
Semester thesis

A Security Forensics framework

Ramya Jayaram Masti

Advisors:
Dr.Vincent Lenders
Dr.Stefan Engel

Dr.Mario Strasser
Prof.Dr.Bernhard Plattner
Prof.Dr.Srdjan Capkun

September 2009 - February 2010

Communication Systems group
Information Technology and Electrical Engineering Department

ETH Zurich

Abstract

With increasing use of IT infrastructure for crime, digital forensics has be-
come important for law enforcement. Integration of digital evidence from
several sources is important for improving the quality of data available for
forensic analysis. As a first step in this direction, we evaluate the pos-
sibility of integrating host forensics and network forensics on a periodic
basis rather than during post-mortem forensic investigation. We develop
a support framework for the collection and storage of forensically relevant
information from hosts and networks. We show the feasibility of collect-
ing certain important host relevant data like process information (including
path of the executable responsible for the process, process owner, handles,
etc). The ’tagged’ bloom filter structure we develop for storing network
data, scales linearly with the number of hosts and the link utilization. The
volume of storage required to collect data (network and host data) from a
1000 hosts with a 1Gbps link (10 percent utilization) in 24 hours is about
80GB which we consider reasonable. Finally, the use of the framework in
the investigation of a data leakage scenario provides an illustration of how
host information could improve time required for forensic analysis.

Acknowledgements

I would like to thank all the people who have helped me through the course
of this project. At the outset, I would like to thank Dr.Vincent Lenders for
giving me an opportunity to work with him on this project. He has been an
excellent advisor and has been very patient with me. I have learned a lot
from him, and not just academically. I am grateful to Dr.Stephan Engel, Ar-
masuisse, Bern, for the insightful weekly discussions which he always made
time for, despite his busy schedule. I have also been very fortunate to work
with Dr.Mario Strasser whose guidance and support has been invaluable
for the completion of this project. I would like to thank Prof.Dr.Bernhard
Plattner and Prof.Dr.Srdjan Capkun for their valuable advice and feedback
through the course of this project. I would also like to thank Dominik
Schatzmann for his help regarding details of network flows. Finally, I would
like to thank my family and friends for their unflinching support and co-
operation.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement . 1

1.3 Related work . 1

1.4 Contribution . 2

2 Background to Forensic Evidence collection 5

2.1 Characteristics of forensic evidence 5

2.2 Layers of abstraction . 6

2.3 Assumptions . 6

2.3.1 The hardware and firmware layer 6

2.3.2 The VMM and the operating system layer 7

2.3.3 The application layer 7

2.3.4 The network layer . 7

3 Framework Requirements 9

3.1 Generic requirements . 9

3.2 Security requirements . 9

4 Framework design 13

4.1 Framework Architecture . 13

4.1.1 Components of the framework 13

4.1.2 Communication between framework components . . . 14

4.2 Forensic data collection . 15

4.2.1 Network data collection and storage 15

4.2.2 Host data collection and storage 21

4.3 A combined forensic investigation approach 23

5 Framework Implementation 25

5.1 The jnetpcap library . 25

5.2 The Bloom filter implementation 26

5.3 The capture file processor . 26

5.4 Forensic procedure implementation 26

v

6 Framework Evaluation 29
6.1 Two data leakage scenarios 29

6.1.1 Scenario 1 . 30
6.1.2 Scenario 2 . 30

6.2 Results . 31
6.2.1 Complete file transfer 31
6.2.2 Partial file transfer with fixed block boundaries 31
6.2.3 Partial file transfer with arbitrary byte boundaries . . 32

6.3 Verification of evidence consistency 32

7 Conclusion 35
7.1 Summary of results . 35
7.2 Limitations of the framework 36
7.3 Outlook . 36

Appendix A 37
A.1 Network data size calculation 37
A.2 Host process data schema . 37
A.3 Framework evaluation . 38

vi

Chapter 1

Introduction

1.1 Motivation

The increasing use of IT infrastructure for crime makes digital forensics an
indispensable part of law enforcement. The science of digital forensics has
been defined as ’the process of identifying, preserving, analyzing, and pre-
senting digital evidence in a manner that is legally accepted’ [1]. There are
several sources of forensic evidence. Integration of information from these
sources for improving the quality of forensic evidence poses an interesting
challenge. The problems of collection, storage and analysis of the informa-
tion with respect to feasibility and efficiency are important for analysis of
security incidents after their occurrence.

1.2 Problem statement

The main goal of the forensic framework is to develop an approach to dig-
ital forensics that combines host forensics and network forensics to enable
better reconstruction of security events. The framework must be able to
provide details regarding the source of an attack, the location of the attack,
its timing, its effect (details regarding compromised assets) and the recon-
struction of the attack itself. The individual or the organization behind the
attack and their motivation is not always deducible. For example, if it is
known that some sensitive information was transferred over the network, the
framework must be able to furnish information regarding what information
was transferred, by whom, when and how it was transferred.

1.3 Related work

Recent work in digital forensics focuses on optimizing the collection, pro-
cessing or storage of digital evidence from a single source as discussed in [2],
[3], [4], etc. There are few pointers to the integration of information from

1

Chapter 1

the various possible sources of evidence. Although it has been recognized
for long that networks and hosts yield valuable data that can aid forensic
investigations, there have been relatively few attempts to incorporate data
from both sources into a forensic framework [5]. Most research focuses either
on host forensics or towards network forensics but not in their combination.

Modern approaches to host forensics emphasize on ’live forensics’ [6], [7] and
development of tools for live forensics [8]. ’Live forensics’ refers to collection
of volatile data on the host under scrutiny before it is shut down to collect
its disk contents. This is useful because volatile memory may contain infor-
mation about recent activity on that host. However, there are no references
to continuous volatile memory examination, processing and storage as we
investigate in this thesis.

Contemporary research on network data retention for forensic purposes in-
cludes the use of hierarchical bloom filters [9], use of arithmetic coding for
data compression [10] and storage of partial flow information [11]. How-
ever, notable disadvantages exist with each of these techniques. Hierarchical
bloom filters do not allow the extraction of network flow data, arithmetic
coding only compresses header size and storage of partial flow information
loses data pertaining to longer flows. Hence, it was important to design a
data structure for network data retention that overcomes these deficiencies
but is still scalable with the number of hosts.

1.4 Contribution

Forensic investigation approaches differ according the exact nature of the
incident under investigation like the time since the occurrence of the se-
curity incident, amount of information known about the incident, goals of
the investigation, etc. A particular application of a forensic investigation
deals with finding the source and/or the evidence pertaining to a known
security incident. Given that a forensic examiner knows the exact nature
of the breach, one may build a supporting framework to ensure that all the
data required to construct the evidence has been collected. The exact data
to be collected depends upon the nature of the security breach. This work
focusses on the development of such a support framework through support
for continuous data collection from hosts and the network.

This work examines and establishes the feasibility of periodic collection,
processing and storage of forensically relevant data from hosts in contrast to
’live’ examination of compromised hosts. Further, it also obviates the need
for entire network traces and instead stores network data in the form on
’tagged’ bloom filters. This approach has the advantage of allowing forensic
analysis on security incidents long after they have occurred by reducing the

2

Contribution

volume of data required to reconstruct the event.

