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Abstract

Future requirements of embedded systems can only be fulfilled using mul-
tiprocessor systems. One challenge of these systems is to efficiently program
applications. The DOL framework addresses this problem by allowing the spec-
ification of applications as Kahn process networks and by mapping these appli-
cations to multiprocessor architectures.

This semester thesis proposes a set of benchmark applications which can be
used to evaluate the peak computational performance and peak communication
bandwidth of applications executing on several heterogeneous multiprocessor
systems in which inter-processor communication is achieved via message pass-
ing.

These applications have been designed as synchronous data flows and have
been developed within the DOL framework. In a second step, several alter-
native configurations of them have been used to evaluate the performance of
the Sony/Toshiba/IBM Cell Broadband Engine. To this end, the existing DOL
code generation back-end for the CBE has been revisited and improved so that
the corresponding run-time environment can be used as a reliable platform for
experiments.
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1
Introduction

The advancements in semiconductor technologies have led to the emergence of
the system-on-chip (SoC), which enables more and more functionality to be
integrated on a single chip. With the increasing complexity of modern appli-
cations (e.g. multimedia, telecommunications, signal processing), traditional
single processor architectures can no longer meet the demanding performance
requirements. Nowadays, the trend of embedded system design is moving from
single processor architectures toward heterogeneous multiprocessor SoC archi-
tectures. This shift calls for new methodologies as traditional ad-hoc approaches
fall short of dealing with the complexity and heterogeneity of multiprocessor
SoCs. The design of future MPSoCs requires a scalable hardware-software de-
sign approach, including scalable applications, scalable architectures and scal-
able design techniques.

Figure 1.1.: Main aims of the SHAPES project

1.1. Motivation and Contribution

In the previously described context, there is always a need for applications that
can be used to evaluate and demonstrate the consequences of newly developed
techniques. Examples are:

1



2 Introduction

• evaluate accuracy of formal performance analysis methods by comparing re-
sults from simulation and formal analysis for different applications

• evaluate performance of MPSoC run-time environments by running different
applications

• evaluate performance of design space exploration by comparing predicted
performance and actual performance for different applications and different
configurations of the same application

In order to support these activities, the main contribution of this semester
project has been the design and implementation of a benchmark set consisting
of streaming applications that can be easily parametrized to efficiently execute
on different MPSoCs. In particular, the applications are targeted at hetero-
geneous MPSoCs with a distributed memory architecture where the individual
processors communicate via message passing. Execution of the applications has
been demonstrated on a multiprocessor platform, the Sony/Toshiba/IBM Cell
Broadband Engine, to evaluate their performance.

1.2. Background

1.2.1. SHAPES Project

The European SHAPES (Scalable Software/Hardware Architecture Platform
for Embedded Systems) project [1] aims at developing a complete MPSoC hard-
ware platform and the according design flow [2]. The main objectives of the
SHAPES project are to investigate the tiled hardware paradigm, to experiment
with real-time and communication aware system software, and to validate the
hardware and system platform through a set of benchmarking applications.

The SHAPES hardware is a new MPSoC architecture, which intends to be
highly scalable in computation power and communication capacity. A tiled
architecture consists of predefined processing tiles which are connected to each
other. SHAPES uses heterogeneous tiles, which consist of a RISC processor,
a VLIW (very long instruction word) DSP, a distributed network processor
and on-tile memories and peripherals [1]. A very important issue is scalability,
which means that an application should be portable to any different SHAPES
hardware architecture without much effort. Specifically, it should be possible
to map an application onto architectures with largely different amounts of tiles.

The software stack is composed of three layers: the application, the operating
system (OS) and the hardware dependent software (HdS). The two lower layers,
the OS and the HdS, run locally on each processor. Another part of the software
framework is the distributed operation layer (DOL), the purpose of which is to
map the application to the underlying multiprocessor architecture. DOL is
discussed in more detail later in this chapter.

The tiled architecture approach has certain advantages, it is however difficult
for an application to fully exploit its potential. There may be long delays be-
tween distant tiles, overloaded communication resources, or the application may
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not expose enough parallelism. In all these cases, the architecture’s full comput-
ing power cannot be exploited. The system software therefore has to make sure
that the applications are executed efficiently on the SHAPES hardware, while
minimizing the effort required for the application programmer. This is the main
software challenge. Two key points are considered: first, as the system itself
is highly parallel, so should be the application. The application programmer
must be able to fully expose the algorithm’s parallelism to the SHAPES plat-
form, which makes it necessary to break with the conventional way of writing
an application. But even if the application is written in a way that exposes the
parallelism well, this information about the algorithmic structure must be pre-
served by the SHAPES system software. Second, the system software must be
fully aware of important architectural parameters like bandwidth, computing
capabilities and latencies [3], [4], [5].

1.2.2. Distributed Operation Layer

As has already been mentioned, one major software aspect regarding MPSoC de-
sign is finding an optimal mapping for an application onto an allocated hardware
architecture. SHAPES’ distributed operation layer (DOL) [6] is a platform-
independent programming framework, developed at the Computer Engineering
Laboratory at Swiss Federal Institute of Technology (ETH), which addresses
this challenge.

To use DOL to find a mapping, the designer must specify the application to
be mapped. The specification exposes the parallelism of the application and is
completely separated from any architectural aspects. DOL uses Kahn process
networks [7] as the model of computation. A process network is composed of
processes which are connected by first-in first-out (FIFO) channels. Processes
can only perform local computations, read data from input channels and write
data to output channels. The structure of the process network, a directed graph
whose nodes represent processes and whose directed edges represent communi-
cation channels, has to be specified in XML. The functionality of the application
is defined by the behaviour of the processes. Each process has to be specified in
plain C/C++ whereby a set of DOL specific coding rules has to be respected.

A specification has to be given for the target architecture too. It is also
defined in XML and contains structural, performance, and parametric data.
The structure specifies the platform’s resources such as processors, memories,
hardware channels and their interconnections. Performance data give informa-
tion about clock frequencies, communication delays, throughputs and therelike.
Parametric data can for example define memory sizes or operating system pa-
rameters. As the mapping optimization is performed at the system level, such
an abstract representation of the architecture is sufficient.

The application and architecture specifications are the input of DOL. To
obtain a base for optimization decisions, profiling data of the application and
the hardware are collected first. Functional simulation of the application reveals
the number of process invocations and the amount of data transmitted over each
channel in the specified process network.

An iterative design space exploration and estimation cycle then tries to find



4 Introduction

optimal mappings of the application onto the architecture. Mapping includes
the binding of processes to processors and communication channels to hardware
channels as well as scheduling of shared resources. Exploration of mappings is
based on evolutionary algorithms. Candidate solutions are then analyzed and
simulated. Performance estimation results are fed back into optimization for
further improvements. Mappings are also represented in XML.

DOL targets an efficient execution of parallel applications on a heterogeneous
MPSoC. It makes the design process scalable and keeps it flexible. The resulting
mapping can be used by other tools to generate the program code for the
different processors. An overview about the role of the DOL framework in
the MPSoC design flow is given in Figure 1.2 [8], [9].

Figure 1.2.: Flowchart of the DOL Framework

1.3. Related Work

A large number of benchmark suites, consisting of general-purpose and/or
streaming applications, have been developed for the evaluation of multicore
systems. Only a few of them, though, have been designed to target hetero-
geneous MPSoCs with a distributed memory architecture, where inter-process
communication is achieved via message passing. Below some well-known bench-
marks are listed along with a short explanation of the reasons why they do not
correspond to the specifications of the envisioned streaming benchmark suite.

• EEMBC MultiBench [10]: Designed to evaluate scalable symmetrical multi-
core processor (SMP) architectures with shared memory.

• PARSEC [11], [12]: Designed to evaluate shared-memory chip-multiprocessors
(CMPs).
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• MediaBench II [13]: Designed to evaluate shared-memory video processors
and systems.

• ALPBench [14]: Incorporating complex multimedia applications to be run
over shared-memory multiprocessor architectures.

• MPIBench [15], SKaMPI [16]: Targeting heterogeneous platforms with dis-
tributed memory, focusing on performance measurement of message passing
interface (MPI) communication routines.

