
MusicExplorer PartyDJ

January 6, 2010

Adrian Waeber, awaeber@ee.ethz.ch
Daniel Waltisberg, wdaniel@ee.ethz.ch

Advisor: Michael Kuhn

Supervisor: Prof. Dr. Roger Wattenhofer

Abstract

The way how people listen to music has changed significantly in the past years, and
the topic of playlist generation grew to an important topic. While many existing ap-
proaches for playlist generation are based on single users, we focus on playlist gener-
ation for a group of people, in particular when a group of people socialize at a private
party.
First, users need to communicate their taste. For this task, we benefit from the possi-
bilities of the social community Facebook and created an application where users have
the possibility to define their favourite and also not liked music. Knowing these pref-
erences, we divide the task of playlist generation in two subtasks, namely the selection
of songs and the sorting of these songs in a way that there are nice transitions. For each
of these two subtasks we present two approaches.
The Map of Music was used as similarity measurement for songs. For the selections
of songs, the first approach of the song selection is based on weighting all songs in the
embedding of the Map of Music with different gaussian distributions and the second ap-
proach focusses especially on the artists that were selected by the users. For the sorting
of the selected songs, we worked in the first approach with clusters and in the second
approached with an adapted version of the nearest neighbour algorithm.
For playlist verification, we built an application which uses YouTube as music source
and we performed two user studies with it. This application can also be used as a
player for a party.

Contents

1. Introduction 5

2. Related Work 7
2.1. General Related Work . 7
2.2. Map of Music . 9

3. PartyDJ Architecture 11
3.1. Facebook Application . 11
3.2. Playlist Generation . 12
3.3. DJ Player . 12

4. Facebook Application 13
4.1. Integration to Facebook . 13
4.2. Collecting User Data . 13
4.3. Guessing Coordinates of New Songs and Artists 14
4.4. 2-Dimensional Representation of Music 14
4.5. User Interface . 15

4.5.1. Select Music . 15
4.5.2. Parties . 17
4.5.3. Map of Music . 18

5. Playlist Generation 19
5.1. Processing of User Input . 19

5.1.1. Gaussian Distribution . 19
5.1.2. Artist Distribution . 27

5.2. Transitions . 27
5.2.1. Clustering . 27
5.2.2. Travelling Salesman . 29
5.2.3. Examples . 30

6. DJ Player 32
6.1. Playing Songs . 32
6.2. User Interface . 32

6.2.1. Login system . 32
6.2.2. Generate and Load Playlists . 33
6.2.3. The Playlist . 33

3

Contents

6.2.4. Adding Songs . 34
6.2.5. YouTube Movies . 35

7. User Studies 36
7.1. Questions . 36
7.2. Results . 37
7.3. Conclusions . 38

7.3.1. First study . 38
7.3.2. Second study . 38

8. Conclusion and Future Work 39

A. Study Results 40
A.1. First study . 40

A.1.1. User Information . 40
A.1.2. Playlist Evaluation . 42

A.2. Second study . 44
A.2.1. User Information . 44
A.2.2. Playlist Evaluation . 44

B. List of Figures 48

C. List of Tables 49

D. Bibliography 50

4

1. Introduction

In the last years the world of music and the way how people listen to it have changed
significantly. Ten years ago the main medium for music were CDs. In the last years
more and more people have their music stored in a digital form on their computer
or mp3-player. Nowadays, also the possibilities of Web 2.0 platforms like Facebook1,
last.fm2 or YouTube3 for listening to music are widely used. In this way, people do not
even have to store music locally, they can, for example, just watch the video clips they
like on YouTube and share the links to the clips with their friends on Facebook. Nowa-
days, it is not a rarity that a song on CD is sold just hundreds or thousands of times, but
watched millions of times on YouTube. This shows how important alternative ways of
listening to music have become.
In this thesis we want to take advantage of Web 2.0 platforms and build an application
on top of it. We are interested to find new ways to select music in situations when peo-
ple socialize. In particular, we focused on the scenario of a private party. Some time
ago, people had to agree on a CD to play, resulting in long sequences of songs of a
given artist or album. Also, the party guests often brought their own CDs to enlarge
the party’s music collection on the one side, and to make sure their favorite songs will
be played on the other side. Nowadays, as mentioned above, the music selection is
typically based on large collections of digitally stored music, which is either played in
some random fashion, or by (tedious) manual selection carried out by the host or some
guests. The goal of this thesis is to provide sophisticated methods for collaborative
music selection that go beyond random or manual decisions, and that take the guests’
preferences into account and maximizes the guests’ satisfaction during the party.

In the recent research at the ETH Zürich the Map of Music (for details see Section 2.2)
was created. In this thesis, the advantages of this existing map are combined with in-
formation from social websites like Facebook and last.fm. While the music map can
provide information about music similarity, the social web can provide information
about the party guests’ behavior and preferences.
In particular, there are the following problems, which are solved in this thesis:

• Find ways to extract the party guests’ music taste and describe it using the Map of
Music.

• Find algorithms that (semi-)automatically create song sequences that maximize

1http://www.facebook.com
2http://www.last.fm
3http://www.youtube.com

5

1. Introduction

the audience’s satisfaction, based on the taste of the individual guests.

• Include direct feedback throughout the party to give a better control.

• Choose suitable sources of music.

• How can people be attracted to use the system?

By taking all these problems into account we come up with an application, which is
called PartyDJ in the following.

In Chapter 2, we present relevant related work to the topic of playlist generation and
group recommendation and also the existing projects which belong to the Map of Music.
Chapter 3 to 6 are the technical parts of the work and describe the details of the PartyDJ
application and its components.
The results of two user studies through Facebook are presented in Chapter 7.

6

2. Related Work

2.1. General Related Work

There exist many approaches and applications around the topic of generating "intelli-
gent" playlists. The most famous ones are probably last.fm, which provides an online
music player that plays tracks the user likes (or is expected to like), and the Genius
function of Apple iTunes, which creates playlists with your tracks according to its pop-
ularity measurements provided by the iTunes servers.
Another famous webapplication is the internetradio Pandora4. Pandora is an auto-
mated music recommendation and Internet radio service created by the Music Genome
Project. Users enter a song or artist that they enjoy, and the service responds by playing
selections that are musically similar. Users provide feedback on approval or disap-
proval of individual songs, which Pandora takes into account for future selections [7].
A last webapplication, we want to mention here, is the Music Artist Cloud5, which pro-
vides a cloud of artists similar to the entered one and the possibility to watch YouTube
videos from all of them.

In the following paragraph we mention some approaches for generating user specific
playlists - and this is the main difference to our project: these (and also many other)
approaches have all the idea to generate playlists for one specific user and not for a
group of users like in PartyDJ.
PATS (Personalized Automatic Track Selection)[25] generates playlists that suit a partic-
ular context-of-use, that is, the real-world environment in which the music is heard (i.e.
party, romantic evening, traveling,...). To create playlists, it uses a dynamic clustering
method in which songs are grouped based on their attribute similarity. An inductive
learning algorithm is used to reveal the most important attribute-values for a context-
of-use from preference feedback of the user. In details, a user has to choose a start song
and after that PATS generates and presents a playlist, which includes the selected song
and songs that are similar to the selected one. While listening, a music listener indicates
what songs in the playlist do not fit the intended context-of-use.
Flexer et. al [12] present an algorithm which generates playlists based on a start and
end song. It has, like in PartyDJ also, the goal of smooth temporal transitions, allowing
users to discover new songs in a music collection. In contrary to the Map of Music, this
approach is based on audio similarity.

