
Semester Project at the Departement of

Information Technology and Electrical Engineering

at the ETH Zurich

Autumn Term 2009

Fabian Gut

Faster Parallel Datastructures

Advisor: Johannes Schneider, ETZ G61.3, schneider@tik.ee.ethz.ch

Abstract

This work proposes an implementation of a linked list for faster

parallel access by multiple processes or threads. Instead of only being

able to lock the whole list or element by element, the list is partitioned

into smaller parts which each can be locked individually if access is

needed. This enables processes to work simultaneously in di�erent

parts of the list without producing a large overhead of locking elements.

The list is implemented in Java. The results of the benchmarks show

a considerable gain in speed with this new approach.

3

Contents

1 Introduction 5

2 Related Work 6

2.1 Performance . 6
2.2 Blocking Techniques . 6
2.3 Nonblocking Techniques . 7
2.4 Linked Lists . 7

3 Idea 8

4 Implementation 10

4.1 AbstractList . 10
4.2 GenericNode . 10
4.3 LockNode . 11
4.4 LockList . 11
4.5 LockListV2 . 12

4.5.1 Variables . 12
4.5.2 Functions . 13

5 Benchmark 15

5.1 Single Lock . 15
5.2 Multiple Locks . 15
5.3 Optimal number of locks . 16

6 Future Work 20

6.1 Number of locks . 20
6.2 Reballancing . 20
6.3 Other data structures . 20

7 Conclusion 21

A Javadoc 22

A.1 AbstractList . 22
A.2 GenericNode . 24
A.3 LockNode . 25
A.4 LockListV2 . 27
A.5 LinkedListException . 32
A.6 EmptyListException . 33
A.7 InvalidKeyException . 34
A.8 NonUniqueKeyException . 35

1 Introduction

A few years ago, processor manufacturers tried to outperform each other in
terms of clockspeed of their processors, until the �rst multicore processor hit
the market. Nowadays terms like �dualcore� or �quad core� are used to sell
chips instead of 3+GHz �gures. Today even most laptops contain a chip with
at least two cores. This development leads to new challenges for hardware
and software engineers: How to best use all this computation power?

On the hardware side things like shared memories and cache coherency bring
new challenges where as on the software side the need for faster datastruc-
tures with parallel access for multiple processes or threads arises. Popular
datastructures like arrays, linked lists and trees need to be reimplemented
to give access to more than one thread at the time.

This work proposes an implementation of a sorted linked list for faster par-
allel access in Java. Locking nodes are distributed over the list such that
parts of the list can be locked individually. The subsequent benchmarks have
shown an increase in speed for increasing numbers of threads and locks.

The following pages present an overview of related work (section 2), the
basic idea behind the implementation (section 3), the implementation itself
(section 4) and the benchmarks (section 5) which the implementation has
been subjected to.

5

2 Related Work

In [1] Moir and Shavit talk about the di�culties that arise while implement-
ing and verifying concurrent data structures. On multicore processors the
steps of threads can be interleaved arbitrarily. This means that the compu-
tation has to be viewed as completely asynchronous which leads to a lot of
challenges in terms of performance and scalability. While lock-based block-
ing implementations are relatively easy to design and verify, they introduce
new problems, while non-blocking approaches are usually a lot harder to
design and verify.

2.1 Performance

The ratio of the execution time of an application on a single core to the
execution time on P cores is called speedup. It measures how e�ciently an
application uses the available machine. A linear speedup of P would be de-
sirable but is very hard and in some situations even impossible to achieve.
If speedup grows with P , an application is called scalable. Introducing locks
into a datastructure can severely limit scalability due to sequential bottle-
necks. A sequential bottleneck is code which can only be executed by one
thread at the time ie. that is executed while holding a lock. Say b is the
fraction of the program that is subject to a sequential bottleneck and the
program takes one time unit on a singlecore processor. Then the sequential
part takes b time units on a P -core processor and the rest of the programm
takes (1 − b)/P time units. This means that the speedup S in the best
case is limited to 1/(b + (1 − b)/P). Hence, if 10% of the application has
to be executed sequentially S is limited to 5.3 on a 10-core processor. So
the application is running at half the machines capacity. On our 16-core
benchmark server the numbers are even more dramatic: The speedup would
be at most 6.4 which is a mere 40% of the capacity of the server! Reducing
the number and length of sequentially executed sections is therefore crucial
to performance.

