix (cf. 5.6) in HBase
and later it would only be accessed row by row. This has though lead to a situation, where much
more memory has been consumed than by storing the entire matrix in memory.

3Scanners are table iterators.
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Test Setup

7.1 Topology of the Cluster

The cluster has one master node and a configurable number of slave nodes. The master serves
as the NameNode for HDFS and as the HBase master. Further, it is also the Hadoop JobTracker,
but it is neither used to host any data nor to process any of the Map or Reduce tasks. The slave
nodes are used as HDFS DataNodes, as HBase RegionServers and as TaskTrackers. The
actual network topology remains unknown, as such information is not provided by AWS.

7.2 The Installation Procedure

The cluster installation includes the following steps.

1. The master node is booted up and the Hadoop jobtracker service is started.

2. The slave nodes are booted and Hadoop tasktracker services are started. The slaves
know their master and they advertise themselves as tasktracker nodes.

3. Additional configuration is done, e.g. HDFS block size.

4. The Hadoop HDFS NameNode-service is launched on the master.

5. HDFS data nodes are launched on the slaves, they advertise themselves as TaskTracker
nodes.

6. The HDFS is formatted.

7. Data is imported into HDFS from s3. (cf. 6.3.1)

8. HBase is installed on all nodes (copied from s3 and unpacked).
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9. HBase configuration is adjusted, i.e. the master is informed about which nodes participate
as RegionServers in the HBase-cluster.

10. Zookeeper is launched on all nodes

11. HBase master is launched on the master node.

12. RegionServer processes are spawned on all slave nodes.

This procedure takes about seven minutes. Afterwards a cluster with the desired number of
slave nodes and the configured block size is ready to launch Hadoop jobs.

7.3 EC2 Nodes

All nodes of the cluster use the default small EC2 node, which according to the AWS website
has the following properties.

• 1.7 GB main memory

• 1 EC2 compute unit 1

• 160 GB hard disk

• 32-bit architecture

7.4 The Test Job

During the test job, all modules are launched as depicted in the figure 5.8. This is to say the
jobs are launched in as follows.

1. Import Coordinates, Import Stations, Import Bitfields and Import Agencies are submitted
simultaneously to the Hadoop cluster.

2. After they have all terminated, Import Trips is launched.

3. When Import Trip has completed, Station Names Mapper is submitted.

4. After the Station Names Mapper has finished, Near Stations Merger is launched.

5. Finally, Routes Extractor and Export Agencies are launched simultaneously.

1The AWS website says, ’One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor.’
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Evaluation and Results

8.1 Modules

8.1.1 Import Modules

As shown in 5.8, most import modules may run in parallel, which leads to a good utilization of the
cluster (figure 8.1)1. Not surprisingly, during the import phase, some network traffic is generated
(figure 8.2). The traffic is though still relatively low, as HDFS only uses a small, configurable
network bandwidth for replicating new data.

Figure 8.1: The CPU load average, which is a measure for the CPU utilization, of a slave node
during the import phase.

In the figure 8.3, the processing time of the entire import process is plotted as a function of the
1The figure plots the load average, as it is reported by Linux. [POL02] says about the load average, ’The load

average tries to measure the number of active processes at any time. As a measure of CPU utilization, the load
average is simplistic, poorly defined, but far from useless.’
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Figure 8.2: The network traffic of a slave node during the import phase in bytes per second.

Figure 8.3: Plot of the processing time as a function of the number of nodes for block sizes of
1,2,4 and 8 Megabytes. Each value is based on a single measurement.

number of nodes. The execution time of the distributed prototype import procedure is relatively
long in comparison to the execution time of the original Python implementation, which only takes
about 4.5 minutes, whereas the execution time of the distributed prototype import may require
as long as 10 minutes.

The import time is larger, primarily due to the fact that the distributed implementation imports
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data into the distributed database, whereas the original Python implementation simply stores its
data in the local main memory, which is of course much faster. Further, the Import Trips module
also reads randomly from the previously imported Bitfields table, which is also much faster when
done locally.

8.1.2 Map Station Names

The module Map Station Names is the simplest possible module to program. It can be done per-
fectly in a single Map phase. The running time of the serial Python equivalent is approximately
130 seconds2. This processing time may be reasonably reduced (figure 8.4).

