
Institut fürTechnische Informatik undKommunikationsnetze
Master’s Thesis at the

Department of Information Technology and
Electrical Engineering

for

Simon Hügi

Predictable Communication on
Multiprocessor Platforms

Advisors: Andreas Schranzhofer
Dr. Wolfgang Haid

Professor: Prof. Dr. Lothar Thiele

1. December 2010

Abstract

The on-going trend towards multiprocessor platforms and multiprocessor
systems on chip (MPSoCs) for embedded systems fulfills the need of in-
creased computation performance. MPSoCs normally contain shared re-
sources in order to satisfy cost constraints. While this improves the average
performance, this development is at the cost of timing predictability, which
is required for real-time systems: If real-time tasks access shared resources
concurrently, they can get delayed due to contention. Hence, it is necessary
to estimate upper bounds of these delays.

This master’s thesis focuses on the problem of implementing accesses to these
shared resources in a way that increases the timing predictability of the sys-
tem. First, a Time Division Multiple Access (TDMA) scheduler granting
access to the shared data memory is implemented on the Cell Broadband
Engine. Experiments on this MPSoC show the influence of the scheduler and
the hardware behavior on the completion time of example tasks. Second,
a multiprocessor system with a shared data memory and a shared instruc-
tion flash is analyzed for the dynamic First-Come, First-Served (FCFS) and
and the static TDMA arbitration. We present approaches to determine
the worst-case completion time of tasks and the difficulty to find methods
for the dynamic FCFS. These two parts emphasize the importance of ap-
plying methods to improve the analyzability and consequently, the timing
predictability of a multiprocessor system. These methods include the in-
troduction of structure for the resource arbiter (TDMA) and for the tasks
(separation of data accesses and execution).

– i –

Acknowledgement

I owe my deepest gratitude to my advisors, Andreas Schranzhofer and Wolf-
gang Haid, whose encouragement, guidance and support enabled me to write
this master’s thesis. I would like to thank them for giving me constant feed-
backs during the completion of this project and taking time for valuable
discussions. I had the pleasure to work with two kind and humorous guys.

Last but not least, I offer my blessings to my family and my friends who
supported me during my studies.

Simon Hügi, Zürich, December, 2010

– ii –

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 2

1.3 Problem Statement . 2

1.4 Thesis Outline and Contributions 3

2 Background 5

2.1 Overview of the Cell Broadband Engine 5

2.1.1 Communication Architecture 6

2.2 System Model . 7

2.2.1 Architecture . 7

2.2.2 Task Model . 8

2.2.3 Model of the Shared Resource 10

2.2.4 Worst-Case Execution Time 10

2.3 Worst-Case Completion Time for TDMA 11

2.3.1 WCCT for an Acquisition / Replication Phase 11

2.3.2 WCCT for an Execution Phase 11

3 TDMA Scheduling on the Cell Broadband Engine 13

3.1 Introduction . 13

3.2 Approach . 14

– iii –

CONTENTS

3.2.1 Restrictions of the System Model 15

3.2.2 Extensions of the System Model 15

3.3 Framework . 16

3.3.1 Execution of the Scheduler on the PPE 18

3.3.2 Execution of Superblocks on the SPE 19

3.3.3 Time Window . 21

3.4 Timing Behavior of the Element Interconnect Bus 22

3.4.1 Measuring the Round-Trip Time 23

3.4.2 Measuring the Communication Time 24

3.4.3 Evaluation . 24

3.4.4 Conclusions . 31

3.5 Experiments . 31

3.5.1 Experimental Setup 31

3.5.2 Experimental Results 32

3.6 Conclusions . 36

4 Memory Interference Delay Analysis for Multiple Shared
Resources 37

4.1 Introduction . 37

4.2 System Model . 40

4.2.1 Architecture . 40

4.2.2 Task Model . 41

4.2.3 Model of Shared Resources 42

4.2.4 Determination of the WCCT 45

4.3 Worst-Case Delay Estimation for FCFS 45

4.3.1 Dynamic Programming 46

4.3.2 Untight Bound . 47

– iv –

CONTENTS

4.3.3 Recursive Approximation 53

4.3.4 Timed Automata . 57

4.4 Worst-Case Delay Estimation for TDMA 60

4.4.1 WCCT for a Dedicated Phase 61

4.4.2 WCCT for a General Phase 62

4.4.3 Time Complexity . 62

4.5 Experiments . 63

4.5.1 FCFS Arbitration . 63

4.5.2 TDMA Arbitration . 65

4.6 Conclusions . 68

5 Conclusions and Outlook 69

5.1 Conclusions . 69

5.2 Outlook . 71

A Technical Issues Concerning the Cell Broadband Engine 72

A.1 Mailbox Functionality . 72

A.1.1 SPU Channels . 72

A.1.2 Memory-Mapped I/O 73

A.2 Time Measurement . 74

A.2.1 Power Processor Element 74

A.2.2 Synergistic Processor Element 75

A.3 Interrupt Handling on the SPE 76

A.3.1 Interrupt-Safe Critical Sections 77

– v –

CONTENTS

B Implemented Software 78

B.1 Scheduling Framework . 78

B.1.1 Requirements . 78

B.1.2 Source . 78

B.1.3 Usage . 79

B.2 Measurement Tools . 81

B.2.1 Mailbox Functions . 81

B.2.2 DMA Functions . 82

B.2.3 Usage . 82

B.3 Analysis Tools . 83

B.3.1 First-Come, First-Served 83

B.3.2 Time Division Multiple Access 84

– vi –

List of Figures

2.1 Schematic Architecture Overview of the Cell Broadband Engine 6

2.2 Overview of the Communication Architecture 7

2.3 Overview of the Presented System Model 8

2.4 The Three Access Models to the Shared Resource 9

3.1 The Communication Channels of the Cell Broadband Engine 14

3.2 Example of the Minimum Slot Lengths of Two SPEs 16

3.3 Overview of the Scheduling Framework on the Cell Broad-
band Engine . 17

3.4 Timed Automata for the Scheduler and for a Processing Ele-
ment . 18

3.5 Example of TDMA Scheduling of Two SPEs 18

3.6 Generation of Superblocks During Runtime 20

3.7 Visualization of the Time Window 21

3.8 Time Diagram for Measuring the Round-Trip Time 24

3.9 Distribution of the Measured Delays Using the CBE MFC
Library . 27

3.10 Trade-Off Between Performance (WCET) and Reliability for
the CBE MFC Library . 28

3.11 Distribution of the Measured Round-Trip Time Using the
SPE Library . 29

3.12 Trade-Off Between Performance (WCET) and Reliability for
the SPE Library. 29

– vii –

LIST OF FIGURES

3.13 Measured DMA Transfer Latencies 30

3.14 Relation Between the Slot Length and the WCCT 33

3.15 Comparison of the Predicted with the Measured Times 35

4.1 Architecture Overview . 38

4.2 Two Tasks Divided into Different Phases 39

4.3 Minimal and Maximal Instruction Times 41

4.4 Hardware Architecture Containing Different Interconnect Buses 44

4.5 Example of Three Tasks and the Resulting Time Slices 47

4.6 Deriving the Time Windows for Three Superblocks That are
Active During the Time Slice 51

4.7 Different Possibilities of Performed Requests During the Time
Window . 53

4.8 Timed Automata Modeling Arbitrary Number of Tasks Ac-
cessing Two FCFS buses . 59

4.9 Regular TDMA Schedule . 60

4.10 Several Completion Times for Two Example Tasks with FCFS
Arbitration . 64

4.11 Comparison of the Time Consumption for an Increasing Num-
ber of Resource Requests . 65

4.12 Difference of the WCCT of FCFS and Single Bus TDMA . . 67

4.13 Difference of the WCCT of FCFS and Dual Bus TDMA . . . 67

– viii –

List of Tables

2.1 Relation Between Access Parameters and the Three Access
Models . 9

3.1 Measured Delays on the PPE 26

3.2 Measured DMA Transfer Latencies 30

3.3 Setup of the Two Tasks (a) and (b) 32

3.4 Comparison of the Predicted with the Measured Times 34

4.1 Minimum Slot Lengths for TDMA 44

4.2 State Variables of Task τj Used in Algorithm 1 48

4.3 State Variables of Task τj Used in Algorithm 3 54

– ix –

1
Introduction

1.1 Motivation

The usage of multiprocessor platforms for embedded systems is necessary
due to increased computational performance requirements. Multiprocessor
systems on chip (MPSoCs) are often applied for this purpose, thereby satis-
fying cost constraints and reducing the energy consumption. Such systems
contain resources that are shared among the processing cores in order to
increase the average performance and to reduce the production costs. How-
ever, these shared resources such as interconnect buses, main memory, etc.
have become the main bottleneck concerning the timing predictability. This
is especially a problem for real-time systems, where timing constraints have
to be guaranteed.

Therefore, recent research in the area of real-time systems has focused on the
problem of analyzing the performance of such systems. If tasks execute on
processing elements access the shared resource simultaneously, each request
can be delayed due to contention. This increases the worst-case access time
compared to single processor architectures and consequently, the worst-case
completion time (WCCT) of each task. It is important to determine this
WCCT in order to guarantee the correct functionality of real-time systems
by avoiding deadline violations. This affects embedded systems in general
and hard real-time systems in particular – where the completion of an op-
eration after its deadline can result in a critical failure. Examples for such
systems are control systems for the automotive or avionic industry.

– 1 –

1.3 PROBLEM STATEMENT

1.2 Related Work

The work of Thiele et al. [1] addresses the necessity of timing predictability
in safety-critical embedded systems. They define this term as follows:

“The timing predictability of a system is related to the differ-
ences between best case and lower bound on the one hand and
upper bound and worst-case on the other.” ... “Bad predictabil-
ity is caused by interference and limited analyzability of the be-
havior.”