2.2 Blocking Techniques

Blocking techniques are usually quite simple to implement compared to non-
blocking techniques but they have the undesirable e�ect, that a delayed
thread holding a lock also delays all other threads trying to acquire that lock.
Parts of applications that use locks lack parallelism and are therefore not
scalable. One way to overcome this problem is a �ne-grained locking scheme,
which means to reduce the number of instructions executed while holding
a lock and/or using multiple locks for di�erent parts of a data structure
such that individual operations can take place at the same time when not
accessing the same parts of the data structure. Another way is to access the

6

data structure in di�erent time intervals. One popular technique to do so is
backo�.

2.3 Nonblocking Techniques

Nonblocking techniques try to overcome the limitations introduced by the
use of locks in a data structure. Thus nonblocking progress conditions have
been considered in the literature:

• wait-freedom guarantees that an operations completes after a �nite
number of its own steps.

• lock-freedom guarantees that after a �nit number of an operations
steps, some operations completes.

• obstruction-freedom guarantees the completion of an operation within
a �nite number of steps after it stops encountering interference from
other operations.

Of course wait-freedom is a stronger condition than lock-freedom, and lock-
freedom is a stronger condition than obstruction-freedom. Nevertheless, all
three conditions forbid the use of locks. Although stronger conditions seem
useful, weaker conditions are usually easier to implement and to prove cor-
rect.

Nonblocking data structures are implemented using a number of special
atomic instructions such as compare-and-swap (CAS) and load-linked/store-
conditional (LL/SC). Such instructions are universal : there exists a wait-
free implementation for any datastructure on a system that supports such
instructions.

2.4 Linked Lists

Other than globally locking a linked list, the most popular technique is hand-
over-hand locking where each node has an associated lock. A thread travers-
ing a list always locks the next node before unlocking the previous one, thus
preventing overtaking which may cause unnoticed deletion or insertion of a
node. However, this limits concurrency as one thread can't overtake another
in the list even if its operations need nodes in a completely di�erent part of
the list.

7

3 Idea

To keep the data in a linked list consistent, the accessed data has to be locked
on access. This means that if two threads want to access the list simulta-
neously one of them has to wait for the other to �nish its operation. Thus,
there is no gain in speed if two threads work on the list. On the contrary: In
most situations the operations are slower, as the locking process takes time
and resources. This problem has no solution if the operation needs the whole
list to be locked. However, what if two operations only need to change a few
elements? In this situation a second operation in another part of the list
could take place simultaneously! This is especially true for large lists with a
few thousand or so elements.

So why not lock each element separately? This would cause a lot of overhead
compared with only one lock for the whole list. Furthermore operations like
insert and delete would become rather complicated as more than one element
has to be locked and one would always have to check whether those locked
elements are still part of the list after locking them. This is the motivation
behind this work. What this work proposes are several locks distributed over
the list which are responsible for locking a certain part of the list.

Figure 1: List with gray locking nodes

Fig. 1 shows the basic principle of the distributed lock elements. The �rst
node (header, see Sec. 4.5.1) is always a locking element. Each gray lock
node is responsible for locking the following normal nodes up to the next
lock node. The nodes between two locks are called a group.

As inserting and deleting a node changes the structure of the list, the
distribution of locks may become unballanced if for example a lot of nodes
are deleted in a certain part of the list. After a certain number of deletes
and inserts the list is therefore reballanced. Reballancing is done under these
conditions:

• The number of needed locks di�ers by two from the number of locks
currently in the list, or

• There is a group with less than two elements, and

8

• There is no other reballancing operation currently running.

9

4 Implementation

The list is implemented in Java. Following is a detailed description of the
individual classes.

