

Abstract

In today’s software development processes agile development is the state of the art. Agile pro-
cesses lead to frequent code reorganizations, or in one word, to “Refactoring”. Refactoring can
be a lot of boring and error-prone work, if a developer has to do it by hand. One can easy see
that a computer is much faster and far more reliable then a human, if the task is to find all
occurrences of a variable and give them a new name.

A refactoring plug-in like the one we wrote, allows the software developer to concentrate on
the design of the software and delegates the busy, cumbersome work to the computer. This
document describes the used frameworks and explains the solution we developed.

The solution is the so called “refactoring“ plug-in for Eclipse. The plug-in extends the existing
Yeti plug-in for Eclipse. The implementation we developed, allows to rename most elements of the
NesC language. We have also forged some other refactorings like “Introduce Alias” or “Extract
Function”. But we can consider a lot more of possible refactorings.

We hope you enjoy using our software and also the reading of this document.

Contents

I What is refactoring 2

1 Definition of refactoring 3

2 Why do we need refactoring 4

II Eclipse plug-ins 5

3 General info about writing plug-ins 6
3.1 META-INF/MANIFEST.MF . 6
3.2 plugin.xml . 7

3.2.1 Using extension points (making extensions) 8

4 Language Toolkit for processor based refactoring 9
4.1 Important classes . 9
4.2 The Change classes . 10
4.3 Refactoring operation sequence . 11

5 Menu’s with conditional visibility 13
5.1 Create a menu entry . 13

5.1.1 Add a new submenu . 14
5.1.2 Add a command to the submenu . 14
5.1.3 Createing a command . 15
5.1.4 Introducing a handler for a command . 15
5.1.5 Bindings . 15

5.2 Add conditional visibility . 16
5.2.1 Property tester . 16
5.2.2 Visibility condition . 16

III The Refactoring Plug-in 18

6 About our plug-in 19
6.1 The general refactoring life cycle . 19
6.2 Package structure . 20

1

7 From plug-in XML to Java code 22
7.1 How to decide the availability of a refactoring . 22

7.1.1 The Refactoring enum . 22
7.1.2 The RefactoringAvailabilityTester class . 22
7.1.3 The IRefactoringAvailabilityTester interface 24

7.2 How to execute a specific refactoring . 24
7.2.1 The AbstractHandler abstract class . 24

8 Abstract refactorings 25
8.1 What we mean by abstract refactoring . 25
8.2 The abstractrefactoring.rename classes . 25

8.2.1 The RenameAvailabilityTester abstract class 25
8.2.2 The SelectionIdentifier class . 26
8.2.3 The RenameActionHandler class . 26
8.2.4 The RenameInputPage class . 26
8.2.5 The RenameProcessor class . 26

9 Harnessing the AST 28
9.1 The AstAnalyzer classes . 28

9.1.1 The AstAnalyzerFactory class . 28
9.1.2 AstAnalyzer types . 28

9.2 Utility classes . 29
9.2.1 Auxiliary AST classes . 29
9.2.2 Project wide classes . 29

10 Concrete refactorings 31
10.1 Implemented refactorings . 31
10.2 What else could be done . 32
10.3 How to implement a new refactoring . 32

10.3.1 Enable your refactoring . 33
10.3.2 Make your refactoring do its work . 33

11 An example Implementation: The rename interface refactoring 35
11.1 Until the processor starts its work . 35
11.2 The processor . 36

11.2.1 Find all identifiers affected by the renaming 36
11.2.2 Check for collisions . 37
11.2.3 Create the changes . 37

2

Part I

What is refactoring

3

Chapter 1

Definition of refactoring

Wikipedia gives us the following definition for code refactoring: “Code refactoring is the process
of changing a computer program’s source code without modifying its external functional behavior
in order to improve some of the nonfunctional attributes of the software. Advantages include
improved code readability and reduced complexity to improve the maintainability of the source
code, as well as a more expressive internal architecture or object model to improve extensibility.”
Since this document is about a refactoring facility for NesC, we are of course actually always
referring to code refactoring, when we talk about refactoring.

4

Chapter 2

Why do we need refactoring

Reusability and maintainability are two terms, which are known to everybody, who ever heard
something about software engineering. A refactoring facility is a means for supporting those
properties. I.e. if you want to reuse an existing function in a program in a second place, you
might suddenly realise, that the name of the function actually not really matches its purpose and
you consequently want to rename it to a more appropriate name. If you have a function rename
refactoring at hand at this point, you simply have to select the refactoring, type in the name,
press enter and you are done. Without such a tool you had to replace the function name by
hand at every position in the program, where it appears, possibly in different files. This example
is also good for the cast, that refactoring supports maintainability, because a readable program
is also a maintainable program. And if the names of the different entities in a program match
their purpose, the program is for sure more readable, then if they do not.

5

Part II

Eclipse plug-ins

6

Chapter 3

General info about writing
plug-ins

Eclipse is famous for its plug-in architecture. Everything in Eclipse is a plug-in. An Eclipse
plug-in is a JAR file or a folder in the plug-ins directory of the Eclipse program folder. For a
plug-in it takes at least three files.

• META-INF/MANIFEST.MF

• plugin.xml

• plugin.class

3.1 META-INF/MANIFEST.MF

The Manifest file is the first file that is read by Eclipse while loading the plug-in. It contains
all the information about what requirements are needed to load the plug-in and how it can be
loaded. We will now explain the most important entries in the Manifest file.

Listing 3.1: MANIFEST
1 Manifest−Vers ion : 1 . 0
2 Bundle−Mani festVers ion : 2
3 Bundle−Name : TinyOS Refactoring
4 Bundle−SymbolicName : t i nyo s . y e t i . r e f a c t o r i n g ; s i n g l e t o n :=true
5 Bundle−Vers ion : 1 . 0 . 0
6 Bundle−Act ivator : t i nyo s . y e t i . r e f a c t o r i n g . Re fac to r ingPlug in
7 Require−Bundle : org . e c l i p s e . ui ,
8 org . e c l i p s e . core . runtime ,
9 t i nyo s . y e t i . core ; bundle−ve r s i o n=” 2 . 2 . 1 7 ” ,

10 t i nyo s . y e t i . pa r s e r . nesc12 ; bundle−ve r s i o n=” 1 . 2 . 1 7 ” ,
11 org . e c l i p s e . u i . workbench . t e x t e d i t o r ; bundle−ve r s i o n=” 3 . 5 . 1 ” ,
12 org . e c l i p s e . l t k . core . r e f a c t o r i n g ; bundle−ve r s i o n=” 3 . 5 . 0 ” ,
13 org . e c l i p s e . l t k . u i . r e f a c t o r i n g ; bundle−ve r s i o n=” 3 . 4 . 1 0 1 ” ,
14 org . e c l i p s e . core . r e s o u r c e s ; bundle−ve r s i o n=” 3 . 5 . 2 ” ,
15 org . e c l i p s e . j f a c e . t ex t ; bundle−ve r s i o n=” 3 . 5 . 2 ” ,
16 org . e c l i p s e . u i . i de ; bundle−ve r s i o n=” 3 . 5 . 2 ” ,
17 org . e c l i p s e . u i . e d i t o r s ; bundle−ve r s i o n=” 3 . 5 . 0 ” ,
18 t i nyo s . y e t i . p r ep ro c e s s o r . nesc12 ; bundle−ve r s i o n=” 1 . 2 . 1 7 ” ,
19 org . e c l i p s e . core . e x p r e s s i o n s ; bundle−ve r s i o n=” 3 . 4 . 1 0 1 ”
20 Bundle−Act iva t i onPo l i cy : l a zy

7

21 Bundle−RequiredExecutionEnvironment : JavaSE−1.6

Manifest-Version This line shows, that the manifest entries have the form of ”header: value”
pairs. The name of a header is separated from its value by a colon. 1

Bundle-ManifestVersion Manifest header identifying the bundle manifest version. A bundle
manifest may express the version of the syntax in which it is written by specifying a
bundle manifest version. Bundles exploiting OSGi Release 4, or later, syntax must specify
a bundle manifest version. The bundle manifest version defined by OSGi release 4 or, more
specifically, by version 1.3 of the OSGi core specification is ”2”. (from Eclipse Help Version:
3.5.2)

Bundle-Name A human readable, meaningful name for the plug-in you write.