4http://www.pandora.com
5http://musicartistcloud.appspot.com/

7

2. Related Work

The approach by Andric et al.[10] is quite similar to the one used in the Map of Music
(see next section). It ignores metadata and instead focuses on examining the listening
habits. Algorithms are presented that track the listening habits and form a so called lis-
tener model - a profile of listening habits. The listener model is then used for automatic
playlist generation. Examples of tracked listening habits and consequences are: "if a
track is played often a short time ago, it is expectable that it will be played in the near
future" or "if a group of tracks is played together a number of times recently, it is quite
likely for the whole group to be played in the same order in the near future as well".
An other approach is by Aucouturier et al.[16]. The playlists are generated automati-
cally from a set of so-called global constraints, which specify properties of the whole
list. Examples for such constraints are: "All Different" (the playlist should no contain
the same title twice), "Duration" (it should not last more than 80 minutes), "Continuity"
(the genre of a song should be close to the genre of the next song), "Progression" (the
sequence should contain songs with increasing tempo, etc.). It is shown that in general
the computation of playlists among such combined constraints is NP-hard.

The problem of finding results for a group and not just a single user is treated in [13].
According Jameson et al. the 4 subtasks of a group recommender are:

1. acquiring information about the user’s preferences

2. generating recommendations

3. explaining recommendations

4. helping users to settle on a final decision

Point 4 represents a difference to our approach: we search for a whole list of songs
where it is possible that sometimes one user is happy and somtimes another one. But
according Jameson et al. the system is supposed to make recommendations concerning
just one decision, e.g. watch a film or go to a restauran with a group of people. There
exist several possible goals for such an application like maximizing average satisfac-
tion, minimizing misery or ensuring some degree of fairness.
A sample application that is also treated in the thesis above is Flytrap [11], an intelligent
group music recommender. Flytrap is a group music environment that knows its users’
music tastes and can automatically construct a soundtrack that tries to please everyone
in the room. The system works by paying attention to what music people listen to on
their computers. This information can be sent to a base station in the room over RFID
badges.

A last application that comes close to our project is Flycasting [17]. Flycasting stands
for on the fly broadcasting and can be used for online radio stations. The goal of Fly-
casting is to create playlists that matches the musical preferences of an online radion
station’s current listeners best. As the audience changes, the type and style of songs
being played should also change to match the audience’s consensus tastes. It uses col-
laborative filtering techniques to generate a playlist in real-time based on the request

8

2. Related Work

histories of the current listening audience.

2.2. Map of Music

The PartyDJ project belongs to a series of master and semester thesis in the Distributed
Computing Group (DCG) at the ETH Zürich which can be outlined as the Map Of Mu-
sic, whose general idea is presented in [23]. This Euclidean map was created in pre-
vious projects and contains more than 500’000 songs. It places similar songs close to
and distinct songs far apart from each other. Music similarity information is thereby
derived from information from last.fm, which provides the information according to
users’ listening behaviour and therefore no meta tags are necessary. The Map Of Music
exhibits several advantages in terms of applications. It allows, for example, to quickly
find songs similar to each other, to define regions of interest, etc. Based on this map, the
music-explorer website6 was developed. It provides a similarity based view on music
collections.
In the whole project, the source for the music, i.e. songs, artists and genres, is the em-
bedding of the Map of Music. The distances between songs in the Map of Music are taken
into account in the final application to play songs (see page 32) in a well arranged way.
We used some parts of a previous project based on the Map of Music: YouJuke [20]. You-
Juke is a webapplication to play songs from the Map of Music. For doing this it uses
the YouTube API and plays the videso from YouTube. You can see how it works on the
official webpage7.

Other papers belonging to the Map of Music are:

• Mobile Music Explorer [24], a mobile application, which allows users to create
playlists by specifying trajectories onthe map and to use similarity based search
methods to navigate through their personal music collections.

• Alternative exploration schemes for mobile devices, taking advantage of the high-
dimensional music similarity space. In [18] an Android based prototye applica-
tion is presented for the approaches of visual and acoustic navigation.

Based on these two papers, the newest mobile application museek for Android devices
was developed and can be downloaded on the official webpage8 (actual version: v0.915,
December 2009). At the first glance, museek looks like an ordinary music player, but it
provids some entirely new ways of interacting with a music collection:

• Browsing through album covers in two or three dimensions.

6http://www.musicexplorer.org
7http://www.youjuke.org
8http://www.museek.ethz.ch

9

2. Related Work

• A smart shuffling mode remembers skipped tracks and can thus avoid not liked
music styles.

• Automatically generated tag-clouds allow a fine-grained selection of the music
one wants to play.

• A novel search mode is able to search similar artists.

10

3. PartyDJ Architecture

With the PartyDJ project it is possible to celebrate private parties, on which music,
that the guests should mostly like, is (semi-) automatically played. To realize such an
application, different steps are needed. In our approach we come up with three steps:

1. Collect data about users’ preferences of music and store it to a database.

2. Bring these input together and generate playlists that maximize the users’ satis-
faction.

3. Play the songs during the party.

To connect these three steps, data has to be stored in one step and reloaded in the fol-
lowing one. We use a database on the servers from the Distributed Computing Group
at the ETH Zürich to do this.
In all three steps the existing Map of Music (see Section 2.2), which provides information
about music similarity, is used. The database of the songs in the map is also called em-
bedding. In the first step, the music preferences which can be selected by the users are
the songs, artists and genres which are available in the embedding. In the second step
the similarity of songs in the map is used to generate playlists, which are finaly played
in third step.

The whole application is built with the Google Web Toolkit (GWT) [3], a develop-
ment toolkit for building and optimizing complex browser-based applications. With
this toolkit most of the programming work can be done in Java.

According the three mentioned steps, the whole PartyDJ project consists of three main
parts, which are shortly described in the following as an overview. For a more detailed
description of each component see chapters 4, 5 and 6.

3.1. Facebook Application

To collect data about the preference of music of the users, who will join the party, we
decided to use Facebook due to its growing popularity. It’s an obvious approach to
use the aid of such a famous social community to come up with an application for a
situation when people socialize. Therefore, we created on Facebook the application

11

3. PartyDJ Architecture

"MusicExplorer PartyDJ"9, which can be used if you are loged in to Facebook. There
exist different methods for the users to submit their preferences (see Section 4.2). All the
inputs by the users are stored to our database. Additionally, the Facebook application
provides the possibility to create and join parties (see Section 4.5.2) and to get visual
representation of the Map of Music (see Section 4.5.3).

3.2. Playlist Generation

When the data is collected, it can be loaded from our database and different algorithms
are used to process the user inputs and to rate them (see Section 5.1). From the subset
of songs with high ratings, two different transition techniques (see Section 5.2) are used
to generate playlists, which will also be stored in our database.

3.3. DJ Player

Finally, during the party only this component is needed. The player is based on the ex-
isting project YouJuke10 and allows to play the songs from the generated playlist, which
are loaded from our database. To be able to do this, YouTube is used as music source
and videos are included to the DJ Player. It is also possible to add songs manually
during the party to improve user satisfaction.