4.1 AbstractList

The class AbstractList provides a base class for the implementation of a
linked list. This class contains de�nitions for the following abstract methods
and variables:

• listSize is an AtomicInteger and contains the size of the list. It
is incremented or decremented by insert and delete, respectively. The
AtomicInteger type ensures that increments and decrements are atomic
operations.

• �rst () returns the �rst element of the list. It provides an entrypoint
to the list.

• insert (GenericNode newNode) inserts a new node newNode into
the list. It throws LinkedListExceptions.

• delete(int key) deletes the element from the list, that corresponds
to the provided key. It too throws LinkedListExceptions.

• isEmpty() returns true if the list is empty, that is if listSize ==0,
and false otherwhise.

• print() prints the list to stdout.

AbstractList also provides these non-abstract functions to handle listSize :

• size () returns the value of listSize , that is the size of the list.

• setSize(int n) sets the size of the list listSize to the value of the
parameter n.

• incrementSize() increments the value of listSize by 1.

• decrementSize() decrements the value of listSize by 1.

4.2 GenericNode

GenericNode class provides a basic node for the list. A node consists of a
key, an element and a pointer to the next node in the list. The class has two
constructors: The �rst has an object and a key as parameters whereas the
second only has the key. However, the second just calls the �rst with "null"
as object.

10

4.3 LockNode

The LockNode class extends GenericNode. It has the same two constructors
as GenericNode and both just call the corresponding superconstructor. The
class also provides some additional variables and functions. All variables
are protected, so they can't be accessed outside the lists package. The new
protected variables are the following:

• locked is an AtomicBoolean and provides the means to lock a node.
It can only be accessed through functions in the LockList classes.

• lockedBy denotes which thread currently holds the lock. It is set to
the threads id whenever a lock is acquired.

• nextLock is a pointer to the next lock in the list or to the sentinel if
it is the last lock in the list.

• active is a boolean that indicates whether or not the lock is still an
active lock in the list. During reballancing locks might be deleted from
the list and active is set to false .

The two public functions of LockNode are nextLock() and isActive().
The �rst returns a pointer to nextLock and the later returns the value of
active.

Figure 2: Class diagram of nodes

4.4 LockList

This class is the �rst attempt. It had several unresolved issues which even-
tually resulted in LockListV2, a complete redesign of the list class. With
this implementation every lock also held data and could be inserted and/or

11

deleted as every other node. During reballancing it was also possible, that a
normal GenericNode had to be changed into a LockNode to ensure an even
distribution of locks over the list. The problem with this implementation
was basically, that the lock responsible for locking a node could change. If
a lock was deleted from the list and set to inactive one would have to start
from scratch with searching the lock responsible for the node. This made
working with the list and especially the insert and delete functions extremely
complicated as both functions had a number of special cases:

• Deleting or inserting a node at the front of the list

• Deleting or inserting a node in front of a lock

• Deleting or inserting a LockNode

The handling of these cases led to extremely complicated and error-prone
sourcecode.

4.5 LockListV2

In this second version of the LockList no data was held on the locks anymore.
So in normal use of the list locknodes don't get deleted or inserted. Only
during reballancing locks can be removed or added to the list. This leavs
one easy to handle special case:

• during acquisition of a lock an additional lock is added between the
lock and the place where a node should be inserted or deleted

LockListV2 implements all abstract classes from AbstractList and has some
also some functions and variables of its own.

4.5.1 Variables

Header and sentinel are two LockNodes and are the �rst and last nodes
of the list, respectively. The header is needed as an entrypoint to the list and
it is the �rst lock of the list. The sentinel is there for convenience reasons.
The header has key 0 and the sentinel has key Integer .MAX_VALUE, the
later being the only invalid key for a node in the list.

Delins, reballance, locks and threads are four auxilliar variables for
the reballancing function. Delins and threads are AtomicIntegers. Delins
indicates how often delete and insert have been called since the last time
the list has been reballanced. It is incremented by both delete and insert
and set to 0 by reballance(). The threads variable is used to store the
number of threads working on the list. It is assumed that this number is
known.
Reballance is an AtomicBoolean and is used by reballance() to determine

12

Figure 3: Class diagram of lists

whether another reballancing is currently taking place. If so, all other calls
to reballance() are aborted.
The integer value locks stores the number of locks currently included in the
list. Its value depends on the length of the list and the number of threads
currently working with it.