• PARKBENCH [17]: Implementing computationally intensive general-purpose
(not streaming) applications to be run on heterogeneous distributed-memory
multicore systems.

• STREAM Benchmark [18]: Single synthetic benchmark program targeting
both shared- and distributed-memory parallel architectures, focusing on mea-
surement of sustainable memory bandwidth of them.

• StreamIt [19]: Including benchmarks in StreamIt programming language for
the evaluation of streaming optimizations (made by StreamIt compiler) and
architectures. This benchmark suite seems to be the one closest to our goal,
however translation of StreamIt code into C/C++ requires considerable ef-
fort.

1.4. Outline

The remaining part of this thesis is organised as follows. In Chapter 2, the
benchmark applications which are proposed to measure the peak performance
as well as the peak communication bandwidth of diverse MPSoC architectures
are presented. In Chapter 3, these applications are used to evaluate the run-time
environment of the DOL for the Cell Broadband Engine. Chapter 4 concludes
the thesis by summarizing its main contributions and outlining possible future
work.





2
Benchmark Applications

2.1. Application Requirements

This section describes the requirements of the envisioned benchmark set of
streaming applications.

The applications belonging to this set should be implemented in a platform-
independent manner as Kahn process networks in the DOL framework. This
means that each application is expressed as a network of concurrently execut-
ing processes that communicate via point-to-point FIFO channels. While the
distributed operation layer allows to specify general Kahn process networks,
the benchmark applications should restrict to the synchronous dataflow model
(SDF) [20]. The benchmark suite should contain applications that allow to de-
termine the following properties of an MPSoC (and the run-time environment
running on top of it):

1. peak performance in terms of floating point operations per second

2. peak bandwidth of FIFO communication between processors and peak
aggregate bandwidth of FIFO communication on the entire MPSoC

The benchmark applications should be executable on the following architec-
tures that differ with respect to the computation, communication, and memory
resources:

• Sony/Toshiba/IBM Cell Broadband Engine [21]

• Atmel DIOPSIS 940 [3]

• MPARM [22]

• 32-bit and 64-bit AMD and Intel processors

7



8 Benchmark Applications

Based on existing run-time environments and software synthesis back-ends
contained in the distributed operation layer, the different platform-specific im-
plementations can be automatically derived from the platform-independent ap-
plication specification. This results in the following requirements for the speci-
fication of each application:

• Platform independence: Due to the different target architectures, the applica-
tions are written in a platform-independent manner. This regards 32-/64-bit
compatibility as well as the endianness of data. For instance, the Cell Broad-
band Engine contains 64-bit processors with big endian byte order whereas
the ARM9 processor contained in the Atmel DIOPSIS 940 is a 32-bit proces-
sor with little endian byte order.

• Scalability: The applications will be executed on different platforms with
different architectural characteristics. Applications are easily parametrizable
with respect to the problem size, degree of parallelism, and the granularity
of processes and communication.

• Parallelism: The applications expose parallelism as much as possible to enable
efficient parallel execution.

• Communication: Each application is implemented using standard FIFO chan-
nels and windowed FIFO channels for inter-process communication. (For a
definition of windowed FIFO channels, see Section 3.1)

For each benchmark application, the following items need to be available:

• In addition to the parallelized version, for each application also a functionally
equivalent sequential application should be implemented.

• Each application should be explicitly characterized (a) by the number of
operations for each process and (b) by the communication demand for each
channel.

• For each application, a reference input and output should be included as a
separate file.

2.2. Measuring Peak Computational Performance

2.2.1. Matrix Multiplication

The application which was selected as the basis for measuring and comparing
the peak performance of several multiprocessor architectures is matrix multi-
plication (MM). MM is a fundamental, computationally intensive kernel which
is utilized in many signal processing applications. It exposes a large degree of
parallelism and may be expressed as a synchronous data flow graph, thus meet-
ing the requirements which were set for benchmark applications in 2.1. MM is
defined as follows.

The product of two matrices A ∈ RM×N and B ∈ RN×P is a matrix C ∈
R

M×P , of which the elements are given by:
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cij =
∑N

k=1 aik · bkj

for each pair i and j with 1 ≤ i ≤ M and 1 ≤ j ≤ P:

In the following sections, the multiplication of square matrices (A,B,C ∈
R

N×N ) is considered. The goal is to specify the MM operation according to
the SDF model so that it can be executed efficiently in parallel, in a scalable
(in terms of problem size, computation/communication granularity), platform-
independent manner.

2.2.2. Previous Implementations

MM has already been implemented as an SDF in two well-known software
frameworks as discussed below.

BSC Cell Superscalar

Cell Superscalar (CellSs) [23] is a framework developed at Barcelona Super-
computing Center, which addresses the automatic exploitation of the functional
parallelism of a sequential program through the different processing elements of
the Cell BE architecture [24]. CellSs suggests a simple programming model for
specifying (sequential) applications and uses a runtime library to exploit their
existing parallelism by building at runtime a task dependency graph. The run-
time environment takes care of the task scheduling and data handling between
the different processors of this heterogeneous architecture (CBE is composed of
a 64-bit multithreaded PowerPC processor element (PPE) and eight synergistic
processor elements (SPEs)).

Among the code examples that are available on the project’s website in order
to demonstrate the use of CellSs is a MM implementation. Its parallel execution
is organised as follows.

Figure 2.1.: CellSs Matrix Decomposition
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Matrices A and B of size N ×N as well as the product matrix C are decom-
posed into DIM ·DIM submatrices (blocks), each of size BSIZE × BSIZE
(where N = DIM · BSIZE), as shown in Figure 2.1. The tasks submitted to
the Cell SPEs are block multiplications (BM), whereas the scheduling of those
tasks and the corresponding data transfers are managed by the PPE, which
acts as the control unit in the process network of Figure 2.2. Granularity of
block multiplications may be modified through the parameters DIM and BSIZE,
which define the number of updates that C blocks should go through before the
final product is calculated (hence, the total number of BM operations) and the
block size respectively.

Figure 2.2.: CellSs MM Process Network

The code which is executed on the PPE (BM scheduling) and on the SPEs
(BM) of the CBE is shown in the following listings. Communication details have
been omitted since data transfers between the PPE and the SPEs are handled
by the runtime environment of CellSs. It is assumed that decomposition of
matrices A, B and C into DIM · DIM blocks has already taken place before
the calculation of product C begins.

1 void compute (A[DIM ] [DIM] , B[DIM ] [DIM] , C[DIM ] [DIM] ) {
2 for ( i = 0 ; i < DIM; i++)
3 for ( j = 0 ; j < DIM; j++)
4 for ( k = 0 ; k < DIM; k++)
5 block addmult ip ly (A[ i , k ] , B[ k , j ] , C[ i , j ] ) ;
6 }

Listing 2.1: CellSs Control function

1 void block addmult ip ly (Ab[ BSIZE ] [ BSIZE ] , Bb [ BSIZE ] [ BSIZE ] ,
2 Cb[ BSIZE ] [ BSIZE ] ) {
3 for ( x = 0 ; x < BSIZE ; x++)
4 for ( y = 0 ; y < BSIZE ; y++)
5 for ( k = 0 ; k < BSIZE ; k++)
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6 Cb[ x , y ] += Ab[ x , k ] ∗ Bb [ k , y ] ;
7 }

Listing 2.2: CellSs Block Matrix Multiplication function

Note: Several optimization techniques such as vectorized code, loop unrolling
or data prefetching could be applied to maximize the performance of block mul-
tiplication execution.

Algorithm Analysis

Computation: For the above described parallel execution of matrix multipli-
cation, a total of 2 · BSIZE3 · DIM3 = 2 · N3 floating-point operations are
required, as the computation of each element of product matrix C involves N
additions and N (pair-wise) multiplications (inner product of an A’s row and a
B’s column, see Listing 2.2).

Communication: In terms of communication, the CellSc MM algorithm de-
mands a transfer of 4·DIM3 ·BSIZE2 packets in total between Cell’s processor
elements. That is because in each of the DIM3 block multiplications, 4 blocks
of size BSIZE ×BSIZE need to be transferred: blocks A[i, k], B[k, j], C[i, j]
are sent from the PPE to an SPE and then the updated version of C[i, j] is sent
back from the corresponding SPE to the PPE (see Listing 2.1/line 5).

