
DISTRIBUTED COMPUTING GROUP

ETH ZÜRICH

LAB REPORT

Musicexplorer Winamp Plugin

Authors:
Chahine BENCHOHRA
Rahul JAIN

Supervisors:
Michael KUHN

Samuel WELTEN

Abstract

Traditional methods of browsing music collections like navigating through hierarchies of folders or searching for a song by metadata
prove to be cumbersome when dealing with large music collections. In previous projects, a Euclidean map of the world of music was
created where the Euclidean distance between two songs is inversely proportional to their similarity. In this project, we have implemented
a plug-in for the Winamp Media Player which uses this map for discovering and playing similar songs from the user’s media library.

October 6, 2010

CONTENTS

I Motivation 2
I-A Introduction . 2
I-B Platform . 2

II How it works: frontend 2
II-A Start-up . 2
II-B Running . 2
II-C Exiting . 3

III How it works: backend 3
III-A Retrieving coordinates . 3
III-B Finding a nearest neighbour . 3
III-C Finding a remote neighbour . 3
III-D Used libraries . 4

IV What could be improved 4
IV-A Benchmarking . 4
IV-B “Smart Shuffle” on current playlist only . 4
IV-C Improve usability . 4
IV-D Port code to other media players . 4
IV-E Improve next neighbour randomization . 4
IV-F Do not repeat artists . 4
IV-G Finding a remote neighbour . 4
IV-H Perform incremental library scan . 5

V Conclusion 5

Appendix 6

References 7

1/7

I. MOTIVATION

A. Introduction

The increasing popularity of online music stores (and file
sharing) has resulted in a significant shift in the way in which
people manage their music collections. Coupled with the
increasing affordability of mass storage devices, it has resulted
in most users now preferring to download songs rather than
buying CDs or cassettes. Existing media player software provide
us with something commonly referred to as the library view of
the music collection. In this library view, it is possible to sort
songs according to Artist, Album, Genre and other metadata
encoded in the file. The same metadata can also be used to
search for a particular song. Alternatively it is also possible to
browse the music collection by navigating through the folder
structure on the storage device. However, these methods can
prove to be quite tedious when dealing with sufficiently large
music collections. There is thus a need for alternative methods
of browsing the music collection. We aim to implement a
similarity based music player plugin called “Smart Shuffle”. The
motivation behind the plugin is to gauge the mood of the user
from the currently playing song and his preference for the same.
If he/she wishes to stay in the same mood, the plugin computes
the closest matching song from the user’s music collection
and play it after the current song. The same procedure is then
repeated for the next song. Conversely, if the user wishes for a
change of mood, a dissimilar song is picked from his/her music
collection and played after the current song. We now take a look
at the background needed to find similar (and dissimilar) songs.

In previous projects [mus], an algorithm was developed that
generates a point in a high-dimensional Euclidean space from
an input song. The Euclidean distance between any two points
in this space is inversely proportional to the similarity between
the corresponding songs. We thus aim to build a map for the
user’s music collection and then use the same to find similar
(and dissimilar) songs.

B. Platform

We chose the Winamp Media Player [win] as the software for
which we develop our “Smart Shuffle” plugin. We decided to
develop the plugin for Winamp since the software is popular
amongst music aficionados, that is, users who are expected
to have a large collection of songs. Winamp also provides a
comprehensive API and examples projects that illustrate how
plugins can be written for Winamp. This is collectively referred
to as the Winamp SDK [SDK]. Moreover, the Winamp Forums
[for] house a significant number of active plugin developers who
are willing to provide feedback and answer questions regarding
the Winamp SDK.

II. HOW IT WORKS: FRONTEND

This section describes how the plugin works from
the user’s point of view. Note that all mentioned
files are located in the user’s Winamp application
directory; e.g. under Windows 7 with Winamp 5.58:
C:\Users\<Username>\AppData\Roaming\Winamp\Plugins\.