3

Chapter 2

Background to Forensic
Evidence collection

This chapter describes the background to forensic evidence collection which
includes the characteristics of the data collected, the layers of abstraction of
IT infrastructure and its relevance to forensic evidence collection.

2.1 Characteristics of forensic evidence

Forensic evidence is characterized by the following desirable properties[12]:

a. Integrity: It must be verifiable that the evidence has not changed
since collection time.

b. Reproducibility: It must be possible to elicit the same evidence
given a system in the same state, i.e., the process of evidence collection
must be reproducible.

c. Authenticity: It must be possible to verify the source of evidence.

d. Non-interference: The examination process must not alter the ex-
amined systems or at least the exact effects caused must be clear.

e. Minimization: Only relevant data should be collected.

f. Availability: The process of evidence collection must not be hin-
dered.

It is not always possible to ensure that all the properties hold. For example,
it is not possible to achieve reproducibility in gigabit networks where large
volumes of data cannot be stored for very long periods of time.

5

Chapter 2

2.2 Layers of abstraction

In [13], the author discusses an approach to defining independent layers of
abstraction that are amenable to forensic analysis. On applying a similar
paradigm to a host, one can view IT infrastructure in terms of a number of
layers as shown in Figure 2.1.

Figure 2.1: Layers of a host

An attacker could compromise any of the properties of the data collected as
forensic evidence from any of these layers. Furthermore, if an adversary has
complete control over a certain layer on a host, then the adversary also has
partial or complete control over all the layers above the compromised layers
on the host. The network layer is used for communication between hosts.
Any layer on the host ideally uses the layers below it to reach the network
layer. The effects of the compromise of a layer on a host is generally visible
on the network layer.

2.3 Assumptions

We state the assumptions underlying the design of our framework. These
assumptions must be realistic to ensure practicality of the framework. On
a host (hardware, firmware, OS, application), it is reasonable to say that
when an adversary controls a lower layer, he controls all the upper layers.
The assumptions below, mitigate to an extent, the control an adversary can
exercise over any layer without being detected.

In the following subsections, the assumptions at each layer are enumerated.

2.3.1 The hardware and firmware layer

a. Availability of trusted copies of important parts of the disk (boot sec-
tor, OS) for examination for changes at the byte level (not via an
API)

b. Sufficient physical protection to prevent direct tampering of hardware
(insertion of key loggers, modification of firmware by direct physical

6

Assumptions

access or insertion of other malicious hardware is very difficult).

2.3.2 The VMM and the operating system layer

a. Availability of trusted copies of the operating system and the VM
monitor for static integrity checks.

2.3.3 The application layer

a. Availability of trusted copies of common applications (which are per-
haps part of a known baseline of applications) for static file integrity
checks.

b. No loss of evidence due to deletion by any protective or other mecha-
nisms.

2.3.4 The network layer

a. Deployment of suitable mechanisms to prevent MAC spoofing and IP
spoofing. For example, one could cross verify with a DHCP server
which authenticates a user before assigning his host an IP address or
one could deploy S-ARP[14] internally.

b. Deployment of suitable mechanisms to prevent exploitation of DNS
vulnerabilities. For example, deployment of DNSSec internally on the
network to mitigate the risk of exploitation of DNS related vulnera-
bilities.

The assumptions above are ideal for forensic data collection. The violations
of these assumptions leads to less reliable forensic data depending upon the
extent of compromise of the layers. For example, one could have mechanisms
to detect IP and MAC spoofing instead of prevention mechanisms. If there
is an appropriate deployment of sensors on the network, one might still be
able to distinguish spoofed traffic from legitimate traffic.

7

Chapter 3

Framework Requirements

The requirements of the forensic framework can be categorized into generic
and security requirements. They are discussed in detail below.

3.1 Generic requirements

1. Scalable data collection: The volume of data required to be stored
by the framework must be ’reasonable’ in economic terms (cost of
disk space, etc.) and must exhibit not worse than linear increase with
increase in number of hosts or network connections.

2. Scalable Performance: The framework must exhibit ’negligible’ (to
be defined) degradation in performance with increase in the number
of hosts and/or network connections.

3. Extensibility: Incidence response uses attack signatures. It must be
easy to extend the framework to detect new signatures.

4. Platform independence: The framework must be able to hide the
heterogeneity of the hosts and network topologies and collect data in
a uniform way.

3.2 Security requirements

The security requirements of the framework encompass the security require-
ments of the data collected and the security requirements of parts of the
framework itself. The latter includes the authenticity, integrity and avail-
ability of parts of the framework for collection and analysis of forensic ev-
idence. The integrity and authenticity of the data collected are somewhat
equivalent because in either case the net effect is wrong data being collected.

In this work, the requirements of scalable data collection and extensibility
is addressed. Platform independence can be achieved by the incorporation

9

Chapter 3

of appropriate tools during the implementation stage to deal with different
platforms. The security requirements with respect to the framework com-
ponents can be met with the help of common techniques like integrity ’self-
tests’, ’heart-beat’ generation for availability tests, authentication mecha-
nisms, etc. Security violations of the data collected can be detected to an
extent using cryptographic transformations like digital signatures, etc.

Under the assumptions stated in the previous section, Table 3.1 shows the
effects of compromise of any layer in a host. It is to be noted that once
a layer is compromised, evidence collected at that layer and all the above
layers is rendered untrustworthy. Here, the integrity of evidence prior collec-
tion and post collection or in transit is dealt with separately. Authenticity
of evidence refers to the authenticity of parts of the framework. This cou-
pled with host authenticity is required to prevent framework components
from impersonating each other. Finally, availability of evidence refers to the
availability of the framework’s evidence collection and analysis functionality.
The following discussion assumes that components of the frame-
work that collect evidence are part of the application layer or the
operating system layer.

With compromise in the lower layers (hardware, firmware and VMM layers),
it is difficult to assure the integrity of the data -both prior and post collection
and the integrity of framework components because integrity violations at
these layers may leave no traces in the upper layers. Similarly, authenticity
of the framework components cannot be assured with compromise in these
layers. Violation of the availability condition can be detected by appropriate
implementation techniques (sufficient redundancy, ‘heart beat‘ generation,
etc.)

For compromise at the higher layers (OS and application layers), dynamic
and static signature checks can be used to assure the integrity of the data
as well as the framework. For example, checking for hooks which modify
the behavior of the framework component or the data it collects. Authen-
ticity of the framework components can be assured similarly. Violation of
the availability condition can be detected as in the case of the compromise
of the lower layers.