Figure 8.4: Plot of the processing time as a function of the number of nodes for block sizes of
1,2,4 and 8 Megabytes. Each value is based on a single measurement.

In comparison to the running times of the import procedure though, the running times of the
Map Station Names seem rather randomly and do not reach a reasonable reduction of the
processing time with a growing number of nodes. This has to do with the fact, that the input
data for the Map Station Names module is relatively small compared to the entire input data,
which is processed during the import process. Further, HBase generates some indeterminacy
regarding the execution time. The input data, which is processed by the Map Station Names
module is read from an HBase table. As the input data has just been imported shortly before the
Map Station Names module is run, the table may not yet have completely split up into regions3,

2On a 1.7 GHZ Intel Dual Core with 2 GB Memory.
3There is no way to reliably enforce an immediate split into regions.
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such that reasonably less splits are created and not all slave nodes can be loaded with work.

8.1.3 Near Stations Merger

The execution times of the Near Stations Merger module are plotted in the figure 8.5.

Figure 8.5: Plot of the processing time as a function of the number of nodes for block sizes of
1,2,4 and 8 Megabytes. Each value is based on a single measurement.

The execution times perform extremely bad in comparison with the implementation in the original
pipeline, which uses a modification of a divide and conquer approach, which is actually intended
to solve the closest-pair problem [ros] [SH]. The algorithm, as it is published in [ros], is modified
such that whenever the distance between two points is computed, it is also tested whether the
two points have a smaller distance than a previously defined threshold. If so, the pair of points
(stations) is listed to be merged. The original implementation runs only about 90 seconds4.
This algorithm is though not an exact one and may not find some points, which are less distant
from each other than the threshold (cf. appendix D.1). Thus, the comparison between the two
implementations is not a completely fair one.

The above algorithm seems not to be easily and efficiently distributable using Hadoop. It would
though be possible to split the area, in which the points (stations) are found, into equal parts
using vertical separation lines. The resulting areas could be used as the Mapper inputs. In

4On a 1.7 GHZ Intel Dual Core with 2 GB Memory.
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addition to the areas between the separation lines, the areas with a width of twice the threshold,
which have the separation lines through their center, would also be use as Mapper inputs.

8.1.4 Distributed Routes Extractor

The Distributed Routes Extractor enables a reasonable reduction of the running time when it
is distributed using Hadoop. The results are shown in 8.6. The distribution is however limited
due to the fact that especially the stage 1 (cf. 5.6) receives input, which causes extremely
unequal computational load per record. Therefore, this records should be split up, such that
they could be further distributed. As discussed previously, this caused too much load on the
HBase, however.

Figure 8.6: Plot of the processing time as a function of the number of nodes for block sizes of
1,2,4 and 8 Megabytes. Each value is based on a single measurement.

The longest record takes about 15 minutes to process5, further there are a few records, which
also take about ten minutes, whereas most of the records take less then one minute to be

5On a 1.7 GHZ Intel Dual Core with 2 GB Memory.
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processed. Unfortunately it happens rather likely that within one split two of the longest trips
appear, such that the shortest possible processing time of the stage 1 never goes below ca. 25
minutes with whichever number of nodes. It would help, if the splits would be made smaller (by
downsizing the HDFS blocks), however HBase seems not to work with blocks sized below 1MB.
The figure 8.7 shows the memory usage, which is very critical on the slave nodes during the
execution of the Distributed Routes Extractor.

Figure 8.7: The memory usage of a slave node while the Distributed Routes Extractor is running.
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Conclusions

9.1 Conclusions

The performances of the import procedure and the Distributed Routes Extractor module are
satisfying, but not compelling. The other modules perform rather disappointingly. Looking at the
memory usage on the slave nodes during the execution of the prototype converter, reveals an-
other serious problem; HBase requires more memory than the small EC2 nodes have available
in order to run comfortably.

This shows that during the evaluation of a database system, not only the data model should
be considered, but also the database performance should be tested under real work load on
the target platform. Whereas the data model of HBase convinced, the performance on the
target platform was unknown. Knowing that with similarly sized tables (The table Trips may
contain several hundred thousand rows, for example.), common relational databases need to
be carefully setup in order to deliver reasonable query times, HBase seemed definitely worth a
try.