9http://apps.facebook.com/musicexplorerpartydj
10http://www.youjuke.org

12

4. Facebook Application

4.1. Integration to Facebook

Nowadays, many people are present in social networks and many parties are published
through them, in particular through Facebook. We decided to build the application for
Facebook in order to benefit from the possibilities of such a network. With having the
application in Facebook, it is simpler to invite other users for a party and to advertise
the application to a bigger audience.
Also the storage of user specific data is quite trivial because every Facebook user has
a unique ID. So all needed data for a user can be stored into the PartyDJ database
according to this ID, no additional registration procedure is needed.
The only disadvantage of Facebook is that there exists no really good Java API that can
be integrated into the Google Web Toolbox. We decided to handle the authentification
process via PHP, as described in [9].

4.2. Collecting User Data

The main functionality of the Facebook application is to collect data about the users’
taste of music. In particular, the users can say if they like oder dislike songs, artists and
genres. This can be done in three ways.

1. The users can give their opinion about randomly presented songs, artists and gen-
res from the embedding. There are only songs and artists presented which have
a minimum value of popularity (this information is taken from last.fm). The dif-
ferent music genres are chosen according to [6] and [1] and some modern genres
like jumpstyle or hands up, for example, are added manually.

2. It is also possible to manually add songs, artists and genres, with the restriction
that they have to be already present in the embedding. Otherwise there exist no
coordinates in the Map of Music.

3. The fastest and simplest way of adding data is made for users who have a last.fm
profile. They can simply import songs and artists from their scrobbled data and
decide, which ones they would like to listen to at the party. In contrary to the

13

4. Facebook Application

second method, with this one it is also possible to add songs which are not yet
present in the embedding. How this can be done is described in Section 4.3.

All inputs of the users are stored to our database according to his unique Facebook ID
and are reloaded when he logs in another time.

4.3. Guessing Coordinates of New Songs and Artists

If a user wants to add a song or an artist from his last.fm profile, which is not yet present
in the embedding, this can be done in the following way.
For an unknown artist, a request will be sent to the last.fm API [2] to get similar artists.
Based on these the coordinates for the unknown artist in the 10 dimensional space are
calculated as the mean values of the coordinates of the similar ones. If none of the sim-
ilar artists is in the embedding, then the unknown artist can’t be added.
Unknown songs receive just the coordinates of their artist, so they will be put in the
center of mass of the artist.
Because of the ongoing process of crawling data from last.fm (as mentioned on page
11), coordinates of songs and artists from last.fm can easily be guessed. But if the songs
or artists are that new, that they are not yet crawled, then it is actually not possible to
add the song to the embedding.

4.4. 2-Dimensional Representation of Music

The problem of highdimensional data is always its representation for human users.
During the event "Nacht der Forschung"11, another project that uses the Map of Music
was presented. For a user friendly visualisation, a two dimensional representation was
needed. A principal component analysis with the centroids of the most relevant genres
was used and the songs were distributed according to the distances to them.
For our application, we used this two dimensional representation to visualise the user
inputs (see Section 4.5.3), the Map of Music after the gaussian weighting (see Section
5.1.1) and after the clustering (see Section 5.2.1), and to visualise the playlist transitions
(see Section 5.2.3).

11An evening in Zürich at which the universities show current research projects to the public, see
http://www.nachtderforschung.ch

14

4. Facebook Application

4.5. User Interface

The user interface of the Facebook application consists of the three tabs "Select Music",
"Parties" and "Music Map".

4.5.1. Select Music

Figure 4.1.: Select music tab in the Facebook application

15

4. Facebook Application

If the user is logged in to Facebook and the application is loaded, the application looks
like in Figure 4.1.

In the "Give your Opinion" part the users can manually enter songs, artists and gen-
res and tell if they like or dislike it. They can also do this for randomly chosen items,
with the possibility to skip it if they do not know it or do not want to rate the entry.
The manual input is handled with suggestion boxes based on the data in the embed-
ding. The limitation is, that the users can just enter songs, artists and genres which are
present in the embedding, as mentioned in Section 4.2.
In the "Your Data" part all the liked and disliked entries of users are stored and loaded
everytime they log in to Facebook. Here it is also possible to delete the entries if the
users have changed their opinion about one.

Figure 4.2.: TopTracks for a period of 3 months from Last.FM

With the "LastFM Connector" part the application gives a possibility to last.fm users to

16

4. Facebook Application

collect data from their profile. In particular they can load their LovedTracks, TopTracks
or TopArtists (these are songs and artist, which the user mostly listened to it) for a
chosen period (overall, last year, last 6 months, last 3 months, last week). Received
TopTracks, for example, can look like in Figure 4.2.
The users can now check, which tracks they want to add to their liked songs in the
Facebook application.

4.5.2. Parties

Figure 4.3.: Create and join parties

In the upper part of the second tab called "Parties" the details of all upcoming parties
are shown. Here users can see, who is joining a specific party and they can check, if
they plan to join this party themself. If they do so, their inputs in the first tab will take
into account for the playlist generation (see chaper 5) for this party.
In the lower part the users have the possibility to create their own party. For doing
this, they have to give the party a name, pick a date, give start and end time in correct
format, enter a location and optionally enter a link to a website. Finally, they also have
to define a password, which will be needed to load the playlists and all data for the
party in the DJ Player (see Section 6.2.1).

17

4. Facebook Application

4.5.3. Map of Music

In the last tab, the users can see where their liked (green) and disliked (red) songs are
placed in a 2-dimensional representation of the Map of Music (see Figure 4.4). To show,
where the different music genres are placed, the centers of mass from the most popular
genres in the PartyDJ database are shown in the lower picture.
The brightness of the different parts in the map represents the density of songs at these
points. This means that in bright parts of the map are much more songs placed than in
darker parts.

Figure 4.4.: Liked and disliked songs in a 2-dimensional representation

18

5. Playlist Generation

From the user input, we get three different kinds of music information which are used
to specify the music taste of a user, namely songs, artists and genres that the user likes
or dislikes.
The final goal of the playlist generation is to create a playlist which pleases most of the
people. This is hard, especially if the group is mixed with people with different music
tastes. Imagine for example that half of the users likes "Hip Hop" and the other half
prefers "Trance". Rahter trying to find songs which are very liked by both groups, we
choose the most liked songs by each group and accept, that there will be songs which
are not liked by all people. But it can then be switched between these music styles and
the overall satisfaction should be maximized.
The task of playlist generation can therefore be subdivided into two tasks. First, we
have to process the user inputs and select those songs which correspond to the wishes
of the user. This task is done with two different approaches in Sections 5.1.1 and 5.1.2.
Secondly, we have to arrange the songs in such a way, that the transitions are nice, but
that there is still enough variety during the playlist. Two approaches that are trying to
fullfil this transistion requirement are discussed in Sections 5.2.1 and 5.2.2.

5.1. Processing of User Input

The first approach of user input processing is based on weighting all songs in the em-
bedding of the Map of Music with different gaussian distributions. The idea of the
weighting based on gaussian distributions is, that songs, which are similar, are near to
each other in the Map of Music (see Section 2.2) and should therefore receive a positive
weight. After the weighting process, the songs with the highest weights are selected
and used for the transition task.
The second approach is based on the main result of the previous one which states that
the selected artists play an important role in the selection of the playlist songs.