4.5.2 Functions

Constructor LockListV2() is the only constructor for the LockListV2
class. LockListV2() takes no arguments. It initializes header and sentinel
and connects them.

setThreads(int n) is used to set the number of threads working on the
list which is provided as an integer argument. Although Java knows how
many cores are available in the system, there's no way to determine how
many threads use a certain instance of a class. Keeping track of the di�erent
thread IDs would cause a huge overhead. The number of threads is a piece of
vital information for the reballance function, so for this implementation it is
assumed that the number of threads can be determined in future multicore
systems or that this number is provided by someone. Hence this function.

Delete(int key) and insert (GenericNode newNode) delete or in-
sert a node into the list, respectively. Both functions are implemented re-
cursively, i.e. they start over if something goes wrong with acquiring a lock

13

(inactive or additional lock). This only happens if reballancing takes place
at the same time one of these two functions is executed and a lock is removed
or inserted into the list.

First() returns a reference to header.

Reballance() adjusts the number and positions of the locks in the list.
Reasons that make this necessary are the following: After a number of delete
and insert operations unballanced groups of nodes may have been formed, or
the length of the list and/or the number of threads working on the list may
have changed. Reballancing is only done if a group of nodes is smaller than
2 or the new number of locks di�ers by more then 2 from the momentary
number. The later is to prevent oscillating lock numbers. If the di�erence
would be only 1, it could happen that the length of the list or the number
of threads change such, that with every reballancing the number of locks
changes up or down by one lock. This would cause unnecessary reballancing
overhead. Reballancing is only done if no other thread reballances the list
at the same time.

Lock(LockNode lockNode, long id) is the �rst possibility to lock a
node. It tries to lock the node until it succeeds, then it returns true if
the lock was still active or it unlocks the node again and returns false if the
lock has been set to inactive.

idLock(LockNode lockNode, long id) is the second locking function.
The di�erence to lock is that it only tries to lock the node once and then
returns the id of the thread that currently holds the lock. It can be used to
prevent getting blocked while trying to lock a node that has already been
locked by the same thread.

Unlock(LockNode lockNode, long id) releases a lock if the thread call-
ing the function holds the lock. It returns true or false on success or failure,
respectively.

Release(long id) can be used to release all locks in the list held by a
thread.

getLocks() returns the number of locks currently active in the list.

14

5 Benchmark

5.1 Single Lock

The �rst benchmark was run with only insert and delete operations with
an equal chance for both operations. In total 160000 operations were run,
evenly distributed over the threads. The benchmark was run for 1 through
16 threads and with 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 locks in a
list with a starting length of 10000 nodes. The results of this benchmark are
shown in Fig. 4:

Figure 4: Result of �rst benchmark run

It shows, that there is an increase in speed with more than one thread.
However, the number of locks in the list seams to have no in�uence on the
speed of the operations what so ever. This was not expected, so in search
for the reasons measurements of the time for certain operations were taken
(Tab. 1).
These value show, that alot more time (∼ 98.5%) is spent traversing the

list and searching for the right node than is used to lock, access and unlock
the node (∼ 1.5%).

5.2 Multiple Locks

With this second benchmark, locks weren't released immediatly after access
to a node. This time all required locks were acquired and held until all nodes
were accessed and only then they were released, resulting in a longer lock
time than in the �rst benchmark. This simulates the making of a "snapshot"

15

Operation Time [ns]
early delete 952
middle delete 66938
late delete 125611
early insert 521
middle insert 52592
late insert 93823
lock node 142
unlock node 183
traversing list 105157
node object access 558

Table 1: Timemeasurements

where valid data of a number of nodes is needed at the same time.
Three parameters were varied this time: Number of locks ([1, 1000]),number
of accessed nodes per operation ([1, 1000]) and of course the number of
threads (1, 2, 4, 6, 9, 12 and 15).
The �rst run was with a list of 10000 nodes. In Fig. 5 you can see the re-
sults for 1000 accessed nodes. The time measured is for 77760 operations
(77760 = 2 · 4 · 6 · 9 · 12 · 15) equally distributed over the threads.