Only after setting up an HBase cluster on EC2 nodes, the difficulties of running HBase on
small EC2 nodes became obvious. Before it came to that, another insight has been gained;
Setting up a working HBase environment on AWS is totally different from setting up an HBase
system on ’real’ machines. As every administrative action on AWS must be automated, if it
should not be lost at the next reboot, a reasonable amount of unexpected, additional work
arose. Though, setting up a Hadoop/HBase cluster has been an enriching experience, as it
taught the careful planning of every step of the system maintenance. The result is a reliable and
stable Hadoop/HBase cluster, which can be started with the desired number of EC2 nodes in
only about seven minutes.
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9.2 Outlook

The use of the database HBase has lead to a shortage of memory on the small EC2 nodes.
HBase is though said to work better on larger nodes with more memory. This should be verified.

On the other hand, using another database than HBase should also be considered.

It is assumed, that the current prototype is able to handle larger sets of input data than the
relatively small data set used in the tests, as a larger data set should allow to distribute the load
among a higher number of nodes. The verification of that assumption also remains to be done.

Further, not all of the computationally intensive parts of the Transit Feed Converter have been
investigated in the scope of this thesis1.

Some parts of the Transit Feed Converter may be reasonably improved algorithmically. Those
are in particular the module Routes Extractor and the module Near Stations Merger.

1The most important module, which has not been discussed, is called Through Coach Extractor.



Appendix A

Scripts for Bringing up Hadoop

Below is a short description of the scripts, which can be used to setup a Hadoop/HBase cluster
on AWS. The scripts require a proper installation of Cloudera’s Distribution for Hadoop (CDH)
and must be located themselves in the path.

• hbase-ec2 test-cluster installs an HBase on the running cluster, called test-cluster.

• setup-cluster #nodes blockSize installs Hadoop/HBase on a new cluster with #nodes
slave instances and one master. The blockSize is specified in bytes.

• h-ec2-020 #nodes blockSize creates a new Hadoop-0.20 cluster. Hadoop-0.20 is re-
quired in order to use the HBase version, which is installed with ’hbase-ec2’.
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A Sample MPI Program

#include <mpi.h>

#include <stdio.h>

#include <stdlib.h>

#define WORKTAG 1

#define DIETAG 2

/* Local functions */

static void master(void);

static void slave(void);

static int* get_next_work_item(void);

static void process_results(int *);

static int* do_work(int *);

int ind = 0;

int values [] = {1,2,3,4,5,6,7,8,9,10,11,12};

#define n_values 12

int results[n_values ];

int result_item [2];

int work_item [2];

int main(int argc , char **argv)

{

int myrank;

/* Initialize MPI */
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MPI_Init (&argc , &argv);

/* Find out this instances identity */

MPI_Comm_rank(MPI_COMM_WORLD , &myrank );

if (myrank == 0) {

master ();

printf("[");

int i = 0;

for ( ; i < n_values; i++)

printf("%i,",results[i]);

printf("]");

} else {

lave ();

}

/* Shut down MPI */

MPI_Finalize ();

return 0;

}

static void master(void)

{

int ntasks , rank;

int* work;

int result [2];

MPI_Status status;

/* Find out how many processes there are */

MPI_Comm_size(MPI_COMM_WORLD , &ntasks );

/* Send one unit of work to each slave. */

for (rank = 1; rank < ntasks; ++rank) {

/* Find the next item of work to do */

work = get_next_work_item ();
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/* Send it to each slave */

MPI_Send(work ,

2,

MPI_INT ,

rank ,

WORKTAG ,

MPI_COMM_WORLD );

}

/* Get new work until all work is done */

work = get_next_work_item ();

while (work [0] != -1) {

/* Receive results from a slave */

MPI_Recv ((void*)result ,

2,

MPI_INT ,

MPI_ANY_SOURCE ,

MPI_ANY_TAG ,

MPI_COMM_WORLD ,

&status );

process_results(result );

/* Send the slave a new work unit */

MPI_Send(work ,

2,

MPI_INT ,

status.MPI_SOURCE ,

WORKTAG ,

MPI_COMM_WORLD );

/* Get the next unit of work to be done */

work = get_next_work_item ();

}

/* There’s no more work to be done , so receive all the outstanding

results from the slaves. */

for (rank = 1; rank < ntasks; ++rank) {
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MPI_Recv ((void*)result , 2, MPI_DOUBLE , MPI_ANY_SOURCE ,

