
Precise Time Synchronization for
Wireless Sensor Networks using the

Global Positioning System

Semester Thesis

Michael Meier
meiermic@ee.ethz.ch

Advisor:
Philipp Sommer

Supervisor:
Prof. Dr. Roger Wattenhofer

Distributed Computing Group
Computer Engineering and Networks Laboratory (TIK)

Department of Information Technology and Electrical Engineering

January 2010





Abstract

For sensor networks a wide variety of time synchronization protocols exist. These protocols
establish a common logical clock between participating nodes. This logical clock has no relation
with wall clock time.
While a synchronized logical clock enables many interesting applications, such as more energy
efficient MAC protocols, it does not cater much to the needs of data gathering, the main applica-
tion of sensor networks. Sensor data is often useless if the time of the measurement is unknown.
Time synchronization protocols in conjuction with a method of converting logical clock values
to wall clock time, such as UTC, would enable one to order events in applications where sensor
data is sampled from multiple, independent sensor networks.
In this thesis a method is proposed to establish a relationship between the logical clock provided
by time synchronization protocols and wall clock time with the aid of the Global Positioning
System. Furthermore the proposed approach is, implemented on a small network of sensor
nodes with the Zigbit900 chip using TinyOS.

3



4



Acknowledgements

I would like to thank Prof. Dr. Roger Wattenhofer for offering me the opportunity to write this
semester thesis at the Distributed Computing Group at ETH Zürich.
I would also like to thank my advisor, Philipp Sommer. He was always quick to offer his invalu-
able support. Without his help this semester thesis would not have been possible.

5



6



Contents

1 Introduction 9
1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Time Synchronization Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 The Global Positioning System . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4 nesC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 TinyOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Design and Implementation 13
2.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Pixie Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Zigbit 900 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 ATMega1281 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 AT86RF212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.5 Pixie Base Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 LEA-5H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Time Synchronization Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 The Radio Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Modifications in TinyOS . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 GPS Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Synchronization Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Evaluation 21
3.1 Time Synchronization Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Demo Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Accelerometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Conclusion and Further Work 25
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Bibliography 27

7



8 CONTENTS



1
Introduction

1.1 Wireless Sensor Networks

A wireless sensor network, or WSN for short, consists of a number of sensor nodes which can
communicate wirelessly. Sensor nodes usually comprise a microcontroller, a low-power radio
transceiver, sensors, and a source of energy. Sensor nodes are programmed to monitor a given
set of environmental conditions, such as light intensity, temperature or vibrations. They may be
programmed to form an ad-hoc multiple hop network.
Wireless sensor networks are different from conventional sensor installations in many aspects. To
be cost efficient, WSNs have to survive on a very limited power supply for a long time, e.g. on a
pair of batteries for three years. WSNs are often installed in very harsh environmental conditions,
such as in high alpine environments[1] or on volcanoes[2], forcing them to run unattended for
most of the time. Due to the unreliability of equipment in general and the uneconomicality of
carrying out maintenance operations when the sensors are already deployed, WSNs have to cope
with node failure dynamically.

1.2 Time Synchronization Protocols

For many applications of wireless sensor networks, such as data gathering, it is of utmost im-
portance to know when data was sampled or when a given event happened. Therefore, sensor
nodes need to have a common understanding of time. Synchronized clocks can also help in other
applications such as the development of more energy efficient MAC protocols. For wireless sen-
sor networks there exists a range of time synchronization protocols such as RBS[3], TPSN[4],
FTSP[5] or GTSP[6]. They strive to establish a two way relationship between the local time of
a node and a “global” sensor network time. When used in conjunction with a 1Mhz clock they
are able to deliver pairwise synchronization errors in the range of 5µs.

9



10 1.3. THE GLOBAL POSITIONING SYSTEM

1.3 The Global Positioning System

The Global Positioning System, short GPS, is a satellite navigation system operated by the
United States of America1.
To provide positioning information to receivers on or near the earth’s surface, about 30 satellites
are placed in earth orbit. GPS satellites are equipped with an atomic clock which is regularly
synchronized with the clock of all other GPS satellites to within a few nanoseconds. GPS satel-
lites continuously broadcast their time and position. Using the signals from four satellites, a GPS
receiver can determine its position and its time. If GPS receivers were equipped with clocks pre-
cisely synchronized to the GPS satellites’ clocks, only three signals would be needed. Using
four signals to determine the position also yields information about time. GPS receivers are able
to calculcate UTC with an error of some hundred nanoseconds or even less.