5.1.1. Gaussian Distribution

We have a set of songs S = (s1, s2, . . . , sL), a set of artists A = (a1, a2, . . . , aM) and a
set of genres G = (g1, g2, . . . , gN) which were selected by the users. For each artist a we

19

5. Playlist Generation

have a set of songs Sa which were produced by this artist and for each genre g we have
a set of songs Sg which were tagged by the genrename.
The Map of Music provides us 10-dimensional coordinates ~xi = (xi1, . . . , xid)

T for each
song i in the embedding. Each song i will be weighted by the songs, artists and genres
that were selected by the users. For a song sl ∈ S, an artist am ∈ A and a genre gn ∈ G,
the weighting functions of a song i in the embedding are denoted as vsl(i), vam(i) and
vgn(i). The final combination of these weights is discussed in Section 5.1.1.6.

5.1.1.1. Visualisation

At each weighting process, we used the two dimensional representation described in
Section 4.4 to visualise the weigth distribution among all songs in the embedding. Each
rectangle consists of the sum of all distributed weights in that region. Regions with
positive values are green and regions with negative values are red. As user input we
selected all songs, artists and genres which were registered for our applications.

5.1.1.2. Fairness

To guarantee fairness between the users, the contribution of weights by each user is
limited. If the maximal contribution of one user is reached, the weights are distributed
uniformly among all selections off this user.
For each song sl ∈ S, each artist am ∈ A and each genre gn ∈ G, this yields to a weight
of psl , pam and pgn .

5.1.1.3. Weighting based on Songs

To describe a music taste, the most precise way is to use a set of songs which the user
likes or dislikes, but because of the large number of required songs it is also quite time
consuming for the user. Based on the basic assumption that similar songs lie near to
each other in the Map of Music, not only the selected song are weighted, but also the
songs which are similar to the chosen one. The Map of Music gives a measure of simi-
larity when looking at the distance between the songs.
For each song sl ∈ S, each song i in the embedding is weighted according to a Gaussian
distribution

v̂sl(i) = psl exp
(
− 1

2σ2 |~xi − ~xsl |
2
)

(5.1)

with fixed variance σ2.
For faster computation, a kd-tree12 was used to determine the neighboorhood Nsl of

12See http://en.wikipedia.org/wiki/Kd_tree

20

5. Playlist Generation

songs within distance dmin. The distance dmin has been set to the distance at which the
weight of a song i would be lower than 1% compared to the maximum value, that is

dmin = σ
√

2 ln(100). (5.2)

For all songs i outside Nsl , no weighting is applied, that is to say

vsl(i) =

{
v̂sl(i) if i ∈ Nsl

0 else
(5.3)

Additionally, we limit the sum of distributed weights by a single song sl ∈ S to a fixed
amount. Starting at the nearest song to the center, we stop as soon as the sum of the pre-
viously distributed weights exceeds the limit. This restriction is needed because there
exist songs which lie at the very same position. If one wouldn’t limit the weightening,
all songs at the position would get the maximal weights and this would be unfair to
other songs.
The weighting result based on the user selected songs is visualised in Figure 5.1.

Figure 5.1.: The Map of Music after the weighting with the user selected songs.

5.1.1.4. Weighting based on Artists

Using a specific artist, we are able to address a big number of songs at once. The idea
of weighting according to artists instead of single songs is driven by the fact that if one

21

5. Playlist Generation

likes a song of an artist, one often likes the other songs of the artist as well.
For the weighting process of an artist am ∈ A, we select the set of songs Sam pro-
duced by this artist and weight them according to the artist weight pam . This yields to
a weighting of

vam(i) =

{
pam if i ∈ Sam
0 else

(5.4)

for a song i and a specific artist am.
The weighting result based on user selected artists is visualised in Figure 5.2.

Figure 5.2.: The Map of Music after the weighting with the user selected artists.

5.1.1.5. Weighting based on Genres

For the weighting based on genres, we used the additional information of tag names
which are avaible through last.fm. For a specific genre gn ∈ G, we have a set of songs
Sgn which contained a tag which matches with the name of the genre. From this collec-
tion of songs, we built a 10-dimensional gaussian distribution N(~µgn ,Σgn) with expec-
tation

~µgn =
1

|Sgn |
∑

~xg∈Sgn

~xg =

µgn1

...
µgnd

 (5.5)

22

5. Playlist Generation

and the 10× 10 dimensional covariance matrix

Σgn =

σ11 · · · σ1d
...

. . .
...

σd1 · · · σdd

 , where (5.6)

σkl =
1

|Sgn |
∑
~x∈Sgn

(xk − µgnk
)(xl − µgnl

). (5.7)

This yields to the the scaled density function

fgn(~x) =
1

|Σgn |1/2
· exp

(
−1

2
(~x− ~µgn)TΣ−1gn (~x− ~µgn)

)
. (5.8)

For normalisation and fairness reasons, we introduce a genre normalisation constant
cgn for each genre gn. The genre constants are chosen in such a way that the distributed
weights among all songs in the embedding E is equal for all genres, that is

cgn =

(∑
~x∈E

fgn(~x)

)−1
. (5.9)

For each genre gn in the setG of selected genres, all songs in the embedding are weighted
according to the gaussian distribution N(~µgn ,Σgn) and with weight cgn ·pgn . For a song
i with coordinates ~xi and a genre gn, this yields to a weighting according to

vgn(i) = cgn · pgn · fgn(~xi). (5.10)

The weighting result based on user selected genres is visualised in Figure 5.3.

5.1.1.6. Combination

For each song i in the embedding, the total weight is computed according to

v(i) = ws ·
∑
sl∈S

vsl(i) + wa ·
∑
am∈A

vam(i) + wg ·
∑
gn∈G

vgn(i) (5.11)

The hard part of the merging of the different evaluation schemes is to find the parame-
ters ws, wa and wg in such a way, that each part of information has an useful influence
on the final set of songs.
For an estimation of a good set of parameters, crossvalidation was used. For the cross-
validation, 10% of the positive user selected songs were removed. For a fair comparison
between different weights, we calculate the average value of the removed songs after
the evaluation and divide it with the songvalue required for entering the playlist with

23

5. Playlist Generation

Figure 5.3.: The Map of Music after the weighting with the user selected genres.

the top100 songs. We call this factor efficiency, because it shows how good the algo-
rithm performs. This efficiency calculation was repeated for different song, artist and
genre weights and averaged for different removed songs.
In the following figures, the influece of the weights is displayed. In Figure 5.4, the song
weight against efficiency for different genre weights and fixed artist weight is plotted.
In Figure 5.5 and Figure 5.6, the influece of the artist weight against efficiency for dif-
ferent parameters is plotted.

From these figures, the following can be concluded:

• Comparing the efficiency for song and genre weighting, the weight of the genre
weighting seems to have no useful influence.

• Looking at the efficiency for artist weighting, the efficiency yields to best results
when maximizing the weight of the artist weighting.

This leads to the assumption that the artist evaluation is the best tool to create good
playlists. An approach that is based on this result is presented in the next section.
Because there is no maxima in the plots, we select parameters at which the efficiency
is high and each weighting has some influence. The two dimensional representation of
the weighting with weights ws = 5, wa = 10 and wg = 3000 is presented in Figure 5.7.