In other words, the timing behavior of a system should be analyzable on
the one part and the methods to estimate the WCCT should be precise on
the other part. For instance, First-Come, First-Served (FCFS) is a common
arbitration policy in many hardware systems. This dynamic policy is diffi-
cult to analyze because it depends on all possible interferers as can be seen
later. Hence, a possible solution to increase the timing predictability is to
use static arbitration instead, e.g., Time Division Multiple Access (TDMA).
This static policy simplifies the performance analysis by explicitly removing
the memory interference problem: Each processing element is allowed to ac-
cess the shared resources during predefined time slots. As a result, finding
a WCCT only depends on one task under analysis.

Another mechanism for improving timing predictability is the Time-Trig-
gered Protocol (TTP) proposed by Kopetz et al. [2]. They present a com-
munication protocol for time-triggered architectures, where system activities
are activated at predetermined time instances. This represents another tech-
nique to simplify the analyzability of a system. Wilhelm et al. [3] discuss
the influence of the architecture on the performance analysis and recom-
mend features for future architectures that improve the analyzability as
well. Schliecker et al. [4] investigate the timing implications that shared re-
sources cause in multiprocessor platforms. They outline a method to bound
the memory interference delay by considering alternating tasks. Guan et al.
[5] propose the usage of cache space isolation to avoid contention on shared
L2 cache components and present a possible scheduling strategy.

1.3 Problem Statement

Based on this background, this thesis focuses on the topic of analyzing the
timing behavior of multiprocessor systems containing one and two shared

– 2 –

1.4 THESIS OUTLINE AND CONTRIBUTIONS

resources, respectively. It discusses possibilities to implement the communi-
cation to these resources in a way that enables precise methods to determine
the WCCT.

The efforts needed to implement a predictable TDMA schedule on an unpre-
dictable hardware system are outlined, namely the Cell Broadband Engine.
In order to apply the considered theoretical model containing one shared re-
source, it is necessary to estimate the system parameters by measurement.
Adding a second shared resource to the system has several consequences
that reduce the analyzability of the system and accordingly, the timing pre-
dictability. As a result, finding a WCCT is complicated and the arising
problems are investigated. Then, different arbitration policies are compared
for this adapted system.

1.4 Thesis Outline and Contributions

This thesis is divided into these chapters, which are shortly summarized in
the following:

• Chapter 2: An overview of the used multiprocessor hardware system
is provided. This includes the communication architecture as well as
the relevant functionalities of the Cell Broadband Engine. The second
part introduces a theoretical model, which is the basic model for the
remaining thesis. Its assumptions as well as the mathematical notation
are described.

• Chapter 3: This chapter shows one possibility how the introduced
theoretical model can be used for the design of real-time embedded
systems composed of commercial systems and components-of-the-shelf
(COTS). For this, a TDMA scheduler is implemented on top of the
the Cell Broadband Engine. As this multiprocessor system does not
contain a global time, an approach is presented in order to synchro-
nize the processing elements. The resulting synchronization overhead
and the communication time needed for the performance analysis is
estimated by measurements. The experiments analyze the behavior
of the implemented system on the Cell Broadband Engine. In partic-
ular, the predicted worst-case completion times of example tasks are
compared to the measured completion times. Finally, the differences
to the considered theoretical model are outlined.

• Chapter 4: The timing behavior of a system containing two shared
resources – an instruction and a data cache – is analyzed. The theo-
retical model needs to be adapted in order to take the new behavior

– 3 –

1.4 THESIS OUTLINE AND CONTRIBUTIONS

into account. The difficulties for finding a tight worst-case completion
time are discussed and possible approaches for FCFS arbitration are
presented. An equivalent architecture with TDMA arbitration is mo-
tivated to simplify the performance analysis and thereby, to increase
the timing predictability. In the end, the experiments compare these
two arbitration policies.

• Chapter 5: The last chapter concludes the thesis and summarized
the achieved results. An outlook proposes some interesting issues for
future work.

– 4 –

2
Background

2.1 Overview of the Cell Broadband Engine

The Cell Broadband Engine [6] of Sony/Toshiba/IBM is used as a multipro-
cessor platform for this thesis. Even though not designed for hard real-time
applications, it is a platform that satisfies the requirements for a testing
platform in the context of this thesis: First of all, it is a multiprocessor
system with a shared resource – the main memory. Furthermore, software
development is facilitated by a mature software development kit offering
debugging possibilities and many runtime libraries that can easily be ex-
tended. Hence, it is possible to set up a configurable framework on top of
this system, to implement monitoring functionalities for experiments and to
measure performance metrics, in particular, the worst-case completion time
of tasks executed on the available processing elements.

The Cell Broadband Engine contains one main processor, the Power Proces-
sor Element (PPE), and up to eight Synergistic Processor Elements (SPE).
An overview of the architecture can be found in Fig. 2.1. The PPE is an
extension of the 64-bit PowerPC Architecture [7] and its main task is to
coordinate the SPEs, which are RISC processors optimized for media and
streaming workloads. The Element Interconnect Bus (EIB) has a ring topol-
ogy and connects the processor cores with each other and allows access to the
off-chip main memory over the Memory Interface Controller (MIC). This
multiprocessor system on chip is used in the Sony PlayStation 3, where only
six SPEs are available to the Linux operating system.

– 5 –

2.1 OVERVIEW OF THE CELL BROADBAND ENGINE

SPE1PPE SPE3 SPE5 SPE7

MIC SPE0 SPE2 SPE4 SPE6

Element Interconnect Bus (EIB)

Figure 2.1: Systematic architecture overview of the Cell Broadband Engine.

2.1.1 Communication Architecture

Figure 2.2 shows an overview of the communication architecture of the Cell
Broadband Engine. The Memory Flow Controller (MFC) is the interface
between the SPE and the Element Interconnect Bus. Its main functionality
is to support direct memory access (DMA) transfers between the main mem-
ory and the Local Store (LS) [8]. This 256 KB storage is used to accumulate
instructions and data during the runtime of an SPE and can be described
as scratchpad memory (software-controlled cache) [9].

In addition, the MFC allows an SPE to communicate with other processor
elements using mailboxes. A mailbox is a unidirectional message-passing
interface that supports exchanging 32-bit messages [9]. Each SPU uses its
SPU Channel and DMA Unit to interact with the DMA controller (DMAC).
There is an SPE channel assignment as well as a corresponding Memory-
Mapped I/O (MMIO) register assignment for each mailbox.

Each SPE has three different mailboxes of two different types:

• Two 1-entry mailboxes for sending messages: SPU Write Outbound
Mailbox and SPU Write Outbound Interrupt Mailbox.

• One 4-entry mailbox for receiving messages: SPU Read Inbound Mail-
box.

The access to these mailboxes from the SPE and the PPE can be imple-
mented in two different ways:

– 6 –

2.2 SYSTEM MODEL

SPE

Synergistic Processing Unit (SPU)

Local Store
Synergistic
Execution

Unit

SLS

SSC

Memory Flow Controller

Channels and SPU
Command Queue

MMIO Registers and
Proxy Command Queue

Direct Memory
Access Controller

Synergistic
Memory

Management

Element Interconnect Bus (EIB)

PPE

PowerPC
Processor

Unit

PowerPC
Processor
Storage

Subsystem

DRAM
Memory

SLS: SPU Load and Store Unit
SCC: SPU Channel and DMA Unit

Memory
Interface

Controller

Figure 2.2: Overview of the communication architecture.

• Blocking: A read of an empty / write to a full mailbox stalls the
execution until a message is available.

• Non-Blocking: A read of / a write to a mailbox immediately returns.
The return value indicates whether a message has been read / written.

2.2 System Model

Schranzhofer et al. [10] investigated the timing behavior of real-time tasks
in multiprocessor systems accessing a shared resource such as buses, main
memory or DMA controllers. They presented a way to analytically deter-
mine the worst-case completion time (WCCT) of tasks consisting of su-
perblocks if the access policy to the shared resource is time division multiple
access (TDMA). This section summaries the underlying system model and
the calculation of the WCCT is summarized in the Section 2.3.

2.2.1 Architecture

A multiprocessor system contains several processing elements pj ∈ P which
might access a shared resource simultaneously, for instance an interconnect
bus. Consider Fig. 2.3 for a schematic overview. A processing element
executes a set of tasks independently from the other elements. These tasks
are modeled according to Section 2.2.2 and the shared resource based on

– 7 –

2.2 SYSTEM MODEL

Bus Shared Resource

Figure 2.3: Overview of the presented system model [10].

Section 2.2.3. The resource arbitration is TDMA and configured with a
specific schedule.

2.2.2 Task Model

Like in [10], it is assumed that on each processing element pj , a task τj is
executed repeatedly with period Wj , called processing cycle. A task consists
of non-preemptable superblocks si,j ∈ Sj which are defined as sequences of
basic blocks1.

Each sequence of superblocks is executed either event-triggered or time-
triggered. Event-triggered or sequential execution activates the next su-
perblock as soon as the previous has finished, whereas in the time-triggered
case, a superblock is activated on predefined time instants. For TDMA arbi-
tration, only sequentially executed superblocks are considered. The reason
for this choice is that the experimental results in [11] showed that time-
triggered execution of superblocks has no benefits regarding the predictabil-
ity, and even worse, increases the WCCT.

2.2.2.1 Access Models

Each superblock has an upper bound for the number of accesses to the
shared resource and an upper bound for the computation time. A superblock
can be divided into the three successive phases acquisition, execution and
replication. Usually, a task reads data from the main memory within the
acquisition phase, performs computation operations during the execution
phase and transfers the calculated data back to the main memory in the
replication phase.

1A sequence of instructions that has exactly one entry and one exit point.

– 8 –

2.2 SYSTEM MODEL

a... ...e r a e r

(a) Dedicated access model with parameters µmax,ai,j , µmax,ri,j and execmaxi,j

... ...a/e/r a/e/r

(b) General access model with parameters µmax,ei,j and execmaxi,j

a... ...a/e/r r a a/e/r r

(c) Hybrid access model with parameters µmax,ai,j , µmax,ei,j , µmax,ri,j and execmaxi,j

Figure 2.4: The three access models to the shared resource [10].

Access Model µmax,a µmax,e µmax,r

Dedicated ≥ 0 = 0 ≥ 0
General = 0 > 0 = 0
Hybrid ≥ 0 > 0 ≥ 0

Table 2.1: Relation between access parameters and the three access models.