1.4 nesC

The nesC programming language[7] developed at University of Californica, Berkeley, is an ex-
tension of the well known C programming language.
nesC forces the programmer to implement functionality in components. Components provide
the implemented functionality to other components via interfaces. To offer their services com-
ponents may also use, or require, interfaces offered by other components. Interfaces are bidirec-
tional. They specify a set of functions, so called commands, to be implemented by the interface
provider and another set of functions, so called events, to be implemented by the interface user.
This allows for a concise representation of event driven programs. As an illustration an interface
user may call a “send packet” method offered by the interface provider, a radio driver. This
call is non-blocking. As soon as the send is done the interface provides signals, or calls, the
corresponding “send done” event. Typically commands call downwards, i.e. from high level
application towards hardware drivers while events call in the other direction. Programs are built
by wiring together interface providers and interface users.
In nesC concurrency is a first class citizen. The nesC execution model uses only a single stack,
therefore concurrency is managed in an event driven fashion. The nesC language offers language
constructs to call commands, signal events and to defer some task to be run at a later point in
time.
Components are statically linked to each other. This allows a compiler to generate very efficient
code.

1.5 TinyOS

TinyOS[8] is an open source operating system specifically designed for the requirements of
wireless sensor networks. It is programmed in the nesC programming language. TinyOS offers
a very modular driver architecture and has been ported to over a dozen platforms.
In the wireless sensor network community, TinyOS is a widely used standard for the reference
implementation of proposed new algorithms.

1http://www.gps.gov/

http://www.gps.gov/


CHAPTER 1. INTRODUCTION 11

1.6 Goal

The goal and contribution of this thesis is to present a simple and cheap method of synchronizing
wall clock time and a logical sensor network time provided by time synchronization protocols
such as FTSP or GTSP.
Said method is presented in Section 2.1, while Sections 2.2 - 2.6 deal with implementation
issues on the Pixie base station and on Pixie sensor nodes. Chapter 3 evaluates the chosen
approach. A conclusion is reached in chapter 4.



12 1.6. GOAL



2
Design and Implementation

2.1 System Overview

The approach presented in this thesis is intended to be simple and low in cost. Furthermore the
system is designed in a minimally intrusive way, such that precise time synchronization between
sensor network clock and wall clock time can be added to existing networks.

Figure 2.1: High level system view

A high level overview of the proposed system can be found in Figure 2.1. The system consists
of a wireless sensor network, formed by wireless sensor nodes, a base station, and a PC attached
to the base station. The sensor nodes and the base station run among themselves a time syn-
chronization protocol such as FTSP[5] or GTSP[6]. The base station is equipped with a GPS
receiver from which it acquires precise wall clock time information. Although every node could
be equipped with a GPS receiver, a decision has been made to design an application with only
one GPS receiver. This is due to three reasons:

1. GPS receivers are prohibitively expensive to be put in every sensor node.

13



14 2.2. HARDWARE

2. GPS receivers consume a lot of energy. A typical GPS receiver can be expected to require
about 130mW [9] whereas a typical radio transceiver consumes about 60mW when active.
To mitigate this problem radio transceivers are usually turned off for most of the time. This
is either not or only hardly possible with GPS receivers as they have to observe GPS signals
for about 3 to 30 seconds in order to get a good estimate of position and time. Because
one wants to synchronize sensor network and wall clock time pretty often, say every 10
seconds, this means that the GPS receiver has to be turned on all the time.

3. Not all sensor nodes may be able to obtain a sufficient GPS signal, e.g. they may be placed
indoors or in other places with poor or no GPS reception.

The base station periodically acquires wall clock time tWT from the GPS receiver. Whenever
tWT is measured the base station also takes a measurement of the corresponding synchronized
sensor network time, called tGT . Together they form the tuple (tWT , tGT ), which is called a
synchronization pair.

Whenever such a synchronization pair is generated, it is emitted to the PC connected to the
base station. A program on the PC records the synchronization pairs. With the knowledge of
two or more synchronization pairs, software will be able to convert any sensor network time
to its corresponding wall clock time. This process may, but does not have to happen in real
time. Note that the PC might be replaced by any kind of computer. The processing could be
handled by much less powerful systems, even on the base station itself. However, due to the
ease of programming on a PC with very high level languages and the availability of robust and
comprehensive date and time handling libraries, conversion from sensor network to wall clock
time is not handled on the base station. This is a reasonable decision, given that many sensor
network deployments feature a quite powerful computer, e.g. a Laptop or a Gumstix module[10],
connected to their base station.
Given this system architecture, sensor network timestamps associated with measured data may
be converted to wall clock timestamps.