MPI_ANY_TAG , MPI_COMM_WORLD , &status );

process_results(result );

}

/* Tell all the slaves to exit by sending an empty message with the

DIETAG. */

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT , rank , DIETAG , MPI_COMM_WORLD );

}

}

static void slave(void)

{

int work [2];

int* result;

MPI_Status status;

while (1) {

/* Receive a message from the master */

MPI_Recv ((void*)work , 2, MPI_INT , 0,

MPI_ANY_TAG , MPI_COMM_WORLD , &status );

/* Check the tag of the received message. */

if (status.MPI_TAG == DIETAG) {

return;

}

/* Do the work */

result = do_work(work);

/* Send the result back */

MPI_Send(result , 2, MPI_INT , 0, 0, MPI_COMM_WORLD );

}

}

int* get_next_work_item(void)

{
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int* workitem;

workitem = (int*) malloc( 2* sizeof(int) );

if(ind < n_values ){

workitem [0] = ind;

workitem [1] = values[ind];

ind ++;

}

else{

workitem [0] = -1;

}

return workitem;

}

static void process_results(int* result)

{

if(result [0] != -1)

results[result [0]] = result [1];

}

int* do_work(int* work)

{

int* resultitem;

resultitem = (int*) malloc( 2* sizeof(int) );

resultitem [0] = work [0];

resultitem [1] = work [1] * work [1];

return resultitem;

}

Listing B.1: A sample MPI-Programm, calculating the square of the integers in an array.



Appendix C

A Sample Erlang Program

-module(square ).

-export([do_work/0, main/0, launch /1]).

do_work () ->

receive

{From , {Ind , Val}} ->

From ! {self(), {Ind , Val*Val}},

do_work ();

{stop} ->

io:fwrite("Stopping");

Other ->

io:format("Unknown: ~w~n", [Other])

end.

launch(Pid) ->

Val = get(get(ctr)),

if

Val/= undefined -> Pid ! {self(), {get(ctr), get(get(ctr))}},

put(running ,get(running )+1),

put(ctr ,get(ctr) + 1) ;

true -> io:fwrite("No more work to do. \n")

end

.

main() ->

receive

{Id,{Index ,Value}} -> put(Index ,Value),
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put(running ,get(running )-1),

square:launch(Id),

Val = get(running),

if

Val >=1 -> main ();

true -> 0

end

;

Other ->

io:format("Unknown: ~w~n", [Other])

end.

Listing C.1: A sample Erlang module, which can be used for distributedly calculating squares.

The above module can be used from the shell as follows.

c(square ).

Hosts = [’name1@host1 ’,’name2@host2 ’].

put(ctr ,0).

put(running ,0).

put(0,1).

put(1,2).

put(2,6).

put(3,8).

Init = fun(X) -> spawn(X,fun square:do_work /0) end.

Launch = fun(X) -> square:launch(X) end.

Stop = fun(X) -> X ! {stop} end.

Pids = lists:map(Init ,Hosts).

lists:foreach(Launch ,Pids).

square:main ().

lists:map(Stop ,Pids).
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Finding Nearby Points in the TFC

The TFC uses an algorithm for solving the Closest-Pair Problem [SH] in order to find nearby
points.

D.1 Algorithm for Solving the Closest-Pair Problem

The goal of the algorithm is to find the distance between the pair of points, which are closer to
each other, than any other pair in a given set of points.

A slightly simplified version of the algorithm used for the transit feed converter is listed below.

1. If the problem is small, solve it using a brute-force approach, otherwise continue.

2. Sort points according to their x-coordinate.

3. Split the set of points, such that two subset with the same size are received. The x-
coordinate, which is in the middle of the last point in the left subset and the first point of
the right subset, is called x-sep.

4. Recursively solve the problem for the right and for the left subset, which will return a
minimal distance for the right-hand dLMin subset and one for the left-hand subset dRMin.

5. Compute the minimal distance dLRMin (using brute-force) among the points which are no
farther than min(dLMin,dRMin) from the vertical line with the x-coordinate x-sep, which
separates the original area into two subareas.