24

5. Playlist Generation

Figure 5.4.: Song weight against efficiency for different genre weights and fixed artist
weight

Figure 5.5.: Artist weight against efficiency for different genre weights and fixed song
weight

25

5. Playlist Generation

Figure 5.6.: Artist weight against efficiency for different song weights and fixed genre
weight

Figure 5.7.: The Map of Music after the weighting with user selected songs, artists and
genres.

26

5. Playlist Generation

5.1.2. Artist Distribution

From the conclusions of the previous section, a new songselection method was imple-
mented to find a list of songs which should be used for the transition step. The selection
of the songs is done in the following steps:

1. Add songs that were selected by the users to the list. The number of songs per
user that is added to this list is limited inverse proportional to the number of users
that partizipate at the party.

2. From the set of artists that were either selected by the users or belonged to the
songs that the users selected, pick a random artist. From all songs of this artist,
choose a random song that has at least some minimal popularity and add it to the
list.

3. Repeat step 2 until wished size of list is reached.

We added also an additional constrait, so that the number of songs by the same artist is
limited.

5.2. Transitions

After the user input processing, we know the songs that should be played in the playlist
to satisfy the users. The next step is to order the songs in such a way, that there is a good
mixture of variety and locality. The transitions should be smooth, but it should also be
avoided to stay too long in one music region. We use the coordinates from the Map of
Music as the measure of similarity.
The first approach to this task is to look out for clusters in the selected playlists. With
these clusters, we can control the time that we want to stay in each cluster and much
more. This approach is discussed in section 5.2.1.
The second approach is based on the similarity between our problem and the travelling
salesman problem (TSP) [8]. The TSP is the task of visiting a list of cities in such a man-
ner that each city is visited once and the overall travelled distance is minimal. A simple
solution to the TSP is the nearest neighbour algorithm (also called greedy algorithm).
Implementing the nearest neighboor algorithm for our task would lead to smooth tran-
sition, but there would be very small variety. Therefore we adapted the algorithm as
discussed in section 5.2.2.

5.2.1. Clustering

The task of clustering arises in many applications like machine learning, data mining,
pattern recognition or image analysis. A very popular approch is the K-Means algo-
rithm by Stuart P. Lloyd as discussed in [19]. A broad discussion of clustering algorithms

27

5. Playlist Generation

can be found in [14], but we will use the K-Means algorithm because of its simplicity.

5.2.1.1. K-Means algorithm

The K-Means algorithm, adapted for songs in the Map of Music, proceeds by selecting
K initial songs as cluster centers and then iteratively do the following:

1. Assign each song to its closest cluster center

2. Replace the center of each cluster by the mean of the coordinates of its assigned
songs

The algorithm converges when there are no further changes in the assignment of the
songs to the clusters.
There are two shortcomings with theK-Means Algorithm. First, the number of clusters
K has to be estimated. Second, the algorithm converges to local minimas and there is
no guaranty that this is a global minima. Additionally, we have to note that although
the initial songs can be chosen arbitrarily, the algorithm is fully deterministing, given
the staring centers.
To overcome these shortcomings, we run the algorithm multiple times with different
K value and different initial songs and use cluster validity methods to find the best
clustering. We used the Davies-Bouldin index. Other Cluster validity methods are dis-
cussed in [21] and [22].
The Davies Bouldin index is a function of the ratio of the sum of within-cluster scat-
ter to between-cluster separation. The within-cluster dispersion di of a cluster Ci can
be measured by the average distance of the songs associated with the cluster and the
cluster center µi:

di =
1

|Ci|
∑
y∈Ci

d(µi, y) (5.12)

with d(x, y) the distance between the coordinates x and y.
Between two clusters Ci and Cj , the similartiy measureRij is the sum of the the within-
cluster dispersion over the distance between the two centers µi and µj , see

Rij =
di + dj
d(µi, µj)

(5.13)

From this, the DB index is defined as

DB =
1

K

K∑
i=1

Ri, where (5.14)

Ri = max{Rij |1 ≤ j ≤ K, i 6= j} (5.15)

To avoid having too many small clusters, the clustering with the best DB is postpro-
cessed in such a way, that too small and low rated clusters are split up and the songs
distributed to the nearest cluster center.

28

5. Playlist Generation

5.2.1.2. Playlist Generation

From these clusters, the playlist is generated with the following procedure:

1. Set the number of songs per walk through of each cluster proportional to the
number of songs in the corresponding cluster.

2. Set a randomly chosen song of a randomly chosen cluster as start song.

3. Add songs of the current cluster in a greedy manner.

4. Select all those clusters that have been visited the fewest. Choose the nearest
cluster of them as the next cluster.

5. Make a smooth transition from the current song to the center of the next cluster
by adding songs lying inbetween.

6. Go to step 3 until the expected playlistsize is reached.

The fifth step needs some more explanation. All songs of the embedding were loaded
into a kd-Tree [4] and the path from the start coordinates to the end coordinates was
divided into multiple positions between them. The number of positions was set pro-
portional to the distance. For each position, the surrounding songs were selected and
the one with the highest popularity value was added to the playlist.

5.2.2. Travelling Salesman

Another way of generating smooth transitions is to implement the nearest neighbour-
hood algorithm. The nearest neighbour algorithm choses the nearest unvisited city as
next move. For N cities randomly distributed on a plane, the algorithm yields on aver-
age to a length of l = 1.25 ·exact_shortest_length, which is remarkably good. It has also
to be noted, that the start and endpositions have not to be the same, which yields to a
further improvement. Of course, there exist many specially arranged city distributions
which make the algorithm make a very bad route decision, as described in [15]. For our
setting, the simplicity of the algorithm weights out its shortcomings.
The implemention of a solution of the travelling salesman problem would lead to very
smooth transitions, but probably not enough variety. Therefore, we extend the nearest
neighbourhood algorithm, that is

1. Select a number of songs randomly from the remaining songs

2. Perform the nearest neighbourhood algorithm through these songs

3. Go to step 1 until all songs are added

This algorithm leads to quite smooth transitions and enough variety.

29

5. Playlist Generation

5.2.3. Examples

To visualise the cluster results and the difference between the two playlist creations
algorithms, we used the two dimensional representation of the Map of Music described
in Section 4.4. As input, we used the top100 songs, which were the result of the gaussian
distribution with all user inputs.
In Figure 5.8, the songpositions belonging to different clusters are displayed. It shows
the clustering corresponding to the best DB index. Some of the clusters seem to be
improvable, but it has to be noted that the clustering itself is done in the 10 dimensional
space. Therefore it is not a surprise that the clustering seems a bit strange in the two
dimensional representation. The backgroup of the figure shows the density of songs in
the Map of Music. If there are many songs in a region, the rectangle is bright.

Figure 5.8.: Best clustering result for a set of songs

In Figure 5.9, the songs and path of the playlist received by the clustering method is
shown. It is to remark, that not all songs presented in Figure 5.8 are part of the playlist,
but instead there are songs which are part of the playlist, but not of the clustering. This
arises from the smooth transition step at which additional songs of the embedding were
added.

The result of the playlist generation with the adapted travelling salesman algorithm is
displayed in Figure 5.10. Compared to the clustering method, there seem to be bigger
hops and it looks more chaotic.

30

5. Playlist Generation

Figure 5.9.: Generated playlist for the clustering algorithm

Figure 5.10.: Generated playlist for the salesman algorithm

31

6. DJ Player

Shortly before the party starts and during the party, only the DJ Player application is
needed, which can be reached on the provided player website13. The application is a
web application because it needs connection to the database with all the songs in the
Map of Music and also to YouTube for playing videos.