2.2 Hardware

2.2.1 Pixie Node

The Pixie sensor node can be considered a prototyping platform for wireless sensor networks. It
consists of a Meshnetics Zigbit 900 module[11], an onboard antenna, three LEDs and connectors
wired to every pin of the Zigbit 900. The Pixie sensor node does not contain any sensor. For
further information on the Zigbit900 module, see Section 2.2.2.

2.2.2 Zigbit 900

The Zigbit 900 module[11] sold by MeshNetics consists of an Atmel ATMega1281 microcon-
troller, an Atmel AT86RF212 Transceiver and all the necessary passive components. For further
information on the microcontroller and the transceiver see Sections 2.2.3 and 2.2.4 respecively.
The internal wiring of the Zigbit 900is a bit unfortunate. The AT86RF212 features an interrupt
request line indicating the arrival of a new packet. This line is connected to an interrupt pin of the
ATMega1281. This means that timestamping of incoming packets must be done in software, e.g.
the interrupt handler invoked due to reception of packet has to sample the value of a timer reg-
ister as fast as possible. Any atomic sections in different code running on the node this result in



CHAPTER 2. DESIGN AND IMPLEMENTATION 15

jitter. This forms a contrast to platforms such as the MICA2 mote[12], where this timestamping
is done in hardware and thus very robust to long atomic sections.

2.2.3 ATMega1281

The Atmel ATMega1281 microcontroller[13] is an 8 bit low power microcontroller part of At-
mel’s well known AVR series. It features 128 KByte of program memory, 8 KByte of RAM,
6 hardware timers, multiple peripheral interfaces such as an UART, SPI and I2C bus. Some
hardware timers also include capture capability which makes the ATMega1281 well suited for
applications with very precise timing requirements.

2.2.4 AT86RF212

The Atmel AT86RF212[14] is a low power transceiver implementing the IEEE 802.15.4 stan-
dard. The AT86RF212 can be connected to a microcontroller via an SPI interface and a low
number of digital I/O lines. The AT86RF212 is very similar to the AT86RF230[15] which is
extensively used on other wireless sensor platforms such as the IRIS mote[16].

2.2.5 Pixie Base Station

The Pixie base station[17] can be considered superset of the Pixie node presented in Sec-
tion 2.2.1. The Pixie base station is equipped with additional hardware such as a digital tem-
perature sensor, a Flash memory chip for extended long term storage and 4 LEDs. The UART
of the Zigbit 900 module is connected to a Digi Connect ME [18] housed in an enlarged Eth-
ernet jack. The Digi Connect ME is configured as a bride between the Zigbit’s UART and a
TCP/IP network. It is possible to observe the whole serial output of the Zigbit module via a TCP
connection established with the DigiConnectME module.
The Pixie base station also features a u-blox LEA-5H GPS receiver chip[9]. The GPS receiver
is connected to the microcontroller via an I2C bus interface. The reset pin of the LEA-5H chip
can be controlled by the microcontroller. The time pulse line of the GPS receiver is connected
to a capture input pin of the ATMega1281 so as to enable precise timestamping. For further
information on the LEA-5H module, see section 2.2.6.
An overview of the hardware configuration of the Pixie Base station can be obtained from Fig-
ure 2.2.5.

2.2.6 LEA-5H

The LEA-5H GPS module [9] is a GPS receiver manufactured by u-blox. One can interface
to this module via SPI, I2C, RS-232 or USB. The LEA-5H GPS module can be configured to
generate a pulse on a digital I/O line, e.g. to generate a 100ms long pulse at the start of each
UTC 1 second.

2.3 Time Synchronization Protocols

A considerable amount of effort went into enabling the two time synchronization protocols FTSP
and GTSP on the Pixie and the Pixie base station platforms. Those protocols worked out of the
box with millisecond resolution, however, for high precision it has been decided to run time
synchronization with microsecond resolution.

1Universal Coordinated time. See http://en.wikipedia.org/wiki/UTC

http://en.wikipedia.org/wiki/UTC


16 2.3. TIME SYNCHRONIZATION PROTOCOLS

Figure 2.2: A block diagram of the Pixie base station.