10

Security requirements

L
ay

er
u

n
d

er
at

-
ta

ck
er

co
n
tr

ol
In

te
gr

it
y

of
ev

id
en

ce
In

te
gr

it
y

of
fr

am
ew

or
k

co
m

p
on

en
ts

A
u

th
en

ti
ci

ty
of

fr
am

ew
or

k
co

m
p

on
en

ts

A
va

il
ab

il
it

y
of

ev
id

en
ce

P
ri

or
co

ll
ec

-
ti

on
P

os
t

co
ll

ec
ti

on

H
ar

d
w

ar
e

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

U
n

av
ai

la
b

il
it

y
d

et
ec

ta
b

le

F
ir

m
w

ar
e

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

U
n

av
ai

la
b

il
it

y
d

et
ec

ta
b

le

V
M

M
V

io
la

ti
on

m
ay

or
m

ay
n

ot
b

e
d

et
ec

ta
b

le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

V
io

la
ti

on
m

ay
or

m
ay

n
ot

b
e

d
et

ec
ta

b
le

U
n

av
ai

la
b

il
it

y
d

et
ec

ta
b

le

O
S

V
io

la
ti

on
d

et
ec

ta
b

le
V

io
la

ti
on

d
et

ec
ta

b
le

V
io

la
ti

on
d

et
ec

ta
b

le
V

io
la

ti
on

d
et

ec
ta

b
le

U
n

av
ai

la
b

il
it

y
d

et
ec

ta
b

le

A
p

p
li

ca
ti

on
V

io
la

ti
on

d
et

ec
ta

b
le

V
io

la
ti

on
d

et
ec

ta
b

le
V

io
la

ti
on

d
et

ec
ta

b
le

V
io

la
ti

on
d

et
ec

ta
b

le
U

n
av

ai
la

b
il
it

y
d

et
ec

ta
b

le

T
ab

le
3.

1:
E

ff
ec

ts
of

co
m

p
ro

m
is

e
of

d
iff

er
en

t
la

ye
rs

in
a

h
os

t

11

Chapter 4

Framework design

The design of the framework includes designing a generic architecture for
the framework, definitions of the host and network data to collect, appro-
priate tools to collect the required data and design of data structures for
storage of collected data. In this chapter, these aspects of the design and
its evaluation are discussed.

4.1 Framework Architecture

In this section, a generic architecture of the online forensics framework in-
cluding its components and communication between them is discussed.

4.1.1 Components of the framework

Figure 4.1: Components of the framework

Figure 4.1 shows the components of the framework.

a. Host data store: The host data store is used to store host informa-
tion obtained from the host agents.

13

Chapter 4

b. Network data store: The network data store is used to store network
information obtained after processing from the network agents.

c. Network flow data store: This is an optional data store that can
be used to hold flow information derived from the network data store.
The processing to derive the network flow information can be done at
the network data store. This will avoid transfer of large amounts of
data over network.

d. Network Agent: The network agent is deployed on every LAN. It
sniffs all the traffic on the LAN. Periodically, it processes the collected
traffic, extracts the required information and stores it at the network
data store in the tagged bloom filter format.

e. Host Agent: The host agent is deployed on every host. It period-
ically collects data about the host like the process information, port
information,etc. and transfers it to the host data store.

f. Forensic console: This is a control and data mining interface for
the entire framework. It connects to the various data stores for data
retrieval during a forensic examination and can be used to control the
various host agents and network agents.

4.1.2 Communication between framework components

It is important to strategically position the various data stores as data trans-
fers during an analysis can lead to considerable network traffic. This also
makes the timing of the data transfer to the various data stores important.

One can assume without loss of generality that all transfers to the network
data stores occur during off peak hours. However, data collected on hosts
will have to be transferred more frequently because of the higher risk of com-
promise by an attacker. One may assume that transfers to host data stores
occurs every few hours depending upon the amount of data generated and
the frequency with which data is collected. Finally, one may assume that
the forensic server can issue queries to the data stores instead of obtaining
all the data and processing it itself. As a result, the network data stores can
be closer to the forensic server than to the respective network agents. The
host data agents are positioned on the LAN for proximity to the hosts.

The effects of having fewer host agents or fewer network agents in the frame-
work is varied. If a host agent is not deployed on a certain machine, then
process data on that machine is missing. However, network agents can be
strategically positioned to collect the same information in different ways.
For internal traffic, having an agent in the LAN of one of the communi-
cating parties is sufficient. Network agents can also be positioned at the
bridges (junction of LANs) to collect data from more than one LAN. This
will mean increased resources and load for a single network agent instead of

14

Forensic data collection

less resources and less load for many network agents. The trade off in the
cost of resources is situation dependent.

4.2 Forensic data collection

The network and the individual hosts are sources of forensically valuable
data. In the following subsections, determination of the forensically useful
data set and their storage data structures (for both, the network and the
hosts) are discussed.

4.2.1 Network data collection and storage

Background

The emergence of gigabit networks poses a challenge to the preservation of
network data over long periods of time for forensic analysis. Although,the
cost of storage has decreased considerably during the same period, it is im-
portant to optimize the data stored in three dimensions - volume, content
and processing. The project focuses on optimizing the volume of data vs.
the content and not on the optimizing the processing. The following sub-
sections include a survey of tools that can be used to collect this data, a
description of the data structure used to store the network data and its eval-
uation.

Tool survey

There exist several open source tools (NetworkMiner, WireShark, TCPFlow,
etc.) and commercial tools (NetDetector, NetIntercept, etc.) for network
data collection and analysis. The commercial tools offer faster collection and
analysis capabilities and some of them are customized for gigabit networks.
The freeware tools have a comparable number of features like automatic
flow extraction, deep packet inspection, etc. Further some of these tools are
GUI-based, some have just a command line interface while a few have both.

For the purpose of this project, Wireshark is used to capture network traf-
fic. The processing of this traffic is done offline. This ensures that the data
collection is not affected by the processing of collected data.

Network data storage

The network agent can be used to store network data in various levels of
detail. This may vary from entire network dumps to just netflow data.
There is an inherent trade off in the volume of data that has to be archived

15

http://networkminer.sourceforge.net/
http://www.wireshark.org/
http://www.circlemud.org/~jelson/software/tcpflow/
http://www.niksun.com/product.php?id=4
http://www.sandstorm.net/products/netintercept/

Chapter 4

vs. the amount of information that can be retrieved from that data. For
instance, netflow data is small in volume but gives no information about
packet payloads. On the other hand, network dumps reveal all information
about network traffic but are very large in volume. We propose a data
structure that yields partial information about packet payloads and flow.
We call this a ’tagged’ bloom filter. Its purpose is to optimize the volume
of data that accumulates for extraction of flow information, given known
payloads.

’Tagged’ bloom filter

The ’tagged’ bloom filter we propose allows determination of which hosts
have transferred what data from a set of known data. The data structure
is best described for a single local area network (LAN) with replication for
each LAN over the entire enterprise. Since most traffic is TCP/UDP based,
this data structure primarily supports analysis of TCP/UDP traffic.

Figure 4.2: Inserting a link layer frame from host1 to host2 into a tagged
Bloom filter

Consider a LAN of ’N’ hosts. For each host, a Block based Bloom Filter
is created. Let the number of blocks for each link layer packet (e.g. 1500
bytes) be ’b’. Figure 4.2 shows the processing of a link layer frame from
host1 to host2. Without loss of generality, we may assume that host1 is the
internal host talking to a host2 outside the enterprise. Assuming that IPs
remain constant for a given time interval (e.g. 24 hours),

a. Extract the details pertaining to ’host1’ (IP, MAC, (TCP/UDP) port)
and the details pertaining to ’host2’ (IP, MAC, (TCP/UDP) port) and
create a timestamp.

b. For a packet which is IP, TCP/UDP based, the payload refers to the
payload of the following application layer protocol or the payload of
TCP/UDP layer itself . Split the ’payload’ into ’b’ blocks of equal

16

Forensic data collection

sizes. However, the last block is inserted without any padding even if
its size is smaller than the block size.

c. Create a bloom filter (of size ’m’ to hold ’n packets’ using ’k’ hash
functions) for host1 if it doesn’t exist already. Multiple hash functions
are used to reduce the number of false positives especially when data
blocks inserted differ only by a few bytes[15]. Insert each block into
host1’s bloom filter by interpreting the output of each hash function
(k functions in total) as a number, applying the modulus operator
(with respect to the size of the bloom filter) and then setting the
corresponding bits (b1-bk) of the bloom filter to 1. Create a ’tag’ with
the details of host2 and host1’s (TCP/UDP) port. For each inserted
block, concatenate the values of (b1-bk) positions and hash them again
using the bloom filter’s first hash function modulo the size of the bloom
filter. Add this value(referred to as a block-id henceforth) to the tag
for each of the inserted blocks.