The following graph [23] shows the performance of several versions of the al-
gorithm (when parallelized by CellSs) in comparison with the machine’s peak.
The six versions of MM only differ in the BM code (ranging from non vectorized
to highly optimized). Tests have been run using 2048 × 2048 matrices divided
into blocks of 64× 64 elements (N = 2048, BSIZE = 64).

Figure 2.3.: CellSs MM Performance Graph [23]

Note: Theoretical Peak of the CBE is 230.4 GFlops for 8 SPEs.
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StreamIt

StreamIt [19] is a programming language and a compilation infrastructure,
specifically engineered for modern streaming systems. It is designed to fa-
cilitate the programming of large streaming applications, as well as their effi-
cient and effective mapping to a wide variety of target architectures, including
commercial-off-the-shelf uniprocessors, multicore architectures and clusters of
workstations. A set of benchmark applications for the evaluation of StreamIt
compiler is available in [19]. Among those applications, a block algorithm for
matrix multiplication has also been implemented.

The specific benchmark (matmul-block) generates a series of matrices and
multiplies them. In order to reduce the amount of communication, the ma-
trices are divided into equal-sized submatrices, which are reordered, pairwise
multiplied, and reordered again to get the final result matrix. More specifically,
MM is executed by following the next four steps:

1. Matrix B is transposed.

2. Matrices A and B are reordered and divided into DIM ·DIM submatrices
(blocks) of size BSIZE ×BSIZE.

3. Blocks are multiplied pairwise as described in the C-code of Listing 2.3.

4. Product blocks are reordered internally and recombined in order to form
the final product matrix C.

1 void compute (A[DIM ] [DIM] , B[DIM ] [DIM] , C[DIM ] [DIM] ) {
2 for ( k = 0 ; k < DIM; k++)
3 for ( j = 0 ; j < DIM; j++)
4 for ( i = 0 ; i < DIM; i++)
5 C[ j , i ] += block mult (A[ k , i ] , B[ j , i ] ) ;
6 }

Listing 2.3: StreamIt Block Matrix Multiplication

Based on the description of the above algorithm using the StreamIt program-
ming language (given in [19]), the SDF graph for the execution of block MM
can be derived. Figure 2.4 depicts the corresponding process network. In this
graph, nodes represent processes and edges represent communication channels
between the respective processes. Each edge is annotated with the number of
floating-point values which are transferred over the communication channel at
each firing of the destination-process (i.e., the process for which the correspond-
ing edge is incoming).

Data flow over this process network can be described as follows.

• 1st and 2nd Phase: Matrix B is transposed within process Transpose.
Matrix A and the output stream of Transpose are reordered and split
into DIM2 blocks, each consisting of BSIZE2 floating-point elements
(processes Split).
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Figure 2.4.: StreamIt MM Process Network

• 3rd Phase (part of the graph within rectangle): Product blocks of matrix
C are calculated (Phase 3 is iterated DIM2 times). Computation of each
block C[j, i] (i=[1,...,DIM], j=[1,...,DIM]) involves:

– DIM firings of process Block Multiply, which multiplies blocks A[k,
i], B[j, i] (k=[1,...,DIM]). At each firing of Block Multiply a total of
2 · BSIZE2 elements is read from the output streams of processes
Split and BSIZE2 elements are buffered in the output stream of
Block Multiply.

– 1 firing of process Block Add, within which C[j, i] is calculated. Af-
ter completion of the previous step, DIM ·BSIZE2 elements (DIM
updates of block C[j, i]) are buffered in the communication channel
between Block Multiply and Block Add. Those elements are con-
sumed when the latter fires. Block Add combines the updates of
C[j,i] to give the final product block of size BSIZE2.

• 4th Phase: The DIM2 product blocks are reordered and recombined to
form the final result matrix C (process Combine).

Algorithm Analysis

Computation: The above described block matrix multiplication algorithm re-
quires a total of 2 · BSIZE3 ·DIM3 = 2 ·N3 floating-point operations as any
other MM algorithm (A,B,C ∈ RN×N ).
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Communication: Based on data flow analysis for the process network of Figure 2.4,
the total amount of transferred data during execution of the algorithm equals
DIM2 · (3 ·DIM + 1) ·BSIZE2 floating-point values.

Although this version of block MM results in less communication than the
CellSs implementation, however mapping the process network to any under-
lying architecture is not trivial as in the latter case. Therefore, remapping
and rescheduling of processes every time the number of processors on a given
MPSoC or the whole architecture changes may prove to be rather challeng-
ing. Furthermore, StreamIt algorithm is conceptually more complicated and
demands more memory accesses than the CellSs alternative due to required
reordering and recombination of all involved matrices’ blocks at Phases 1, 2
and 4. Those memory operations could contribute a non-negligible overhead to
execution time.

Other implementations

Numerous parallel algorithms for MM have been proposed in literature. Among
them, the dynamic load-balancing algorithms in [25] and [26], the parallel ver-
sion of Strassen’s algorithm in [27], the scalable universal matrix multiplication
algorithm (SUMMA) in [28], the systolic algorithm in [29] and others have been
especially designed targeting heterogeneous and/or reconfigurable multiprocess-
sor platforms. However, most of these approaches are not compatible with the
SDF model of computation and hence, do not comply with the specification
requirements of DOL.

2.2.3. Algorithm and Implementation

This section describes an algorithm for the parallel (block) execution of ma-
trix multiplication based on the SDF model of computation, which has been
implemented on the DOL. It uses the CellSs parallel MM implementation as a
starting point, but reduces the communication, while keeping the required com-
putational effort unchanged. Compared to the StreamIt implementation, our
parallel MM algorithm leads to reduced data transfers among the processors of
the MPSoC architecture. At the same time it is simpler in conception, it needs
fewer re-orderings of the matrix elements in memory and no re-combination
of the matrix blocks. Moreover, its mapping to any underlying multiprocessor
architecture is more trivial, which leads to improved scalability efficiency with
regard to the number of available processors.

Two versions of the proposed parallel MM algorithm are presented. In the
first one (1-stage), block multiplication (BM) of the A and B submatrices is
executed sequentially. On the contrary, in the second version (2-stage), the par-
allelism of this task is also exploited so as to further reduce the total execution
time. For both versions there are two available implementations depending on
whether inter-process communication is achieved via simple or windowed FIFO
queues.
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1-stage Matrix Multiplication

As has already been mentioned, the 1-stage MM algorithm (1sMM) is based on
the CellSs implementation, which was presented in the previous section. The
process network of Figure 2.2 may be generalized as shown in Figure 2.5 so that
it is no longer restricted to the CBE architecture.

Figure 2.5.: 1sMM Process Network

On any underlying multiprocessor architecture, the Control process is mapped
on one processor, which will thereafter act as the organizing unit of MM,
scheduling the block multiplications, sending the required data to BM processes
and updating the product matrix C according to the received intermediate re-
sults. The remaining BRANCHES processors are committed to execute block
multiplication between the A and B submatrices that they receive from Control
at each firing.

The parameters that are used to configure the size and granularity of the
parallel MM problem as well as the number of processes that will participate
in the algorithm execution are summarized in the following table.

Table 2.1.: 1sMM Parameters

Parameter Explanation

BRANCHES Number of BM processes
DIM Number of A, B, C Blocks (DIM ·DIM)
BSIZE Block Size (BSIZE ×BSIZE)
P Buffering Factor

It can be observed that the communication demand of the CellSs implementa-
tion could be reduced from 4·DIM3 ·BSIZE2 to DIM2 ·(2·DIM+1)·BSIZE2



16 Benchmark Applications

floating-point values if the product blocks are kept in the BM processes instead
of being transferred to and from them whenever a block update is needed.

The idea is based on the fact that the computation of each product block
of matrix C is assigned to a specific BM process. This process receives a row
i of A blocks and a column j of B blocks in DIM consecutive steps, after
which it should have computed the final corresponding block Cij . At each
step of the CellSs implementation the BM process receives an instance of the
targeted C block, which it updates and sends back to the Control unit, where
all intermediate results are kept. In order to reduce the communication, each
BM process can maintain a local block Cb (initially filled with zero values) and
internally aggregate the contribution of A and B submatrices which it receives
at each firing. In this case, the BM process needs to transfer data to the
Control unit only after DIM steps, when its local block will correspond to the
product submatrix Cij . After this transfer, the local block is cleared and the
computation of another product block may begin.