2.3.1 The Radio Clock

The AT86RF212 radio module, which is part of the Zigbit module, features a 1Mhz clock output.
Timing experiments conducted with the time pulse feature of the GPS receiver proved the radio
clock to be very stable. The ATMega1281 offers an internal 8MHz RC oscillator, which may be
divided by eight to produce a 1Mhz clock. Due to its stability the radio clock has been preferred
to the internal oscillator. As the Pixie node and the Pixie base station feature no internal connec-
tion between the radio clock output and an input of one of the four timers of the ATMega1281,
an external one had to be soldered. See Figure 2.3 for a picture of such a connection on the Pixie
node. The radio clock is connected to the input of Timer 3 of the ATMega1281.

2.3.2 Modifications in TinyOS

Timers To enable microsecond timing in the time synchronization protocols, the
LocalTimeMicroC component of the meshbean platform was rewired from Timer 1 to
Timer 3. Additionally a new file tos/platforms/pixie/InitThreeP.nc has been created, which over-
rides tos/platforms/mica/InitThreeP.nc. If the macro PIXIE RADIO CLOCK is defined, the new
InitThreeP component configures Timer 3 to use an external clock source, thus making
Timer 3 a 1MHz clock driven by the radio module.

AT86RF212 driver In tos/chips/rf2xx/rf212/RF212DriverLayerP.nc the constant
RX SFD DELAY was changed from 9µs to 29µs. This constant indicates how much time
lapses between the arrival of the SFD (the Start Frame Delimiter, a method of framing used by
IEEE 802.15.4 transceivers) at the antenna and the generation of the corresponding interrupt



CHAPTER 2. DESIGN AND IMPLEMENTATION 17

Figure 2.3: A pixie sensor node. The black wire soldered to the node is the connection between
the radio clock and the input of Timer 3.

by the AT86RF212 module. The procedure used to find the new value for RX SFD DELAY is
detailed in Section 3.1.

2.4 GPS Module

A new interface SetTimePulse was added to the driver for the LEA-5H GPS module. The
interface features only one command, set, which enables one to configure how often the LEA-
5H should generate a time pulse. For this purpose a new file tos/platforms/pixiebase/chip-
s/lea5x/LEA5x.P has been created. It replaces the hitherto existing tos/platforms/pixiebase/chip-
s/lea5x/LEA5xReaderP.nc and incorporates both the already existing and the new time pulse
configuration functionality.
Prior work has shown that the combination of the LEA-5H GPS receiver interfaced via the I2C
bus and TinyOS works only flakily. This is in accordance with observations made during the
work leading up to this thesis. Afer some time, usually in the range of about two minutes, the
LEA-5H module would stop working and both the ATMega1281 and the LEA-5H had to be
reset. According to extensive analysis of the problem, this is due to two reasons: the TinyOS
I2C driver for the ATMega1281 is broken and the protocol specification issued by u-blox[19] is
unspecific and incomplete. u-blox was not willing to share any additional insight on the working
of their protocol. To mitigate this unstable behaviour, two changes have been introduced to the
driver. First, whenever a command is written to the GPS receiver, the driver waits for a fixed
amount of time, in the range of 100 milliseconds, before reading the answer to said command.
Second, the driver now offers a reset interface allowing to reset the GPS receiver.
These changes can not be considered as a solution, they are merely a work-around. They, how-
ever, increased the usable running time of the system from mere minutes to multiple hours.

2.5 Synchronization Pairs

To generate synchronization pairs according to Section 2.1 a new component UTCCorrelateC
has been introduced. It offers the interface UTCCorrelate which allows an application to