If host1 is the external node and host2 is an internal node, carry out the
same operations on host2’s bloom filter instead of host1. If both are inter-
nal nodes, then carry out the operations on the bloom filter of the packet’s
source.

Finally, re-create the entire data structure after the required time interval
expires (24 hours in our case) because renewal of IP addresses requires new
tagged bloom filters to be created for hosts. One can easily extract con-
nection information using the tag data and dropping the bloom filters while
transferring to the network flow data store.

The tagged bloom filter structure allows two types of queries. First, it allows
queries to find the connection information corresponding to known payload
transfers. Second, given a set of potential payloads, it can reveal if a cer-
tain connection transferrred any of those payloads. The granularity of these
searches depends upon the block size. All searches proceed by first looking
checking the bloom filters for containment of the payload under interest and
then finding the tag (s) with the corresponding hash values to extract con-
nection information.

Evaluation of the data structure

The data structure is evaluated across several parameters. In the following
discussion, it is assumed that the network agent is monitoring a 1 Gbps
Internet link. Also, the size of the bloom filter is chosen such that it ensures
that the False Positive Rate is about 0.02 (by m=8*n) [15]. The variation of
the total data size per day with respect to variations in number of hosts per
LAN, differing behavior of hosts on a LAN (some hosts generating a lot of
traffic, some hosts generating lesser traffic), number of blocks per link layer

17

Chapter 4

packet and link utilization is discussed below. The calculation is described
in the Appendix 7.3

Effect of number of hosts

Figure 4.3: Comparison of storage requirements for full network dumps,
tagged bloom filter structures and netflow data assuming a 1Gbps link with
10 percent utilization

Figure 4.3 shows the comparison of storage requirements for tagged bloom
filter structures compared to full network dumps and netflow data assuming
10 percent link utilization and 8 blocks per link frame. The volume increases
by 10 bytes for every host added as these 10 bytes are used to store the new
host’s information (host IP, host MAC). Also, the tagged bloom filter struc-
ture reduces storage requirements for storing full network dumps by a factor
of 25. It requires much more place than required to store flow information
(source IP, destination IP and flow length (4 bytes)) but provides forensic
details about the payload unlike netflow information. For 1000 hosts, about
40GB of data accumulates in 24 hours which we believe is feasible to store
for a couple of days to weeks.

Effect of link utilization

Figure 4.4 shows the comparison of storage requirements for our tagged
bloom filter structures compared to full network dumps and netflow data
assuming a 1Gbps link with differing link utilization and 8 blocks per link
frame. The volume of data generated varies linearly with respect to the uti-
lization of the link. Here we again see that the tagged bloom filter structure
requires significantly less storage than to store the whole network dump but

18

Forensic data collection

Figure 4.4: Comparison of storage requirements for full network dumps,
tagged bloom filter structures and netflow data assuming a 1Gbps link with
differing link utilization

a lot more than to store just netflow information.

Effect of block size

Figure 4.5: Total volume of data per 24 hours vs. number of blocks per link
layer packet assuming a 1Gbps link with 10 percent utilization

Figure 6.1 shows the variation in the volume of data accumulated in 24
hours versus the number of blocks per link layer packet for different num-
ber of hosts assuming a 1Gbps line with 10 percent utilization. Increasing
the number of blocks per link layer frame helps improve the granularity of
searching for a given payload in the bloom filter. However, a side effect may
be false positives if many files have a common block of data.

The size of the block-id in the tag depends upon the size of the bloom filter

19

Chapter 4

which depends upon the number of blocks that the frame is divided into and
the number of hosts. As the number of hosts increases, the size of the bloom
filter decreases and hence the size of the block-id decreases. However, after
a threshold number of blocks, because of byte boundaries, the block-id size
remains the same irrespective of the number of blocks and the number of
hosts for the considered spectrum of block sizes and number of hosts. The
other parameters adding to the data volume like the source and destination
information depends only upon the number of link layer frames which is a
constant for a given link speed and link utilization.

Thus, the volume of data converges for varying number of hosts for a given
link speed and utilization above a corresponding block size.

Effect of heterogeneity in network behavior of hosts

Figure 4.6: Total volume of data per 24 hours vs. Percentage of 1000 hosts
contributing to ’p’ percent data assuming a 1Gbps link at 10 percent uti-
lization

Figure 4.6 shows the effect of having hosts that generate different amounts
of network traffic on the same LAN on the total volume of data generated
in 24 hours, assuming a 1 Gbps link at 10 percent utilization and 8 blocks
per link frame. We observe that the total amount of data generated is a
constant irrespective of varied host behavior in generation of network data.
This is understandable because the total volume of data depends only upon
the number of link layer frames and the number of blocks into which each
frame is divided. The difference at ’p=90’ percent is again due to difference
in the block-id size compared to the other scenarios.

An optimization of the above approach would be to use smaller bloom filters
for all hosts at the beginning and add new bloom filters when the number
of packets inserted into the old filters are the maximum that the filters were
designed to hold for a certain False Positive Rate.

20

Forensic data collection

4.2.2 Host data collection and storage

Background

The extent of change to the main memory largely depends on the usage
patterns of the host. In ’Forensic Discovery’ (Chapter 8), the authors show
that certain memory pages like those corresponding to files do not change
much. This implies that the feasibility of differential storage of such data
would be interesting to examine. In this project, the theoretical feasibility of
periodic data collection and differential storage is evaluated. The feasibility
of such an approach is evaluated by measuring how much data accumulates
under different conditions. The following subsections describe the type of
data collected, tools that can be used to collect this data, the data structure
used to store them and its evaluation.

Selection of the dataset

There is a large variety of information that one could collect from a running
host. The choice of the subset of data to be collected will largely influence
the amount of data generated for storage. The challenge is to strike a bal-
ance between the amount of useful information gathered versus the amount
of data that is generated for storage. One approach to determining the data
set of interest is examination of the various attack models whose forensic
ivestigation the framework is expected to support and deriving a common
set of data that could be used as evidence for the attacks.

In the context of the project, for a feasibility study, the data set chosen
includes process-ids, process names, the corresponding executable and the
current handles of each process. Handles includes open ports, directories,
files and registry keys. The file handles should be processed into filenames
using appropriate Windows APIs.

Tool survey

There are a number of tools that are useful in gathering volatile memory in-
formation. These include tools from sysinternals like psList.exe, handles.exe,
etc., EnCase Forensic, Volatility, and Memoryze. Some of these work only
for certain operating systems while others are platform independent.