Bundle-SymbolicName A unique string identifier for you plug-in. Usually you use the path
of your package structure. The singelton:=true makes the OSGi Framework only load your
plug-in once. It has to be set in every Eclipse plug-in. It is only necessary because Eclipse
uses OSGi, which is not only used for Eclipse.

Bundle-Version Defines the Version of the plug-in. When the plug-in is used by an other plug-
in, it can specify the version in the Required-Bundle parameter. A version is composed of
3 positive natural numbers and a string separated by “.” sign. Two versions are equal, if
the numbers are equal. The string in the end might be used to specify different versions
with the absolute same interface (for example different compilers). The numbers from left
to right are called: Major.Minor.Mirco.

Bundle-Activator This is the path of the class, which is used to start the whole plug-in. The
class must extend org.eclipse.core.runtime.Plugin.

Require-Bundle When you write you plug-in, you will use the functionality of other plug-ins.
To do that you have to specify here, which plug-ins you use. Eclipse will refuse to load
your plug-in if the plug-ins you require are not available. In addition you can specify the
version of the plug-in you need to be available. If you don’t specify anything else Eclipse
will assume to have a compatible version as long as there is one having the same Major-
Number. In case you have to be pickier, you can also add a match parameter with perfect,
in which case Major, Minor and Micro number have to match, or equivalent, then Major
and Minor Number have to match.

Bundle-ActivationPolicy The only parameter you can add here is lazy, which tells OSGi to
wait with loading the plug-in, until it is used.

Bundle-RequiredExecutionEnvironment Defines a lower bound for the version of the JVM,
that is allowed to be used.

3.2 plugin.xml

The plugin.xml file was once responsible for all the things, that are now configured in the MAN-
IFEST.MF file. If you browse the Internet, you will have problems to find, what you are looking
for, because of that. Today the plugin.xml is responsible for offering and using extension points.
We will not talk about how to offer an extension point, because we did not need this feature in
this project.

1from http://java.sun.com/developer/Books/javaprogramming/JAR/basics/manifest.html access 2.9.2010

8

 http://java.sun.com/developer/Books/javaprogramming/JAR/basics/manifest.html

3.2.1 Using extension points (making extensions)

When you want to use an extension point, you have to add the plug-in, which defines the
extension point to your Require-Bundle list in the MANIFEST.MF. Mostly you will have found
the extension point you want to use by Google and often you do not know what plug-in is offering
that extension point. The only advice we can give you, is to use Google again or grep through
the plug-ins directory of Eclipse. We did not find a way, which allowed us to easily find the right
plug-in.

When the right plug-ins are included, one can use the extension points by adding a <
extension> tag.

Listing 3.2: Use extension point (plugin.xml)

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <? e c l i p s e version=” 3 .4 ”?>
3 <p lug in>
4 <ex tens i on
5 point=” org . e c l i p s e . core . e x p r e s s i o n s . p roper tyTes te r s ”>
6 <proper tyTeste r . . . />
7 </ extens i on>
8 </ p lug in>

The <extension> tag has only one important attribute. It is the extension point you
want to use. In this case we use the extension point propertyTesters offered by the plug-in
org.eclipse.core.expressions.

The tags between <extension> and </extension> are information for the extension point.
Which tags need to be there, can be read in the XML-Schema file in the org.eclipse.core.expressions
plug-in Jar. We do not want to go into detail here, but the plugin.xml of the plug-in, which pro-
vides the extension point, defines where in the Jar the Schema file is. Eclipse can show the Schema
file by clicking on Show extension point description in the Extention-Tab of the plugin.xml editor.

Important is to understand how Eclipse calls your code. First you find the extension point
you want to extend. Then you write your XML code to extend it. For some extension points a
class implementing an interface has to be passed as attribute. If so, the extension point loads
your class and executes a method of that interface.

9

Chapter 4

Language Toolkit for processor
based refactoring

For our refactoring plug-in we used the processor based refactoring, offered by the Language
Toolkit of Eclipse. We will explain now, how such a refactoring works.

4.1 Important classes

In the class diagram the most important classes are shown. While writing refactorings you
do not have to care about the classes RefactoringWizardOpenOperation, Refactoring and Pro-
cessorBasedRefactoring. This classes can be used as they are. All the other classes need to be
extended.

RefactoringWizard When the user starts a refactoring, he will be asked for additional in-
formation. The required form for this, is painted by the RefactoringWizard class. The
connection to the Info class is necessary to store the information, which the user typed into
the form.

RefactoringInfo The RefactoringInfo class is not a class of the LTK framework, we introduced
it to allow communication between the RefactoringProcessor and the RefactoringWizard.

10

The idea to do it that way is from the article http://www.eclipse.org/articles/Article-
LTK/ltk.html. When writing refactorings for our project, you can extend the Refactoring-
Info class. It supports already some utility functionality.

RefactoringProcessor This class does the actual Refactoring.

isApplicable() This method checks if the refactoring can be used. It can be used to
enable or disable menu entry’s. During our work with the refactoring processor, this
method got never called by the Framework. It can easily be implemented by calling
checkInitialConditions().

Listing 4.1: Generic isApplicable Implementation

1 public boolean i s A p p l i c a b l e () throws CoreException {
2 return c h e c k I n i t i a l C o n d i t i o n s (new Nul lProgressMonitor ()) .
3 hasFata lError () ;
4 }

identifier A unique identifier for the processor.

name A human readable name for what the refactoring does.

checkInitialConditions Checks whether the refactoring is applicable before the user
gives any information, about how the refactoring should happen. Mostly we checked
here, if the user did a valid selection. For the conditional visibility we implemented,
it was used to decide whether a refactoring is offered or not. The return value is a
status. If the refactoring can not be executed, the status must contain fatal errors.
Otherwise the refactoring is meant to be executable.

checkFinalConditions Checks whether the information, the user gave to configure the
refactoring, are valid.

createChange This is the method where the magic happens. All the changes of your
refactoring are made within this method. The return value is a Change. A Change
describes what you want to change in your refactoring. You do not execute the change
yourself, this is done by the framework. LTK offers a lot of subtypes of the Change
class.

4.2 The Change classes

The LTK offers the Change class. By creating Change classes in stead of doing the changes
yourself, you allow LTK to provide “change preview functionality”. LTK offers a lot of changes
for moving, renaming and so forth. We just talk about the most important ones.

11

http://www.eclipse.org/articles/Article-LTK/ltk.html
http://www.eclipse.org/articles/Article-LTK/ltk.html

CompositeChange Most refactorings change more than one thing. That’s way you will use
this Change in almost every refactoring.