6.1. Playing Songs

We built our DJ Player on top of the YouJuke Player14. The YouJuke Player consists of
a client application, which is used by the party hosts, and an admin access, which is
used for supervision and bug detection. In [20] the architecture of the YouJuke Player
is described in detail.
We use YouTube as music source. A large number of songs in the embedding can
be found on YouTube and additionally, we have the possibility to play videos. The
YouTube API15 has a wide range of functions. For our application, we use its ability to

• find songs and videos,

• filter bad quality videos,

• play them with the embedded YouTube player,

• and control the state of the player, such as playing the next song, when actual
song is finished).

6.2. User Interface

6.2.1. Login system

When the organizer of the party opens the player website, he first has to log in to his
party. In a listbox he can see all the upcoming parties and can choose his one and log
in with the password defined while creating the party (see Section 4.5.2).

13http://pc-5413.ethz.ch/PartyDJPlayer/
14http://www.youjuke.org/YouJuke/YouJuke.html
15http://code.google.com/apis/youtube

32

6. DJ Player

6.2.2. Generate and Load Playlists

In the main window of the player the organizer can do (or redo) the playlist creation by
clicking on the "Generate Playlists" button (see Figure 6.1). By doing this, the process
of playlist generation is started.
Once the generation of the playlists is done, one of them can be chosen from the listbox
below. There are five playlists which can be selected. The first one is created by using
random songs in the Map of Music. The other were created by each combination of the
two user procecessing methods and the two transistion methods, see Section 5.

6.2.3. The Playlist

Once a playlist is selected, the player appears as shown in Figure 6.1.

Figure 6.1.: PartyDJ player with loaded playlist

But the playlist does not have to be used as it is.The interface allows some modifica-

33

6. DJ Player

tions: On the right of each song there are symbols to delete or move the song with drag
and drop and certainly to play it and songs can be added manually as described in the
next section.
Actually playing songs are marked green.

6.2.4. Adding Songs

It is also possible to add songs manually during the party. Through the suggestion box,
the partyguests can enter songs, which are present in the embedding and they will be
placed where it best matches with the other songs. It uses the coordinates of the Map of
Music to find the position in the playlist where the distance to the two adjoining songs
is minimized. Manually inserted songs are marked orange, as shown in Figure 6.2.

Figure 6.2.: PartyDJ player with manually added songs

All the changes in the playlist can be saved with the "Save Changes in Playlist" button.

34

6. DJ Player

6.2.5. YouTube Movies

For playing the songs, a YouTube player is integrated to the application. It plays videos
for the songs, which can be found with the YouTube API. If the video is in bad quality
or you just want to chose another one, a popup with alternative videos can be loaded
by clicking at "Find better video".

35

7. User Studies

We have done two user studies to improve and evaluate the quality of our application.
In an early stage of developing the PartyDJ application, we started the first user study
with some of our friends on Facebook. The goal of this study was, that we receive some
input from the users for better taking their preferences into account. With this aid it
was easier to define some parameters in the processing users input step (Section 5.1)
for the playlist generation.
In the final stage we have done a second study with members of the Distributed Com-
puting Group at the ETH Zürich for a final evaluation of the PartyDJ application.

7.1. Questions

First, we asked the users in both studies some general questions about their age, taste
of music and behaviour concerning Facebook and parties.
Form the user inputs, we created different playlists.

Playlists in the first study

1. User Random Playlist: This playlist is the simplest one, it just makes a random
shuffling over all explicitly liked songs from the users who join the party

2. User Weighted Playlist: This playlist just makes a random shuffling over the
best rated songs without using clustering or adapted nearest neighbourhood al-
gorithm

3. Smooth Playlist: The main playlist which take into account all the calculated
values for the songs and the clustering

Playlists in the second study

1. Random Shuffeled Playlist: This playlist is the simplest one, it just makes a ran-
dom shuffling over randomly selected songs from the embedding

2. Random Sorted Playlist: This playlist uses randomly selected songs and sorts
them with the adapted nearest neighbourhood algorithm (see Section 5.2.2)

3. User Shuffeled Playlist: This playlist is created using the songselection method
based on artists as described in Section 5.1.2, but without any sorting

36

7. User Studies

4. User Sorted Playlist: This playlist is created using the songselection method
based on artists as described in Section

In the main part we asked always the same questions, once for every generated playlist.
The users should imagine to be at a party and listen to the playlists and rate it. We asked
questions, whose answers can be given in the likert scale [5]. This means, that they have
the following possible answers (in brackets the value for mean and standard deviation
calculation):

• Strongly disagree (-2)

• Disagree (-1)

• Neither agree nor disagree (0)

• Agree (+1)

• Strongly agree (+2)

Because all of the users (in the firs study) were from Switzerland or Germany, we have
written the questions in German. We asked the following:

1. Ist der eigene Geschmack gut vertreten? (How well is your taste present?)

2. Bietet die Playlist einen guten Ablauf? (Has the playlist good transitions?)

3. Wie viel Abwechslung bietet die Playlist? (How much alternation is in the playlist?)

4. Wie stark regt die Playlist zum tanzen an? (How much does the playlist animate
to dance?)

5. Gesamteindruck der Playlist (Overall impression of the playlist)

Only in the second study we also pleased the users to rate 11 songs from each of the
four playlists.

7.2. Results

All detailed results from the studies can be found in appendix A. Here, we present the
main.
Unfortunately most of the results in the first study are not in a statistical significant
area, but it can clearly be seen, that the users’ tastes are best present in the first playlist.
The users also mostly prefered this playlist.
In the second study we have a bit more statistical relevance. Playlists 3 and 4 clearly
better represent users’ tastes (mean value: 0.3) than playlists 1 and 2 (mean value: -
0.8). Also the 11 chosen songs from the playlists are better rated in playlists 3 and 4.
Regarding the results from questions 2 and 5, the sorting seems not improve transition
quality, but this result is not in a statistical significant area.

37

7. User Studies

7.3. Conclusions

7.3.1. First study

The main conclusion from this study is, that users, who enter songs in the Facebook
application and go to the party, primarily want to hear the songs, they have added. A
smooth flow of the playlist does not have a high priority.
Because of this conclusion we gave a big "bonus" to all the songs that users added to
their liked songs. In this way it is guaranteed, that this songs will appear in the playlist
at the party. There is only one restriction about this: per user appears at most a certain
fraction of the songs to ensure fairness between users. The fraction is proportional to
the fraction a user takes from all users, e.g. if 20 users give inputs and the party has a
duration of 6 hours, then 5 songs from his liked songs ar randomly taken (5 songs ∼= 18
min ∼= 5% of 360 min).

7.3.2. Second study

From the rating of the 11 songs per playlist can be seen, that the explicitly chosen songs
from the users have a higher mean value than the other ones. Therefore, the decision,
taken after the first study, to rate these songs higher and make sure that they are played
is justified.
The second study showed that it is really a hard problem to satisfy all people, especially
if the tastes of music diverge highly. With our approach we have at least a clear benefit
against randomly chosen songs. Comparing the sorted playlists with the unsorted,
there seems to be no improvent in user satisfaction. We question this result because it
is hard to imagine to be at a party if there is no one. For a fair evaluation of playlist
transition satisfaction, it would be needed to celebrate real parties.