Figure 5: Benchmark with 1000 accessed nodes in a 10000 node list

This looks more like the expected results. One can see a clear increase
in speed for increasing numbers of both threads and locks. The achieved
speedup S is larger than 7. This means that the part of the code that is
subject to a sequential bottleneck p is smaller than 8%

5.3 Optimal number of locks

A dependency between the number of accessed nodes and the optimal num-
ber of locks could not be detected. Therefore, and because it would be very
costly to keep track of how many elements are in average accessed per oper-

16

ation, the search for a function that determines the optimal number of locks
was focused on functions of the form f(threads, length.of.list) = #locks.

For this purpose a benchmark with operations that access 10% of the nodes
was run on lists with x ∗ 1000 nodes with x ∈ [1, 20].

PPPPPPPPPPP

List
length

Threads
1 2 4 6 9 12 15

1000 1 4 10 12 21 19 21
2000 1 3 12 24 22 24 35
3000 1 5 11 22 31 37 33
4000 1 7 10 23 35 39 49
5000 1 6 11 17 33 48 61
6000 1 6 14 18 32 44 51
7000 1 7 11 21 51 54 59
8000 1 16 15 17 41 41 53
9000 1 13 13 20 25 59 59
10000 1 4 13 17 29 53 49
11000 1 6 31 29 31 59 55
12000 1 10 19 19 42 60 69
13000 1 6 22 22 37 47 66
14000 1 9 30 24 35 49 64
15000 1 14 27 29 38 55 68
16000 1 11 15 28 30 50 62
17000 1 7 27 37 37 57 65
18000 1 6 32 32 32 50 70
19000 1 19 14 23 36 48 64
20000 1 5 11 35 51 51 66

Table 2: Optimal Locks

The values from Tab. 2 are plotted in Fig. 6.
With the help of the Genetic Algorithm Toolbox for Matlab [2] a function

of the form f(x, y) = a · x2 + b · y2 + c · x · y + d · x + e · y + f that best
approximates the values in Tab. 2 was searched. The result was:

f(x, y) = −0.0562·x2−9.3981·10−9 ·y2+1.2716·10−4 ·x·y+3.3865·x−0.8267

The function is plotted in Fig. 7. It has not been tested any further though.
On �rst sight this might look as if the dependency on the length of the list

is rather small (10−4 and 10−9). Keep in mind though, that lengths used in
this benchmark have a similar power (y ∼ 104 and y2 ∼ 108).

17

0

5

10

15

0

0.5

1

1.5

2

x 10
4

0

20

40

60

80

ThreadsNodes

Lo
ck

s

10

20

30

40

50

60

70

Figure 6: Measured locks plotted over threads and list length

18

0

5

10

15

0

0.5

1

1.5

2

x 10
4

0

20

40

60

80

ThreadsNodes

Lo
ck

s

10

20

30

40

50

60

70

Figure 7: Optimal locks plotted over threads and list length

19

6 Future Work

6.1 Number of locks

The function that determines the number of locks was derived from a bench-
mark that locked 10% of the elements in the list with every operation. Maybe
a better function can be found that gives better results on speed with mixed
benchmarks where some operations acquire a lot of locks and others only
lock a single node. Also the number of locks needed outside the tested range
is unknown. Hence, longer or shorter lists can be investigated.

6.2 Reballancing

For reballancing a few questions can be answered. How often is reballancing
needed? How bad are very small and large groups for the performance?
Would it be a good idea to keep track of changing thread numbers and keep
the number of locks according to the average thread number?

6.3 Other data structures

The same principle that is used for a linked list in this work could be applied
to other data structures like trees.

20

7 Conclusion

The goal of this work was a faster datasctructure for parallel access using
a new approach of a few distributed locks in the list. With a considerable
speedup of S > 7 this goal has been achieved.