NullChange A Change that does nothing. It allows you to avoid null-values within your Code.

DocumentChange Changes a text file, which is opened in the editor. It allows you to change
code that has not yet been saved. We intended to use this, but we got exceptions, because
threads tried to access data, which are not allowed to be accessed by them. In the Internet
we found people having the same problem, but they also had no solution. The problem
seems to occur only in the newest version of Eclipse. Maybe it is already solved when you
read this. If so, use this Change for files that are opened instead of TextFileChange.

TextFileChange We used the TextFileChage to do all our text changes. It works, but the User
is forced to save all files, before he can start doing refactoring.

4.3 Refactoring operation sequence

Now you know all the classes. We will not outline what happens, when a refactoring takes place.
First, (not in picture 4.3) the user starts a refactoring by clicking on a menu entry. The Action-
Handler gets called and initializes all necessary classes. You can see that the RefactoringWizard
and the RefactoringProcessor both get a link to the Info Object. If you are working with the
selection, save the selection to the Info Object in the ActionHandler, later it is hard, because
you are in the wrong thread.

Then the ActionHandler calls the run() method of the RefactoringWizardOpenOperation.
We have to say that the calls, which are done by the RefactoringWizardOpenOperation, are not
really done by the RefactoringWizardOpenOperation class. But it would become very complex
to explain how it really works. The effect you see, when your methods are called, is as shown in
the picture.

The RefactoringWizardOpenOperation checks if the initial conditions are OK. If not, it would
show the status error message to the user and terminate. If there are no fatal errors, the
RefactoringWizard is called to draw the form and save the necessary information of the user to
the Info object.

Now, the final conditions can be checked by the RefactoringProcessor. If they are not OK,
the status errors will be shown to the user and the RefactoringWizard will be shown again. If
they are OK, the createChange() method of the RefactoringProcesser gets called. A preview of
the changes is shown to the user.

If the user accepts the changes, they get applied and the Refactoring is finished. During the
whole Process, LTK makes sure, that the user has back and cancel buttons.

12

13

Chapter 5

Menu’s with conditional visibility

In our plug-in the use case is always the same. The user selects some code, the user selects a
refactoring, the user executes the refactoring. To achieve that we need to have menus, where the
user can select the refactoring he wants to execute. But this is not enough, our plug-in supports
a lot of refactorings. If the User has to find the refactoring he wants to use in a list of all possible
refactorings, it will take him a lot of time. To make it easy for the user, we want to list only
those refactorings, which are actually possible for his current selection. This means we need
conditional visibility.

In the picture 5 the necessary components for a menu with conditional visibility are shown.
During the following sections we will explain every component in the picture 5.

5.1 Create a menu entry

Eclipse knows about a hundred ways to create a new menu entry. Almost none of them make it
necessary to write Java code, but all of them have different possibilities. During our project we
were not able to discover what ways are deprecated or what the state of the art is. After testing

14

three ways which did not fit our needs, we chose the one, which we will explain now.

5.1.1 Add a new submenu

We want our refactoring functionality to be available in two menus. In the main menu of the
Eclipse window and the context menu, which appears when one right clicks on a selection. To
do that, we used the org.eclipse.ui.menus extension point. In this extension point every menu
can be identified by a URI. The URI of the main menu is: menu:org.eclipse.ui.main.menu and
to define it’s position, we add ?after=additions to the URI. This adds the menu just after the
menus of the additions group, which is the core functionality of the Eclipse IDE. In the UML
this <menu> tag is the MenuContributionMenu class.

In XML code it looks like this:

Listing 5.1: Create menu folder (plugin.xml)

9 <ex tens i on id=”add . item ” point=” org . e c l i p s e . u i . menus”>
10 <−− Entrys in the Top Menu −−>
11 <menuContribution
12 locat ionURI= ”menu:org . e c l i p s e . u i . main . menu? a f t e r=a d d i t i o n s ”>
13 <menu id=” t inyo s . y e t i . RefactoringMenu ”
14 l a b e l=” Re fac to r ing ” />
15 </ menuContribution>
16 </ ex t en s t i on>

Important is to see that we use the tag <menu>, which means that we add a submenu and that
the id of the new submenu tinyos.yeti.RefactoringMenu is. Later when we add commands to
that submenu, we have to refer to that id.

To add the submenu to the context menu too, we add the same XML block again, but use
the URI popup:org.eclipse.ui.popup.any and give it the id tinyos.yeti.RefactoringPopup.

If you would now start Eclipse with that new menu, you wouldn’t see anything. The submenus
are only displayed if the submenu are not empty.

5.1.2 Add a command to the submenu

Adding a command (an entry which triggers an action) is also done by the tag <menuContribution>,
but this time not by the child tag <menu> but <command>. In the UML diagram we called
it MenuContributionCommand. For now we do not look at the visibleWhen, it will be explained
later.

The <command> tag has three attributes. lable is the string the user will see in the menu.
id is just a unique identifier and commandId is the id of the command, that shall be executed,
when the user clicks on this entry. Creating that command will be explained in the next section.

In XML it looks like this:

Listing 5.2: Adding a command to a menu (plugin.xml)

17 <ex tens i on id=”add . item ” point=” org . e c l i p s e . u i . menus”>
18 <menuContribution
19 locat ionURI= ” menu:t inyos . y e t i . RefactoringMenu ? a f t e r=a d d i t i o n s ”>
20 <command commandId=” t inyo s . y e t i . r e f a c t o r i n g . rename . l o c a l . v a r i a b l e ”
21 id= ” RenameLocalVariable ”
22 l a b e l= ”Rename Local Var iab le ” />
23 </ menuContribution>
24 </ extens i on>

You can see, that the menuContribution goes this time to tinyos.yeti.RefactoringMenu, which
we defined in the last section.

15

5.1.3 Createing a command

This is now the command, that is called command in the UML diagram. It is not in the
extenstion point org.eclipse.ui.menus but in the extenstion point org.eclipse.ui.commands. The
<command> tag has three attributes. An id which is a unique identifier. The categoryId which
groups the the <command>’s to categories. We never used the Categories, so we just introduced
one and gave all our commands this category. We hoped, that it would be possible to fill a
submenu with a category of commands. But we did not find a way to achieve that. The third
parameter is a name. We never used it either, we usually took the label in the menu also as
name of the command.

In XML it looks like this:

Listing 5.3: Creating a command (plugin.xml)

25 <ex tens i on po int=” org . e c l i p s e . u i . commands”>
26 <category id=” t inyo s . y e t i . r e f a c t o r i n g ”
27 name=” Re fac to r ing ” />
28 <command id=” t inyo s . y e t i . r e f a c t o r i n g . rename . l o c a l . v a r i a b l e ”
29 categoryId=” t inyo s . y e t i . r e f a c t o r i n g ”
30 name=”Rename Local Var iab le ”/>
31 </ extens i on>

One can ask now, where does Eclipse know from what method it has to invoke to call that
command. Well it does not. To know that, we have to define a handel.

5.1.4 Introducing a handler for a command

A handler connects a command in the XML file to a Java class, which implements the interface
org.eclipse.core.commands.IHandler. The extension point org.eclipse.ui.handlers helps doing that
job. It is very simple. Just the class and the commandId.

Listing 5.4: Connecting a command to a handler (plugin.xml)

32 <ex tens i on po int=” org . e c l i p s e . u i . hand le r s ”>
33 <handler c l a s s=” t inyo s . y e t i . r e f a c t o r i n g . e n t i t i e s . v a r i a b l e . rename . l o c a l .