Communication in the process network is reduced by almost 50% since for
each update of the DIM2 C submatrices only 2 (instead of 4) blocks of size
BSIZE ×BSIZE need to be transferred between the Control and a BM pro-
cess. Moreover, after DIM updates of each C submatrix, one block of equal
size is sent from the corresponding BM process to Control, thus resulting in
a total communication cost of DIM2 · (2 ·DIM + 1) · BSIZE2 floating-point
values for the computation of the entire result matrix C.

Given the above mentioned modification to the original CellSs approach,
the functionality of the Control and BM units is described in Listing 2.4 and
Listing 2.5 respectively.

1 void compute (A[DIM ] [DIM] , B[DIM ] [DIM] , C[DIM ] [DIM] ) {
2 for ( i = 0 ; i < DIM; i++) {
3 for ( k = 0 ; k < DIM / BRANCHES; k++) {
4 for ( j = 0 ; j < DIM; j++) {
5 for ( l = 0 ; l < BRANCHES; l++){
6 send to branch l :
7 A[ i , j ] , B[ j , k ∗ BRANCHES + l ] ;
8 }
9 }

10 i f ( i >= P) {
11 for ( l = 0 ; l < BRANCHES; l++) {
12 read from branch l :
13 C[ i − P, k ∗ BRANCHES + l ] ;
14 }
15 }
16 }
17 }
18 for ( i = DIM − P; i< DIM ; i++){
19 for ( k = 0 ; k < DIM / BRANCHES; k++){
20 for ( l = 0 ; l < BRANCHES; l++){
21 read from branch l :
22 C[ i , k ∗ BRANCHES + l ] ;
23 }
24 }
25 }
26 }

Listing 2.4: 1sMM Control function
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1 void block addmult ip ly (Ab[ BSIZE ] [ BSIZE ] , Bb [ BSIZE ] [ BSIZE ] ) {
2 for ( x = 0 ; x < BSIZE ; x++)
3 for ( y = 0 ; y < BSIZE ; y++)
4 for ( k = 0 ; k < BSIZE V ; k++) // BSIZE V = BSIZE/4
5 for ( l = 0 ; l < 4 ; l++)
6 Cb[4 ∗ ( x ∗ BSIZE V + k) + l ] += Ab[ x ∗ BSIZE + y ] ∗
7 Bb[4 ∗ ( y ∗ BSIZE V + k) + l ] ;
8 }

Listing 2.5: 1sMM Block Matrix Multiplication function

As can be seen in the code, vectorization has been applied to increase the
performance of block multiplication (a vector length of 4 is assumed). Further-
more, the results of BM processes (C product blocks) are buffered in order to
enable overlapping of computation and communication during execution of the
MM algorithm. Buffering is controlled by the parameter P . If P is zero, the
results of all BM branches are collected by Control immediately after writing
the corresponding A and B submatrices on them (in DIM steps). Otherwise,
if P is greater than zero, another (P − 1) iterations of block multiplication take
place before the results of the BM processes are collected.

Algorithm Analysis

Computation: The computational effort needed for the execution of the 1sMM
remains unchanged, therefore equal to 2 ·N3 floating-point operations in total.

Communication: Communication cost of the 1sMM is DIM2 · (2 · DIM +
1) ·BSIZE2 transferred floating-point values as has already been analysed.

Alternative Implementation

In this subsection, an alternative implementation of the 1sMM algorithm is
presented. The main difference compared to the previous implementation re-
gards the decomposition method of the multiplied matrices A, B. Until now we
have only considered the decomposition of those matrices into square blocks of
size BSIZE×BSIZE (which is also the size of the product C submatrices) as
shown in Figure 2.1. In this version of 1sMM, A and B are divided into row and
column blocks respectively so that matrix multiplication is organised according
to the following equation:
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Block Matrix Multiplication is executed in this case as presented in Figure 2.6.

Figure 2.6.: 1sMM Row/Column Block Decomposition

Each row block A consists of RC rows of size N (Ab ∈ RRC×N ), whereas each
column block B is composed of RC columns of size N (Bb ∈ RN×RC). Block
multiplication in this case results in a product block of size RC×RC (parameter
RC is the equivalent of BSIZE from the first 1sMM version). The parameters
which configure the input of this MM alternative are summarized as follows.

Table 2.2.: 1sMM Alternative Parameters

Parameter Explanation

BRANCHES Number of BM Processes
DIM Number of A, B, C Blocks (DIM for A, B, DIM ·DIM for C)
RC Number of Rows per Row-block,

Number of Columns per Column-block
P Buffering Factor

Computation of each product block requires no longer DIM successive steps
as in the first 1sMM version. On the contrary it is completed in just one step,
during which the Control unit sends an A row block and a B column block to
the corresponding BM process, which multiplies them and writes the result back
to Control. Buffering of results is used so that computation and communica-
tion can be overlapped during algorithm execution. The code that describes the
modified functionality of the Control and BM processes is included in Listing 2.6
and Listing 2.7.

1 void compute (A[DIM ] [DIM] , B[DIM ] [DIM] , C[DIM ] [DIM] ) {
2 for ( i = 0 ; i < DIM; i++) {
3 for ( j = 0 ; j < DIM / BRANCHES; j++) {
4 for ( k = 0 ; k < BRANCHES; k++) {
5 send to branch k :
6 A[ i ] , B[ j ∗ BRANCHES + k ] ;
7 }
8 i f ( i >= P) {
9 for ( k = 0 ; k < BRANCHES; k++) {

10 read from branch k :
11 C[ i − P, j ∗ BRANCHES + k ] ;
12 }
13 }
14 }
15 }
16 for ( i = DIM − P; i < DIM; i++){
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17 for ( j = 0 ; j < DIM / BRANCHES; j++){
18 for ( k = 0 ; k < BRANCHES; k++){
19 read from branch k :
20 C[ i , j ∗ BRANCHES + k ] ;
21 }
22 }
23 }

Listing 2.6: 1sMM Alternative Control function

1 void block addmult ip ly (Ab[ BSIZE ] [ BSIZE ] , Bb [ BSIZE ] [ BSIZE ] ) {
2 for ( i = 0 ; i < RC; i++)
3 for ( j = 0 ; j < RC; j++)
4 for ( k = 0 ; k < N; k++)
5 Cb[ i ∗ RC + j ] += Ab[ i ∗ N + k ] ∗ Bb [ j ∗ N + k ] ;
6 }

Listing 2.7: 1sMM Alternative Block Matrix Multiplication function

Algorithm Analysis

Computation: The overall computational effort needed for MM remains equal
to 2 ·N3 floating-point operations.

Communication: Communication cost equals DIM2 · (2 ·RC ·N +RC2) trans-
ferred floating-point values, which is practically the same as in the first 1sMM
version, given that N = RC ·DIM and RC ≡ BSIZE.

The disadvantage of this technique, however, is that the size of transferred
data (row and column block) between Control and a BM process at each firing
of the latter is proportional to the matrix dimension N . That could pose the
demand for unacceptably wide communication channels (FIFOs), which may
not be available on certain architectures, or could also violate the restrictions
in local memory (capacity) of processes, where blocks should be maintained
while being processed.

2-stage Matrix Multiplication

In this version of parallel MM, the 1-stage algorithm is extended so that execu-
tion of block multiplication on each BM process can be further parallelised. As
in the 1-stage algorithm, the matrices A and B are initially decomposed into
DIM1 · DIM1 square blocks of size BSIZE1 × BSIZE1. Each BM process
receives 2 ·DIM1 blocks (in DIM1 consecutive steps) which it multiplies pair-
wise internally in order to compute one block of the final product matrix. In
the MM implementations that have been presented so far, parallelism of the
BM task has not been exploited. Nevertheless, the 1-stage algorithm could be
recursively applied at this level of computation to accelerate the execution of
BM on condition that the processors on which BM processes are mapped con-
tain more than one computational cores (otherwise, 2-stage MM is equivalent to
initial algorithm). Recursive execution of the 1sMM within the BM task means
that the received blocks of size BSIZE1 × BSIZE1 are further decomposed
into DIM2 ·DIM2 sub-blocks of size BSIZE2×BSIZE2 so that the elements
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of the product block can be calculated in parallel (with each product sub-block
being calculated in DIM2 steps). The process network for the proposed 2-stage
parallel implementation of MM as well as the structure of matrices, blocks and
sub-blocks at the different levels of execution are presented in the following
figures.