6. Return the minimum of dLMin, dRMin and dLRMin

This algorithm has a complexity of O(n · log(n)) [SH].
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D.2 Modification

In order to use the above algorithm to find pairs, which are closer to each other than a given
threshold t, the above algorithm is changed, such that whenever distances between two points
are computed, the algorithm adds the two points to the global list of close points if the two points
are less distant than t. Distances between points are computed, when the brute-force approach
is used in step 1, but also in step 5 of the algorithm.

Step 5 is the reason, why some pairs of points may be missed. In step 5, only pairs of points,
which are less distant than min(dLMin,dRMin) from the vertical through x-sep are considered.
In order to certainly get all points, which are closer to each other than t, the algorithm should
compare all points which are not farther than t away from the vertical with the x-coordinate x-
sep. This would however require slightly more computational effort. Further, the algorithm would
have to be adjusted to assure that none of the subareas become narrower than t.
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Test Results

Below, an excerpt of the performance results obtained from the log-files of the test runs is listed.
Some measurements depend on a time-measurement on two distinct node.

The clock deviation between the slave nodes and the master nodes have been estimated. It can
safely be assumed, that the deviation of the clocks is below 1 second.

E.1 3 Nodes, Block Size 2097152 Bytes 2010-04-21 17:53:45

Import time 632.336 seconds

Processing time 2327.969 seconds

Names Mapper

Processing time 91.125 seconds
Map started after 50.237 seconds
#tasks 1
#tasks on slave 2 0
#tasks on slave 0 1
#tasks on slave 1 0

Merge Stations by Distance

Processing time 525.17 seconds
Map started after 39.596 seconds
#tasks 11
#tasks on slave 2 4
#tasks on slave 0 4
#tasks on slave 1 3

Distributed Routes Extractor

Processing time 1711.693 seconds
Map started after 44.362 seconds
#tasks 777
#tasks on slave 2 170
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#tasks on slave 0 304
#tasks on slave 1 303
#tasks stage 0 2262
#tasks on slave 2 stage 0 163
#tasks on slave 0 stage 0 298
#tasks on slave 1 stage 0 293
#tasks stage 1 19
#tasks on slave 2 stage 1 7
#tasks on slave 0 stage 1 6
#tasks on slave 1 stage 1 6
#tasks stage 2 4
#tasks on slave 2 stage 2 0
#tasks on slave 0 stage 2 0
#tasks on slave 1 stage 2 4
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E.2 3 Nodes, Block Size 4194304 Bytes 2010-04-21 14:38:44

Import time 690.646 seconds

Processing time 2398.092 seconds

Names Mapper

Processing time 102.302 seconds
Map started after 49.33 seconds
#tasks 1
#tasks on slave 2 0
#tasks on slave 1 0
#tasks on slave 0 1

Merge Stations by Distance

Processing time 620.486 seconds
Map started after 44.633 seconds
#tasks 7
#tasks on slave 2 2
#tasks on slave 1 2
#tasks on slave 0 3

Distributed Routes Extractor

Processing time 1675.368 seconds
Map started after 46.374 seconds
#tasks 363
#tasks on slave 2 132
#tasks on slave 1 114
#tasks on slave 0 117
#tasks stage 0 1041
#tasks on slave 2 stage 0 125
#tasks on slave 1 stage 0 109
#tasks on slave 0 stage 0 113
#tasks stage 1 12
#tasks on slave 2 stage 1 3
#tasks on slave 1 stage 1 5
#tasks on slave 0 stage 1 4
#tasks stage 2 4
#tasks on slave 2 stage 2 4
#tasks on slave 1 stage 2 0
#tasks on slave 0 stage 2 0
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E.3 5 Nodes, Block Size 1048576 Bytes 2010-04-21 19:20:39

Import time 823.792 seconds

Processing time 3351.429 seconds

Names Mapper

Processing time 50.878 seconds
Map started after 25.815 seconds
#tasks 8
#tasks on slave 2 2
#tasks on slave 0 1
#tasks on slave 3 1
#tasks on slave 1 2
#tasks on slave 4 2

Merge Stations by Distance

Processing time 1351.755 seconds
Map started after 30.182 seconds
#tasks 19
#tasks on slave 2 3
#tasks on slave 0 5
#tasks on slave 3 3
#tasks on slave 1 4
#tasks on slave 4 4