38

8. Conclusion and Future Work

To realize the final goal of a "good" playlist, it is important to have knowledge about the
music taste of the users, who will listen to the playlist. With this knowledge the song
selection and song arranging can be done in different ways.
The task of collecting data about users taste of music was solved with an application
for Facebook which also uses the the existing Map of Music and the social music com-
munity last.fm as source for songs, artists and genres. This application was used in two
user studies and worked quite well.
In contrary to related approaches of playlist generation, which have the goal of gener-
ating playlists for a single user, we wanted to generate playlists for a group of people
in the context of a private party. The evaluation of the two user studies showed, that
this is really a tough problem, especially if we have a heterogeneous group of people
where the tastes of music vary significantly between the users.
Figure 5.7 on page 26, which was created from the inputs of users who participated in
one of the two studies, shows how difficult it is to find songs which most of the peo-
ple would like. From the figure we can see, that certainly some songs in the region of
"Hardstyle" and "Hands Up" should be played and songs in the Region of "Indie Pop"
and "Blues" should be avoided. But what about other regions? It seems to be really im-
possible to find a playlist of songs which satisfies all people all the time and therefore
it is not surprising that the average satisfaction of the users in our studies is not very
high. The satisfaction is at least higher then for random playlists.
The evaluation of the first study showed, that for the users it is essential, that the songs,
which they have personally entered, will really be played at the party. This is a fact
which is also clear from the view of a DJ: if a person gets to the DJ at a party and wishes
one specific song, then he really want to hear this song and not a song which seems
to be quite similar. Finally when the DJ plays this song, the person is happy and his
satisfaction is maximized for that moment.
It is also not really clear, how the satisfaction at a real party would be. We just gen-
erated the playlists with our algorithms and pleased the users to rate them. It would
be an interesting topic to organise several parties with different created playlists for a
better verification of our approaches.

39

A. Study Results

In the following we present the received results from our two user studies.

A.1. First study

A.1.1. User Information

In the first study with our friends, 20 people have rated songs, artists and genres with
the Facebook application.
11 of them also gave their opinion about the playlists.

Mean age: 19.1
Gender: 10 male, 1 female

Figure A.1.: Favorite musicstyle of the users

40

A. Study Results

Figure A.2.: How often do they go to parties

Figure A.3.: How much time would they give to rate entries in Facebook

41

A. Study Results

A.1.2. Playlist Evaluation

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

1 0 1 5 4 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

1 2 4 3 1 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 0 8 2 1 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

0 1 2 5 3 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 0 1 4 4 2 Gesamteindruck gut

Table A.1.: Playlist 1 with random shuffled liked songs

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

1 1 4 3 2 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

0 2 3 4 2 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 1 8 2 0 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

0 4 3 3 1 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 0 3 4 2 2 Gesamteindruck gut

Table A.2.: Playlist 2 with random shuffled weighted songs

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

0 5 4 2 0 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

0 3 5 0 3 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

1 0 7 2 1 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

0 5 3 3 0 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 0 4 4 4 2 Gesamteindruck gut

Table A.3.: Playlist 3 generated according to clustering

42

A. Study Results

Question Playlist mean std.dev.
Ist der eigene Geschmack gut vertreten? Playlist 1 1.00 1.13

Playlist 2 0.36 1.15
Playlist 3 -0.27 0.75

Bietet die Playlist einen guten Ablauf? Playlist 1 0.09 1.08
Playlist 2 0.55 0.99
Playlist 3 0.27 1.14

Wie viel Abwechslung bietet die Playlist? Playlist 1 0.36 0.64
Playlist 2 0.09 0.51
Playlist 3 0.18 0.94

Wie stark regt die Playlist zum tanzen an? Playlist 1 0.91 0.90
Playlist 2 0.09 1.00
Playlist 3 -0.18 0.83

Gesamteindruck der Playlist Playlist 1 0.64 0.88
Playlist 2 0.27 1.05
Playlist 3 0.09 0.67

Table A.4.: Mean values and standard deviations

Figure A.4.: Comparison of the three playlists in the first study

43

A. Study Results

A.2. Second study

A.2.1. User Information

In the second study with people of the Distributed Computing Group, 8 people have
rated songs, artists and genres with the Facebook application.
5 of them also gave their opinion about the playlists.

Mean age: 30.6
Gender: 4 male, 1 female

A.2.2. Playlist Evaluation

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

2 1 2 0 0 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

2 2 0 1 0 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 0 3 0 2 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

3 1 1 0 0 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 3 1 1 0 0 Gesamteindruck gut

Table A.5.: Playlist 1 with random shuffled songs

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

1 2 1 1 0 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

1 2 1 1 0 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 1 1 1 2 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

3 0 1 1 0 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 1 2 2 0 0 Gesamteindruck gut

Table A.6.: Playlist 2 with random sorted songs

44

A. Study Results

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

1 1 1 1 1 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

1 1 2 1 0 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 0 1 1 3 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

3 2 0 0 0 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 1 2 0 1 1 Gesamteindruck gut

Table A.7.: Playlist 3 with selected shuffled songs

-2 -1 0 +1 +2
Mein Geschmack ist
schlecht vertreten

0 1 1 2 1 Mein Geschmack ist gut
vertreten

Der Ablauf der Playlist ist
schlecht

1 2 0 2 0 Der Ablauf der Playlist ist
gut

Die Playlist hat zuwenig
Abwechslung

0 0 1 2 2 Die Playlist hat zuviel Ab-
wechslung

Bei dieser Playlist würde
ich nicht tanzen

1 2 1 1 0 Bei dieser Playlist würde
ich tanzen

Gesamteindruck schlecht 1 1 2 1 0 Gesamteindruck gut

Table A.8.: Playlist 4 with selected sorted songs

45

A. Study Results

Question Playlist mean std.dev.
Ist der eigene Geschmack gut vertreten? Playlist 1 -1.00 0.89

Playlist 2 -0.60 1.02
Playlist 3 0.00 1.41
Playlist 4 0.60 1.02

Bietet die Playlist einen guten Ablauf? Playlist 1 -1.00 1.10
Playlist 2 -0.60 1.02
Playlist 3 -0.40 1.02
Playlist 4 -0.40 1.20

Wie viel Abwechslung bietet die Playlist? Playlist 1 0.80 0.98
Playlist 2 0.80 1.17
Playlist 3 1.40 0.80
Playlist 4 1.20 0.75

Wie stark regt die Playlist zum tanzen an? Playlist 1 -1.40 0.80
Playlist 2 -1.00 1.26
Playlist 3 -1.60 0.49
Playlist 4 -0.60 1.02

Gesamteindruck der Playlist Playlist 1 -1.40 0.80
Playlist 2 -0.80 0.75
Playlist 3 -0.20 1.47
Playlist 4 -0.40 1.02

Bewertung von 11 Songs der Playlist Playlist 1 -1.40 0.80
Playlist 2 -0.80 0.75
Playlist 3 -0.20 1.47
Playlist 4 -0.40 1.02

Table A.9.: Mean values and standard deviations

46

A. Study Results

Figure A.5.: Comparison of the four playlists in the second study

47

B. List of Figures

4.1. Select music tab in the Facebook application 15
4.2. TopTracks for a period of 3 months from Last.FM 16
4.3. Create and join parties . 17
4.4. Liked and disliked songs in a 2-dimensional representation 18