Figure 2.7.: 2sMM Process Network

Figure 2.8.: 2sMM Matrix Decomposition

Process Control 0 orchestrates MM. It decomposes the multiplied matrices,
sends the blocks to corresponding Control 1 processes and every DIM1 steps, it
receives one product block from each of the BRANCHES1 branches. Likewise,
each Control 1 unit decomposes received blocks and forwards the sub-blocks
further to BM processes which multiply them pairwise and return after DIM2
steps the corresponding product sub-blocks.
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All parameters of the 2-stage MM algorithm are summarized in Table 2.3.

Table 2.3.: 2sMM Parameters

Parameter Explanation

BRANCHES1 Number of Control 1 Processes
BRANCHES2 Number of BM Processes
DIM1 Number of A, B, C Blocks on the 1st Level (DIM1 ·DIM1)
DIM2 Number of A, B, C Blocks on the 2st Level (DIM2 ·DIM2)
BSIZE1 Block Size on the 1st level (BSIZE1×BSIZE1)
BSIZE1 Block Size on the 2st level (BSIZE2×BSIZE2)
P1 Buffering Factor on the 1st level
P2 Buffering Factor on the 2nd level

The C code which defines the functionality of processes Control 0, Control 1
and BM is included in the following listings.

1 void compute 0 (A[DIM1 ] [ DIM1 ] , B[DIM1 ] [ DIM1 ] , C[DIM1 ] [ DIM1] ) {
2 for ( i = 0 ; i < DIM1; i++) {
3 for ( k = 0 ; k < DIM1 / BRANCHES1; k++) {
4 for ( j = 0 ; j < DIM1; j++) {
5 for ( l = 0 ; l < BRANCHES1; l++){
6 send to branch l :
7 A[ i , j ] , B[ j , k ∗ BRANCHES1 + l ] ;
8 }
9 }

10 i f ( i >= P1) {
11 for ( l = 0 ; l < BRANCHES1; l++) {
12 read from branch l :
13 C[ i − P1 , k ∗ BRANCHES1 + l ] ;
14 }
15 }
16 }
17 }
18 for ( i = DIM1 − P1 ; i< DIM1 ; i++){
19 for ( k = 0 ; k < DIM1 / BRANCHES1; k++){
20 for ( l = 0 ; l < BRANCHES1; l++){
21 read from branch l :
22 C[ i , k ∗ BRANCHES1 + l ] ;
23 }
24 }
25 }
26 }

Listing 2.8: 2sMM Control function (1st level)

1 void compute 1 (Ab[ BSIZE1 ] [ BSIZE1 ] , Bb [ BSIZE1 ] [ BSIZE1 ] ) {
2 decompose b locks Ab, Bb , l o c a l Cb in to DIM2 ∗ DIM2 subblocks
3 ( matr i ce s As [DIM2 ] [ DIM2 ] , Bs [DIM2 ] [ DIM2 ] , Cs [DIM2 ] [ DIM2 ] )
4

5 for ( i = 0 ; i < DIM2; i++) {
6 for ( k = 0 ; k < DIM2 / BRANCHES2; k++) {
7 for ( j = 0 ; j < DIM2; j++) {
8 for ( l = 0 ; l < BRANCHES2; l++){
9 send to branch l :

10 As [ i , j ] , Bs [ j , k ∗ BRANCHES1 + l ] ;
11 }
12 }
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13 i f ( i >= P2) {
14 for ( l = 0 ; l < BRANCHES2; l++) {
15 read from branch l :
16 Cs [ i − P2 , k ∗ BRANCHES2 + l ] ;
17 }
18 }
19 }
20 }
21 for ( i = DIM2 − P2 ; i< DIM2 ; i++){
22 for ( k = 0 ; k < DIM2 / BRANCHES2; k++){
23 for ( l = 0 ; l < BRANCHES2; l++){
24 read from branch l :
25 Cs [ i , k ∗ BRANCHES2 + l ] ;
26 }
27 }
28 }
29

30 Cb loca l += Cs ;
31 return Cb loca l ;
32 }

Listing 2.9: 2sMM Control function (2nd level)

1 void block addmult ip ly (Asb [ BSIZE2 ] [ BSIZE2 ] , Bsb [ BSIZE2 ] [ BSIZE2 ] ) {
2 for ( x = 0 ; x < BSIZE2 ; x++)
3 for ( y = 0 ; y < BSIZE2 ; y++)
4 for ( k = 0 ; k < BSIZE V ; k++) // BSIZE V = BSIZE2/4
5 for ( l = 0 ; l < 4 ; l++)
6 Csb [ 4 ∗ ( x ∗ BSIZE V + k) + l ] += Asb [ x ∗ BSIZE2 + y ] ∗
7 Bsb [ 4 ∗ ( y ∗ BSIZE V + k) + l ] ;
8 return Csb ;
9 }

Listing 2.10: 2sMM Block Matrix Multiplication function

Buffering of results may be applied on both levels of communication (Con-
trol 1 to Control 0 and BM to Control 1). It is controlled by parameters P1
and P2 respectively.

As can be seen in the C-code of process Control 1 (Listing 2.9, line 30),
aggregation of intermediate results for every product block is required through
the DIM1 steps of its computation. This aggregation creates an overhead of
DIM1 · BSIZE12 floating-point operations (additions) for the calculation of
each product block, thus increasing the overall computational cost of MM by a
factor of DIM12 ·(DIM1 ·BSIZE12) = N2 ·DIM1 operations. Aggregation of
intermediate results in Control 1 (and consequently, the additional computation
overhead) could be avoided in the following cases:

• All DIM1 intermediate instances of each product block are written back
to process Control 0 instead of only the final one. Such a decision, how-
ever, would lead to a significant increase in the size of transferred data
between Control 0 and Control 1 (see CellSs implementation).

• Parameter DIM2 is restricted to be equal to BRANCHES2 so that in-
termediate instances of the product sub-blocks (accordingly, blocks) can
be maintained within the BM processes, thus eliminating the need for
aggregation within Control 1 processes. That restriction, however, would
limit the degree of freedom in parametrization of the 2-stage MM algo-
rithm, since the number of sub-blocks into which blocks are decomposed
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within Control 1 would be a function of the number of available processing
elements on which BM can be executed.

Therefore, there seems to be a trade-off between the computational overhead of
aggregating intermediate results in Control 1 (and its possible impact on total
execution time of MM) and the communication cost between Control 0 and
Control 1 or the degree of parallelization which can be applied during execu-
tion of block multiplication. The 2-stage MM implementation could be adapted
appropriately to achieve optimal performance over different architectures.

Algorithm Analysis

Computation: Aggregation of intermediate results in Control 1 processes in-
creases MM computation cost from 2 ·N3 to (2 ·N3+N2 ·DIM1) floating-point
operations. This overhead is not negligible and could possibly overshadow the
gain in execution time that is achieved due to parallel implementation of BM.

Communication: The size of transferred data over the two levels of commu-
nication channels is equal to DIM12 · [(2 ·DIM1 + 1) · BSIZE12 + DIM22 ·
(2 ·DIM2 + 1) ·BSIZE22] floating-point values.

2.3. Measuring Peak Communication Bandwidth

The application which is proposed for measuring the peak communication band-
width of any given heterogeneous MPSoC with distributed-memory architecture
is the trivial communication-dominated generator-consumer application which
is described in the following.

2.3.1. Generator-Consumer Application

The process network of the generator-consumer application is depicted in Figure
2.9. It consists a simple pipeline, in which process Generator generates con-
stantly data, which are forwarded through a chain of processes to destination-
process Consumer. The size of data which is received (buffered) by each inter-
mediate process and forwarded to its neighbour at every firing can be defined
so that communication over the process network reaches its limits, i.e. capac-
ity of available communication channels is fully exploited and maximum data
throughput is achieved.