RenameLocalVariableActionHandler ”
34 commandId=” t inyo s . y e t i . r e f a c t o r i n g . rename . l o c a l . v a r i a b l e ” />
35 </ extent i on>

5.1.5 Bindings

We did not yet speak about bindings. They allow you to introduce shortcuts for your commands.
We did it first, but removed it later again. We think the following code explains itself:

Listing 5.5: Introduce shortcuts (plugin.xml)

36 <ex tens i on po int=” org . e c l i p s e . u i . b ind ings ”>
37 < !−−
38 One could a l s o add a Shortcut , by adding the f o l l ow i n g

A t t r i b u t e
39 to the <key>−Tag ,
40 f o r example: sequence=”M1+M2+r ”
41

42 The M Keys in the sequence are Platform independent keys .
43 On PCs they are mapped t o :
44 M1 = Ctr l
45 M2 = Sh i f t
46 M3 = Alt

16

47

48 The upper example would the the s h o r t c u t : C t r l+Sh i f t+r
49 −−>
50 <key commandId=” t inyo s . y e t i . r e f a c t o r i n g . rename . l o c a l . v a r i a b l e ”
51 schemeId=” org . e c l i p s e . u i . d e f a u l t A c c e l e r a t o r C o n f i g u r a t i o n ”
52 sequence=”M1+M2+r ” />
53 </ ex t en s t i on>

5.2 Add conditional visibility

Up to now all our menu entries will always be available no matter whether the user did a valid
selection or not. But in the beginning of this chapter we decided to show only those refactorings,
which are executable for the current selection.

5.2.1 Property tester

To do that we use the extension point org.eclipse.core.expressions.propertyTesters. It allows the
definition of a propertyTester with a list of properties. In our case we defined one propertyTester
called tinyos.yeti.refactoring.AvailabilityTester, which has one property for each Refactoring.

In XML:

Listing 5.6: Property tester (plugin.xml)
54 <ex tens i on po int=” org . e c l i p s e . core . e x p r e s s i o n s . p roper tyTes te r s ”>
55 <proper tyTeste r id=” t inyo s . y e t i . r e f a c t o r i n g . A v a i l a b i l i t y T e s t e r ”
56 type=” org . e c l i p s e . j f a c e . t ex t . ITex tSe l e c t i on ”
57 namespace=” t inyo s . y e t i . r e f a c t o r i n g . i s A v a i l a b l e ”
58 p r o p e r t i e s=” renameLocalVariable , . . . ”
59 c l a s s=” t inyo s . y e t i . r e f a c t o r i n g . R e f a c t o r i n g s A v a i l a b i l i t y T e s t e r ” /

>
60 </ extens i on>

One can see that is has a class parameter. This is a Java class that extends
org.eclipse.core.expressions.PropertyTester. It has only one abstract method:

Listing 5.7: extends PropertyTester
5 public class A v a i l a b i l i t y T e s t e r extends PropertyTester {
6

7 public boolean t e s t (Object r e c e i v e r , S t r ing property , Object [] args , Object
expectedValue) {

8

9 }
10 }

One can see, that there is a string property. It is exactly the String, that is defined in the property
attribute of the propertyTester tag. This way we wrote for each refactoring a test, whether it is
available or not.

5.2.2 Visibility condition

Listing 5.8: Visibility condition (plugin.xml)
61 <ex tens i on id=”add . item ”
62 point=” org . e c l i p s e . u i . menus”>
63 <menuContribution locat ionURI= ” menu:t inyos . y e t i . RefactoringMenu ? a f t e r=a d d i t i o n s

”>

17

64 <command commandId=” t inyo s . y e t i . r e f a c t o r i n g . rename . l o c a l . v a r i a b l e ”
65 id= ” RenameLocalVariable ”
66 l a b e l= ”Rename Local Var iab le ”>
67 <vis ibleWhen checkEnabled=” f a l s e ”>
68 < i t e r a t e ifEmpty=” f a l s e ”>
69 < !−− The forceP lug inAct i va t i on−Parameter i s a b s o l u t l y necessary .
70 Otherwise the Property g e t s never check t −−>
71 <t e s t property=” t inyo s . y e t i . r e f a c t o r i n g . i s A v a i l a b l e . renameLocalVariable ”
72 f o r c e P l u g in A c t i v a t i o n=” true ” />
73 </ i t e r a t e>
74 </ vis ibleWhen>
75 </command>
76 </ menuContribution>
77 </ ex t en s t i on>

In the MenuContributionCommand we add a visibleWhen tag. The checkEnabled=”false” dis-
ables the check whether the Command is available or not. It is a functionality provided by the
handler class. Technically it would work with just writing checkEnabled=”true” and implement-
ing the functionality in the ActionHandler. But as the name isEnabled says, it is not the idea of
this function. That’s way we preferred doing it with the property.

The visibleWhen is necessary cause it seems to be a collection that we get there. If the tag is
not there it won’t work.

18

Part III

The Refactoring Plug-in

19

Chapter 6

About our plug-in

The refactoring plug-in is an extension for the Eclipse Yeti plug-in. Its target is to accelerate the
development of NesC code and make it more convenient. This is achieved by automating low
level, time consuming tasks.

6.1 The general refactoring life cycle

From a user perspective the general refactoring life cycle looks like this:

1. The user selects a new text range in his NesC editor.

2. Eclipse instantiates a RefactoringAvailabilityTester class, which is a subtype of the Prop-
ertyTester class, which is defined by Eclipse.

3. Eclipse checks all refactorings defined in the plugin.xml against the property tester and
memorises, which of them are available.

4. Eclipse shows the available refactorings in the top menu bar, as well as in the popup menu.

5. The user selects a refactoring, which he wants to execute.

6. Eclipse will execute the appropriate action handler.

7. The user probably has to do some input.

8. Eclipse shows the changes to be done in a preview window.

9. The user confirms or denies the changes.

10. Eclipse finishes the refactoring.

This life cycle can be divided in two main parts. The first part is the evaluation of the available
refactorings and the second part is the actual execution of a specific refactoring. This partitioning
has two major advantages. First it allows a better user experience, since he sees only the
refactorings, which are really executable for the current selection. Second, the execution of a
refactoring does not have to care, if the refactoring is applicable.
In the graphic on page 21 you can see the steps the user has to take in order to execute a
refactoring.

20

6.2 Package structure

The root package of the plug-in is tinyos.yeti.refactoring. It contains the RefactoringPlugin class,
which is required for an Eclipse plug-in, as well as the classes we will talk about in chapter 7 on
page 22.
The root package contains four subpackages:

1. The abstractrefactorings package

2. The ast package

3. The utilities package

4. The entities package

The abstractrefactorings package contains infrastructure classes, used to implement concrete
refactorings. We take a closer look at this classes in chapter 8 on page 25.
The ast and utilities packages include classes, which are used to interact with the AST and the
project, in which we are doing refactoring. The contents of this packages are explained in the
chapter 9 on page 28.
The entities package is actually the root package for all concrete refactoring implementations.
By entity we mean an object, which can be modified by a refactoring. I.e. the entity of a rename
or extract function refactoring is a function. The entity of a rename or introduce interface alias
is an interface alias. Therefore the next level of packages in the entities package will designate
a entity, and the package in such a specific package will designate a concrete refactoring. This
means that you will find the concrete implementation of the rename interface alias refactoring
implementation in the subpackage entities.interfaces.alias.rename. About concrete refactorings
we will talk in the chapter 10 on page 31.