Personally the work was very instructive for me. I have never worked with
multithreaded datastructures before, so I needed to adapt a new way of
thinking about the code. Debugging therefore posed a real challenge for me
and hence needed a lot of time in the beginning. Especially as the very
�rst benchmark version was completely randomized in terms of what hap-
pened with the accessed elements (eg. insert, delete, change object, etc.)
which sometimes made it almost impossible to understand how the oper-
ations where interleaved. However, even without random, reproducing a
certain error was sometimes very complicated; especially if there was more
than one reason why eg. a NullPointerException occured.

21

A Javadoc

A.1 AbstractList

Full name: public abstract class AbstractList

Package lists

Inherits Object

AbstractList is the abstract base class for all linked list implementations.

Author Fabian Gut

Version 2

Inheritancetable

Element Inherited from

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Fields

private AtomicInteger listSize The size of the list. It is incremented
with every call of insert and decremented with every call of delete

Construktors

public AbstractList()

22

Methods

public abstract GenericNode �rst() Returns the �rst element of
the list.

See also GenericNode

Return the �rst element of the list as a GenericNode

public abstract void insert(GenericNode newNode) throws

LinkedListException Inserts a new GenericNode into the list.

Parameter GenericNode newNode the node to insert

Exceptions LinkedListException can have multiple causes. What excep-
tions are thrown depends on the imple-
mentation.

public abstract void delete(int key) throws LinkedListException

Deletes the element from the list that corresponds to the provided key.

Parameter int key speci�es which element to delete

Exceptions LinkedListException can have multiple causes. What excep-
tions are thrown depends on the imple-
mentation.

public abstract boolean isEmpty() Returns whether the list is
empty or not.

Return returns true if the list is empty and false otherwise.

public abstract void print() Prints the list to stdout.

public int size() Returns the size of the list

Return returns the size of the list by returning the value of listSize

23

protected void setSize(int n) Sets the size of the list.

Parameter int n the new listsize to set

protected �nal void incrementSize() Increments the size of the list
by 1.

protected �nal void decrementSize() Decrements the size of the
list by 1.

A.2 GenericNode

Full name: public class GenericNode

Package lists

Inherits Object

GenericNode provides a basic list element. It contains a key, an arbitrary
element and a pointer to the following node. The constructor has to be
provided with a key at least.

Author fabian

Version 1

Inheritancetable

Element Inherited from

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

24

Fields

public int key The key of the node.

public Object element The content of the node. Can be any class that
extends the class Object.

public GenericNode next The pointer to the next node in the list.

Construktors

public GenericNode(int key) Class constructor. It calls GenericN-
ode(Object, int) with null as the Object.

Parameter int key the key of the new node

public GenericNode(Object newElement, int key) Class con-
structor with a speci�ed element. The element and key are set to the pa-
rameters newElement and key, respectively and the pointer to the next node
is set to null. The pointer is only set once the element is inserted into a list.

Parameter Object newElement the element contained in the node
int key the key of the node

A.3 LockNode

Full name: public class LockNode

Package lists

Inherits Object←GenericNode

LockNode implements a node that can be locked. The class extends
GenericNode.

Author Fabian Gut

Version 1

25

Inheritancetable

Element Inherited from

Object element GenericNode

int key GenericNode

GenericNode next GenericNode

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Fields

protected AtomicBoolean locked The lock of the node initialised to
false.

protected long lockedBy The owner of the lock initialised to 0 (no
owner).

protected LockNode nextLock The pointer to the next lock in the
list initialised to null.

protected boolean active Shows whether the lock is still an active
node of the list. If a lock is removed from the list during reballancing it is
set to inactive, that is active is set to false. It is initialised to true.

26

Construktors

public LockNode(int key) Class constructor. It calls the corre-
sponding constructor of the superclass GenericNode.

Parameter int key

public LockNode(Object newElement, int key) Class construc-
tor with a speci�ed element. It calls the corresponding constructor of the
superclass GenericNode.

Parameter Object newElement
int key

Methods

public LockNode nextLock() Returns the pointer to the next lock.