The three different access models illustrated in Fig. 2.4 – dedicated, general
and hybrid – describe the access pattern of a task to the shared resource.
In the dedicated model, requests to the shared resource only happen in
the dedicated acquisition and replication phase. The upper bound for the
number of requests during a superblock si,j of task τj is denoted as µmax,ai,j

for the acquisition and µmax,ri,j for the replication phase. The general model
allows accesses at any time and hence, the dedicated phases are omitted.
The number of accesses is bounded by µmax,ei,j . Finally, the hybrid model
combines the general and the dedicated model.

For each of these models, execmaxi,j describes the maximal execution time of
the computation operations. This upper bound excludes any communication
time. The different models are distinguished based on the choice of the

– 9 –

2.2 SYSTEM MODEL

access parameters. This relation is outlined in Tab. 2.1. These parameters
are usually referred to as cache profile [12]. For this thesis, the actual values
are assumed to be determined, for instance by measurement.

2.2.3 Model of the Shared Resource

The shared resource is assumed to be blocking during the access operation
and this results in stalling other processors. The time needed for a resource
access can be described as constant communication time C. A frequently
used arbitration policy in hardware systems is FCFS. One reason for intro-
ducing a static resource arbitration policy such as TDMA is to reduce the
mutual interdependence of processing cores. This simplifies the performance
analysis and therefore, increases system predictability.

For the TDMA policy, a schedule Θ has time slots assigned to processing
elements. During its active slot with relative start time σm and length δm, a
processing element pj has the exclusive access right, and any other element
that wants to operate on the shared resource has to wait until its assigned
slot becomes active. If a processing element starts a resource request at a
time instant where the remaining time of its slot is insufficient to serve the
access operation, it has to wait for the next active slot. Thus, in order to
process any resource request at all, a time slot must be at least of length C.

A scheduler that assigns exactly one slot to each processing element is called
regular [11], and consequently, its total length L(Θ) can be expressed as∑
∀j
δpj . After this TDMA cycle, the schedule is repeated.

2.2.4 Worst-Case Execution Time

Based on the presented parameters in this section, the resulting worst-case
execution time (WCET) of a task τj in isolation can be expressed as follows:

wcetj =

|Sj |∑
i=1

(
execmaxi,j + (µmax,ai,j + µmax,ei,j + µmax,ri,j) · C

)
(2.1)

This bound would be a valid upper bound for a task where no interference
on the shared resource can happen, e.g. if it is executed on a single proces-
sor. However, for more than one processing elements accessing the shared
resource, the possible delays due to contention have to be considered. The
steps needed to obtain the WCCT of a task for a multiprocessor system
sharing a common resource is shown in Section 2.3.

– 10 –

2.3 WORST-CASE COMPLETION TIME FOR TDMA

2.3 Worst-Case Completion Time for TDMA

This section shows the basic ideas of how to compute the WCCT of a su-
perblock. The detailed analysis and the exact algorithms can be found
in [10]. The WCCT of a task consisting of superblocks is simply the sum of
WCCTs for each superblock. The calculation of the acquisition / replication
phase differs from the calculation of the execution phase. For the analysis,
it is sufficient to consider one task under analysis and the TDMA schedule.
The essential parameters are as follows:

• The TDMA schedule Θ including the total length L(Θ).

• The total number of resource requests µmax during a phase for each
superblock.

• The maximal execution time execmax without resource accesses for
each superblock.

• The communication time C to the shared resource.

• The starting time t of a superblock.

2.3.1 WCCT for an Acquisition / Replication Phase

For the dedicated phases, there is no execution and the WCCT is the time
needed to perform all µmax requests to the shared resource. These requests
are processed during the assigned time slots of the processing element. Based
on the current time t, the WCCT is obtained by incrementing the time until
the shared resource is available, invoke as many requests as can be served
during the active time of a slot and repeat this procedure until there are no
more remaining requests. The resulting ending time is the WCCT.

2.3.2 WCCT for an Execution Phase

Analyzing the WCCT of a general phase is more involved, because both
communication and execution are possible. As a result, if there are pending
requests for both operations, the question is whether to invoke an access
request or to perform executions. Therefore, the main idea for calculating
the WCCT is to find the trace of operations that maximizes the WCCT.
Basically, the strategy is to waste the active slot with execution instead of
resource accesses and to stall the execution of the processing element by
initiating a resource request once the availability of the shared resource has
expired. The algorithm in [10] is recursive. At any time, there are two cases
that have to be handled differently.

– 11 –

2.3 WORST-CASE COMPLETION TIME FOR TDMA

(1) If the shared resource is not available, the completion times for in-
voking a request as well as performing computations until the next
assigned slot becomes active are calculated. The larger of these two
values leads to the worst case.

(2) On the other hand, if access to the shared resource is currently possible,
the time is set to the beginning of the next time slot.

• If all computations and one resource request can be performed
until the next active slot, the problem can be reduced by setting
the current time to t + execmax and calculating the WCCT for
an acquisition / replication phase for the remaining requests.

• Otherwise, the situation is considered, where exactly one request
can be served per time slot, i.e., computations are performed un-
til the latest possible time instant for issuing one access request.
The completion time can then be derived by finding the last pos-
sible time slot when the remaining computation time becomes
zero. Afterwards, the remaining requests can be handled again
by calculating the WCCT for an acquisition / replication phase.

For an irregular TDMA schedule, a processing element can have
more than one assigned slots. As a result, it is not directly possi-
ble to retrieve the WCCT. For this case, the described completion
time is an upper bound and a tighter WCCT can by derived by
first finding a corresponding lower bound and then applying bi-
nary search to find a valid completion time between these two
bounds.

– 12 –

3
TDMA Scheduling on the Cell Broadband

Engine

3.1 Introduction

The on-going trend towards multiprocessor systems not only holds for gen-
eral computing systems but includes real-time systems as well. The challenge
for systems with strict timing constraints is to find upper bounds for the
completion time of tasks, usually referred to as the worst-case completion
time. This is necessary because in such systems, in time termination of tasks
is as important as their actual objective.

One of the biggest contributions to the WCCT in multicore platforms are
the interferences that happen if several processors access shared resources,
such as shared memories, buses and DMA controllers. An access to a shared
resource occupied by a processor may block the execution of any other pro-
cessor until it becomes available again. Schranzhofer et al. [10] developed an
analytical method to determine the WCCT of periodic real-time tasks that
are modeled as sequences of superblocks (introduced in Section 2.2), where
the arbitration policy to the shared resource is TDMA.

The main question that is attempted to be answered in this chapter is
how well these analytical methods can be used for commercial systems and
components-of-the-shelf (COTS), such as the Cell Broadband Engine [6].
Such platforms are normally optimized for good average performance. In

– 13 –

3.2 APPROACH

PPE SPE1

Memory

Element Interconnect Bus

SPE3 SPE5

SPE0 SPE2 SPE4 SPE6

SPE7

Mailbox Channel Data Channel

Figure 3.1: The communication channels of the Cell Broadband Engine.
The time for sending two messages is bounded by S, the completion of a
DMA transfer by C.

contrast, timing predictability is required for hard real-time systems. The
behavior of TDMA scheduling implemented on the Cell Broadband Engine
is investigated, and values obtained by measurement are compared with
results obtained from the analytical model.

3.2 Approach

First, this section shows how the system model presented in Section 2.2 can
be applied to the Cell Broadband Engine and which extensions are required.
Consider Fig. 3.1: The PPE is used as scheduler allowing each SPE to access
the main memory based on the configured schedule Θ. Therefore, a way to
synchronize the processing elements with the resource arbiter is necessary
and presented in Section 3.3.

Second, the synchronization of the processing elements as well as their com-
munication to the shared resource involve the Element Interconnect Bus.
Hence, there is a synchronization overhead for sending messages to an SPE,
which influences each slot length. The upper bound for sending two synchro-
nization messages is denoted as S. The time needed for a memory access
can be bounded by the communication time C. The determination of S and
C is shown in Section 3.4.

Finally, in Section 3.5, the experimental setup is explained and the maximal
observed completion times of sample tasks are compared with the predicted

– 14 –

3.2 APPROACH

worst-case completion times. Conclusions summarize this chapter.

3.2.1 Restrictions of the System Model

The system model in [10] assumes that only one request can be served by
the shared resource at any time. This is apparently not true for the Element
Interconnect Bus – it contains four 16-byte-wide data rings allowing paral-
lel communication over this topology. Each SPE can initiate several DMA
transfers simultaneously to other SPEs. So the assumption of blocking be-
havior is implemented by the resource arbiter: An SPE initiating a DMA
transfer has to wait until its assigned slot becomes active. Furthermore,
during the completion of a DMA request, an SPE is not allowed to perform
computations. This is important because the decoupling of execution and
communication is one of the requirements of [10].

Moreover, the communication time is clearly not constant on the available
hardware system – the time needed for a DMA transfer varies for each re-
quest, which is further discussed in Section 3.4. In this context, the constant
communication time C is an upper bound and the average time consump-
tion of a DMA transfer lies below C resulting in a pessimistic prediction of
the worst-case completion time.

3.2.2 Extensions of the System Model

The PPE uses the mailbox interface to communicate with the SPEs, mainly
to inform them about the availability of the main memory. Therefore, the
synchronization overhead S between the arbiter and any processing element
has to be taken into account. It is two times the upper bound of the sending
delay between PPE and SPE:

S = 2 · Ubsend (3.1)

This issue will be discussed in detail in Section 3.4. One delay occurs at the
beginning of a slot for sending a Slot Start message and one at the ending
for sending a Slot End message.

To avoid interferences with other SPEs during a DMA transfer, the PPE
sends the Slot End message S

2 + C time units before the actual ending of
the current slot. This guarantees that an SPE invoking a DMA transfer at
the latest possible moment of its active slot is not affected by the next SPE
in the TDMA cycle.

– 15 –

3.3 FRAMEWORK

SPE0 SPE1

Figure 3.2: Example of the minimum slot lengths of two SPEs.