21

Figure 6.1: A standard user interaction with the refactoring plug-in.

22

Chapter 7

From plug-in XML to Java code

7.1 How to decide the availability of a refactoring

After we have introduced the appropriate lines of XML in the plugin.xml for a specific refactor-
ing, the plug-in is now able to ask the question: “Is the current selection appropriate for this
refactoring?” But the software is not yet capable to answer this question. That is where the
Refactoring enum and the RefactoringAvailabilityTester come in. An overview of the relations
described in this chapter is given in the graphic on page 23.

7.1.1 The Refactoring enum

The Refactoring enum defines for each refactoring, which is defined in the plugin.xml, its corre-
sponding counterpart in java code as an enum constant. Every such enum constant has three
fields:

1. propertyName of type String

2. entityName of type String

3. tester of type IRefactoringAvailabilityTester

The propertyName string must match exactly the string, which is given in the plugin.xml as
property name for the refactoring. It is later on used, to direct the question, if a selection is
appropriate for a specific refactoring, to the right answer.
The entityName string is used only to output information to the user. It is intended to designate
the entity, which is modified by the refactoring. I.e. the entity name could be “function”, if the
refactoring is about renaming a function, or “alias“, if the refactoring introduces a new alias.
The tester field contains for each refactoring an instance of type IRefactoringAvailabilityTester.
This instance is the one, which will finally answer the question, if the refactoring is available for
the current selection.

7.1.2 The RefactoringAvailabilityTester class

The RefactoringAvailabilityTester is the class, which is designated in the plugin.xml as the prop-
erty tester. This means that for every refactoring, which is defined in the plugin.xml, eclipse will
ask an instance of this class, if the refactoring is available for the current selection. Eclipse does
so by calling the function test of RefactoringAvailabilityTester. Everytime the user changes the

23

Figure 7.1: The RefactoringAvailabilityTester class and its context

selection in the editor, one such call is executed for every defined refactoring. The declaration of
this function is actually inherited from the abstract supertype PropertyTester, which is a class
defined by Eclipse.
The test function has a return value of type boolean and four parameters:

1. receiver of type Object

2. property of type String

3. args of type Object[], we do not make use of this parameter.

4. expectedValue of type Object, we do not make use of this parameter.

The receiver parameter must be an instance of type ITextSelection, since the property tester is
configured like that in the plugin.xml. This instance contains information about the range of the
current selection.
The second parameter of the test function is of type String and is named property. During a call
this will be one of the strings, which we have defined in the plugin.xml, for a specific refactoring.
The test function now first checks, if the plug-in is even fully loaded at this point. If we would
omit this check, it could be that not all information are available in a refactoring processor,
which are assumed to be always available. This would lead to nondeterministic behaviour. If
this check fails the function just returns false, which means that there will be no refactoring
available. Furthermore there is a check, if all source files are saved. If there are modified ones,

24

the function returns true only for the NotSaved property. If this is the case, the user can save all
modified files with a click on a button under the refactoring menu.
If the plug-in is fully loaded, we come now to the point, where the real matching from XML to java
code happens. The test function looks for the Refactoring enum constant, which’s propertyName
string matches the property string passed as an argument. If there is no such enum constant,
then either the programmer forgot to define the corresponding enum constant for a refactoring
defined in the plugin.xml, or the propertyName and the property strings are not equal, i.e. if
there is a typo in one of them.
If we now have the Refactoring enum constant for a given property string, then we can read out its
tester field. This gives us an instance of type IRefactoringAvailabilityTester and we can execute
a call to the function test of this instance. This function will return true, if this refactoring is
available and false otherwise. This return value is also the appropriate return value for our test
function of the RefactoringAvailabilityTester.

7.1.3 The IRefactoringAvailabilityTester interface

Each refactoring has an instance of type IRefactoringAvailabilityTester assigned to it. This as-
signment is done in the Refactoring enum. This interface has a single function test, with a return
value of type boolean, and a single parameter selection of type ITextSelection. The purpose of the
function is to decide, if the current selection is a selection, which is appropriate for the specific
refactoring to be executed. If it is, the function will return true and false otherwise.
To find this decision, the refactoring can make use of the class ActionHandlerUtil to gain access
to further information, i.e. to get the selected editor, or the selected file.

7.2 How to execute a specific refactoring

At this point Eclipse knows, which refactorings are available for the current selection. Now the
refactoring has to be executed, if the user clicks on the corresponding button in the refactoring
top menu, or the popup menu of Eclipse. Behind this buttons sits an implementation of the
AbstractHandler abstract class. This class is defined by Eclipse. For each refactoring such an
implementation has to be defined in the plugin.xml. Thats how a refactoring is mapped to its
execution.

7.2.1 The AbstractHandler abstract class

This class is defined by eclipse as an abstract class. For our implementations there is only the
function execute of interest. This function is declared abstract in the AbstractHandler class and
therefore has to be implemented in its subtypes.
This function is actually the place, where the Language Toolkit for Processor Based Refactoring
goes into action. Here will the wizard be initialized, which leads the user through a specific
refactoring. This includes also initializing the appropriate subtype implementation of the Refac-
toringProcessor class, which is defined as part of the Eclipse ltk library. This implementation
will finally execute the real work, which is the actual surplus of the refactoring.

25

Chapter 8

Abstract refactorings

8.1 What we mean by abstract refactoring

Refactorings have the peculiarity, that they can be grouped into classes, which appear to the
user to be similar. In our case the only such group we really have implemented is the renaming
of program identifiers. All but the extract function refactoring are actually implemented as
subtypes of the elements in the abstractrefactoring.rename package. But we could also imagine
other groups, i.e. in Java there exist the group of generators, which generate some code for you,
or there are refactorings, which allows you to push up code in a supertype, or pull it down in a
subtype.
The similarities of the elements of such a group have a direct impact on the needed infrastructure,
which is needed to execute such a refactoring. I.e. the user has the same input to do, and the
same steps to follow.
The subpackages of the package abstractrefactorings right in the root package of the plug-in, are
intended to hold classes, which define the infrastructure for a specific group . This classes gather
the code, which is reused for every element of a specific group. The direct consequence is writing
less code, and especially introducing less errors, when creating new refactorings. Also in the
sense of extensibility this package structure makes for sure sense.
Because nearly all of our refactorings are about renaming, we take a closer look on the associated
classes in the abstractrefactoring.rename package.

8.2 The abstractrefactoring.rename classes

8.2.1 The RenameAvailabilityTester abstract class

Before a user is allowed to execute a rename refactoring, eclipse has to force him, to select a pro-
gram identifier. Namely the identifier which has to be renamed. The RenameAvailabilityTester
implements the IRefactoringAvailabilityTester interface, which we already talked about in the
last chapter. Therefore it overrides the interface’s test function. In this function it tries to get an
identifier out of the given user selection. If this is not possible, the function will just return false,
which means that the associated refactoring is not available for the selection. Otherwise it calls
its own abstract function isSelectionAppropriate which will solve the question, if the refactoring
is available, in a subtype. This function has an argument of type Identifier, which is actually an
AST element, which will be the currently selected identifier, during a call. This takes the burden

26

of the subclasses to find the identifier by themselves. Such an implementation then normally
solves the question in about four lines of code by means of an instance of type SelectionIdentifier.