A. Start-up

The following is done when Winamp starts.

a) Loading configuration: The configuration is loaded from
a file (museek.conf) which contains constants to be used in
various parts of the plugin which may alter its efficiency; each
line of this configuration file follows the same pattern:
<parameter> <value>
Table I (Appendix) summarizes the list of recognized parame-

ters.
b) Loading and building the map: The song coordinates

are loaded from a file (map.txt). In case the file does not
exist, or is outdated, the user is asked whether the media library
should be scanned, that is, whether songs’ coordinates should be
downloaded from the MUSICEXPLORER database. Downloading
coordinates for big collections may take several minutes, during
which Winamp remains usable thanks to multithreading. Note that
there is, for now, no progress indicator indicating the number
of songs for which the coordinates have been downloaded.
However, the user is presented with a notification when the scan
is complete.

c) Adding menu entries: Since “Smart Shuffle” is a new way
of exploring the media library, a new menu entry is added in both
the Play menu and contextual menu to toggle “Smart Shuffle”.
Besides, another menu entry is added to manually trigger a library
scan. Note that these entries are grayed while the library is being
scanned to indicate that “Smart Shuffle” is currently unusable.

B. Running

In order to function, “Smart Shuffle” needs a starting track
which acts as a seed based on which the next tracks to be played
are computed. The way this seed is determined varies:

• if “Smart Shuffle” is enabled while playing a track, this one
will be considered as the seed;

• if no track is being played when “Smart Shuffle” is enabled,
then a random track is selected from the user’s media library
and set as the seed.

Note that in the first case, the seed track is played back from
the beginning as the “Smart Shuffle” mode is enabled. Though
inconvenient, the playlist management API of Winamp doesn’t
make it possible to do better.

When a track starts playing, the potential next track to be
played is prepared in a different thread as as to not slow down
Winamp. This process actually selects two potential tracks:

• a local one in case we want to keep the same musical mood;
• a remote one otherwise.

Starting track

Next local track

Next remote track

Figure 1. Basic idea of the algorithm: Prepare a local track (same musical mood)
or remote track (different musical mood)

2/7

Whether the local or remote one is played depends on how
much time the user spent listening to the previous track. Basically,
if x is the number of seconds during which the user has been
listening to the current track, and L the length of the track in
seconds, then:

• with probability x
L , next track will be the local one;

• with probability 1− x
L , next track will be the remote one.

This means that if the user skips a song very quickly, it is
highly likely that he/she will jump to a remote song. Note that
x takes into account the time duration for which the song might
have been paused, that is, if the user pauses the currently playing
song then the duration for which the song was paused is not taken
into consideration while computing the time that the track was
played for.

The plugin only acts when both the conditions listed below
are fulfilled:

• currently played song had ended or the user has explicitly
switched to the next song;

• currently played song is the last one from the current playlist.

Only when both the above conditions are satisfied, does the
plugin add a new song to the end of the playlist and starts
playing it. Note that this makes it still possible to manipulate the
playlist as usual: one may add/remove tracks to/from the playlist,
or browse them. . .

In case the project has been compiled in debug mode, many
operations give feedback in the log file (museek.log).

C. Exiting

Apart from waiting for all threads to terminate, nothing partic-
ular is done at exiting.

III. HOW IT WORKS: BACKEND

A. Retrieving coordinates

Coordinates are available in an online database which can be
queried via a web service. Each time the plugin needs some
missing coordinates, it sends a GET request to the following URL
(see Table I (Appendix)):

http://<DATABASE_HOST><DATABASE_SCRIPT_PATH>

with, as arguments, the artist and title of each song for which
coordinates are needed. These arguments are properly encoded so
as to not conflict with any special character used in URLs (e.g..
“/”).

Coordinates retrieval was successfully tested on a collection of
over 17 000 songs, covering most cases:

• well-tagged songs;
• badly-tagged songs;
• untagged songs;
• songs with all kinds of characters in their tags (including

Chinese characters).
We thus expect it to work in all cases with high probability!

Coordinates are saved in a map file (map.txt) according to
the following conventions:

• the first line will contain the number of tracks in the whole
media library;

• then every line is about a single track of the map and is
formatted as follows:

<database response code> [<artist ID>] [<title ID>]

<length> [<coordinate 1>] [<coordinate 2>] ...[<coordinate

n] <path>

where brackets denote optional fields, and where:
– database response code is the error code used

by MUSICEXPLORER database (see Section A (Ap-
pendix));

– artist ID is the matching artist ID in MUSICEX-
PLORER database (see section A (Appendix));

– title ID is the matching track title ID in MUSICEX-
PLORER database (see section A (Appendix));

– length is the length of the track in seconds;
– coordinate i is the ith coordinate of the track in the

map;
– path is the absolute path to the song file in the user’s

machine; note that spaces are replaced by the character
"|".