Since the time needed for sending the synchronization messages varies for
each slot between (0, S], the effective slot length of the SPE is different each
time. In the worst case, it is assumed that sending the Slot Start message
takes the full S2 units of time, whereas the SPE receives the Slot End message
immediately. Therefore, the minimum slot length available to the SPE can
be expressed as:

δminm = δm − C − S > 0 (3.2)

δm > C + S (3.3)

Additionally, one of the requirements in [10] is that during an active time
slot, the processing element should have access to the shared resource at
least for one time. This is ensured by the PPE by configuring each slot
length, such that it should endure at least C + S time units. The length
δminm is taken as slot length during the worst-case analysis, while the total
scheduling length L(Θ) remains unchanged. This relation is outlined in
Fig. 3.2.

3.3 Framework

An overview of the scheduling framework implemented on the Cell Broad-
band Engine is illustrated in Fig. 3.3. The PPE is responsible for granting
access to the main memory using a TDMA schedule Θ. It uses mailbox mes-
sages to communicate the availability of this shared resource to the SPEs.
As soon as an SPE has received a Slot Start synchronization message (1),
it is allowed to invoke a DMA transfer (2). This exclusive access right is
valid until the reception of a Slot End synchronization message (3).

Therefore, one task of the PPE is to send these messages at the correct
time instants. The clock domain of the PPE is used for this purpose (see

– 16 –

3.3 FRAMEWORK

PPE SPE1

Memory

Element Interconnect Bus

SPE0

Mailbox Channel Data Channel

1 Slot Start
3 Slot End

2 DMA Transfer

Figure 3.3: Overview of the scheduling framework on the Cell Broadband
Engine. In this example, the PPE is configured with schedule Θ, and SPEs 0
and 1 are executing task τ0 and τ1 respectively.

Appendix A, Section A.2): There is a single controller with a single clock,
thus no global time needs to be maintained. The synchronization protocol
is shown in Fig. 3.4 represented using timed automata for the PPE and the
SPE with clock variables x and y. The value Sync is set to S

2 + C and M to
M(Θ).

The Slot Start message is sent right at the beginning of the next active slot
(WaitForStart), whereas the Slot End message S

2 +C time units before its
ending (WaitForEnd). The latter guarantees that a resource request invoked
on SPE pj immediately before the reception of the Slot End message does
not interfere SPE pj+1, because the transfer is finished at worst after C time
units.

An SPE is used as processing element pj that periodically executes a precon-
figured task τj consisting of a set of superblocks. A superblock may contain
memory accesses as well as computations. If a resource request is started,
the SPE has to wait until the access is allowed (BusFree). This results
in stalling the execution. The time needed for the whole task is measured
on the SPE and the resulting maximal observed completion time can be
compared with the predicted WCCT of τj .

– 17 –

3.3 FRAMEWORK

NextSlot

WaitForEnd

y<=Duration[j]-Sync

WaitForSlot

x<=Start[j]NewCycle

j==M

y==Duration[j]-Sync
slotEnd[j]!

j++

j<M

x==Start[j]
slotStart[j]!

y=0

j=0,x=0

(a) TA for the PPE

BusFreeBusLocked
slotEnd[j]?

slotStart[j]?

(b) TA for the SPE

Figure 3.4: Timed automata for the scheduler (PPE) and for the processing
element pj (SPE).

slot for SPE1

PPE

SP
U

1

SPE 1
MFC

Superblock 1 Superblock 2
SPU 1

SP
U

0

SP
U

0

e r a e

slot for SPE1

SP
U

1

SP
U

1

SP
U

1

SP
U

0

SP
U

1

SP
U

1

SP
U

0

SP
U

1

SP
U

1
a

Slot Start Slot EndAcquisitiona Executione Replicationr Stall Time

Figure 3.5: Example of TDMA scheduling of two SPEs. The superblocks of
SPE 1 access the shared resource within the dedicated phases.

3.3.1 Execution of the Scheduler on the PPE

The PPE is used as the resource arbiter granting access to the main mem-
ory. Each SPE is only allowed to access the memory during its assigned
slot. In addition to the scheduling, the PPE controls and configures all
SPEs. The scheduler is fully configurable through an XML file, which is
processed during the initialization of the framework. In particular, the im-
portant parameters for the PPE are the synchronization overhead S, the
communication time C, the TDMA schedule Θ and the total runtime.

After the start-up and synchronization phase, the actual scheduling takes
place. An example with two SPEs can be found in Fig. 3.5. The top axis
shows the time instants, when the synchronization messages are sent from

– 18 –

3.3 FRAMEWORK

the PPE to the available SPEs. The middle one illustrates the arrival of mes-
sages intended for SPE 1 in its inbound mailbox, which is located within the
Memory Flow Controller (MFC). The processing of superblocks is sketched
on the bottom axis, and in addition, the inactive time of an SPE, called stall
time, is highlighted.

The time-triggered sending of Slot Start and Slot End messages is imple-
mented by using absolute clock values (mentioned in Appendix A, Sec-
tion A.2). The next clock value for sending a message is calculated during
the idle time, i.e., during the active slot, and the PPE busy-waits until this
time instance.

3.3.2 Execution of Superblocks on the SPE

An SPE acts as the processing element pj and regularly repeats superblocks
with period Wj . The time-triggered activation of this period is implemented
in the same way as the time-triggered mechanism of the PPE.

During the runtime of an SPE, the reception of the synchronization mes-
sages is isolated from the execution with an interrupt handler. This event-
triggered approach minimized the synchronization overhead (see Appendix A,
Section A.3).

For each SPE, a sequence of superblocks Sj constitutes the task τj . A
superblock si,j can be defined as:

si,j =
(
{µmax,ai,j }, {µmax,ei,j , λexeci,j }, {µ

max,r
i,j }

)
(3.4)

µmaxi,j denotes the maximal number of DMA requests during a phase. How-
ever, the execution time assumed in the theoretical model cannot directly
applied to the SPE. Computer systems are of discrete nature and conse-
quently, operations require discrete computation times. We model this as
discretization by executing a basic calculation with constant execution time
Ecalci,j . The total number of calculations is denoted λexeci,j . The required value
execmaxi,j for the performance analysis can be retrieved as follows:

execmaxi,j = λexeci,j · Ecalci,j (3.5)

The PPE configures each SPE according to the user-specified XML file. A
user-defined number of slots with specified length δpj can be assigned to each
SPE pj , as well as the processing cycle Wj and the sequence of superblocks
Sj .

– 19 –

3.3 FRAMEWORK

End

Basic Unit

Start

Figure 3.6: Generation of superblocks by iteratively executing Basic Unit,
U [a, b] denotes an independent identically distributed (i.i.d.) number be-
tween a and b, Exe(λ) the execution of λ basic calculations, Acq(µ) and
Req(µ) the execution of µ memory requests.

3.3.2.1 Generation of Superblocks

A superblock si,j is generated on the SPE during runtime and is the outcome
of several random decisions. Consider the diagram in Fig. 3.6: Based on the
numbers µmaxi,j and λexeci,j , a Basic Unit decides randomly between execution
and memory transfers if there are pending requests for both operations. The
effective number of operations that are performed in the current run is again
a random variable with discrete uniform distribution U between 1 and the
number of unserved requests.

Otherwise, all calculations and memory transfers are processed, respectively.
After the execution of a Basic Unit, the remaining numbers µmax′i,j and λexec′i,j

are used as input parameters for the next iteration. This process is repeated
until all requests have been executed.

Since the same communication overhead C is taken for DMA put and get
requests, they do not have to be treated separately for the calculation of
the WCCT. Consequently, it would be possible to use either get or put
operations. Since both operations happen in real-world applications, the
choice is made randomly each time.

For each processing cycle, the time needed for executing the whole task is
measured within the clock domain of the SPE (see Appendix A, Section A.2).
This is possible since only relative delays are considered. The maximal

– 20 –

3.3 FRAMEWORK

slot for SPE1

PPE

SP
U

1

SPE 1
MFC

SPU 1

SP
U

0

SP
U

0

SP
U

1

SP
U

1

Task

Slot Start Slot End

Sk
ip

Sk
ip

Task

Confirm Restore

Skip Window

Figure 3.7: Visualization of the time window with period TW .

observed completion time is stored and after finishing the experiment, each
SPE transfers its maximal observed completion time to the PPE. If the task
τj executed on the SPE pj exceeds the processing cycle Wj , the execution
on the particular SPE is aborted.

3.3.3 Time Window

Scarcely, the process on the PPE executing the scheduling seems to be sus-
pended for an unpredictable amount of time. Real-time process schedul-
ing [13] may reduce this occurrence, but nevertheless, it is not possible to
avoid it completely. As a consequence, correct synchronization messages are
sent too late. If this happens, the time measurements on all the SPEs are
influenced. In an unfavorable case, this can lead to the maximal observed
completion time, which does not really represent the worst case observed
under normal circumstances.

In order to overcome this inaccuracy, a time window with period Tw has
been introduced – an additional, adjustable parameter. It is started at
the beginning of the execution both on the SPEs and the PPE. After the
successful expiration of this duration, all measured values on any SPE are
confirmed and the period Tw is repeated. If, however, the scheduling process
on the PPE is suspended too long, it immediately informs all SPEs about
this incident. The observed values of the current time window are omitted
and the execution is stalled until the beginning of the next time window. An
example is sketched in Fig. 3.7: The first period TW is finished successfully,

– 21 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

whereas during the second TW , the Slot End message would be sent too late.
Instead, a Skip Window messages informs all SPE to restore their measured
values and to stop the current task.

This work-around is a restriction and used in order to retrieve meaningful
completion times. However, the chosen approach is just appropriate for this
uncritical test scenario. In a critical real-time system, a deadline violation
must be prevented.