8.2.2 The SelectionIdentifier class

Identifiers of an entity, which is to be renamed, appear mostly in different places for different
purposes. I.e. a function identifier can represent a function definition, a function declaration or
a function call. A subtype of SelectionIdentifier is intended to identify what purpose an identifier
represents. This enables a SelectionIdentifier to identify the entity of a selected identifier and
therefore, if a refactoring is available for the given selection. The information about the kind of
entity of an identifier can be found in the AST. This is the reason why the SelectionIdentifier
class facilitates the AstAnalyzerFactory and its associated classes. About these classes will we
talk in a later chapter.

8.2.3 The RenameActionHandler class

The RenameActionHandler class plugs together the classes, which are needed to set up the
refactoring wizard. These are the RenameInfo, RenameInputPage and the RenameProcessor
classes. It takes all the work from its subclasses, such that they just have to provide their
specific RenameProcessor instance.

8.2.4 The RenameInputPage class

This class builds the representation of the window, which the user will use to enter a new name
for a given entity. It is especially interesting, since it uses the InputValidation class to avoid
renaming of identifiers to non C names. If the user enters an unappropriate name, proceed
buttons will be disabled, until he corrects his input.

8.2.5 The RenameProcessor class

The RenameProcessor class extends the class with the same name from the Eclipse ltk library. It
provides a lot of functions, which are reused in many subtypes. Besides this it enforces it subtypes
to follow a little framework by means of abstract functions. Each subtype has to implement at
least four functions:

1. getProcessorName with return type String

2. initializeRefactoring with return type RefactoringStatus

3. checkConditionsAfterNameSetting with return type RefactoringStatus

4. createChange with return type Change

The getProcessorName function is expected to return the name of the entity, which is renamed
by this refactoring. This string is used only for user output.
The initializeRefactoring function is the first function of a sublcass which will be called. Here
a subclass can gather all its information, to be sure, the refacoring is even possible or even has
an effect. Experience shows, that this is actually the function which gathers all Identifier AST
nodes, which are affected by the renaming. Errors in this function normally lead to adding an
FatalError message to the returned RefactoringStatus, since the refactoring will not be able to
do any reasonable thing. A FatalError message is shown to the user and leads to an abort of the

27

refactoring.
The checkConditionsAfterNameSetting function is the second function of a sublclass which will
be called. It is called after the user entered a new name for the entity to be renamed. In this
function a sub class can check if the new name is a reasonable choice. Which means that this
is the place were you should check, if renaming would lead to name collisions in the program.
Errors in this place are often not reported back as FatalError but just as Error messge instead. If
we report just an Error message, then the user still has the choice to proceed. An Error message
informs the user, that proceeding will change the semantics of the source, or will even lead to
compile errors. But since the user possibly wants such a change in semantics by intention, it was
false to not allow proceeding.
The createChange function is the last function, which will be called by the RenameProcessor
framework. It is the place, where a subtype finally can create a subtype of Change class from
the Eclipse ltk library. This object then should include all changes, which are necessary for the
refactoring to fullfil its task.

28

Chapter 9

Harnessing the AST

The Yeti NesC parser generates an AST. This AST includes all information about the NesC
source code on a per file base. Big parts of our program build upon analyzing these ASTs, in
order to find information about the program, which is to be refactored. In early phases of the
development, we used a lot of static code, to gather information out of the AST. This lead to
a more imperative then object oriented design, with high coupling. Since this is an unpopular
attribute for good software, we decided to refactor our refactoring plug-in. The result was the
birth of the so called AstAnalyzer classes.

9.1 The AstAnalyzer classes

This classes are intended to wrap AST’s of a whole file, or at least parts of an AST. The inter-
action with an AstAnalyzer is more of the kind:”Give me all objects which have the property...’.
I.e. you can ask a CAstAnalyzer to give you all global C functions, which appear in its AST.
Without the analyzers the interaction is more like:”I have an AST node, is this AST node of
type A, and if so, is it a child of type B...”. This means that in the whole program appeared
code fragments, which included actually knowledge dedicated to the AST. This is pretty much
the opposite of coherence and encapsulation.

9.1.1 The AstAnalyzerFactory class

Basically we can distinguish the types of AST’s included in a source file. I.e. has a AST of a
NesC interface a different structure, then the one of a NesC module. The AstAnalyzerFactory
class takes an ASTNode or a source file and generates the appropriate AstAnalyzer type.
We than can ask the AstAnalyzerFactory, which type it has created and can then read the
associated type out of the factory.

9.1.2 AstAnalyzer types

For the AstAnalyzers, which represent a AST of a whole file, we have defined an hierarchy of
types. It is shown in the graphic 9.1 on page 29. Depending on the analyzer type we can get
specific information. I.e. a ModuleAstAnalyzer will provide information about the Nesc code,
which its module implementaion contains, while a ConfigurationAstAnalyzer holds data about
the NesC wirings, which its configuration implementation includes.

29

Figure 9.1: ASTs, which represent a whole NesC source file, are abstracted by the AstAnalyzer
type hierarchy.

9.2 Utility classes

9.2.1 Auxiliary AST classes

As we already mentioned, our first approach was more kind of an imperative one. Because of
time issues we were not able to totally get rid of the old design. Thats the reason why there
exist still two classes, which are in the oldschool style.

1. ASTUtil4Functions class includes a lot of functions related to the AST structure of func-
tions.

2. ASTUtil4Variables class includes a lot of functions related to the AST structure of variables.

If we had have some more time, we probably had designed something like a FunctionAstAnalyzer
class. This class than had replaced the other two, which had been more likely a good object
oriented design.
A very useful class dedicated to the AST, is the ASTUtil class. It includes a lot of convenience
functions, which are useful everywhere, where we interact with the AST.
Last but everything else then least we have to mention the AstPositioning class. This class’s
main task is to find the corresponding AST element for a given character position in a source
file. This task is complicated by the fact, that the position may come from a preprocessed file.
The correct functioning of the class is especially mission critical for deciding the user selection.

9.2.2 Project wide classes

There is a number of further utility classes int the utility package.
The most important one is the ProjectUtil class. Refactorings which not only affect the file from
which they were triggered, have to get access to other affected files. Therefore the ProjectUtil
class provides exactly the right functions. I.e. you can find a NesC Module by specifying its

30

name, or you can search for references to a specific IASTModelPath in a certain file. A file is
always the first step, in order to get to its AST.
The ProjectUtil also includes functions for logging messages to the project log and some other
stuff, which is related to the whole project.
Another interesting class is the ParserCache class. As its name says, it tries to cache Parsers,
so that not every file has to be parsed again and again, even if it was not modified, since it was
parsed the last time. In our implementation the parser cache is only in use, if you obtain your
parser from the ProjectUtil class.