18 2.6. REGRESSION

UTCC_MODE_IDLE

UTCC_SIMPLE_WAITTP
SimpleSync started

UTCC_SIMPLE_WAITTIME

Timepulse captured

Date read -> success

Timepulse captured -> error

Figure 2.4: State machine for SimpleSync

trigger the generation of synchronization pairs by invoking the command startSimpleSync.
Generation of a synchronization pair is signalled by the event syncDone. UTCCorrelateC
is implemented according to the state machine shown in Figure 2.4. To enable precise timing,
the time pulse line from the LEA-5H module is connected to the capture input of Timer 3, the
Timer used by the time synchronization protocol. This means that whenever a time pulse occurs,
the current value of Timer 3 is saved in a register and an interrupt is generated. This is all done in
hardware. As long as the capture interrupt gets serviced in less than 216 microseconds, or about
65 milliseconds, even long atomic sections have no influence on the precision of the generated
synchronization pairs.
After generation of a synchronization pair is initiated, UTCCorrelateP waits for the next time
pulse to happen. As soon as said time pulse arrives, UTCCorrelateP initiates a date and time
read out from the LEA-5H module. Additionally the capture value is saved aside. The capture
value is a timestamp of the timepulse expressed in local time. In case the next time pulse happens
before the date read is done, or the read returned an error, the process is considered to be failed.
If the read is successful the saved local timestamp is converted to a global timestamp with the
TimeSync.convertToGlobal command. This global timestamp together with the date and
time read from the LEA-5H is printed via the UART. An example of such a line follows:

syncpair 2009/12/2/13/58/13 692d5911

This line means that wall clock time 2:58:13 PM UTC on December 2, 2009 corresponds to
sensor network time 692d591116. Sensor network time is expressed as a 32 bit unsigned integer,
it is printed in hexadecimal notation.

2.6 Regression

All analysis of synchronization pairs is done on a PC in programs written for the Python[20]
programming language.
Conversion between sensor network and wall clock time is handled by class UTCSync in glob-
altoutc/readsyncpairs.py. An instance of this class may be fed with synchronization pairs by
calling its addsyncline method. addsyncline parses the line and converts the wall clock
time given in the syncpair to a UNIX timestamp. The sensor network time given in the syncpair
needs a little more processing. As sensor network time is expressed using a 32 bit unsigned inte-
ger, time will wrap around after 232 clock ticks. Assuming microsecond precision this means a
wrap around will take place after about one hour. Clearly, this is too early. Therefore UTCSync
detects wrap around conditions and maintains a counter to keep track of how many wrap arounds
have already taken place. Given a 32 bit sensor network time tGT and a wrap around counter
globalmsb one may calculate the extended sensor network time teGT as follows:

teGT = 232 ∗ globalmsb+ tGT



CHAPTER 2. DESIGN AND IMPLEMENTATION 19

4.840 4.845 4.850 4.855 4.860 4.865 4.870 4.875
Extended Sensor Network Time [ticks] 1e9

5

10

15

20

25

30

35

U
T
C

 e
x
p
re

ss
e
d
 a

s 
U

N
IX

 T
im

e
st

a
m

p
 [

s]

+1.26184081e9

Figure 2.5: Example of a linear regression between extended sensor network time and UTC. The
points represent synchronization pairs.

Should this feature work properly, not more than 232 − 1 clock ticks must pass between two
synchronization pairs. This is a reasonable assumption given that one prefers to have fairly
short intervals, such as some seconds, between to synchronization pairs due to clock drift. The
tuple consisting of the extended sensor network time and UNIX time is appended to a regression
table. As soon as there is more than one entry in the linear regression table a linear regression
is calculated. In this linear regression sensor network time is placed on the x-Axis and UTC,
represented with UNIX timestamps, is placed on the y-Axis, see Figure 2.6. Linear regression
yields two values, namely the slope and intercept of the fitted line. Given a sensor network time
tGT the corresponding UTC tWT , expressed as a UNIX timestamp can be calculated as follows:

tWT = tGT ∗ slope+ intercept

Class UTCSync offers a method convertrecent which does exactly the abovementioned
conversion. It has to be noted that this conversion is only valid for events that happened recently
with respect to the last synchronization pair.



20 2.6. REGRESSION



3
Evaluation

3.1 Time Synchronization Protocols

To evaluate the changes presented in Chapter 2 a test setup with three Pixie nodes has been
created. A graphical illustration of the setup may be found in Figure 3.1.

Figure 3.1: Setup to determine the quality of time synchronization. Dashed grey lines indicate
activity of time synchronization protocols, dashed black line indicates transmission of event
timestamp back to the base station.