In this project, Memoryze is used for gathering host data. This requires an
installation of the tool on every host. The tool exports the gathered data
in the form of XML. The tool offers a number of features besides the ones
required on the project like ability to an image file or from a live host. An

21

http://technet.microsoft.com/en-us/sysinternals/default.aspx
http://www.guidancesoftware.com/computer-forensics-ediscovery-software-digital-evidence.htm
https://www.volatilesystems.com/default/volatility/
http://www.mandiant.com/software/memoryze.htm

Chapter 4

important aspect of this tool regarding security is that it does not rely on op-
erating system APIs but carries out an examination of the memory by itself.

It is to be noted that most of these tools have been designed for ’live foren-
sics’ in the traditional sense[16]. They are not optimized for running re-
peatedly at small intervals. As a result, they are relatively slow. Running
these tools periodically rather than continuously as a monitor also makes
the framework vulnerable to missing data because of timing issues.

Representation of host data

The data collected from the host will be stored in the form of XML according
to the XML schema in Appendix 7.3 for the ease of processing and analysis.

Feasibility study

The amount of host data depends largely on the usage patterns of the hosts.
In practice, it is difficult to develop a baseline which can be used as the min-
imum amount of data that the examination of a host will yield because it
is not easy to ensure that one is baselining the right spectrum of machines.
As a result, we adopt a slightly different approach to determine the data
growth rates.

On fresh installations of Windows XP Professional and Windows Vista, the
initial size of volatile memory data in each case is determined. The initial
size of this data on a fresh Windows XP Professional installation is about
66KB and on a fresh Vista installation is about 200KB. Then, assuming that
a host’s process data relates to its operating system baseline, the volume of
data collected differentially per host depends upon the initial size of data
from that host, its memory changes and sampling frequency.

Figures 4.7 and 4.8 indicate that the total volume of host data generated
varies linearly with the number of hosts and the initial size of the data per
host. The maximum volume of data generated from 1000 hosts with an
initial data size of 500KB is about 38GB which is feasible to collect and
store on a daily basis. Figure 4.9 shows the comparison between storage
requirements for the differential memory dumps of a host with 1GB RAM
and for differential process information storage. The latter is significantly
smaller and hence, feasible to store.

22

A combined forensic investigation approach

Figure 4.7: Variation in volume of host process data vs. percentage change
in memory for different number of hosts assuming initial process data size
of 200KB.

Figure 4.8: Variation in volume of host process data vs. percentage change
in memory for different initial host process data sizes for a 1000 hosts

4.3 A combined forensic investigation approach

Combining forensic data from several sources allows cross verification of in-
formation and detection of any anomalies in the information derived from in-
dividual sources. For instance, malware like Mebroot, modify kernel drivers
for communication across the network but no network activity is observed
on the application layer. But the network agent detects the malware’s com-
munication activity. Despite the malware’s ability to hide from the host
data collection agent, an analysis of the network and host data would in-
dicate an unusual network activity. Although the data collected from the
host may no more be reliable, such cross verification can help trigger a more
detailed investigation. Since most incidents have a remote attacker, securing
the network layer to yield trustworthy data can help detect host compromise

23

Chapter 4

Figure 4.9: Comparison of storage requirements of limited process data vs.
differential memory dumps of a 1GB RAM for a 1000 hosts

(hidden processes, ports, etc.) to a large extent.

24

Chapter 5

Framework Implementation

The implementation of the framework includes the choice of the program-
ming language used for implementation, choice of libraries to parse capture
files and create tagged bloom filters and finally, implementation of the logic
for searching through the bloom filters. It is to be noted that the focus
of the implementation was just proof of concept rather than optimality of
performance.

We choose Java as the language of implementation. We used the jnetcap1.3
library (from Sly Technologies, Inc.) to parse network data capture files.
We also used a slightly modified bloom filter implementation by Magnus
Skjegstad to create the tagged bloom filters. Finally, we used a simple lin-
ear search algorithm to search through the tags and for different file blocks.

The implemented framework consists of three parts. The first part processes
a .pcap file into a tagged bloom filter array. The second part searches for
a given block of data in the bloom filter and returns the correspoding tags.
Finally, the third part implements the forensic investigation procedures for
two data leakage scenarios.

5.1 The jnetpcap library

The jnetpcap library is essentially a wrapper over the popular libpcap library
for capture and analysis of network packets. Its supports various Ethernet
protocols and several application layer protocols for protocol based process-
ing like HTTP, VoIP, etc. However, in this implementation, it is used to
extract the payload of every application layer protocol using TCP/UDP as
its transport protocol. This makes the implementation independent of the
application layer protocol used.

25

http://jnetpcap.com/)
(http://code.google.com/p/java-bloomfilter/downloads/list)

Chapter 5

5.2 The Bloom filter implementation

The Bloom filter implementation by Magnus Skjegstad uses a java.util.BitSet
to store the bloom filters bits. The number of elements inserted(say n) and
the size of the bloom filter(say m) are configurable. The number of hash
functions is calculated as (k = m/n ∗ ln2). Instead of using several hash
functions, each block is hashed the required number of times (k) by append-
ing to it values between 0 to (k − 1) one at a time. The hash function used
was MD5. The FPR for the bloom filter can be configured by choosing m
and n approporiately.

This implementation was enhanced to obtain the intermediate values of the
hashes when inserting an element for tag creation.

5.3 The capture file processor

Given a network data capture file (.pcap file), this application iterated over
every packet, identified packets that used TCP/UDP, then extracted the ap-
plication payload of such a packet and inserted it into an appropriate bloom
filter along with the corresponding tags exactly as described in the design.
Since the maximum payload size is 1460 bytes for an Ethernet packet, the
block size was chosen as 292 bytes, i.e., each payload consisted of a maxi-
mum of five blocks. However, the block size is configurable.

prompt> java -jar pcapfileproc.jar <capture file> <bf file>

5.4 Forensic procedure implementation

The inputs to the forensic investigation include the file source IP and sus-
pect/attacker IP, the appropriate tagged bloom filter file for the time frame
to be searched, a directory consisting of a set of potentially transferred files
and the byte offset of the block to be searched. The implementation returns
a subset of those files that were transferred to the destination IP along with
the exact timestamp.

prompt> java -jar case1.jar <suspect IP> <bf file> <dir of files>
<server IP> <byte offset>

For the second scenario, given the appropriate tagged bloom filter file for
the time frame when the incident occured and the file that was transferred
from a source whose IP is known, the implementation returns a set of IPs
that received that file from that source during that time frame along with
corresponding timestamps.

26

Forensic procedure implementation

prompt> java -jar case2.jar <bf file> <transferred file>
<server IP> <byte offset>

Figure 5.1: Snapshot of the analysis resultsin both scenarios when the at-
tacker(C0:A8:0:8) transfers ’hbf.pdf’ from an FTP server C0:A8:0:7 which
is recorded in ’hbf.pcap’.

27

Chapter 6

Framework Evaluation

A scenario based evaluation of the framework involved study of two data
leakage scenarios and infections like Mebroot [17], Torpig [18], Slammer
[19]. The infections exploit vulnerabilities in the Windows operating sys-
tems or related applications and are discussed in detail in Appendix 7.3.
The forensic investigation of simple data leakage scenarios provides insight
into the advantages of combining host forensics and network forensics. The
two scenarios considered for the purpose of demonstration are described in
the following subsections.

6.1 Two data leakage scenarios

The security incident under consideration was the illegitimate transfer of
file(s) by an attacker (known or unknown) from a large file server. It was
assumed that all the information about the server was known including its
IP and all the files on it.