31

Chapter 10

Concrete refactorings

10.1 Implemented refactorings

One of the main parts of our work was of course the implementation of concrete refactorings.
We have implemented the ones, which we thought were the most useful:

1. Renaming of local variables

2. Renaming of function parameters

3. Renaming of variables in the implementation scope of a NesC Module

4. Renaming of global variables

5. Renaming of C functions in the implementation scope of a NesC Module

6. Renaming of global C functions

7. Renaming of NesC functions, like events and commands

8. Renaming of NesC interfaces

9. Renaming of NesC Components, like modules and configurations

10. Renaming of NesC component aliases

11. Renaming of NesC interface aliases

12. Introducing of NesC component aliases

13. Introducing of NesC interface aliases

14. Extracting of code parts to new C functions

As we can see, most of the refactorings are related to renaming something. In fact even the
introducing of aliases is realised as a rename refactoring. This is the reason why we took a
closer look at the classes in the abstractrefactoring.rename package. The implementation of
refactorings, which use the infrastructure given in this package, is reduced to not more then four
classes:

1. A ActionHandler class as subtype of RenameActionHanlder

32

2. A AvailabilityTester class as subtype of RenameAvailabilityTester

3. A SelectionIdentifier class as subtype of SelectionIdentifier

4. A Processor class as subtype of RenameProcessor

It is even simpler, since the AvailabilityTester and the ActionHandler classes are kind of connec-
tor classes to the SelectionIdentifier and RenameProcessor, respectively. This means that they
have about three lines of code and do not much more than instantiating the other class.
The only refactoring, which we have implemented, which does not rely on the rename infras-
tructure, is the refactoring for extracting code parts to new C functions. The so called Extract
Function refactoring. This is besides the complexity of it a second reason, why it has much more
code.

10.2 What else could be done

If we had more time, there were of course a lot, which we could have done too. Everybody who
can write code knows, that there is always something, which could be done nicer or more efficient.
In short, there is always something, which you can refactor. I.e. as we already mentioned, it
was nice to get rid of the AstUtil4Functions and AstUtil4Variables classes and instead implement
something like a FunctionAstAnalyzer class, to reach a nicer, more object oriented design style.
With more time we also could have implemented some more refactorings, i.e.:

1. Renaming of global C typedefs

2. Renaming of C typedefs in the implementation scope of a NesC Module

3. Renaming of C enums, as well in the global as in the implementation scope

4. Renaming of C enum constants

5. Renaming of C structs, as well in global as in the implementation scope

6. Renaming of NesC tasks

7. Renaming of C preprocessor macros

8. More sophisticated extract function refactoring, which allows user to select in and out
parameters

9. Magic number refactoring, which converts magic numbers to constants

And we are sure, there are a lot more of possibilities.

10.3 How to implement a new refactoring

If you intend to implement a new refactoring, this section should give you an overview, which
steps you have to follow, and where in this document you can find more information to a specific
topic.

33

10.3.1 Enable your refactoring

First you have to add new, appropriate elements in the plugin.xml for your refactoring. The
fastest way to do this, is to copy and paste existing elements, and adapt their content. You have
to add the following elements:

1. A command element in the commands extension element, important is the id attribute,
since it is referenced in all other elements

2. A handler element in the handlers extension element, important is the class attribute,
which references the handler implementation

3. A command element in the menu menuContribution element under the menus extension
element, important is the label attribute, which is the name shown to the user and the
property attribute, since it identifies the refactoring in the property tester

4. A command element in the popup menuContribution element under the menus extension
element, important is the label attribute, which is the name shown to the user and the
property attribute, since it identifies the refactoring in the property tester

Finally you have to add the property string, which you have specified in the command elements,
which you added to the menuContribution elements, to the properties attribute in the proper-
tyTester extensinon element.
This is all you have to do with the plugin.xml, in order to introduce your new refactoring. If this
information is not enough for you, maybe you find some answers in chapter 5 on page 13.

Now you have to create a subtype of IRefactoringAvailabilityTester. It has to test, if the
user selection is appropriate for your refactoring. The last step in order to enable your new
refactoring, is to define a new enum constant in the Refactoring enum. Make sure that its
propertyName field matches the property name you chose in the plugin.xml and set your new
IRefactoringAvailabilityTester as its tester field.
If you have done all these steps, you should now see your refactoring in the Eclipse user interface,
if the user selection matches your definitions. If you need more information about these two steps,
consult chapter 7 on page 22.

10.3.2 Make your refactoring do its work

You should now be able to select your refactoring in the Eclipse user interface. To make the
selection do your refactoring, you have to do the following steps. First you have to implement
a subtype of the Eclipse AbstractHandler class. Make sure that the class name matches the
one given in the plugin.xml in the handler element. This class is responsible for initiating your
refactoring. You should do this by facilitating the language toolkit for processor based refactoring.
This means that you have to create subtypes of the following classes:

1. DefaultRefactoringWizard class of us, responsible for consolidating the following classes

2. RefactoringInfo class of us, carries information needed by the refactoring and the wizard
itself

3. UserInputWizardPage of Eclipse, the window, where the user can do its input

4. RefactoringPorcessor of Eclipse, the place where the changes actually are generated

34

To find out more about this classes, read chapter 4 on page 9. If you implemented and wired
them correctly, your refactoring should now be able to do its work.
If you intend to write a rename refactoring, you can extend the classes from the abstractre-
factoring.rename package. If you do so, your only real concern is to write a subtype of the
RenameProcessor class. In this case you should take a look at chapter 8 on page 25.
For writing a processor you should consider to reuse the classes explained in chapter 9 on page
28.
You find the description of example implementation in the next chapter.
If all this information is not enough, you can read the source code, which is still the most accurate
documentation.

35

Chapter 11

An example Implementation: The
rename interface refactoring

In this section we talk about the implementation of the Rename Interface refactoring. As its
name suggest, the target of the refactoring is to rename a NesC interface. Since the refactoring
is about renaming, it makes heavy usage of the infrastructure in the abstractrefactoring.rename
package. This package is described in chapter 8 on page 25.

11.1 Until the processor starts its work

We assume that the developer is working in a NesC Project and has saved all his Editors. He
wants to rename one of his Interfaces. To do that he double-clicks on the old name of the
interface.

Eclipse marks it and fires a Selection Changed event. This triggers, among other things, the
checks which entries are to be displayed in the refactoring menu.1 This means that Eclipse has
to call the RefactoringsAvailabilityTester property tester for each possible menu entry with the
according property. When Eclipse comes to the renameInterface property, the global Refactor-
ingsAvailabilityTester will call the test() method of the rename interface AvailabilityTester. This
method will find the identifier the user marked and pass it to the InterfaceSelectionIdentifier
class. This class checks if the identifier represents an interface. And yes, it does. The Availabili-
tyTester returns true and Eclipse knows, that the rename interface refactoring has to be part of
the refactoring menu if the user opens it.

All this checks were done so fast that the user did not notice anything. He just selected an
interface name. He opens the refactoring menu and Eclipse already knows what entries it has to
show. The user clicks on Rename Interface.

Eclipse now creates an Object of type ActionHandler, defined in the plugin.xml handler tag2

and calls the execute() method. The execute method initializes all the necessary LTK classes3

and the appropriate rename interface classes. Among them the Processor and the Wizard. Then
it starts LTK’s RefactoringWizardOpenOperation.4 It checks the initial conditions and shows the
RenameInputPage to the user.

1Defined as described in 5.2 on page 16.
2As described in 5.1.4 on page 15.
3Described in 4.1 on page 9.
4Well illustrated by the interaction diagram4.3 on page 11.

36

The user who just clicked on Rename Interface, can now enter the new name he wants the
Interface to have. While he does that, Eclipse check whether he enters a valid C identifier and
allows him to click preview or OK, only if a possible string was written. Because the user entered
a name, which generates no problems, he is allowed to click on preview. Eclipse checks the final
conditions and calls the createChange method of the processor. The user can preview the changes
and accepts them by clicking on OK.