The three Pixie nodes were assigned the node IDs 1, 4 or 6 respectively. The experiment
setup also consists of a fourth node, the base station, which was a Meshbean900 evaluation kit

21



22 3.2. DEMO APPLICATION

node[21]. The base station was flashed with TinyOS’ BaseStation application and its UART
was connected to a PC. Using the program globaltoutc/beacon.py beacon packets were injected
into the network. All packets observed in the network were dumped to the PC and written to a
file. The three nodes were placed few centimetres away from each other. Therefore a radio signal
sent by the base station arrives at all the nodes at approximately the same time. The difference
between reception times of any two nodes is well under 1ns while timestamping works at 1Mhz.
Whenever a participating node receives a packet it takes a timestamp of the arrival time of said
packet and then waits for a backoff time depending on its node ID. This is a measure taken to
avoid congestion which would arise if all the nodes would try to send their reports at the same
time. After waiting for their respective backoff time, the nodes report the measured timestamp
to the base station. Beacons were injected every four seconds.
At first, only operation of FTSP was tried to be ovserved. FTSP did not behave as expected
but instead showed random offsets and fluctuations. This problem could be solved by installing
version 1.6.7 of the AVR C library[22] in the place of version 1.4.7, which is part of the TinyOS
toolchain. Apparently the floating point arithmetic implementation of version 1.4.7 is buggy.
After the abovementioned floating point issue was resolved, FTSP showed a constant off-
set of 20µs between a node and its parent node in the FTSP tree. Therefore, the constant
RX SFD DELAY was adjusted from 9µs to 29µs. After this change, FTSP was able to achieve
very precise time synchronization, e.g. with time differences between nodes in the order of 3 to
5µs.
GTSP worked “out of the box”. Its precision is very similar to the one offered by FTSP, see
Figure 3.1.
The three nodes employed in the experiment were under very light load, they were just pro-
grammed to respond to beacon packets. Under these conditions software timestamping as em-
ployed by nodes with a Zigbit 900 proved to be sufficient. No experiments were conducted to
determine the behaviour of software timestamping under heavy load. It is however expected that
performance will degrade rapidly.

3.2 Demo Application

To demonstrate the working of the approach proposed in this thesis, a small demonstration appli-
cation has been developed. An application setup consists of one or more Pixie nodes equipped
with accelerometers, a base station capturing all packets sent in the network and a PC. Nodes
are able to detect acceleration events, e.g. knocking on a table, with the accelerometer. When
nodes detect an event they take a timestamp and report this timestamp via the radio. Software
on a PC reads these timestamps and converts them to UTC, thus indicating at what wall clock
time a given event has taken place. The code used to program the sensor nodes can be found in
src/Respond/src/, the code used on the PC can be found in the globaltoutc directory.

3.2.1 Accelerometer

The Pixie nodes have been equipped with a LIS3LV02DQ[23] accelerometer manufactured by
STMicroelectronics, see Figure 3.2.1. The LIS3LV02DQ is a digital 3-axis accelerometer and
can be interfaced to a microcontroller via SPI or I2C bus and features a configurable interrupt
mechanism. The accelerometer may be configured to generate an interrupt when a certain set of
conditions, e.g. acceleration above or below a given threshold, is met.
A driver using the I2C interface was programmed but showed to be unreliable. When writing
packets longer than 2 bytes the I2C implementation provided by TinyOS for the ATMega1281



CHAPTER 3. EVALUATION 23

0 50 100 150 200 250
Sequence number

40

20

0

20

40
T
im

e
 d

if
fe

re
n
ce

 [
u
s]

Node 4 to Node 1
Node 6 to Node 1

Figure 3.2: Example of GTSP time differences. At the start of the experiment it can be observed
how a node running GTSP adapts to the clock of its neighbors.

Figure 3.3: A Pixie sensor node equipped with a LIS3LV02DQ accelerometer connected via the
SPI bus. The extra wire in the lower right corner is attached to Ground.



24 3.2. DEMO APPLICATION

sometimes introduced bogus data into the stream. Therefore, it was decided to re-use the already
existing driver for the LIS3L02DQ[24] accelerometer, an ancestor of the LIS3LV02DQ. This
driver uses the SPI bus to communicate with the accelerometer. To adapt the driver to the new
accelerometer, some addresses of registers had to be changed. Also, the driver was augmented
with new functionality to allow limited configuration of interrupt sources.