For the purpose of illustration, the functionality of the network agent, both
the network data stores and the forensic console as depicted in the foren-
sic framework in the section 4.1 were combined into a single host (and is
referred to as the ’forensic sensor’ in the rest of the chapter). The data
collection for the purpose of host forensics was treated only in theory.

A DNS/DHCP server, an FTP server (victim), an attacker with a suitable
FTP client and the forensic agent were setup on four virtual machines run-
ning Windows XP Professional(SP 2) on an ESX server. We use a DNS/
DHCP server for windows from here. We also use the Firezilla server and
client Firezilla server and client as FTP server and client respectively. Wire-
shark is used to capture the network packets and run on the forensic agent.
Finally, processing of the capture files is done using a custom java imple-
mentation. The setup is illustrated in Figure 6.1

29

http://sourceforge.net/projects/dhcp-dns-server/
http://filezilla-project.org/

Chapter 6

Figure 6.1: The framework evaluation setup

6.1.1 Scenario 1

The first scenario considers the case where the attacker’s IP and an estimate
of the time frame during which the incident occured are known. The purpose
of the forensic investigation is to find the information that was transferred
by the attacker and the exact time of transfer.

The forensic procedure consisted of finding the appropriate set of server
bloom filter(s) to search using the time frame, followed by finding the par-
ticular bloom filter containing the attack’s IP by a search on all tags of the
bloom filter. Given this bloom filter and a set of files accessed by the server
during that time frame (say from server logs or file system information), the
files were checked for containment in the bloom filter resulting in a set of
hosts that transferred that file and subsequently for transfer by the attacker
by searching through this set.

6.1.2 Scenario 2

The second scenario considered a case where the exact file transferred by
the attacker and an estimate of the time frame during which the incident
occured are known. The purpose of the forensic investigation was to find
the attacker’s IP and the exact time of file transfer.

The forensic procedure in this case consisted of listing all clients that trans-
ferred the given file during the given time frame, using the appropriate
tagged bloom filter(s) of the server corresponding to the given time frame
followed by an analysis of whether those clients were authorized to transfer
that file.

30

Results

6.2 Results

The time required to obtain the results of the above forensic procedures is
indicative of the usefulness of the framework despite possible inefficiencies
in the implementation. For the following discussion, it is assumed that the
tagged bloom filter to be searched is known. Also, it is assumed that the
time required to process file handles to file names and finding these handles
for a particular process during a particular timeframe is negligible. Finally,
it is assumed that the search to check if an IP is contained in a set of IP’s
takes negligible time. Hence, the bottle neck is essentially the number of
search operations performed in the bloom filter. The second scenario only
requires one search in the bloom filter followed by examination of the tags.
Hence, it takes constant time.

For the first scenario, the time function depends on some concrete details
of the scenario. The implemented framework can recognize any transferred
block corresponding to any size instead of the whole file transfer although the
search maybe quite expensive if the block that was transferred is unknown.
The growth function of the time required to find the file block transferred
is examined theoretically in the following subsections.

6.2.1 Complete file transfer

Each look up in the bloom filter takes constant time. Assuming that the
candidate files (say N in number) have a known unique block of size corre-
sponding to the block size used to create the tagged bloom filter, the search
would require one operation per file. The search to check if the attacker
transferred a given file is assumed to take negligible amount of time. Thus,
the time required to find the files transferred is linear in the number of
candidate files.

Time for analysis α N

6.2.2 Partial file transfer with fixed block boundaries

Assuming that the file server transfers blocks of files instead of entire files
based on fixed block boundaries (and this block size is the same as that used
to create the tagged bloom filter), the number of look-ups into the tagged
bloom filter is proportional to the number of blocks in each file each of which
takes a constant time to be looked up in the tagged bloom filter.

Time for analysis α ΣN
i=1 size(filei)/blocksize.

If the file handles that were active during that timeframe are available from
host forensic data (say H in number), then instead of searching for all files,
the search space is reduced to the set of active files.

31

Chapter 6

Time for analysis α ΣH
i=1 size(filei)/blocksize.

The gain in time for forensic analysis is proportional to the ratio of the
number of active files to the total number of files.

The time taken to search for the all blocks of different file sizes was measured
thrice and approximated on a Windows Vista machine with 4GB RAM. It
was noticed that the search function is memory intensive as it holds the
entire bloom filter in memory. For a block size of 292 bytes, it took about 1
second to find all blocks of a file of size 250KB, approximately 15 seconds to
find all blocks of a file of size 4MB. This behavior seems linear. However for
a file of size 90MB, it took between 35-40 minutes in each run to find all the
blocks. This does not seem to be linearly increasing from the time taken in
the previous two cases. The reason for this maybe high memory consump-
tion due to very large data structures that are kept in memory which causes
paging inefficiencies.

From the above analysis, for a file server with a 1000 4MB files, the amount
of time required to find all blocks of data transferred to an attacker without
any host file handle information is about 5 hours. But assuming that a 100
handles were active during the given timeframe, the time required reduces
to 30 minutes.

This indicates that host forensic data (in this case the file handles) can help
reduce the amount of computation (time) and hence improve the efficiency
of forensic analysis.

6.2.3 Partial file transfer with arbitrary byte boundaries

Assuming that the file server is capable of streaming any portion of a file
(but of a fixed block size), the number of look-ups into the tagged bloom
filter is proportional to the sum of the (sizeofthefiles−blocksize). As with
the earlier scenario, one may be able to reduce this search space (and hence
time) dramatically if the active file handles from the host forensics data is
available.

6.3 Verification of evidence consistency

Combining evidence from various sources can not only improve the amount
of information that is available for forensic analysis but also, help reinforce
information gathered from one source by information gathered from another.
This cross validation of the evidence gathered improves the confidence in the
results of the forensic analysis, as well as, helps to detect any anomalies that
could trigger further investigation. More specifically, having trustworthy

32

Verification of evidence consistency

network data can help detect host compromise. If a hidden process transfers
data such that it is not detectable by the host data collection agent, the
network information will still yeild valuable details of what was transferred
and when.

33

Chapter 7

Conclusion

In this chapter, a summary of the results, the limitations of the framework
developed and the outlook are discussed.

7.1 Summary of results

Our work aimed at combining mechanisms for host and network forensics for
improving the quality of data available for forensic analysis and incidence
response. A framework architecture for the collection and processing of host
and network information was developed. The components of the framework
include the host agents, the network agents, the host and network data stores
and the forensic console. The architecture developed is extensible with re-
spect to the types of incidents whose forensic analysis it is able to support.
The extensibility is provided by the flexibility of the data collected. The
network data structure for storing the collected data results in about 42GB
of data per 24 hours assuming a 1Gbps line with line utilization of 10 per-
cent for a 1000 hosts. The host data structure based on information derived
from fresh installations of Windows XP Professional (SP2) and Windows
Vista results in about 38GB of data per 24 hours for 1000 hosts sampled
every 10 mins assuming that the volatile memory changes 50 percent every
10 mins. In summary, the framework results in about 80GB of data per
24 hours for 1000 hosts which we consider economically feasible to store.
In addition, the processing of the raw data collected and the placement of
sensors/agents has been discussed.