B. Finding a nearest neighbour

In an n dimensional space, finding the nearest neighbour of
a point among N others is solvable in a reasonable time using
k-dimensional trees (kd-trees), especially if N >> 2n. In our
case, N is assumed to be in the order of thousands (since we
expect to deal with sufficiently large music libraries), and n is
32. Although we are not in the optimal case for k-dimensional
trees, we still expect the nearest neighbour algorithm using kd-
trees to be faster than an exhaustive search. However, no tests
were run to verify this claim.

C. Finding a remote neighbour

To find a remote neighbour from a given point A, at about a
given distance d:

• first, a uniformly distributed random point X is generated
on the n-sphere whose centre is A and radius d; note that
X is virtual, that is, it doesn’t correspond to any track from
the music library;

• then, the nearest neighbour of this virtual point is found
using usual (previously explained) algorithm.

Current track

Next remote
track

x
M.x + A

Uniformly random
point on the sphere

Figure 2. Finding a remote neighbour

As generating a uniformly random point in a n-sphere is not
trivial, results from [Pol00] are used. Basically:

• n coordinates are independently generated using normal
distribution;

• the resulting n-dimensional point is properly scaled to fall
in the n-sphere.

3/7

The questions that arises is “how is d fixed?”. Let’s assume
we have just switched from a track A1 to its local (= nearest)
neighbour A2. Then (see table I (Appendix)):

d = min (REMOTE_SCALE · |A1 −A2|+ REMOTE_CONSTANT, REMOTE_BOUND)

Now, let’s assume we have just switched from a track A1 to
a remote neighbour A3. To find A3, we looked at the nearest
neighbour of a random point in a sphere of radius r. Then (see
Table I):

d = min (REMOTE_SCALE · r + REMOTE_CONSTANT, REMOTE_BOUND)

Let’s first ignore the REMOTE_BOUND part. The radius of the
sphere then grows by a constant factor at each track change, as
soon as we always choose the remote neighbour as next track.
Then, it takes O(logD) times to reach the diameter D of the
whole map. For the user, this means less skips before finding a
song that is really different from the currently played one.

Now, the bound is such that the new radius must not exceed
the O(D), since this would not make sense.

D. Used libraries

All libraries used in the project are cross platform and open
source. This makes it possible to easily port MUSICEXPLORER
plugin code for another media player running under any operating
system.

d) libcurl: To download coordinates from the database, we
need to perform HTTP queries; this is done by libcurl, the famous
multiprotocol file transfer library.

e) ANN: This is an implementation of k-dimensional trees
and nearest neighbour algorithms.

f) POSIX threads: Several parts of our algorithm take some
time (scanning library, finding a nearest neighbour, loading map).
To keep a smooth usage of Winamp, each of those parts are
processed in a different thread using POSIX threads library, which
is quite famous and widespread.

IV. WHAT COULD BE IMPROVED

A. Benchmarking

As said in section III-B, our exact nearest neighbour algorithm
based on k-dimensional trees may not be that efficient. ANN
library happens to include a module (ANNperf) to measure how
much time and how many memory accesses it took to perform
a nearest neighbour search. It would be interesting to compare
current performance to an exhaustive search.

Another way of getting k-dimensional trees relevant is to
perform only approximate nearest neighbour search. This could
be done by setting the ERROR_BOUND constant to a non-zero
value (see table I).

B. “Smart Shuffle” on current playlist only

Users with huge music collections may want to use “Smart
Shuffle” over only a subset of their library; however, the current
implementation does not allow such use of “Smart Shuffle”.