3.2.2 Experiment

To verify the demo application an experiment with two Pixie nodes and a Pixie base station
has been conducted. The Pixie base station was used to generate synchronization pairs. The
two Pixie nodes, equipped with accelerometers, were placed on the opposite ends of a table,
the distance between the two nodes being 2.5 metres. Accelerometer events were triggered by
knocking on the table. The network traffic was monitored with a Meshbean900 node. Before
any knocking events were generated it was made sure that the participating nodes were correctly
synchronized.
The synchronization pairs and the network dump from the experiment were used as input for
the program globaltoutc/knocktimes.py. This program reads events from the network dump and
converts their timestamp from sensor network time to UTC. Some sample output is shown below:

event 0x0002 on node 1 happened at 2009/12/26 15:22:00.740895
event 0x0002 on node 4 happened at 2009/12/26 15:22:00.740670
event 0x0003 on node 1 happened at 2009/12/26 15:22:02.089241
event 0x0003 on node 4 happened at 2009/12/26 15:22:02.091243

In the above sample the two nodes, numbered 1 and 4, recorded 2 pairs of events. The time
difference between the registration of the same knock is in the order of milliseconds or below.



4
Conclusion and Further Work

4.1 Conclusion

The goal of this semester thesis is reached. An approach to achieve synchronization between
sensor network time provided by time synchronization protocols and wall clock time was pro-
posed. Said approach was implemented on sensor nodes equipped with a Zigbit900 module and
a base station. The implementation is simple, low in cost and easy to integrate into already ex-
isting sensor network deployments. Sensor nodes do not need to be fitted with any additional
hardware, it suffices for them to run a standard time synchronization protocol. Only one sensor
node, the base station, is equipped with a costly and energy hungry GPS receiver. The conversion
between sensor network time and UTC is handled on a PC, thus enabling easy programming and
guaranteeing access to robust date and time handling libraries.
The implementation was verified using two Pixie sensor nodes equipped with accelerometers.
The sensor nodes registered acceleration events and reported them to a base station. A PC con-
nected to the base station then correlated the sensor network timestamps sent by the Pixie nodes
with timestamps in UTC.
Future applications can now correlate timestamps registered in sensor networks with wall clock
time with high precision. Knowing when data was sampled or when a given event took place
greatly enhaces the value of data recorded in wireless sensor networks. Furthermore, even mea-
surements made in different, independent sensor networks can now be correlated.

4.2 Further Work

Although a basic and working implementation was presented in this thesis, many issues remain
to be solved:

• The TinyOS I2C driver for the ATMega1281 is very unreliable. Especially long writes
lead to spurious behaviour. In order for the LEA-5H driver to operate correctly, the issues
with the I2C driver have to be resolved.

• In order for the issues with the LEA-5H GPS receiver to be solved, the LEA-5H protocol
needs to be better understood. The current implementation is based on an incomplete

25



26 4.2. FURTHER WORK

understaning of the LEA-5H protocol.

• The routines converting sensor network time to UTC are very simple. They could be made
robust by taking into account more information, such as the arrival times of synchroniza-
tion pairs received by the PC.

• No long term experiment has been conducted to verify the approach proposed in this thesis
under real world conditions.



Bibliography

[1] Matthias Keller, Jan Beutel, Andreas Meier, Roman Lim, and Lothar Thiele. Learning from
sensor network data. In SenSys ’09: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 383–384, New York, NY, USA, 2009. ACM.

[2] Geoffrey Werner-Allen, Konrad Lorincz, Matt Welsh, Omar Marcillo, Jeff Johnson, Mario
Ruiz, and Jonathan Lees. Deploying a wireless sensor network on an active volcano. IEEE
Internet Computing, 10(2):18–25, 2006.

[3] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time synchroniza-
tion using reference broadcasts. In OSDI ’02: Proceedings of the 5th symposium on Op-
erating systems design and implementation, pages 147–163, New York, NY, USA, 2002.
ACM.

[4] Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-sync protocol for sensor
networks. In SenSys ’03: Proceedings of the 1st international conference on Embedded
networked sensor systems, pages 138–149, New York, NY, USA, 2003. ACM.

[5] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The flooding time syn-
chronization protocol. In SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, pages 39–49, New York, NY, USA, 2004. ACM.

[6] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchronization in Wireless Sen-
sor Networks. In 8th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), San Francisco, USA, April 2009.

[7] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
The nesc language: A holistic approach to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, volume 38, pages 1–11, New York, NY, USA, May 2003. ACM.

[8] An open-source OS for the networked sensor regime. http://www.tinyos.net/.

[9] LEA-5H GPS receiver module with Flash memory. http://www.u-blox.com/en/
gps-modules/pvt-modules/lea-5h.html.

[10] The gumstix homepage. http://www.gumstix.com.

[11] Zigbit 900 Module. http://www.meshnetics.com/zigbee-modules/
zigbit900/.