5.1. The Map of Music after the weighting with the user selected songs. 21
5.2. The Map of Music after the weighting with the user selected artists. . . . 22
5.3. The Map of Music after the weighting with the user selected genres. . . . 24
5.4. Song weight against efficiency for different genre weights and fixed artist

weight . 25
5.5. Artist weight against efficiency for different genre weights and fixed

song weight . 25
5.6. Artist weight against efficiency for different song weights and fixed genre

weight . 26
5.7. The Map of Music after the weighting with user selected songs, artists and

genres. 26
5.8. Best clustering result for a set of songs . 30
5.9. Generated playlist for the clustering algorithm 31
5.10. Generated playlist for the salesman algorithm 31

6.1. PartyDJ player with loaded playlist . 33
6.2. PartyDJ player with manually added songs 34

A.1. Favorite musicstyle of the users . 40
A.2. How often do they go to parties . 41
A.3. How much time would they give to rate entries in Facebook 41
A.4. Comparison of the three playlists in the first study 43
A.5. Comparison of the four playlists in the second study 47

48

C. List of Tables

A.1. Playlist 1 with random shuffled liked songs 42
A.2. Playlist 2 with random shuffled weighted songs 42
A.3. Playlist 3 generated according to clustering 42
A.4. Mean values and standard deviations . 43
A.5. Playlist 1 with random shuffled songs . 44
A.6. Playlist 2 with random sorted songs . 44
A.7. Playlist 3 with selected shuffled songs . 45
A.8. Playlist 4 with selected sorted songs . 45
A.9. Mean values and standard deviations . 46

49

D. Bibliography

[1] Allmusic Genres. Allmusic. – URL http://allmusic.com/cg/amg.dll?p=
amg&sql=73:p. – Zugriff am 9. Dezember 2009

[2] API - Last.fm. Last.fm. – URL http://www.lastfm.de/api. – Zugriff am 9.
Dezember 2009

[3] Google Web Toolkit. Google. – URL http://code.google.com/intl/de-CH/
webtoolkit/. – Zugriff am 10. Dezember 2009

[4] KD Tree. Wikipedia. – URL Seehttp://en.wikipedia.org/wiki/Kd_tree.
– Zugriff am 23. Dezember 2009

[5] Likert scale. Wikipedia. – URL http://en.wikipedia.org/wiki/Likert_
scale. – Zugriff am 11. Dezember 2009

[6] List of music styles. Wikipedia. – URL http://en.wikipedia.org/wiki/
List_of_music_styles. – Zugriff am 9. Dezember 2009

[7] Pandora (music service). Wikipedia. – URL http://en.wikipedia.org/wiki/
Pandora_%28music_service%29. – Zugriff am 23. Dezember 2009

[8] Travelling Salesman Problem. Wikipedia. – URL http://en.wikipedia.org/
wiki/Travelling_salesman_problem. – Zugriff am 23. Dezember 2009

[9] User:Google Web Toolkit. Facebook Developers. – URL http://wiki.
developers.facebook.com/index.php/User:Google_Web_Toolkit.
– Zugriff am 10. Dezember 2009

[10] A. ANDRIC, G. H.: Automatic playlist generation based on tracking user’s listening
habits. Springer Science + Business Media. May 2006

[11] A. CROSSEN, K. H.: Flytrap: Intelligent Group Music Recommender. IUI’02, San
Francisco, California, USA. 2002

[12] A. FLEXER, M. Gasser G. W.: Playlist Generation Using Start and End Song. ISMIR
2008. 2008

[13] A. JAMESON, B. S.: Recommendation to Groups (in: The Adaptive Web). Springer-
Verlag, Berlin, Germany. 2007

[14] FUNG, G.: A Comprehensive Overview of Basic Clustering Algorithms. 2001

[15] G. GUTIN, A. Z.: Traveling salesman should not be greedy. 2001

50

http://allmusic.com/cg/amg.dll?p=amg&sql=73:p
http://allmusic.com/cg/amg.dll?p=amg&sql=73:p
http://www.lastfm.de/api
http://code.google.com/intl/de-CH/webtoolkit/
http://code.google.com/intl/de-CH/webtoolkit/
See http://en.wikipedia.org/wiki/Kd_tree
http://en.wikipedia.org/wiki/Likert_scale
http://en.wikipedia.org/wiki/Likert_scale
http://en.wikipedia.org/wiki/List_of_music_styles
http://en.wikipedia.org/wiki/List_of_music_styles
http://en.wikipedia.org/wiki/Pandora_%28music_service%29
http://en.wikipedia.org/wiki/Pandora_%28music_service%29
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://wiki.developers.facebook.com/index.php/User:Google_Web_Toolkit
http://wiki.developers.facebook.com/index.php/User:Google_Web_Toolkit

D. Bibliography

[16] J. AUCOUTURIER, F. P.: Scaling Up Music Playlist Generation. Sony Computer Sci-
ence Laoratory, Paris, France. 2007

[17] J. FRENCH, D. H.: Flycasting: On the Fly Broadcasting. DELOS Network of Excel-
lence Workshop, Dublin City, Ireland. 2001

[18] L. BOSSARD, R. W.: Visually and Acoustically Exploring the High-Dimensional Space
of Music. IEEE International Conference on Social Computing (SocialCom), Van-
couver, Canada. August 2009

[19] LLOYD, S.: Least squares quantization in pcm. 1982

[20] M. CALIN, M. Kuhn R. W.: Jukebox - An Intelligent Online Music Player. ETH Zürich.
April 2009

[21] M. HALKIDI, M. V.: Cluster validity methods: part I. 2002

[22] M. HALKIDI, M. V.: Cluster validity methods: part II. 2002

[23] M. LORENZI, M. Kuhn R. W.: FromWeb to Map: Exploring the World of Mu-
sic. IEEE/WIC/ACM International Conference on Web Intelligence (WI), Sydney,
Australia. December 2008

[24] O. GOUSSEVSKAIA, R. W.: Exploring Music Collections on Mobile Devices. Inter-
national Conference on Human-Computer Interaction with Mobile Devices and
Services (MobileHCI), Amsterdam, Netherlands. September 2008

[25] S. PAUWS, B. E.: PATS: Realization and User Evaluation of an Automatic Playlist Gen-
erator. IRCAM, Centre Pompidou, Paris, France. 2002

51

	Introduction
	Related Work
	General Related Work
	Map of Music

	PartyDJ Architecture
	Facebook Application
	Playlist Generation
	DJ Player

	Facebook Application
	Integration to Facebook
	Collecting User Data
	Guessing Coordinates of New Songs and Artists
	2-Dimensional Representation of Music
	User Interface
	Select Music
	Parties
	Map of Music

	Playlist Generation
	Processing of User Input
	Gaussian Distribution
	Artist Distribution

	Transitions
	Clustering
	Travelling Salesman
	Examples

	DJ Player
	Playing Songs
	User Interface
	Login system
	Generate and Load Playlists
	The Playlist
	Adding Songs
	YouTube Movies

	User Studies
	Questions
	Results
	Conclusions
	First study
	Second study

	Conclusion and Future Work
	Study Results
	First study
	User Information
	Playlist Evaluation

	Second study
	User Information
	Playlist Evaluation

	List of Figures
	List of Tables
	Bibliography