3.4 Timing Behavior of the Element Interconnect
Bus

To implement a time-triggered protocol on top of a multiprocessor, the in-
dividual processors need to be synchronized. Consider the case where the
PPE is used as resource arbiter: It needs to communicate the availability
of the shared resource on determined time instances. Unfortunately, the
processors on the Cell Broadband Engine do not have a global time register
that could be used for this purpose. Therefore, explicit software is required
to synchronize the SPEs. This potentially consumes a significant amount of
processing resources that are otherwise available to user applications. Con-
sequently, this run-time overhead, denoted as synchronization overhead S,
needs to be taken into account during the design and performance analysis
of multiprocessors.

Focusing on this issue, this section first presents a possibility for imple-
menting the synchronization between the PPE and the SPEs by exchanging
synchronization messages. Afterwards, this implementation is characterized
by determining bounds on the round-trip time (RTT) of these messages.
More precisely, we are interested in the worst-case sending delay between
the PPE and the SPE. Since two messages are required per TDMA slot, the
resulting synchronization overhead S is two times the upper bound of this
sending delay (see Eq. (3.1)).

Another important parameter concerning the Element Interconnect Bus is
the communication time C, i.e., the time needed for serving a DMA re-
quest. For this thesis, this operation is implemented with blocking-behavior
because the system model in Section 2.2 assumes only one memory access
per processing element at a given time. Additionally, the SPE is stalled
until the DMA transfer has been completed.

Both bounds have to be determined by experimental measurements. Sev-
eral papers have been published that include performance analysis for the
Element Interconnect Bus of the Cell Broadband Engine, which connects

– 22 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

the different processors with each other and with the main memory. The
work of Kistler et al. [7] was one of the first ones that describes the underly-
ing architecture and presents experimental results mainly for direct memory
transfers executed on early hardware prototypes. A more recent paper of
Jos L. Abellán et al. [8] provides an evaluation tool for characterizing the
synchronization and communication functionalities of the Cell Broadband
Engine. Both papers concentrate on the average performance of the com-
munication network, which differs significantly from the maximal observed
values as shown in this section.

3.4.1 Measuring the Round-Trip Time

The challenge of measuring the latencies of the mailbox functions is that
two different clock domains are involved – the clocks at the source and
the destination processing element. It is not possible to obtain the exact
time for sending or receiving a message from one to another processing
element: Returning from the sending function does not guarantee that the
message has received its destination nor that it has already been processed.
Therefore, the round-trip time needed to send a message from the PPE to
the SPE’s Inbound Mailbox and receiving the acknowledgement from the
SPE’s Outbound Mailbox is measured.

The SPE waits for a new message and upon reception, the acknowledgement
is directly sent back. This step is called iteration and it is repeated until the
number of iterations has been reached. The whole protocol is illustrated in
Fig. 3.8. The initial step is only necessary in order to synchronize the SPE
with the PPE, i.e., to avoid measuring the wrong delay for the first iteration.
Without this synchronization, the SPE would start measuring the receiving
delay before the PPE is ready to send the first message. Thereby, the number
of iterations is communicated to the SPE. This number determines how often
the SPE reads the Inbound Mailbox and acknowledges the reception of the
message.

The time needed for the mailbox operations on the PPE is measured using
the time-base register (see Appendix A, Section A.2). The value read from
this register is converted from clock ticks to time units. Based on this
measurement, the RTT and upper bound of the sending delay is obtained.
All the involved mailbox functions for receiving and for sending messages are
called with blocking behavior. This means that reading an empty mailbox
or writing to a full mailbox causes the SPE to stall until the operation
successfully completes.

A test application has been implemented which measures the sending and
the receiving delays needed by the mailbox functions. The usage of the

– 23 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

PPE

SPE

write read

read write

write read

read write

write read

read write

...

...

num
ber of iterations

AC
K

AC
K

AC
K

Initialization Iteration #1 Iteration #2

Figure 3.8: Time diagram for measuring the round-trip time.

mailboxes is illustrated in Appendix A, Section A.1. Basically, two different
ways of accessing the mailboxes are distinguished: over SPU channels (LIB
SPE) or over memory-mapped I/O (CBE MFC). The time measurement is
implemented according to Appendix A, Section A.2.

3.4.2 Measuring the Communication Time

Each SPE can initiate a DMA request to transfer data from its local store to
the main memory (PUT) or vice versa (GET). The data is asynchronously
transfered between the SPE and the main memory, i.e., the execution of the
SPE is stalled until the data is available. The timing analysis is easier com-
pared to the previous one because only one clock domain is involved. The
results from [7] and [8] indicate that the DMA operation latency depends
on the number of requesting SPEs. Since the TDMA scheduler only allows
access to one SPE, we are interested in the transfer time for serving one
DMA request from one particular SPE while no other SPE is using the EIB.

Furthermore, the DMA latency depends on the number of transfered bytes
(1, 2, 4, 8 and multiple of 16 bytes). Peak performance is possible with
128-byte aligned data and transfer sizes that are multiple of 128 bytes [9].
In this thesis, the transfer size is fixed to 128 bytes (which is equivalent to
16 double-precision floating-point values on the Cell Broadband Engine).

3.4.3 Evaluation

The experiments for measuring the round-trip time and the DMA latencies
are executed on the PlayStation 3 and the IBM Full-System Simulator. The

– 24 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

operating system of the PlayStation 3 is Yellow Dog Linux Release 6.0 with
kernel version 2.6.23-9 and the Simulator runs with a Fedora 9 with kernel
version 2.6.25.14-108. Since an exact time measurement is required, the
Simulator has to run in cycle-accurate mode. Hence its runtime is many
times larger compared to the PlayStation 3 and practically not feasible for
a large number of iterations.

The usage of the measurement tools is summarized in Appendix B, Sec-
tion B.2. Basically, they offer two different output modes: Running the
applications in output mode collects the observed delays for each iteration
and calculates the maximum, the average and the estimated variance val-
ues1. In silent mode, no iteration is saved and only the calculation is done.
The silent mode is intended for a large number of iterations, whereas the
resulting files for the output mode can be further processed.

3.4.3.1 Average and Worst-Case RTT

An experiment with 1010 iterations in silent mode executed on the PlaySta-
tion 3 showed that the average performance is reasonable: The observed av-
erage round-trip time is 8.12µs for accessing mailboxes through SPU chan-
nels (SPE library calls), which is in the same order of magnitude than the
6µs found out in [8]. For the direct access through Memory-Mapped I/O
registers (CBE MFC library calls), the value is 0.36µs, so this method is
approximately 22 times faster. Another advantage of the direct approach is
the reduced variance of the delay times.

The comparison between the performance of the mailbox functions for the
SPE library and of the CBE MFC library are presented in Tab. 3.1. The
experiments have been executed on several SPEs and this variation did not
change the outcome of the measurement.

The time consumed by invoking a mailbox function should only vary within
a small range if it should be used for the purpose of synchronization. Unfor-
tunately, the mailbox functionality of the Cell Broadband Engine is designed
for good average results [8], whereas the maximal delay time is more than
105 larger than the average.

3.4.3.2 Statistical Evaluation of the RTT

Running an experiment in output mode gives a deeper insight how the mea-
sured delays are distributed. The resulting plots of an experiment with

1The retrieved values are directly written to a file or standard output and therefore,
an on-line algorithm is used to estimate the variance.

– 25 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

Sending CBE MFC LIB SPE

Average 0.14µs 4.39µs
Maximum 853µs 27680µs
Variance 8.55·10−3 1.88

Receiving CBE MFC LIB SPE

Average 0.22µs 3.73µs
Maximum 6248µs 53722µs
Variance 21.81·10−3 1.98

RTT CBE MFC LIB SPE

Average 0.36µs 8.12µs
Maximum 6248µs 53729µs
Variance 30.39·10−3 3.93

Table 3.1: Measured delays for sending and receiving mails on the PPE as
well as the resulting round-trip time.

107 iterations can be found in Fig. 3.9 for the CBE MFC library and in
Fig. 3.11 for the SPE library. The dashed lines mark the minimum and
the maximal value, the dot-dashed line the 99.999 % bound, i.e., the range
where 99.999 %of the measured delays are located.

It is evident that the major part of the delays is around the average value
and only a very small number is significantly larger. The observed values are
distributed within the range of 0µs up to 250µs. And the previous section
showed that this range is even larger if the number of iterations is increased.

The bound between the lower 99.999 % and the upper 0.001 % part of the
distribution has a practical reason: Fig. 3.10 and Fig. 3.12 illustrate the
trade-off between performance (in terms of worst-case execution time) and
reliability. In this context, 100 % reliability means that all delays are less
or equal to the maximal value measured in the same experiment, although
larger values will occur in different experiments. The choice of the highest
measured delay as upper bound is obviously a suboptimal solution regarding
the performance.

Moreover, it is actually not possible to obtain an upper bound by experi-
mental measurements. On the other hand, taking the WCET of 99.999 %
reliability is a good compromise. This value is referred to as high-availability
of a computer system [14]. This term has been introduced as with the grow-
ing size of computer systems, every aspect of their environment became more
complex, too. This led to the situation, where such systems were less likely
to be highly available.

– 26 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

0 20 40 60 80 100 120

0.99992

0.99994

0.99996

0.99998

1.00000
Mbox Send

delay [usec]

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

10.865 usec

0 50 100 150 200 250

0.99992

0.99994

0.99996

0.99998

1.00000
Mbox Recv

delay [usec]

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

14.624 usec

0 50 100 150 200 250

0.99992

0.99994

0.99996

0.99998

1.00000
RTT

delay [usec]

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

16.128 usec

Figure 3.9: Distribution of the measured delays using the CBE MFC library.

– 27 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

99.990% 99.991% 99.992% 99.993% 99.994% 99.995% 99.996% 99.997% 99.998% 99.999% 100.000%
0

20

40

60

80

100

120

Mbox Send

Reliability

W
C

E
T

 [u
se

c]

99.990% 99.991% 99.992% 99.993% 99.994% 99.995% 99.996% 99.997% 99.998% 99.999% 100.000%
0

50

100

150

200

250
Mbox Recv

Reliability

W
C

E
T

 [u
se

c]

99.990% 99.991% 99.992% 99.993% 99.994% 99.995% 99.996% 99.997% 99.998% 99.999% 100.000%

50

100

150

200

250
RTT

Reliability

W
C

E
T

 [u
se

c]

Figure 3.10: Trade-off between performance (WCET) and reliability for the
CBE MFC library.