Figure 2.9.: Generator - Consumer Process Network
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Algorithm Analysis

Computation: No data processing takes place within the intermediate (forward-
ing) processes of the chain or Consumer. Therefore, the overall computational
cost of the Generator-Consumer application is equal to the overhead of produc-
ing the data to be transmitted within Generator.

Communication: Communication cost of this application depends directly on
the size of tokens S which are transmitted over the process network as well
as the number of intermediate (forwarding) processes F . At each firing of the
processes, S bytes are transferred over each of the totally (F + 1) channels.
Therefore, the aggregate bandwidth of communication is equal to (F + 1) · S
bytes at each firing of the chain processes.

2.4. Summary

In this chapter, two benchmark applications have been proposed for the eval-
uation of the peak computational performance and the peak communication
bandwidth, respectively, of various multiprocessor architectures. The computa-
tion and communication cost of all presented versions of matrix multiplication
and the generator-consumer application are summarized in the following ta-
ble. The parameters are in accordance with the ones specified in the preceding
sections.

Table 2.4.: Computation and communication cost of presented algorithms

Algorithm Computation Communication

CellSs MM 2 ·N3 4 ·DIM3 ·BSIZE2

StreamIt MM 2 ·N3 DIM2 · (3 ·DIM + 1) ·BSIZE2

1-stage MM (square blocks) 2 ·N3 DIM2 · (2 ·DIM + 1) ·BSIZE2

1-stage MM (row/column blocks) 2 ·N3 DIM2 · (2 ·RC ·N +RC2)
2-stage MM 2 ·N3 +N2 ·DIM1 DIM12 · [(2 ·DIM1 + 1) ·BSIZE12

+DIM22 · (2 ·DIM2 + 1) ·BSIZE22]
Generator-consumer pipeline − (F + 1) · S
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Cell Broadband Engine

3.1. DOL Run-Time Environment for the CBE

The distributed operation layer contains a code generation back-end that al-
lows the efficient execution of applications, which are specified as Kahn process
networks, on the Cell Broadband Engine [30]. The code generation back-end
relies on a lightweight run-time system based on protothreads and windowed
FIFOs:

− Protothreads are usually used for programming constrained (in terms of
memory and performance) embedded systems, such as wireless sensor nodes.
Protothreads are a simple, yet effective, approach to execute preemptive
processes using a single CPU context and a single stack. Therefore, the
context switch overhead is very low and no further multi-threading support
is required to execute multiple processes on a single processor.

− Unlike standard FIFOs, windowed FIFOs support direct access to a con-
tinuous data segment in the (circular) FIFO buffer. These segments are
called ”windows” which leads to the name ”windowed FIFO”. Compared to
standard FIFOs, windowed FIFOs are more efficient because unnecessary
memory copies can be avoided. The Kahn process network semantics is not
affected by using windowed FIFOs instead of standard FIFOs.

The main features of the run-time system are:

• cooperative multi-threading on the PPE and the SPEs,

• direct windowed FIFO communication between processes mapped to SPEs
(PPE not involved) and

• overlapping of computation and communication by making use of DMA en-
gines (memory flow controllers).

25
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Figure 3.1.: Execution of Kahn Process Networks on CBE

These characteristics enable an efficient, completely distributed execution of
Kahn process networks on the CBE.

As has been mentioned in Chapter 1, one of the goals of this thesis was the
improvement of the CBE run-time environment. More specifically, in the initial
version of it, although the thread and FIFO implementations for on-processor
communication were very efficient, the (windowed) FIFO implementation for
inter-processor communication did not always work correctly and it yielded
lower peak transfer rates than other communication schemata in run-time sys-
tems designed for the CBE.

The main objective, therefore, was to re-examine and modify the DOL code
generation back-end for the CBE appropriately so as to finally obtain a reliable
platform for experiments. To achieve this, the steps listed below were followed:

1. Error handling: To assist the process of debugging, the existing imple-
mentation was extended with code aimed to catch and handle potential
errors (e.g., memory allocation failures) during execution time.

2. Memory management: Handling of dynamic memory operations with re-
gard to the windowed FIFO implementation for inter-processor communi-
cation was enhanced to prevent unexpected behaviour of processes during
execution time.

3. Size of communication channels: The initial restriction based on which
all (standard and windowed) FIFO channels were set to a default size
(1024 bytes) was withdrawn. The application programmer may now define
the size of each channel separately through the process network XML
specification.
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Based on the above modifications, the correct execution of Kahn process
networks on the CBE is assured, thus enabling the execution of our benchmarks,
as described in the following section.

3.2. Experimental Results

The benchmark applications, which were presented in Chapter 2 and were spec-
ified and simulated within the DOL framework, are used to evaluate the perfor-
mance (peak computational performance and communication bandwidth) of the
developed run-time environment for the CBE. A Sony PlayStation 3 running
Yellow Dog Linux 6.1 has been used for the experiments. The Sony PlaySta-
tion 3 contains a single CBE of which the PPE and six SPEs are available for
user applications. The GCC compilers PPU-G++ 4.1.1 and SPU-G++ 4.1.1
were used with all optimizations enabled to compile the CBE-specific code that
was produced by the DOL front-end.

3.2.1. Matrix Multiplication

Among the available parallel implementations of matrix multiplication, 1sMM
(1-stage multiplication with square block decomposition) has been chosen to
evaluate the peak computational performance of the targeted run-time en-
vironment and the underlying MPSoC. The corresponding process network
(Figure 2.5) can be easily mapped to the CBE architecture. The ’organising’
Control process will run on the PPE, whereas every available SPE can be uti-
lized to execute block multiplications. The number of available SPEs ranges
from one to six, hence a speed-up of up to six can be expected when MM is
executed in parallel on the given platform.

In the following experiments, three alternative versions of 1sMM are tested.
Their difference lies in the code efficiency of the BM task. The first version does
not apply any optimization, relying only on the compiler-level optimizations for
the efficient execution of BM. In the second one, vectorized code is used (given
that 4 floating-point operations can be executed in one cycle on the PPE/SPEs),
which is extended with explicit loop unrolling and data prefetching in the last
version. In all 1sMM implementations, inter-process communication is imple-
mented using either standard or windowed FIFO queues. All presented results
have been averaged over five executions of the corresponding tests. Parameters
of execution in tables and graphs are in accordance with the ones defined in
Table 2.1.

Since our goal is to measure the peak computational performance in terms
of floating-point operations per second, a sufficiently large block size should be
selected, so that execution of the MM application reaches its computational
limits. As a first step, the performance of 1sMM is evaluated with regard to
the size of blocks into which the multiplied matrices are decomposed. Table 3.1
contains the results of 1sMM execution when all suggested code-level optimiza-
tions are applied, FIFO queues are used for inter-process communication and
the block size ranges from 16× 16 to 64× 64 floating-point values (from 1 to 16
Kbytes respectively). The limit of 64× 64 elements for the block size is derived
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by the maximum allowed size of a single DMA transfer on the CBE, which
is equal to 16384 bytes (at each DMA transfer between main memory and a
SPE’s local storage one block is transmitted ’over’ the FIFO). The matrix size
is equal to 1920×1920 (except for the last test) and tests have been run for the
cases when either one or four SPEs are available. Execution time is reported in
milliseconds and performance of the 1sMM execution is expressed in GFLOPS.

Table 3.1.: MM with blocks of varying size (FIFO communication, vectorization,
loop unrolling, data prefetching)

SPEs DIM BSIZE N Execution Time GFLOPS

1 120 16 1920 9640 1.47
80 24 1920 5950 2.38
60 32 1920 5980 2.37
48 40 1920 4990 2.84
40 48 1920 4730 2.99
32 64 2048 5320 3.23

4 120 16 1920 5340 2.65
80 24 1920 3370 4.20
60 32 1920 2280 6.21
48 40 1920 1890 7.49
40 48 1920 1840 7.69
32 64 2048 1560 11.01

As expected, the computational performance during 1sMM execution (as well
as the achieved speed-up when four SPEs run BM in parallel) improves as the
block size increases. Therefore, in order to assess the peak performance of the
targeted platform under the 1sMM scenario, more experiments are conducted
with matrices of size 2048× 2048 (1920× 1920 in some cases due to restriction
that DIM must be a multiple of BRANCHES) divided in blocks of 64 × 64
elements. Execution results (elapsed time for computation of product matrix in
milliseconds, achieved speed-up per matrix element, performance in GFLOPS)
for all alternative versions of 1sMM for both FIFO- and windowed FIFO-based
communication are included in the following tables.