Return returns nextLock which is the pointer to the next lock in the list

public boolean isActive() Indicates whether a node is still active or
not.

See also #active

Return returns the value of active

A.4 LockListV2

Full name: public class LockListV2

Package lists

Inherits Object←AbstractList

LockListV2 is the �nal implementation of the linked list for parallel access.
The class extends the abstract class AbstractList and implements all of the
abstract methods in AbstractList. The list is ordered by the keys of the
elements.

Author fabian

Version 2

27

Inheritancetable

Element Inherited from

void decrementSize() AbstractList

void delete(int) AbstractList

GenericNode �rst() AbstractList

void incrementSize() AbstractList

void insert(GenericNode) AbstractList

boolean isEmpty() AbstractList

void print() AbstractList

void setSize(int) AbstractList

int size() AbstractList

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Fields

private �nal LockNode header The �rst element in the list. It also
is the �rst lock of the list. It has key 0.

public �nal LockNode sentinel The last element of the list. It has
key Integer.MAX_VALUE.

private AtomicInteger delins The number of times delete and insert
have been called on the list. It's reset to 0 after a call to reballance.

See also #reballance

28

private AtomicBoolean reballance Determines whether reballancing
is taking place. reballance may only be called once at a time.

See also #reballance

private int locks The number of locks in the list. It is set by reballance
before exiting.

See also #reballance

private AtomicInteger threads The number of threads working on
the list. It is used to determine the number of locks that are required by
reballance.

See also #reballance

Construktors

public LockListV2() Class constructor. It initializes header and
sentinel.

Methods

public void setThreads(int n) Sets the number of threads to n and
calls reballance.

See also #reballance

Parameter int n the new number of threads

public void delete(int key) throws EmptyListException, In-

validKeyException Deletes the element from the list that corresponds
to the provided key.

See also exception.EmptyListException
exception.InvalidKeyException

Parameter int key speci�es which element to delete

29

Exceptions EmptyListException if the list is empty there's nothing to
delete

InvalidKeyException if there's no element with the speci�ed
key in the list

public LockNode �rst()

public void insert(GenericNode newNode) throws NonUniqueKeyEx-

ception, InvalidKeyException Inserts a new GenericNode into the list.

Parameter GenericNode newNode the node to insert

Exceptions NonUniqueKeyException if there's already an element with the
same key in the list. There can't be
more than one element with the same
key.

InvalidKeyException if the key of newNode is equal to the
key of the sentinel which is an illegal
key.

public void reballance() Reballances the locks in the list. After a
certain amount of deletes and inserts there might be very large or very small
groups of nodes between two locks. If this is the case, the list has to be
locked completely and a reballancing has to be done. This means that the
correct number of locks are distributed evenly over the list. This method
resets the value of delins to 0.

See also #delins

public void print()

public boolean isEmpty()

30

public void release(long id) Releases all the locks in the list which
are locked by the speci�ed id.

Parameter long id the thread id for which all locks have to
be released.

public boolean lock(LockNode lockNode, long id) Locks the
lockNode and speci�es the locker as id.

Return returns true if locking was successfull and false if the lock was locked
already

Parameter LockNode lockNode the node to lock
long id the id if the locking thread

public long idLock(LockNode lockNode, long id) Locks the
lockNode and speci�es the locker as id. This method is similar to lock. The
di�erence lies in the return value.

Return returns the id of the thread to which the lock currently belongs

Parameter LockNode lockNode the node to lock
long id the id of the locking thread

public boolean unlock(LockNode lockNode, long id) Unlocks
the lockNode if it was locked by id. The operation only succeeds if the lock
belongs to the unlocking thread.

Return returns true if the lock belongs to the unlocking thread and false
otherwise

Parameter LockNode lockNode the node to unlock
long id the id of the unlocking thread

public int getLocks() Returns the number of locks currently in the
list.

Return the number of locks in the list

31

A.5 LinkedListException

Full name: public class LinkedListException

Package exception

Inherits Object←Throwable←Exception

Implements a generic Exception that can occur while working with the
classes AbstractList and LockListV2.