– 28 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

0 1000 2000 3000 4000 5000 6000

0.99992

0.99994

0.99996

0.99998

1.00000
RTT

delay [usec]

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

195.602 usec

Figure 3.11: Distribution of the measured round-trip time using the SPE
library.

99.990% 99.991% 99.992% 99.993% 99.994% 99.995% 99.996% 99.997% 99.998% 99.999% 100.000%
0

1000

2000

3000

4000

5000

6000

RTT

Reliability

W
C

E
T

 [u
se

c]

Figure 3.12: Trade-Off Between Performance (WCET) and Reliability for
the SPE Library.

– 29 –

3.4 TIMING BEHAVIOR OF THE ELEMENT INTERCONNECT BUS

DMA GET DMA PUT

Average 0.199µs 0.125µs
Maximum 9.198µs 0.163µs
Variance 0 0

Table 3.2: Measured DMA transfer latencies for GET and PUT operations.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Sample

D
M

A
 G

et
 L

at
en

cy
 [u

s]

Figure 3.13: Measured DMA transfer latencies for 100 GET operations.

3.4.3.3 DMA Transfers

The experiments for measuring the DMA latencies between an SPE and
the main memory were executed on the PlayStation 3 for GET and PUT
operations. Table 3.2 summarizes the results for 107 iterations in silent
mode. Another experiment in output mode was performed in order to plot
the distribution of the measured values. The measured latencies for the
first 100 GET operations are shown in Fig. 3.13. It is remarkable that
the variance is actually zero and only the first performed DMA request
consumes the maximal measured value. The result would be similar for
the PUT operation if performed before the GET operation since it accesses
exactly the same memory addresses.

The reason for the reduces transfer times for the subsequent DMA transfers
is that the Memory-Flow Controller (MFC) of the SPE contains a translation
look-aside buffer (TLB) [15]. The main memory is virtually structured with
pages. Consequently, it is necessary to translate the virtual addresses to
real addresses. This TLB was designed in order to accumulate this address
translation by caching recently accessed page table entries. Nevertheless, the
upper bound of the communication time has to be larger than the maximal
measured value because the TLB cache could be invalidated at any time.

– 30 –

3.5 EXPERIMENTS

3.4.4 Conclusions

The mailbox functionality of the Cell Broadband Engine provides an easy-
to-use possibility for synchronizing several SPEs. It is designed for a good
average performance, but the experiments showed that the delay drastically
increases in the worst case compared to the average case.

The straightforward approach of accessing the mailboxes from the PPE is to
use the runtime management library (LIB SPE). But the experiments clearly
showed that the required runtime can be reduced by directly accessing the
memory-mapped mailbox registers with the Memory Flow Controller library
(CBE MFC).

The measured delays between PPE and SPE by using mailbox operations are
distributed over a wide range. Therefore, finding an upper bound S for the
synchronization overhead is hard. Moreover, taking the maximal observed
value as upper bound increases the overhead, because for each message, this
time consumption is assumed. This is why a value of at least 2 · 10.865µs
≈ 22µs should be chosen which offers 99.999 % reliability and reduces the
resulting overhead.

Apart from that, finding the upper bound C for the communication time is
less difficult. The variance of the measured latencies is almost zero and the
values are distributed over a smaller range compared to the synchronization
overhead. The efforts that were needed for S are not necessary for C. All
in all, a minimal value of 10µs as upper bound is reasonable.

3.5 Experiments

3.5.1 Experimental Setup

The tasks for the experiments are taken from [11], where sets of superblocks
are generated with random access numbers for all phases. These tasks repre-
senting the hybrid access model are transformed to the other access models
by moving the accesses from the acquisition / replication phase to the ex-
ecution phase for the general access model and vice versa for the dedicated
access model.

For these experiments, the number of basic calculations λexec for each su-
perblock is chosen in the way that execmax = λexec ·Ecalc is not larger than
the maximal execution time of the given superblocks from [11]. Because the
total number of accesses and the total number of calculations is the same for

– 31 –

3.5 EXPERIMENTS

Task Accesses W0 δ0 WCET0

(a) 9 superblocks 11 5ms 0.24ms 0.566ms
(b) 125 superblocks 172 20ms 0.66ms 9.032ms

Table 3.3: Setup of the two tasks (a) and (b).

each transformed task, the worst-case execution time WCET in Eq. (2.1) is
the same for each access model.

There are two processing elements in this experimental setup. The tasks
shown in Tab. 3.3 are executed successively on SPE 0, which has δ0 as
slot length. SPE 1 is configured to consume the remaining TDMA cycle of
1.35ms, i.e., δ1 = L(Θ)− δ0. The slot length δmin is chosen such that only
the tasks for the dedicated access model are schedulable, which is the case if
the predicted WCCT lies below the processing cycle W0. This relationship
is illustrated in Fig. 3.14. The slot length of SPE 0 is configured with the
additional overhead of Eq. (3.2), i.e., δ0 = δmin +C +S = δmin+ 0.02ms +
0.04ms.

3.5.2 Experimental Results

Figure 3.15 shows the results for two SPEs with interference as well as for
one SPE with fully available bus. Although the slot length is configured in
the way that the general and the hybrid tasks should not be schedulable,
there is no deadline violation during the experiments. Table 3.4 summarizes
the gaps between predicted worst-case and maximal observed completion
and execution times for the two tasks (a) and (b)2. The relative difference
is the absolute difference compared with the predicted value. For instance,
this is 100 % · |5.3728−3.8049|5.3728 ≈ 29.18 % for the general task (a). There are
several reasons for this discrepancy, that are described in hereafter:

(1) The communication time C is an upper bound for the time needed to
access the memory that seldom occurs on the Cell Broadband Engine
as it has been explained in Section 3.4. This leads to an overestimation
of the WCET, which becomes larger with increasing number of mem-
ory requests. The difference between the predicted worst-case and the
maximal observed execution times in Tab. 3.4 and Fig. 3.15 directly
shows this influence.

(2) The performance analysis in [10] assumes a constant C for finding
the worst-case trace. This is mainly significant for the general and

2Note that in this thesis, the execution time is used for a task that does not suffer from
interference, while the completion time also includes the delay due to memory interference.

– 32 –

3.5 EXPERIMENTS

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
2

3

4

5

6

7

8

9

Slot length [ms]

W
or

st
−

C
as

te
 C

om
pl

et
io

n
T

im
e

W
C

C
T

 [m
s]

δGS
min

 = 0.23 ms

δHS
min

 = 0.21 ms

δDS
min

 = 0.18 ms

General
Hybrid
Dedicated

(a) 9 Superblocks, 5ms processing cycle

0.4 0.5 0.6 0.7 0.8 0.9 1
10

15

20

25

30

35

Slot length [ms]

W
or

st
−

C
as

te
 C

om
pl

et
io

n
T

im
e

W
C

C
T

 [m
s]

δGS
min

 = 0.69 ms

δHS
min

 = 0.67 ms

δDS
min

 = 0.60 ms

General
Hybrid
Dedicated

(b) 125 Superblocks, 20ms processing cycle

Figure 3.14: Relation between the slot length and the WCCT. δmin is the
minimum slot length for which the task with the specific access model is
schedulable.

– 33 –

3.5 EXPERIMENTS

Task ∆CT ∆ET

(a) General 1.568ms 29.18 % 0.152ms 26.78 %
(a) Hybrid 1.631ms 30.53 % 0.155ms 27.35 %
(a) Dedicated 0.415ms 10.18 % 0.158ms 27.83 %

(b) General 8.690ms 37.72 % 2.482ms 27.48 %
(b) Hybrid 8.047ms 37.04 % 2.508ms 27.76 %
(b) Dedicated 5.671ms 29.40 % 2.567ms 28.42 %

Table 3.4: Absolute and relative difference between predicted worst-case and
the maximal observed completion (CT) and execution times (ET).

the hybrid access models as it is possible to decide between execution
and communication (Section 2.3). Because of the variation of the
communication time on the Cell Broadband Engine, the worst-case
trace might not be reproducible during the experiments. This is why
the prediction of the WCCT for the dedicated access model is the most
accurate one of all access models.

(3) Finding the worst-case trace is not guaranteed by the generation of su-
perblocks with random decisions (Section 3.3.2.1). On the one hand,
this approach is chosen to simulate many different traces because it
is infeasible to explore all possibilities with increasing number of de-
cision options. On the other hand, this leads to the known problem
that the maximal observed completion time often underestimates the
WCCT [16]. Analogous to the last paragraph, this only affects the
general and the hybrid model.

(4) Consider Fig. 3.14 again: It is evident that slightly varying the slot
size can result in a large change of the worst-case completion time. If
the slot length becomes larger, it is possible that unserved memory
requests can already be treated in the currently active slot instead
of waiting for the next active slot. Hence, the WCCT is decreased
by up to the length of the TDMA cycle. Since the time consumption
time for sending mailbox messages and for accessing the main memory
varies each time, the effective slot length on an SPE is not constant
(Section 3.2.2) and consequently, the maximal number of possible re-
quests. As Fig. 3.9 implies, the probability that sending a message
takes the full S

2 is approximately 10−5. Assuming statistical indepen-
dence, this leads to the probability of 10−10 for sending two messages,
which is necessary for just one slot. For more slots, the probability of
full time consumption is further reduced.

– 34 –

3.5 EXPERIMENTS

General Hybrid Dedicated
0

1

2

3

4

5

6

5.3728

3.8049

0.5665
0.4148

5.3425

3.7112

0.5665
0.4115

4.0791

3.6640

0.5665
0.4088

Resource Access Model

[m
s]

Predicted WCCT
Maximal observed CT
Predicted WCET
Maximal observed ET

(a) 6·104 processing cycles were executed for the dedicated task and 1.8·105 for the
others.