Table 3.2.: MM with blocks of 64× 64 elements (no optimizations)

FIFO WFIFO

SPEs DIM N Exec.time Speedup GFLOPS Exec.time Speedup GFLOPS

1 32 2048 67880 1 0.25 66130 1 0.26
2 32 2048 34310 1.98 0.50 33420 1.98 0.51
3 30 1920 18870 3.16 0.75 18380 3.16 0.77
4 32 2048 17200 3.95 1.00 16750 3.95 1.03
5 30 1920 11350 5.26 1.25 11060 5.26 1.28
6 30 1920 9460 6.31 1.5 9230 6.3 1.53
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Table 3.3.: MM with blocks of 64× 64 elements (vectorization)

FIFO WFIFO

SPEs DIM N Exec.time Speedup GFLOPS Exec.time Speedup GFLOPS

1 32 2048 10590 1 1.62 10450 1 1.64
2 32 2048 5670 1.87 3.03 5590 1.87 3.07
3 30 1920 3140 2.96 4.51 3100 2.96 4.57
4 32 2048 2880 3.68 5.97 2830 3.69 6.07
5 30 1920 1910 4.87 7.41 1890 4.86 7.49
6 30 1920 1610 5.78 8.79 1580 5.81 8.96

Table 3.4.: MM with blocks of 64 × 64 elements (vectorization, loop unrolling, data
prefetching)

FIFO WFIFO

SPEs DIM N Exec.time Speedup GFLOPS Exec.time Speedup GFLOPS

1 32 2048 5320 1 3.23 5180 1 3.32
2 32 2048 3050 1.74 5.63 2960 1.75 5.8
3 30 1920 1690 2.77 8.38 1650 2.76 8.58
4 32 2048 1560 3.41 11.01 1520 3.41 11.3
5 30 1920 1190 3.93 11.90 1180 3.86 12
6 30 1920 1210 3.86 11.70 1180 3.86 12

As can be seen in the results, the execution time of 1sMM and the maximum
attained performance are improved by 1% to 3% when windowed, instead of
standard, FIFOs are used for inter-process communication, while the speed-up
per computed element is only slightly different between the two implementa-
tions. The performance gain achieved by replacing standard with windowed
FIFOs would have been even higher if the BM processes shared the same mem-
ory. We know that utilization of windowed FIFOs is particularly advantageous
in this case since unnecessary copying of data can be completely avoided by
directly accessing the FIFO channel buffer. Therefore, in distributed mem-
ory architectures, processes executing on a single processor (sharing the same
local memory) or in shared memory architectures, processes executing on differ-
ent processors (having access to a global memory) can profit significantly from
this implementation. In our MM process network, however, all processes are
mapped to different processors of the CBE (no shared memory), thus limiting
the gain from using windowed FIFOs for communication. Of course, the fact
that the absolute execution time for accesses to windowed FIFOs is shorter
than the time needed for accesses to standard FIFOs [30] is not negligible, es-
pecially in communication-intensive applications, such as MM (with frequent
FIFO accesses), as indicated by the obtained results.

The speed-up of the discussed 1sMM configuration as well as the improvement
in computational performance (GFLOPS) when the number of available SPEs
increases from one to six are depicted in Figure 3.2 and Figure 3.3 respectively.
Only results for the windowed FIFO implementations are shown, since those
from the corresponding FIFO implementations follow similar trends.

Based on these graphs, it can be observed that performance of the two first
1sMM versions (no optimizations / vectorized BM code) scales almost linearly
with regard to the number of processors participating in the MM. However,
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Figure 3.2.: Speed-up diagram for WFIFO MM implementation (BSIZE = 64)

Figure 3.3.: Performance diagram for WFIFO MM implementation (BSIZE = 64)

performance of the third, most refined in terms of code-level optimizations,
1sMM alternative does not scale satisfyingly beyond four SPEs. When five
SPEs execute BM in parallel, computational performance reaches its peak (12
GFLOPS) which cannot be surpassed even if more SPEs are used. From that
turning point (four SPEs), execution of the specific 1sMM implementation be-
comes communication-bounded. It has been verified through experiments that
for the given implementation and matrices, even if no computation took place
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within the BM processes (on SPEs), the execution time would practically not
be affected. Thus we can assume that beyond this point, inter-process commu-
nication is the bottleneck of execution, due to which no further improvement
in computational performance is feasible. Even though computation of prod-
uct blocks takes almost zero time, the actual peak performance of the MPSoC
cannot be achieved because of the heavy communication overhead.

That ”turning point”, beyond which performance can no longer scale linearly
with the number of processes / processors, would have been reached even ear-
lier if the block size in the 1sMM implementations had been selected to be
smaller than 64 × 64. In this case, the computation-to-communication ratio
for the BM processes would be lower, so execution time could become from an
early point (small number of running SPEs) dominated by costly inter-process
communication operations. To validate this assumption, more tests have been
conducted with matrices of size 1024×1024 (960×960 in some cases) divided in
blocks of 32× 32 elements. The resulting execution speed-up and performance
improvement when the number of available SPEs increases for the FIFO imple-
mentations (windowed FIFO implementations follow similar trends) is shown
in Figure 3.4 and Figure 3.5 respectively. Based on these, when the block size
is 32 × 32, the maximum achieved performance on the CBE fails to scale well
beyond 4 SPEs for the second 1sMM version and already beyond 2 SPEs for
the third one.

Figure 3.4.: Speed-up diagram for FIFO MM implementation (BSIZE = 32)

Another optimization that could be applied to the BM code is buffering of
intermediate results, as has been described in Section 2.2. It has been shown
through experiments that buffering by a parameter P of 1 or 2 can slightly
improve the achieved computational performance (up to 1.5%) in several test
cases.
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Figure 3.5.: Performance diagram for FIFO MM implementation (BSIZE = 32)

3.2.2. Generator-Consumer

To measure the peak aggregate communication bandwidth over the CBE of
PlayStation 3, two experiments were performed. First, a chain of six processes
(generator, four forwarding elements, consumer) was mapped on the six avail-
able SPEs (one process per SPE). Second, a chain of twelve processes (generator,
ten forwarding elements, consumer) was mapped on the six SPEs (two processes
per SPE). To connect the processes in the chains, windowed FIFO channels with
a size of 16384 bytes were used (maximum allowed size of a single DMA transfer
on the CBE).

Table 3.5 summarizes the obtained results (elapsed execution time for 1000000
data transfers over the FIFO queues, transfer rate in Gbytes/s) for the two pro-
cess chains when the number of bytes transmitted in a single windowed FIFO
access ranges from 1024 bytes to 16384 bytes. Figure 3.6 depicts the aggregate
inter-SPE data transfer rates for both test cases. The observed peak data rates
are 9.87 Gbytes/s when one process (either producer or forwarding element or
consumer) is executed on each SPE and 10.91 Gbytes/s when two processes
are executed on each SPE. In the latter case the transfer rate is higher because
the data transfers initiated by the two processes on each SPE can be partially
overlapped [30].
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Table 3.5.: Generator-Consumer: Data transfer rate

Processes Token size Transferred data Execution Time Transfer rate
(bytes) (Gbytes) (sec) (Gbytes/s)

6 1024 4.77 0.92 5.18
2048 9.54 1.61 5.94
4096 19.07 3.05 6.25
8192 38.15 5.15 7.41
16384 76.29 7.73 9.87

12 1024 9.54 1.7 5.61
2048 19.07 2.8 6.81
4096 38.15 5.06 7.54
8192 76.29 9.56 7.98
16384 152.59 15.38 9.92

Figure 3.6.: Aggregate inter-SPE data transfer rate

3.3. Summary

The performance of the benchmark applications, which were described in Chap-
ter 2, has been evaluated on the Cell Broadband Engine (Playstation 3). The
maximum computation performance and the peak aggregate communication
bandwidth that were measured during their execution are 12 GFLOPS and
10.91 Gbytes/s, respectively. The benchmark execution on the CBE has proven
rather useful for the enhancement of the DOL run-time environment for the spe-
cific multiprocessor architecture.