[12] MICA2 Data Sheet. http://www.xbow.com/Products/Product_pdf_
files/Wireless_pdf/MICA2_Datasheet.pdf.

[13] Atmel ATMega1281 Data Sheet. http://www.atmel.com/dyn/resources/
prod_documents/doc2549.pdf.

27

http://www.tinyos.net/
http://www.u-blox.com/en/gps-modules/pvt-modules/lea-5h.html
http://www.u-blox.com/en/gps-modules/pvt-modules/lea-5h.html
http://www.gumstix.com
http://www.meshnetics.com/zigbee-modules/zigbit900/
http://www.meshnetics.com/zigbee-modules/zigbit900/
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/MICA2_Datasheet.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf


28 BIBLIOGRAPHY

[14] Atmel AT86RF212 Data Sheet. http://www.atmel.com/dyn/resources/
prod_documents/doc8168.pdf.

[15] Atmel AT86RF230 Data Sheet. http://www.atmel.com/dyn/resources/
prod_documents/doc5131.pdf.

[16] IRIS 2.4 GHz. http://www.xbow.com/Products/productdetails.aspx?
sid=264.

[17] Georg Oberholzer. Gateway for IEEE 802.15.4 based Wireless Sensor Network. 2009.

[18] Digi Connect ME - Secure network device server module. http://www.digi.com/
products/embeddedsolutions/digiconnectme.jsp.

[19] u-blox 5 Protocol Specification. http://www.u-blox.com/images/
downloads/Product_Docs/u-blox5_Protocol_Specifications(GPS.
G5-X-07036).pdf.

[20] The Python Programming Language. http://python.org/.

[21] Meshbean900. http://www.meshnetics.com/dev-tools/meshbean/.

[22] The AVR C Library. http://www.nongnu.org/avr-libc/.

[23] LIS3LV02DQ Data Sheet. http://www.st.com/stonline/products/
literature/ds/11115.pdf.

[24] LIS3L02DQ Data Sheet. http://www.st.com/stonline/products/
literature/od/10175.pdf.

http://www.atmel.com/dyn/resources/prod_documents/doc8168.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc8168.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc5131.pdf
http://www.atmel.com/dyn/resources/prod_documents/doc5131.pdf
http://www.xbow.com/Products/productdetails.aspx?sid=264
http://www.xbow.com/Products/productdetails.aspx?sid=264
http://www.digi.com/products/embeddedsolutions/digiconnectme.jsp
http://www.digi.com/products/embeddedsolutions/digiconnectme.jsp
http://www.u-blox.com/images/downloads/Product_Docs/u-blox5_Protocol_Specifications(GPS.G5-X-07036).pdf
http://www.u-blox.com/images/downloads/Product_Docs/u-blox5_Protocol_Specifications(GPS.G5-X-07036).pdf
http://www.u-blox.com/images/downloads/Product_Docs/u-blox5_Protocol_Specifications(GPS.G5-X-07036).pdf
http://python.org/
http://www.meshnetics.com/dev-tools/meshbean/
http://www.nongnu.org/avr-libc/
http://www.st.com/stonline/products/literature/ds/11115.pdf
http://www.st.com/stonline/products/literature/ds/11115.pdf
http://www.st.com/stonline/products/literature/od/10175.pdf
http://www.st.com/stonline/products/literature/od/10175.pdf

	Title
	Contents
	1 Introduction
	1.1 Wireless Sensor Networks
	1.2 Time Synchronization Protocols
	1.3 The Global Positioning System
	1.4 nesC
	1.5 TinyOS
	1.6 Goal

	2 Design and Implementation
	2.1 System Overview
	2.2 Hardware
	2.2.1 Pixie Node
	2.2.2 Zigbit 900
	2.2.3 ATMega1281
	2.2.4 AT86RF212
	2.2.5 Pixie Base Station
	2.2.6 LEA-5H

	2.3 Time Synchronization Protocols
	2.3.1 The Radio Clock
	2.3.2 Modifications in TinyOS

	2.4 GPS Module
	2.5 Synchronization Pairs
	2.6 Regression

	3 Evaluation
	3.1 Time Synchronization Protocols
	3.2 Demo Application
	3.2.1 Accelerometer
	3.2.2 Experiment


	4 Conclusion and Further Work
	4.1 Conclusion
	4.2 Further Work

	Bibliography