General Hybrid Dedicated
0

5

10

15

20

25

23.0361

14.3463

9.0322

6.5502

21.7274

13.6799

9.0322

6.5245

19.2874

13.6167

9.0322

6.4650

Resource Access Model

[m
s]

Predicted WCCT
Maximal observed CT
Predicted WCET
Maximal observed ET

(b) 6·104 processing cycles were executed for the dedicated task and 1.8·105 for the
others.

Figure 3.15: Comparing the predicted worst-case with the maximal observed
completion (CT) and execution times (ET).

– 35 –

3.6 CONCLUSIONS

3.6 Conclusions

Processing elements in a multiprocessor system that share a common re-
source are greatly influenced by the interference of other elements. The
worst-case completion time of tasks executed in such architectures can be
significantly increased compared to single processor systems. In order to gain
experimental results for a MPSoC, namely the Cell Broadband Engine, this
chapter demonstrated a possibility how to implement the TDMA scheduler
for this specific hardware. But this implementation also showed the limita-
tion of this hardware: Due to the observed variability of the communication
time and the synchronization overhead, the Cell Broadband Engine is not
suitable for hard real-time systems. Several work-around were necessary to
obtain meaningful experimental results. Especially, finding an upper bound
for the synchronization overhead and dealing with its large distribution was
challenging and reduces the overall system predictability.

An experimental setup has been created to compare the analytical WCCT
with the maximal observed completion time of two example tasks. The
discrepancy between these two values are up to 37 % depending on the re-
source access model. The main reason for this gap is that the analytical
model assumes a constant communication time for accessing the shared re-
source, which is generally not the case for real hardware systems. However,
this difference is reduced the more structure is applied to the task: For the
dedicated model for example, its value is as low as 10 %.

Nevertheless, the conclusions of [11] and [10] can be approved. The sep-
aration of communication and execution by introducing dedicated phases
increases the timing predictability: The dedicated access model leads to
the most accurate estimation of the WCCT, mainly because of the prede-
termined order of resource accesses and computations. One restriction for
results of the general and the hybrid tasks remains: Because of the randomly
chosen order of operations during the experiments, it is not guaranteed that
the worst case occurs during a finite execution time.

– 36 –

4
Memory Interference Delay Analysis for

Multiple Shared Resources

4.1 Introduction

In this chapter, the performance of a multiprocessor system containing two
shared resources is analyzed (see Fig. 4.1). More precisely, we are interested
in finding a preferably tight bound of the worst-case completion time of
a task executed on a specific processing element. Several papers have been
published that analyze the influence of memory contention in multiprocessor
platforms with a single shared resource.

As discussed in the previous chapters, [10] analyzes the WCCT of tasks
sharing one resource with TDMA policy. Tasks are modeled as sequence
of superblocks. Schranzhofer et al. [17] extended their model with adap-
tive resource arbiters, which combines static arbitration slots with dynamic
arbitration segments. During the dynamic segments, the First-Come, First-
Served (FCFS) strategy is applied in order to improve the response time of
tasks. Their work shows a way how to solve the problem of determining the
WCCT of a task with a dynamic programming approach.

The derivation of an upper bound of the delay that a task is suffering due to
memory contention is covered in [12] for one shared resource with Round-
Robin, Fixed Priority or FCFS arbitration. Their presented approach allows
to take the influence of an arbitrary number of interfering tasks into account

– 37 –

4.1 INTRODUCTION

Bus

Instruction
Flash

Shared
Memory

Figure 4.1: Architecture overview

by abstracting them as arrival curves [18]. One advantage of arrival curves is
the abstraction disregards timing correlations between processing elements.
However, this advantage results in an overestimation of the upper bound
because an arrival curve α(∆) represents the maximum amount of time
required to perform memory requests in any time interval ∆.

Recent work of Lv et al. [19] presents a way how to use Abstract Interpreta-
tion to analyze the cache behavior of a task. They apply Timed Automata
(TA) to model the precise timing information of a task. With an additional
TA, it is possible to analyze the timing behavior of a shared resource with
any access policy. Their work includes the FCFS as well as the TDMA
arbitration. The drawback of this approach is that it is not scalable, i.e.,
the runtime of the analysis becomes infeasible for an increasing number of
states due to the combinatorial explosion.

Above all, these papers only cover the performance analysis for one shared
resource. Introducing a second shared resource complicates the analysis and
the existing methods cannot be easily applied. To the best of our knowledge,
deriving a tight WCCT of a task accessing multiple shared resources with
FCFS arbitration is still an open problem.

For the moment, we are considering two processing elements in order to
describe the fundamental problems of deriving a tight upper bound of the
completion time. These processing cores are connected to an instruction
flash and a data memory over a crossbar bus as sketched in Fig. 4.4a. This
crossbar bus connects the processing elements to the FIFO queues of the
shared resources. Thus, the resource arbitration is realized with First-Come,
First-Served. In addition, resource accesses to any of these shared resources
are assumed to be non-buffered, i.e., a task is stalled until the access has
been performed. Since at most one request can be served at any time, a

– 38 –

4.1 INTRODUCTION

Data Phase Instruction Phase Memory Interference

Figure 4.2: Two tasks divided into different phases.

request from any other processing element is delayed. This memory delay
is not known in advance and consequently, an upper bound has to be safely
estimated.

Figure 4.2 shows an example of two tasks τ1 and τ2 and their execution
is divided into phases of data accesses and phases of instruction fetches
and execution. Whenever both tasks are simultaneously accessing the same
resource, the tasks are delayed as a result of memory interference. The
first essential problem for the analysis of the FCFS arbitration is that the
memory interference delays of one task depend on the exact behavior of the
other task, which itself is influenced by the first one. As a matter of fact,
the complexity of this problem becomes larger for an increasing number of
tasks.

As in Section 2.2.3, the communication time is the time an access to the
shared resource requires to be served when not interfered. The instruction
time is the time that a processing element needs to perform an instruction.
In general, these values are not constant and it is only possible to specify
a lower and an upper bound. This has been shown in the measurements of
Section 3.4.3.3 for the communication time. Consequently, the worst-case
of a phase does not necessarily lead to the worst-case of the complete task.
Consider the first instruction phase of task τ2. In the first case (left), the
instruction phase takes ∆1 time units, which results in the task’s completion
time t1. In the second case (right), the same phase finishes earlier after
∆2 < ∆1 due to faster instruction fetch or faster execution. Despite the
reduced completion time of this phase, the task’s completion time t2 for this
case might become larger than t1. The concrete realization of this phase
influences the subsequent behavior of both tasks: It is possible that phases
are shifted, such that two phases of τ1 and τ2 overlap which previously had
no interference, and consequently increases the total completion time. It is
not trivial to take this influence into account, since it impacts future time
instances. Because of this domino effect, it is not sufficient to iteratively
estimate the worst-case delay for each phase. The analysis has to include
the whole task under analysis and the interfering task as well, which blows
up the possible state space. Dealing with these issues, the contributions of
this chapter can be summarized in the following way:

– 39 –

4.2 SYSTEM MODEL

• We identify the difficulties of finding a valid and tight WCCT in a mul-
tiprocessor system containing two shared resources with FCFS access
policy.

• A first approach that calculates an untight bound is shown, which is
then further improved by simplifying the problem.

• We show the limitations of using either Timed Automata or Dynamic
Programming applied to determine the WCCT.

• The usage of TDMA arbitration is motivated in order to increase the
timing predictability of the system and to directly analyze the worst-
case completion time of an arbitrary number of processing elements.

The remaining part of this chapter is outlined as follows: Section 4.2 com-
plements the task model and the model of shared resources for the proposed
architecture and introduces additional notation.Section 4.3 addresses the
problem of estimating an upper bound of the worst-case completion time for
a given task and FCFS arbitration. We present the performance analysis for
an equivalent architecture with TDMA buses in Section 4.4. Experimental
results show the differences between FCFS and TDMA for the considered
architecture in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 System Model

This section extends the system model summarized in Section 2.2. Follow-
ing the assumptions of [10], we assume that the hardware platform has no
timing anomalies [3] and that the execution of tasks and the resource arbiter
are initialized synchronously. Otherwise, it would be necessary to take an
infinite number of offsets into account.

4.2.1 Architecture

The considered hardware architecture in Fig. 4.1 is a multiprocessor system
consisting of processing elements pj ∈ P. These processing cores can access
two shared resources. Each processing element has a local memory for its
exclusive data (which is not explicitly shown), whereas the remaining data
resides in the shared memory. Additionally, instructions are shared among
all processing elements and are located in the instruction flash. As a result,
the execution of a task not only requires fetching data from the main mem-
ory, but also fetching instructions from the flash resulting in communication
for both operations.

– 40 –

4.2 SYSTEM MODEL

Figure 4.3: Minimal and maximal instruction times of superblock si,j .

4.2.2 Task Model

In addition to Section 2.2.2, the task model is extended in order to describe
the behavior of introducing an instruction flash. We are assuming one task τj
per processing element pj that consists of a sequence of superblocks Sj and
that is repeated periodically with processing cycle Wj . A general solution
for more than one task per processing core is outlined in [12]. Thus, for
the remaining part of this chapter, τj and Sj is used interchangeably. Fur-
thermore, the superblocks are executed sequentially, i.e., a superblock is
activated as soon as the previous one has finished.

Instead of the maximal execution time execmaxi,j for a superblock si,j , the new
parameter instmaxi,j is used to express the maximal time for executing one
single instruction of superblock si,j on processing element pj . This upper
bound has to be thought as pure execution time without communication
time needed to fetch the instruction from the shared flash. The introduction
of this new parameter is necessary because contrary to [12] and [10], the
actual execution time cannot be realized arbitrarily between execmini,j and
execmaxi,j . Refer to Fig. 4.3 for an example concerning the instruction time
of a superblock.

Similar to the maximal number of data accesses µmaxi,j , the maximal number
of instruction fetches is denoted as νmaxi,j . Accordingly, the maximal execu-
tion time of a superblock si,j without communication can be expressed as
νmaxi,j · instmaxi,j . The cache profile of a superblock, which also includes the
lower bounds, is therefore defined as:

cprofi,j =
{
µmini,j , µmaxi,j , νmini,j , νmaxi,j , instmini,j , instmaxi,j

}
(4.1)

In this chapter, deriving an exact cache profile is not outlined but supposed
to be given in advance.