C. Improve usability

Some parts of the plugin are still quite inconvenient to use:
• for library scan, the user does not know how long it will

take; as it may take several minutes, the user may assume
the library scan failed while it’s still in progress; adding a
progress bar window would be relevant;

• currently, the only way to enable “Smart Shuffle” is via menu
entries; it would be much more convenient to add a button
in Winamp’s window; note that this would require to hack
Winamp’s skin;

• a configuration window would be more user-friendly to
change some parameters; for now, the user has to edit the
configuration file (assuming he/she finds it. . .);

D. Port code to other media players

Many parts of the code are independent from both Winamp and
Windows; the others are easily adaptable. Besides, all libraries
used in this project are cross platform and open source. This
code may then be used as a base to implement similar plugins
for any other media player on any other operating system.

E. Improve next neighbour randomization

Instead of using a uniform distribution to choose whether a next
neighbour will be local or remote, another kind of distribution
could be used, for example a Gaussian one; indeed, the Gaussian
distribution would weight much less the few first and the few last
seconds of listening.

F. Do not repeat artists

Current algorithm often happens to repeat artists, considering
the local next track case, which may be undesired. To improve
this, clustering could be used for example to gather all map points
belonging to the same artist into a single point; the algorithm may
then be applied to the map of those clusters.

Artist 1

Artist 2

Artist 3

Artist 4

Artist 5

Artist 6

Artist 7

Figure 3. Algorithm using clustering with respect to artists

G. Finding a remote neighbour

The trick explained in section III-C works well provided
current point is not on the edge of the universe, that is, the whole
map (which is bounded since all coordinates are between 0 and 1).
If it is, the uniformly random point may fall completely outside
the map, and looking for its nearest neighbour wouldn’t make
sense any more. In the end, the random point should be sampled
only the intersection of the n-sphere and the universe.

4/7

H. Perform incremental library scan

The current algorithm only allows to perform complete library
scans. This is due to a restriction from the implementation of
ANN library which seems to be unable to allocate memory
dynamically. However, it is possible to fetch the coordinates of
only newly added songs. The code can be modified so that we
can check whether the coordinates of the song already exist in
the map file, and only fetch the coordinates if we do not have
the coordinates for the song.

V. CONCLUSION

The “Smart Shuffle” plugin implemented as part of this project
provides the user with an adaptive playlist, that is, the songs in
the playlist reflect the change in the user’s mood. We believe that
the plugin provides an intuitive way to interact with the music
collection as the user does not need to manually select similar
songs. We also hope that the code for the plugin can prove to be
basis for similar plugins for other media players.

5/7

APPENDIX

Parameter Default value Comments
DIMENSIONS 32 How many coordinates are used for each song.

TRACKS_PER_QUERY 25 Coordinates are retrieved using an HTTP query with GET ar-
guments; it is possible to process several tracks in a single
query, which increases the number of GET arguments used; this
parameters sets the number of tracks to be processed with each
query.

ERROR_BOUND 0 Instead of finding the exact nearest neighbor, the algorithm may
simply look for an approximate solution which distance is at most
ERROR_BOUND over the distance to the exact one. You may use
the exponential notation (that is, 1.234567E+03).

DATABASE_HOST www.musicexplorer.org See section III-A.
DATABASE_SCRIPT_PATH /services_museek/getCoordinatesInPackagesNoXML.php See section III-A

REMOTE_SCALE 1.1 See section III-C
REMOTE_CONSTANT 0.3 See section III-C
REMOTE_BOUND 2

√
2 See section III-C

Table I
CONFIGURATION FILE OPTIONS

6/7

www.musicexplorer.org

REFERENCES

[for] Winamp Forums. http://forums.winamp.com/.
[mus] Music Explorer Overview. http://www.musicexplorer.org/page/index.php/home/background.
[Pol00] Jan Poland. Three different algorithms for generating uniformly distributed random points on the n-sphere. Oct 2000. http://www-alg.ist.hokudai.ac.jp/~jan/

/randsphere.pdf.
[SDK] Winamp SDK Contents. http://dev.winamp.com/wiki/SDK_Contents.
[win] Winamp Media Player. http://www.winamp.com/.

7/7

http://forums.winamp.com/
http://www.musicexplorer.org/page/index.php/home/background
http://www-alg.ist.hokudai.ac.jp/~jan//randsphere.pdf
http://www-alg.ist.hokudai.ac.jp/~jan//randsphere.pdf
http://dev.winamp.com/wiki/SDK_Contents
http://www.winamp.com/