11.2 The processor

Now we come to the point, where the real work happens. The class tinyos.yeti.refactoring.entities.interfaces.rename.Processor
has to do three steps, to successfully rename an interface:

1. Find all identifiers affected by the renaming, most probably in several files.

2. Check that the new name does not collide with an existing one.

3. If there are no collisions, create the changes.

The processor extends the tinyos.yeti.refactoring.abstractrefactorings.rename.RenameProcessor
class. It is explained in detail in chapter 8.2.5 on page 26. Therefore the processor implements
the mini framework we mentioned in this chapter. The three framework functions perfectly
match on our three steps:

1. Find all identifiers realised in function initializeRefactoring

2. Collision detection realised in function checkConditionsAfterNameSetting

3. Change creation realised in function createChange

We will now go on with explaining the actions taken in the different functions.

11.2.1 Find all identifiers affected by the renaming

The functionality described here is implemented in the initializeRefactoring function of our mini
framework. In order to find all identifiers affected by the renaming, we do the following:

1. Find the source file, which defines the interface.

2. Check all project files for references to the interface definition.

3. Convert the found references to identifiers.

4. Check if the identifiers need to be renamed.

5. pack all identifiers in a map, mapped by the file in which they appear.

To find the source file, we are in the lucky position, that the selected identifier has to have the
name of the Interface, which is to be renamed. A special case is it, when the selection is actually
an interface alias, but for our example implementation, this case is not relevant. With the name
of the interface to be renamed in our hands, we can use the class ProjectUtil. This class makes
use of the facilities provided by the Yeti plug-in. It is able to get a IDeclaration class for the
interface name out of the ProjectModel class. The declaration is actually an abstraction of the
interface source file. At this point we have fulfilled our first step for the renaming.
In order to find all references to the interface, we proceed as follows. The declaration we found in

37

the first step has an IASTModelPath. We can use this path to gather all references of a specific
file to the path. This is done via the Yeti ProjectModel again.
Now we come to the third step. We have now the references to the interface, but we are not able to
rename based on the references. The reason is, that we have to do checks, if the identifiers behind
the references are actually identifiers of interest, see the next step therefore. The references can
be converted to Identifer AST nodes, which are also defined by Yeti. This conversion is done by
means of our AstPositioning class. It takes an offset in a source file and gives you in turn the
AST node at this position. You then can check if it is actually of the expected type, and your
done with this step.
You have now the identifiers and the containing files. Unfortunately not all of this identifiers
need to be renamed. First there is the possibility, that a reference spans more than one Identifier.
Normally not both of them reference an interface and most probably not both the interface we
are looking for. Second, also interface aliases reference the defining interface, but we are not
interested in renaming aliases. This means that we have to filter our bunch of identifiers. To
fulfill this task we use our InterfaceSelectionIdentifier class (chap. 8.2.2, page 26), which makes
heavy use of the AstAnalyzerClasses(chap. 9.1, page 28).
Now we have all identifiers we are interested in according with the files, in which they appear.
We then put this identifiers in a map, mapped by the file, to have access to it in the remaining
two steps of our mini framework.
If there is a problem during this steps, this can be reported back to the user by adding a message
to the returned value of type RefactoringStatus. An error at this stage will be reported as fatal
error, which means that the user is not able to proceed with the refactoring, but has to abort
it. The reason is, that an error at this stage probably means, that we did not find all affected
identifiers, which will lead to compile errors, when we proceed.

11.2.2 Check for collisions

The functionality described here is implemented in the checkConditionsAfterNameSetting func-
tion of our mini framework. This function is called, after the user entered a valid new name and
pressed the OK button. Its target is to find any possible collision with an existing name in the
source files. First we have to check, if there is not already a project file with the given name. If
there is one, we report this back to the user by adding a error message to the return value. The
error message informs the user about the collision. The use of a error message instead of a fatal
error, will allow the user to go back to the name input field, to choose another name. For each
file, which is affected by the renaming, we make use of the so called NesCComponentNameCol-
lissionDetector class. The collision detector in turn uses an appropriate AstAnalyzer type, to
investigate the source files.
If the affected source file is a NesC module, then we just have to check, if there is a collision with
an interface alias. But if we are talking about an NesC configuration, also the implementation
has to be checked, if there are any component aliases, with the given name. If there is any
problem, it will be reported with an error message. An error message especially allows the user
to proceed, in the case he intended the collision for some special tweak.

11.2.3 Create the changes

When the createchange() method is called, a CompositChange is created. Then the method add-
Change() loops over all the identifiers in the affectedIdentifiers map and creates a TextFileChage
to change the old name to the new name.

A special thing in NesC is that the interface file has the same name as the interface by

38

convention. That’s why also a RenameResourceChange is added to rename the interface file
to the new interface name. In the end the whole CompositChange is returned to the LTK
Framework.

39

Glossary

AST AST stands for abstract syntax tree. The yeti NesC parser generates for each source file
such an AST. It is a first abstraction of the source code, based on the NesC syntax.

Eclipse Is a so called integrated development environment engineered by IBM. An IDE facilitates
program code writing.

NesC NesC (Network embedded systems C) is a component-based, event-driven programming
language used to build applications for the TinyOS platform. TinyOS is an operating
environment designed to run on embedded devices used in distributed Wireless Sensor
Networks. nesC is built as an extension to the C programming language with components
wired together to run applications on TinyOS.

OSGi The OSGi framework is a module system and service platform for the Java programming
language that implements a complete and dynamic component model, something that
does not exist in standalone Java/VM environments. Applications or components (com-
ing in the form of bundles for deployment) can be remotely installed, started, stopped,
updated and uninstalled without requiring a reboot; management of Java packages/-
classes is specified in great detail. Life cycle management is done via APIs which allow
for remote downloading of management policies. The service registry allows bundles to
detect the addition of new services, or the removal of services, and adapt accordingly.
(from Wikipdedia)

Yeti The TinyOS 2.x Plug-in for Eclipse, nicknamed Yeti 2, was developed by the Distributed
Computing Group at ETH Zurich. The plug-in aims to provide developers with all the
convenience functions expected from a modern development environment.

40

	I What is refactoring
	Definition of refactoring
	Why do we need refactoring

	II Eclipse plug-ins
	General info about writing plug-ins
	META-INF/MANIFEST.MF
	plugin.xml
	Using extension points (making extensions)

	Language Toolkit for processor based refactoring
	Important classes
	The Change classes
	Refactoring operation sequence

	Menu's with conditional visibility
	Create a menu entry
	Add a new submenu
	Add a command to the submenu
	Createing a command
	Introducing a handler for a command
	Bindings

	Add conditional visibility
	Property tester
	Visibility condition

	III The Refactoring Plug-in
	About our plug-in
	The general refactoring life cycle
	Package structure

	From plug-in XML to Java code
	How to decide the availability of a refactoring
	The Refactoring enum
	The RefactoringAvailabilityTester class
	The IRefactoringAvailabilityTester interface

	How to execute a specific refactoring
	The AbstractHandler abstract class

	Abstract refactorings
	What we mean by abstract refactoring
	The abstractrefactoring.rename classes
	The RenameAvailabilityTester abstract class
	The SelectionIdentifier class
	The RenameActionHandler class
	The RenameInputPage class
	The RenameProcessor class

	Harnessing the AST
	The AstAnalyzer classes
	The AstAnalyzerFactory class
	AstAnalyzer types

	Utility classes
	Auxiliary AST classes
	Project wide classes

	Concrete refactorings
	Implemented refactorings
	What else could be done
	How to implement a new refactoring
	Enable your refactoring
	Make your refactoring do its work

	An example Implementation: The rename interface refactoring
	Until the processor starts its work
	The processor
	Find all identifiers affected by the renaming
	Check for collisions
	Create the changes