As an illustration of the advantages of combining host forensics and net-
work forensics, a data leakage scenario with a victim file server has been
implemented and discussed. It has been shown that it is possible to find the
attacker, given the data leak that occured and that it is possible to find the
exact information that was lost, given the IP of the attacker. The search
function in the latter case was found to be time consuming for very large
files(about 90MB). The advantage of having access to the file handles in
this case greatly reduces the time required for a forensic investigation by

35

Chapter 7

reducing the search space.

7.2 Limitations of the framework

The framework is limited its application by the environment in which it is
deployed as well as some of the assumptions that have been discussed pre-
viously. A few limitations of the framework have been listed below.

a. The network agents are not applicable to networks where data is en-
crypted.

b. The framework creates a bloom filter for every new internal IP that is
recognizes. In a highly dynamic network where hosts join and leave the
network very often or if IP addresses change very often in a network,
this would result in wasted storage. The given data volumes are based
on the assumption that the IP address remains constant for a certain
length of time (e.g. 24 hours).

c. The host data collection tools are not optimized for periodic execution
and information collection. This results in time intervals where data
from the host is lost.

d. There may also be privacy concerns against running a host agent on
every host. Also the data collected may contain personal information
and is subject to privacy laws and regulations. It will have to be
protected against unauthorized access.

e. Finally, the implementation is not optimal in memory consumption.
For very large bloom filters, the execution of forensic procedures is
memory intensive and is hence, quite slow.

7.3 Outlook

This work considered the integration of host forensic mechanisms and net-
work forensic mechanisms only. There are serveral other sources of informa-
tion like physical entry-exit logs to a building, video surveilance, etc. that
could prove be automated for integration into a forensic data store. There
are also interesting complementary problems. One such is the development
of new tools that can report differtial changes to volatile memory, hooks,
etc. efficiently. One could also use better storage structures like databases
instead of raw XML to speed up analysis and improve storage space require-
ments for host forensics. The network data structure currently uses a single
bloom filter and could be enhanced with a hierarchy to improve search effi-
ciency. Finally, the current implementations of the network data processing,
host data processing and the forensic investigation could be optimized for
performance with respect to time and memory.

36

Appendix A

A.1 Network data size calculation

We know that for a FPR=0.02, the size of a bloom filter must be eight times
the number of elements it is expected to hold. Assuming all hosts on a LAN
generate equal amount of traffic,

N : NumberofhostsperLAN
M : NumberofLANs
u : Percentageutilizationofthelink
b : Numberofblocksperpacket
bsize : Sizeofbloomfilter
h : Numberofhoursoftraffic
linkspeed : speedoftheoutgoingInternetline
packetsize : sizeofalinklayerpacket 1500bytes

Numberofpacketsperhost = (linespeed∗utilization∗h∗60∗60∗x)/packetsize
Sizeofthebloomfilter = (8 ∗Numberofpacketsperhost ∗ b)/8bytes
Hostdatasize = 32bitsfortheIP + 48bitsfortheMAC = 10bytes
Datasizepertag = 32bitsfortheIP+48bitsfortheMAC+32bitsfor2ports+
16bitsforthetimestamp = 16bytes
Totalsizeoftagdata = Datasizepertag ∗Numberofpacketsperhost
Sizeofeachpointer = ceil(ceil(log2(Sizeofthebloomfilter))/8)
Totalsizeofpointers = b ∗Numberofpacketsperhost ∗ Sizeofeachpointer
Totaldataperhost = Hostdatasize+Sizeofthebloomfilter+Totalsizeoftagdata+
Totalsizeofpointers
Totaldataperdayforallhosts = Totaldataperhost ∗N ∗M

A.2 Host process data schema

The following XML schema is used to store host process information. It
includes the process-id, name of the process, the path of the executable re-
sponsible for the process and the list of file, directory and port handles of
the process. The file and directory handles can be processed into filenames
and directory names using Windows APIs.

37

Appendices

<?xml version=”1.0” encoding=”UTF-8”?>
<xs:schema attributeFormDefault=”unqualified” elementFormDefault=”qualified”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”>
<xs:element name=”Details” type=”DetailsType”/>
<xs:complexType name=”processType”>
<xs:sequence>
<xs:element type=”xs:string” name=”pid”/>
<xs:element type=”xs:string” name=”name”/>
<xs:element type=”xs:string” name=”Username”/>
<xs:element type=”xs:string” name=”pathof”/>
<xs:element type=”xs:string” name=”parentpid”/>
<xs:element type=”HandleListType” name=”HandleList”/>
<xs:element type=”PortListType” name=”PortList” minOccurs=”0”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name=”DetailsType”>
<xs:sequence>
<xs:element type=”processType” name=”process” maxOccurs=”unbounded”
minOccurs=”0”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name=”HandleListType”>
<xs:sequence>
<xs:element type=”xs:string” name=”Handle” maxOccurs=”unbounded”
minOccurs=”0”/>
</xs:sequence>
</xs:complexType>
<xs:complexType name=”PortListType”>
<xs:choice maxOccurs=”unbounded” minOccurs=”0”>
<xs:element type=”xs:string” name=”protocol”/>
<xs:element type=”xs:string” name=”port”/>
</xs:choice>
</xs:complexType>
</xs:schema>

A.3 Framework evaluation

In this section, a brief description of the infections in terms of the vulner-
abilities they exploit in each layer of a host and the network is discussed.
The data required for reconstuction of these infections can be derived from
the effects of the infections on the various layers.

38

Appendices
L

ay
er

M
eb

ro
ot

T
or

p
ig

S
la

m
m

er

H
a
rd

w
a
re

la
ye

r
V

u
ln

er
ab

il
it

y
ex

p
lo

it
ed

E
ff

ec
t

M
al

w
ar

e
ex

ec
u

ta
b

le
on

fi
le

sy
st

em
,b

o
ot

se
ct

or
ch

an
ge

s

M
o
d

ifi
ed

sy
st

em
.d

ll
s

in
S

y
st

em
32

fo
ld

er
.

O
S

la
y
er

V
u

ln
er

ab
il
it

y
ex

p
lo

it
ed

In
ad

eq
u

at
e

u
se

r
p

ri
v
i-

le
ge

en
fo

rc
em

en
t,

u
n

-
p

ro
te

ct
ed

h
o
ok

in
g

fu
n

c-
ti

on
al

it
y

u
n

p
ro

te
ct

ed
h

o
ok

in
g

fu
n

ct
io

n
al

it
y

E
ff

ec
t

C
re

at
io

n
of

n
ew

se
r-

v
ic

es
,

d
ev

ic
es

,
re

gi
st

ry
ke

y
s

M
o
d

ifi
ca

ti
on

of
sy

st
em

ex
ec

u
ta

b
le

s
li

ke
N

T
O

S
K

R
N

L
.e

x
e,

et
c.

an
d

m
o
d

ifi
ca

ti
on

of
sy

st
em

d
at

a
st

ru
ct

u
re

s
li

ke
d

is
k
.s

y
s,

IR
P

M
J

,
et

c.
*

M
o
d

ifi
ed

m
em

or
y

si
gn

a-
tu

re
of

sy
st

em
u

ti
li

ti
es

d
u

e
to

in
je

ct
io

n
of

T
or

-
p

ig

A
p

p
li

ca
ti

on
la

y
er

V
u

ln
er

ab
il
it

y
ex

p
lo

it
ed

B
ro

w
se

r
v
u

ln
er

ab
il

it
y

B
ro

w
se

r
an

d
ot

h
er

ap
-

p
li

ca
ti

on
v
u

ln
er

ab
il

it
ie

s
B

u
ff

er
ov

er
fl

ow
v
u
ln

er
a
-

b
il

it
y

in
u

n
p

at
ch

ed
M

i-
cr

os
of

t
S

Q
L

se
rv

er
E

ff
ec

t
D

ri
ve

b
y

d
ow

n
lo

ad
D

at
a

fr
om

ap
p

li
ca

ti
on

s
li

ke
p

as
sw

or
d

m
an

ag
er

,
et

c.
is

ac
ce

ss
ib

le
to

T
or

-
p

ig

T
ab

le
A

.3
-1

:
E

ff
ec

ts
of

M
eb

ro
ot

,
T

or
p

ig
an

d
S

la
m

m
er

w
or

m
on

va
ri

ou
s

la
ye

rs
of

IT
in

fr
as

tr
u

ct
u

re
.