4
Conclusion

In this semester thesis, a set of benchmark applications has been built, tar-
geting heterogeneous MPSoCs with distributed memory architectures where
inter-processor communication is achieved via message passing. The design of
these benchmarks has been driven by the need to specify and compare the fol-
lowing properties of different MPSoCs and the run-time environments executing
on top of them: (a) peak computational performance in terms of floating-point
operations per second and (b) peak (aggregate) bandwidth of interprocessor
communication. To this end, several parallel implementations of matrix mul-
tiplication as well as a simple, communication-intensive generator-consumer
application have been proposed.

The benchmark applications have been specified in accordance with the syn-
chronous data flow model of computation and have been implemented within the
DOL software-development framework in a platform-independent, parametrized
manner such that they can efficiently execute on several MPSoC platforms. In
the corresponding process networks, it is assumed that communication among
processes is managed through FIFO or windowed FIFO channels.

As a subsequent step, it has been attempted to evaluate the performance of
the developed benchmarks on the Sony/Toshiba/IBM Cell Broadband Engine.
To achieve this, the existing DOL code generation back-end for the CBE had
first to be revisited and improved so as to obtain a reliable run-time environ-
ment for the execution of DOL applications on the targeted architecture. After
successful completion of that step, extensive experiments were executed on a
PlayStation 3 platform running Yellow Dog Linux 6.1 in order to characterize
the performance of the proposed applications on the CBE.

The maximum computational performance has been achieved for the MM
test case of 1920× 1920 matrices, divided into blocks of 64× 64 floating-point
elements, when inter-process communication was handled by windowed FIFO
queues, all six available SPEs were used and several optimizations (vectorized
code, loop unrolling, data prefetching) were applied to the block multiplica-

35



36 Conclusion

tion task code. In this case, performance of the CBE reached its peak at 12
GFLOPS, which is however far from the theoretical limit (of approximately
180 GFLOPS for six SPEs), due to a bottleneck caused by inter-process commu-
nication. On the other hand, the maximum aggregate bandwidth of inter-SPE
communication has been observed during execution of the generator-consumer
application when a chain of twelve processes was mapped to the six SPEs of
the PlayStation 3 and windowed FIFOs were used for the repeated transfer of
16-Kbyte tokens. In this case, the aggregate data transfer rate was equal to
10.91 Gbytes/s.

Several directions could be explored for the extension of the work presented
in this thesis. The following ones could serve as a starting point for future
improvements:

1. Design and development of new benchmark applications: More applica-
tions, aimed especially at measuring peak computational performance,
could be developed within the DOL framework to characterize the behav-
ior of MPSoCs under different execution scenarios. Emphasis should be
put on the equal distribution of workload among parallel-executing pro-
cesses and the computation-to-communication ratio of them. The latter
should be kept as high as possible, so that execution does not get dom-
inated by communication operations and the computational capabilities
of the underlying architectures may be at most exploited.

2. Experiments on alternative MPSoC platforms: More tests based on the
available or new benchmark applications could be run on other MPSoCs
(besides the CBE) to assess and compare their computational and commu-
nication capabilities as well as the efficiency of the corresponding run-time
environments.

3. Improvement of communication protocol for the CBE run-time environ-
ment: The current windowed FIFO implementation for inter-process com-
munication achieves considerably less throughput than other reported im-
plementations. A new, simpler communication protocol could be designed
in order to confront this weakness and relieve application execution from
communication bottlenecks.



A
Abbreviations

1sMM: 1-stage Matrix Multiplication
2sMM: 2-stage Matrix Multiplication
BM: Block Multiplication
BSC: Barcelona Supercomputing Center
CBE: Cell Broadband Engine
CellSs: Cell Superscalar
DOL: Distributed Operation Layer
GFLOPS: Giga FLoating-point OPerations per Second
KPN: Kahn Process Network
MM: Matrix Multiplication
MPSoC: Multiprocessor System-on-Chip
PPE: PowerPC Processor Element
SDF: Synchronous Data Flow
SHAPES: Scalable Software/Hardware Architecture Platform for Embedded Systems
SPE: Synergistic Processor Element
XML: Extensible Markup Language
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Tuesday, 16.02.2010 2Streaming Application Benchmark Set

SHAPES - Distributed Operation Layer (DOL)

Application Code
(C/C++)

DOL Framework

Application Code, Wrappers, Makefiles

Architecture & Mapping
(XML)

Process Network
(XML)

Compiler

Binary code

 Specification of 
applications as Kahn 
Process Networks

 Efficient mapping 
and code generation 
for several 
multiprocessor 
architectures
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Motivation

� Benchmark development for heterogeneous MPSoC
� Peak computational performance 
� Peak bandwidth of inter-processor communication (message passing)

� Requirements
� Synchronous Dataflow Model
� Platform independence 
� Scalability
� Parallelism
� Communication restrictions

 

� Targeted architectures
� IBM/Toshiba/Sony Cell Broadband Engine
� Atmel Diopsis 940 (SHAPES)
� MPARM

src sink
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Related Work

� Existing benchmark suites for multiprocessor architectures

� EEMBC MultiBench, PARSEC, MediaBench II, ALPBench

� MPIBench, SkaMPI, STREAM

 

� StreamIt

Shared-memory architectures

Focus on communication overhead of message passing (MPI)

Benchmarks in StreamIt language
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Contributions

A. Benchmarks
� Peak computation performance: Matrix multiplication

• 1-stage MM (square blocks or row/column blocks)
• 2-stage MM

� Peak communication bandwidth: Producer - consumer pipeline

B. Execution on the Cell BE (PlayStation 3)
� Enhancement of the DOL run-time environment for the CBE
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1-stage Matrix Multiplication

P
P
E

SPE SPESPE

SPESPESPE

interconnect

Cell BE

Mapping

Control to PPE (PowerPC)
Block Multiply to SPEs (DSP)

A

B

Control orchestrates MM, i.e. dispatches blocks to corresponding 
BM processes and receives product blocks after sqrt(#blocks) firings
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2-stage Matrix Multiplication

Tiled Architecture (SHAPES)

Exploit in-tile parallelism!

 Alleviate communication bottleneck from/towards Control_0
 Coarse-grained parallelization at 1st stage, finer-grained at 2nd stage
 Control_1 and corresponding BM processes are mapped to the same tile
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Producer - Consumer application

ConsumerFunctionFunctionProducer .  .  . 

x 10

 Tokens of maximum size (equal to FIFO capacity) are 
transferred at each firing
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Cell Broadband Engine

 DOL code generation back-end 
for the efficient execution of 
KPNs on the Cell BE

➢ Protothreads: multithreading

➢ Windowed FIFOs: inter-process 
communication

➔ Unreliable
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DOL run-time environment for the CBE

� Enhancement
� Handling of dynamic memory allocation failures
� Dynamically chosen size of communication channels
� Reduction of memory copies needed by the communication 

protocol

� Result: Reliable platform for experiments on the CBE
� Benchmark execution on PlayStation 3 under Yellow Dog Linux 6.1
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Case Study: 1-stage Matrix Multiplication
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� Peak Performance: 

      12 GFLOPS
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� MM with matrices / blocks
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� Less efficient implementation
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 20 GFLOPS for 5 SPEs

➔ Communication 
bottleneck!Matrix Size: 2048x2048, Block Size: 64x64

Communication
dominated

G
F
L
O
P
S



  

 

Tuesday, 16.02.2010 12Streaming Application Benchmark Set

Case Study: Producer – Consumer  

Peak aggregate bandwidth of inter-SPE communication: 10.91 GB/s

➔ Maximum token size: 16KB, 1M iterations
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Conclusion

� Fully parametrized implementation of a communication-
intensive and a computation-intensive benchmark for 
heterogeneous MPSoC

� Reliable run-time environment for the Cell BE allowing for 
efficient and scalable execution of parallel applications

➢ Need to reconsider WFIFO communication protocol...

Thank you!
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