Distributed Routes Extractor

Processing time 1948.796 seconds
Map started after 51.897 seconds
#tasks 1451
#tasks on slave 2 342
#tasks on slave 0 343
#tasks on slave 3 322
#tasks on slave 1 347
#tasks on slave 4 97
#tasks stage 0 4224
#tasks on slave 2 stage 0 336
#tasks on slave 0 stage 0 329
#tasks on slave 3 stage 0 315
#tasks on slave 1 stage 0 340
#tasks on slave 4 stage 0 88
#tasks stage 1 40
#tasks on slave 2 stage 1 6
#tasks on slave 0 stage 1 11
#tasks on slave 3 stage 1 7
#tasks on slave 1 stage 1 7
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#tasks on slave 4 stage 1 9
#tasks stage 2 3
#tasks on slave 2 stage 2 0
#tasks on slave 0 stage 2 3
#tasks on slave 3 stage 2 0
#tasks on slave 1 stage 2 0
#tasks on slave 4 stage 2 0
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E.4 5 Nodes, Block Size 2097152 Bytes 2010-04-21 20:21:58

Import time 458.809 seconds

Processing time 1966.95 seconds

Names Mapper

Processing time 81.906 seconds
Map started after 47.492 seconds
#tasks 5
#tasks on slave 0 1
#tasks on slave 3 1
#tasks on slave 2 1
#tasks on slave 1 2
#tasks on slave 4 0

Merge Stations by Distance

Processing time 453.042 seconds
Map started after 53.714 seconds
#tasks 11
#tasks on slave 0 2
#tasks on slave 3 2
#tasks on slave 2 2
#tasks on slave 1 3
#tasks on slave 4 2

Distributed Routes Extractor

Processing time 1431.984 seconds
Map started after 44.972 seconds
#tasks 779
#tasks on slave 0 219
#tasks on slave 3 182
#tasks on slave 2 183
#tasks on slave 1 64
#tasks on slave 4 131
#tasks stage 0 2265
#tasks on slave 0 stage 0 215
#tasks on slave 3 stage 0 177
#tasks on slave 2 stage 0 179
#tasks on slave 1 stage 0 56
#tasks on slave 4 stage 0 128
#tasks stage 1 20
#tasks on slave 0 stage 1 4
#tasks on slave 3 stage 1 5
#tasks on slave 2 stage 1 4
#tasks on slave 1 stage 1 4
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#tasks on slave 4 stage 1 3
#tasks stage 2 4
#tasks on slave 0 stage 2 0
#tasks on slave 3 stage 2 0
#tasks on slave 2 stage 2 0
#tasks on slave 1 stage 2 4
#tasks on slave 4 stage 2 0
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E.5 5 Nodes, Block Size 8388608 Bytes 2010-04-21 16:47:10

Import time 451.078 seconds

Processing time 2130.14 seconds

Names Mapper

Processing time 90.308 seconds
Map started after 32.693 seconds
#tasks 3
#tasks on slave 3 0
#tasks on slave 1 1
#tasks on slave 0 2
#tasks on slave 4 0
#tasks on slave 2 0

Merge Stations by Distance

Processing time 479.473 seconds
Map started after 42.199 seconds
#tasks 6
#tasks on slave 3 1
#tasks on slave 1 2
#tasks on slave 0 1
#tasks on slave 4 1
#tasks on slave 2 1

Distributed Routes Extractor

Processing time 1560.372 seconds
Map started after 43.015 seconds
#tasks 275
#tasks on slave 3 49
#tasks on slave 1 51
#tasks on slave 0 51
#tasks on slave 4 61
#tasks on slave 2 63
#tasks stage 0 792
#tasks on slave 3 stage 0 48
#tasks on slave 1 stage 0 49
#tasks on slave 0 stage 0 49
#tasks on slave 4 stage 0 56
#tasks on slave 2 stage 0 62
#tasks stage 1 7
#tasks on slave 3 stage 1 1
#tasks on slave 1 stage 1 2
#tasks on slave 0 stage 1 2
#tasks on slave 4 stage 1 1
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#tasks on slave 2 stage 1 1
#tasks stage 2 4
#tasks on slave 3 stage 2 0
#tasks on slave 1 stage 2 0
#tasks on slave 0 stage 2 0
#tasks on slave 4 stage 2 4
#tasks on slave 2 stage 2 0
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