Author fabian

Version 1

Inheritancetable

Element Inherited from

Throwable �llInStackTrace() Throwable

Throwable getCause() Throwable

String getLocalizedMessage() Throwable

String getMessage() Throwable

StackTraceElement[] getStackTrace() Throwable

Throwable initCause(Throwable) Throwable

void printStackTrace() Throwable

void printStackTrace(PrintStream) Throwable

void printStackTrace(PrintWriter) Throwable

void setStackTrace(StackTraceElement[]) Throwable

String toString() Throwable

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

32

Construktors

public LinkedListException(String message) Class constructor.

Parameter String message the message contains information why
the exception was thrown

A.6 EmptyListException

Full name: public class EmptyListException

Package exception

Inherits Object←Throwable←Exception←LinkedListException

EmptyListExceptions are thrown when an illegal operation is performed
on an empty list. This class extends LinkedListException.

Author fabian

Version 1

Inheritancetable

Element Inherited from

Throwable �llInStackTrace() Throwable

Throwable getCause() Throwable

String getLocalizedMessage() Throwable

String getMessage() Throwable

StackTraceElement[] getStackTrace() Throwable

Throwable initCause(Throwable) Throwable

void printStackTrace() Throwable

void printStackTrace(PrintStream) Throwable

void printStackTrace(PrintWriter) Throwable

void setStackTrace(StackTraceElement[]) Throwable

String toString() Throwable

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

33

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Construktors

public EmptyListException() Class constructor. Calls the construc-
tor of the superclass with the message "List is empty.".

See also LinkedListException

A.7 InvalidKeyException

Full name: public class InvalidKeyException

Package exception

Inherits Object←Throwable←Exception←LinkedListException

InvalidKeyExceptions are thrown whenever the key of an element is that
of the sentinel which is illegal. This class extends LinkedListException.

Author fabian

Version 1

Inheritancetable

Element Inherited from

Throwable �llInStackTrace() Throwable

Throwable getCause() Throwable

String getLocalizedMessage() Throwable

String getMessage() Throwable

StackTraceElement[] getStackTrace() Throwable

Throwable initCause(Throwable) Throwable

34

void printStackTrace() Throwable

void printStackTrace(PrintStream) Throwable

void printStackTrace(PrintWriter) Throwable

void setStackTrace(StackTraceElement[]) Throwable

String toString() Throwable

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Construktors

public InvalidKeyException() Class constructor. Calls the con-
structor of the superclass with the message "Invalid Key.".

See also LinkedListException

A.8 NonUniqueKeyException

Full name: public class NonUniqueKeyException

Package exception

Inherits Object←Throwable←Exception←LinkedListException

NonUniqueKeyException are thrown when a node with the same key as
one already in the list is tried to be inserted into the list. This class extends
LinkedListException.

Author fabian

Version 1

35

Inheritancetable

Element Inherited from

Throwable �llInStackTrace() Throwable

Throwable getCause() Throwable

String getLocalizedMessage() Throwable

String getMessage() Throwable

StackTraceElement[] getStackTrace() Throwable

Throwable initCause(Throwable) Throwable

void printStackTrace() Throwable

void printStackTrace(PrintStream) Throwable

void printStackTrace(PrintWriter) Throwable

void setStackTrace(StackTraceElement[]) Throwable

String toString() Throwable

Object clone() Object

boolean equals(Object) Object

void �nalize() Object

Class getClass() Object

int hashCode() Object

void notify() Object

void notifyAll() Object

String toString() Object

void wait(long) Object

void wait(long, int) Object

void wait() Object

Construktors

public NonUniqueKeyException() Class constructor. Calls the
constructor of the superclass with the message "Key already in list.".

See also LinkedListException

36

References

[1] Mark Moir and Nir Shavit, Concurrent Data Structures, 2001,
http://www.cs.tau.ac.il/ shanir/concurrent-data-structures.pdf.

[2] Evolutionary Computation Research Team: Genetic Algorithm Toolbox,
1994, http://www.shef.ac.uk/acse/research/ecrg/gat.html.

37