39

Appendices

L
ay

er
M

eb
ro

ot
T

or
p

ig
S

la
m

m
er

N
et

w
or

k
la

ye
r

V
u

ln
er

ab
il

it
y

ex
p

lo
it

ed
A

cc
es

s
an

d
m

o
d

ifi
ca

ti
on

ri
gh

ts
to

in
te

rn
al

N
D

IS
st

ru
ct

u
re

s
E

ff
ec

t
M

o
d

ifi
ca

ti
on

of
N

D
IS

st
ru

ct
u

re
s

an
d

en
-

cr
y
p

te
d

co
m

m
u

n
ic

at
io

n

E
n

cr
y
p

te
d

co
m

m
u

n
ic

a-
ti

on
,

op
en

in
g

of
p

or
ts

G
en

er
a
ti

o
n

o
f

n
et

w
o
rk

p
ac

ke
ts

co
n
ta

in
in

g
th

e
sa

m
e

w
o
rm

T
ab

le
A

.3
-1

co
n
ti

n
u

ed
:

E
ff

ec
ts

of
M

eb
ro

ot
,

T
or

p
ig

an
d

S
la

m
m

er
w

or
m

on
va

ri
ou

s
la

ye
rs

of
IT

in
fr

a
st

ru
ct

u
re

.

40

Bibliography

[1] R. McKemmish. What is forensic computing? Australian Institute of
Criminology Trends and Issues, 1999.

[2] N. Savant A. Bronnimann H. Shanmugasundaram, K. Memon. Fornet:
A distributed forensics network. LECTURE NOTES IN COMPUTER
SCIENCE, pages 1–16, 2003.

[3] W.-C.; Maier D.; Walpole J. Goel, A.; Feng. Forensix: A robust, high-
performance reconstruction system. In 25th IEEE International Con-
ference on Distributed Computing Systems Workshops, pages 155–162,
2005.

[4] Timothy Fraser William A. Arbaugh Nick L. Petroni Jr., AAron Wal-
ters. Fatkit: A framework for the extraction and analysis of digi-
tal forensic data from volatile system memory. Digital Investigation,
3(4):197–210, 2006.

[5] Samuel T. King and Peter M. Chen. Backtracking intrusions. ACM
Transactions on Computer Systems, 23(1):51–76, 2005.

[6] Frank Adelstein. Live forensics: diagnosing your system without killing
it first. Commun. ACM, 49(2):63–66, 2006.

[7] Bruce J. Nikkel. Generalizing sources of live network evidence. Digital
Investigation, 2(3):193–200, 2005.

[8] Bradley Schatz. Bodysnatcher: Towards reliable volatile memory ac-
quisition by software. Digital Investigation, 4(1):126–134, 2007.

[9] Kulesh Shanmugasundaram, Hervé Brönnimann, and Nasir Memon.
Payload attribution via hierarchical bloom filters. In CCS ’04: Pro-
ceedings of the 11th ACM conference on Computer and communications
security, pages 31–41, 2004.

[10] Yongping Tang and Thomas E. Daniels. A simple framework for dis-
tributed forensics. In ICDCSW ’05: Proceedings of the Second Interna-
tional Workshop on Security in Distributed Computing Systems (SDCS)
(ICDCSW’05), 2005.

41

[11] Stefan Kornexl, Vern Paxson, Holger Dreger, Anja Feldmann, and
Robin Sommer. Building a time machine for efficient recording and
retrieval of high-volume network traffic. In IMC ’05: Proceedings of
the 5th ACM SIGCOMM conference on Internet Measurement, pages
23–23, 2005.

[12] Sarah Mocas. Building theoretical underpinnings for digital forensics
research. Digital Investigation, 1(1):61 – 68, 2004.

[13] Brian Carrier. Defining digital forensic examination and analysis tools
using abstraction layers. International Journal of Digital Evidence,
1(4), 2003.

[14] E. Rosti D. Bruschi, A. Ornaghi. S-arp: a secure address resolution
protocol. In Proceedings of the 19th Annual Computer Security Appli-
cations Conference, pages 66– 74, 2003.

[15] Andrei Broder and Michael Mitzenmacher. Network applications of
bloom filters: A survey. In Internet Mathematics, pages 636–646, 2002.

[16] Aaron Stanley Eoghan Casey. Tool review remote forensic preservation
and examination tools. Digital Investigation, 1(4):284–297, 2004.

[17] Elia Florio Kimmo Kasslin. Your computer is now stoned (...again!).
the rise of mbr rootkits. In VIRUS BULLETIN CONFERENCE, 2008.

[18] Brett Stone-Gross and et.al. Cova. Your botnet is my botnet: analysis of
a botnet takeover. In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security, pages 635–647, 2009.

[19] Paxson V. Savage S. Shannon C. Staniford S. Weaver N. Moore, D.
Inside the slammer worm. IEEE Security and Privacy,, 1(4):33–39,
2003.

[20] David Solomon Mark E. Russinovich. Microsoft Windows Internals.
Microsoft Press, A Division of Microsoft Corporation, 2005.

[21] Wietse Venema Dan Farmer. Forensic Discovery. Addison-Wesley Pro-
fessional Computing Series, 2005.

42

	Introduction
	Motivation
	Problem statement
	Related work
	Contribution

	Background to Forensic Evidence collection
	Characteristics of forensic evidence
	Layers of abstraction
	Assumptions
	The hardware and firmware layer
	The VMM and the operating system layer
	The application layer
	The network layer

	Framework Requirements
	Generic requirements
	Security requirements

	Framework design
	Framework Architecture
	Components of the framework
	Communication between framework components

	Forensic data collection
	Network data collection and storage
	Host data collection and storage

	A combined forensic investigation approach

	Framework Implementation
	The jnetpcap library
	The Bloom filter implementation
	The capture file processor
	Forensic procedure implementation

	Framework Evaluation
	Two data leakage scenarios
	Scenario 1
	Scenario 2

	Results
	Complete file transfer
	Partial file transfer with fixed block boundaries
	Partial file transfer with arbitrary byte boundaries

	Verification of evidence consistency

	Conclusion
	Summary of results
	Limitations of the framework
	Outlook

	Appendix A
	A.1 Network data size calculation
	A.2 Host process data schema
	A.3 Framework evaluation