4.2.2.1 Access Model

Each superblock is structured in phases. During the dedicated phases ac-
quisition and replication, only memory requests are allowed. During the
execution phase, instruction fetches and – depending on the access model –

– 41 –

4.2 SYSTEM MODEL

memory requests are performed. The three different access models – ded-
icated, general and hybrid – describe the access behavior of a task to the
shared resources, i.e., which kind of phases the task contains. Refer to Sec-
tion 2.2.2.1 for detailed explanations concerning the different access models.

4.2.3 Model of Shared Resources

A resource arbiter is responsible to grant access to its attached shared re-
source. This resource is able to serve at most one request at any time and
the communication time for transferring data to/from the processing ele-
ment can be bounded by a constant C. In general, its actual value is not
equal for different types of memories. Therefore, the upper bound for the
communication time is denoted as Cµ for the data memory and Cν for the
instruction flash1. It would be safe to set C to the maximum of both val-
ues, but this results in overestimation. If several processing cores access a
shared resource, the communication time might be increased due to con-
tention. The maximum delay depends on the applied arbitration scheme
and is described later.

Resource accesses are assumed to be non-buffered: A task whose request is
not in the cache has to wait until the request has been served. The shared
resources are supposed to be non-preemptive, thus a currently processed
request cannot be interrupted by any other request. Moreover, the shared
memories are implemented with single-port access. For the case of dual-
port access to the instruction flash, there is no contention on this shared
resource. For this case, the problem is reduced to the problem of finding the
worst-case delay for a single shared resource and the time for fetching an
instruction is included in the execution time. A potentially untight worst-
case delay can be estimated according to [12] if the main memory applies
FCFS arbitration.

4.2.3.1 First-Come, First-Served

The proposed architecture in Fig. 4.4a connects the processing elements and
the shared resources over a crossbar bus, i.e., there exists a separate channel
to the FIFO queue of each resource. Since it is assumed that one task can
only request one resource access at any time, the maximal buffer size of the
FIFO is equal to the total number |P| of processing cores. Consequently,
a request arriving at this queue is delayed for at most (|P| − 1) · C time

1We are dropping the index and writing C whenever the actual resource does not
matter for the discussion.

– 42 –

4.2 SYSTEM MODEL

units until the shared resource can perform the request resulting in a total
worst-case delay:

|P| · C (4.2)

As seen in Section 4.1, taking the upper bound C for each resource request
as communication time might not result in the worst case. This property of
FCFS is contrary to TDMA, where the upper bound C is considered during
the worst-case analysis. Hence, the interval between the lower and the upper
bound [Cmin, Cmax] needs to be taken into account in order to obtain a safe
WCCT.

4.2.3.2 Time Division Multiple Access

Instead of FCFS, resource arbitration for the same hardware system can be
implemented with TDMA. Generally, there are two meaningful ways to in-
troduce a TDMA bus. Figure 4.4b illustrates the first possibility where the
processing cores are connected over one TDMA bus with one schedule Θ.
The second option is to introduce a TDMA scheduler for each shared re-
source, as outlined in Fig. 4.4c. The schedule for the instruction flash is
denoted as Θν , while Θµ is the schedule for the data memory. The latter
proposal is corresponding to the original crossbar topology, where the FIFO
queue is replaced by a TDMA bus.

In this chapter, we are assuming a regular scheduler: Each processing ele-
ment pj has exactly one assigned slot with length δpj and starting time σpj .
This schedule is repeated after its length L(Θ), which is the sum of all slot
lengths:

L(Θ) =

|P|∑
j=1

δpj , δpj ≥ C ∀j (4.3)

Moreover, the slots do not have to be of the same length for the case of two
different schedulers. Nevertheless, their size has to be at least the commu-
nication time C since it is required that at least one request can be served
during an active slot. Otherwise, no resource request would be served by
the TDMA arbiter. See Tab. 4.1 for more details concerning the minimal
slot lengths for the different schedulers.

A resource request issued C− ε > 0 time units before the slot end cannot be
served within the active slot and is therefore stalled until the activation of
the next available slot. This results in the worst-case delay for one request
under TDMA arbitration:

(C − ε) + (L(Θ)− δpj) + C, ε < C (4.4)

– 43 –

4.2 SYSTEM MODEL

Crossbar Bus

Instruction
Flash

Shared
Memory

FIFO

(a) Two processing elements con-
nected over a crossbar topology.

TDMA Bus

Instruction
Flash

Shared
Memory

(b) Two processing elements connected over
one TDMA bus with schedule Θ.

TDMA Bus

Instruction
Flash

Shared
Memory

TDMA Bus

(c) Two processing elements connected over two TDMA buses with schedules Θµ and Θν .

Figure 4.4: Hardware architecture containing different interconnect buses.

Schedule Minimum Slot Length

Θ δpj > max(Cµ, Cν)
Θµ δµpj > Cµ
Θν δνpj > Cν

Table 4.1: Minimum slot lengths for TDMA.

– 44 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

For the minimal slot length δpj = C for example, the worst-case delay of
one resource access is bounded by L(Θ) + C.

4.2.4 Determination of the WCCT

The objective of the remaining chapter is to find methods to determine the
worst-case completion time of a task. These methods depend on the tasks
and on the applied arbitration policy. The influence of the arbitration is
taken into account by Eq. (4.2) for FCFS and by Eq. (4.4) for TDMA.

To start with a lower bound for the WCCT, consider a task τj executed on
a single processor system. Then, the resource requests cannot be interfered
and the determination of the worst-case execution time of τj is trivial once
its cache profile is available:

wcetj =

|Sj |∑
i=1

(
νmaxi,j · (Cν + instmaxi,j) + (µmax,ai,j +µmax,ei,j +µmax,ri,j) ·Cµ

)
(4.5)

4.3 Worst-Case Delay Estimation for FCFS

The FCFS arbitration introduces a new degree of freedom compared to a
static access policy: The performance analysis has to deal with the situation
where the worst-case memory delay of a task depends on the interfering tasks
which by themselves depend on all others. In the related work of [12], a
comparable problem occurred and was solved by considering one task under
analysis and by introducing a traffic delay curve for the interfering tasks.
However, this approach cannot be directly applied for more than one shared
resources. Hence, it is necessary to find a new method in order to estimate
an upper bound of the worst-case completion time of a task.

For several tasks simultaneously accessing the shared resources, the maximal
value for the WCCT can be determined by taking the worst-case delay for
each access to the shared resources. This worst case occurs whenever the
performed resource request arrives at the last position of the FIFO queue.
Following this idea, the maximal WCCT of a task τj can be expressed as:

wcctupj =

|Sj |∑
i=1

(
νmaxi,j · (|P|Cν + instmaxi,j)

+ (µmax,ai,j + µmax,ei,j + µmax,ri,j) · |P|Cµ
) (4.6)

– 45 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

While this maximal WCCT is trivial to calculate, it is often too pessimistic
because it does not include any information of the interfering tasks. Actu-
ally, this bound would only result if the same task was executed on every
processing element. Hence, the objective of this section is to find a tighter
WCCT than this maximal WCCT. First, the dynamic programming ap-
proach and its limitations are discussed. Second, an algorithm is presented
that derives an untight upper bound and third, this bound is further im-
proved by reducing the uncertainty of the task model. Finally, an unscalable
solution using timed automata is presented, which leads to the motivation
of introducing TDMA as arbitration policy.

4.3.1 Dynamic Programming

Dynamic programming approaches have been widely used to find optimal
solutions for many different optimization problems. In this context, finding
a valid upper bound can be regarded as optimization: The objective is to
maximize the WCCT of a task under analysis with respect to the interfering
tasks.

In the related work of [12], the proposed algorithm uses this kind of ap-
proach to deal with an aspect of the problem, namely to handle the intro-
duced complexity of multiple flows. In contrast, the algorithm of [17] uses
dynamic programing to efficiently obtain the WCCT and thus, solves the
complete problem. The usage of dynamic programming applied to the pro-
posed problem might be promising and is therefore discussed in this section.

Often, optimizations cannot be solved by considering all possibilities due to
the large state space. For instance, the runtime of a recursive algorithm
grows exponentially with increasing size of the problem and might not be
computable due to time and memory requirements. The strength of dynamic
programming is to divide the problem in smaller subproblems, which can be
optimized, and to use these solutions to optimize the entire problem [20]. It
still works recursively, but the runtime can be reduced since the subproblems
are of smaller size.

In order to apply dynamic programming to any problem, it has to satisfy the
principle of optimality. This principle states that optimizing a subproblem
leads to the overall optimum [20]. This requirement is hard to prove for our
system containing a crossbar topology and the example in the introduction
(Fig. 4.2) already indicates that the local optimality does not necessarily lead
to the overall optimality. Second, it is a challenge to find the subproblems
at all and to define them in a way that they are composable. To the best
of our knowledge, finding the WCCT of a task under these circumstances
cannot be properly solved with dynamic programming.

– 46 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Figure 4.5: Example of three tasks and the resulting time slices ∆.

4.3.2 Untight Bound

The worst-case completion time of Eq. (4.6) is too pessimistic because it
does not take any information of the interfering tasks into account. Hence,
the maximum interference delay can be reduced with Algorithm 1 as a first
improvement. Essentially, the idea is to start with the upper bound of
Eq. (4.6) for each task and then to exclude data and instruction fetches that
cannot be interfered by all other tasks. Consider Fig. 4.5 for an illustrative
example. The algorithm divides the execution of tasks into time slices ∆
and if not all tasks are active during a specific time slice, the worst-case
completion times for the active tasks can be reduced. For instance, task τ1
is not interfered during the first time slice.

The algorithm takes the set of tasks and the communication times as input
parameter. A task τj is defined by its cache profile cprofi,j for each superblock,
its processing cycle Wj and its first activation time tsj . Additionally, the new
parameter Λi,j for each superblock si,j is introduced, which is the maximal
possible completion time assuming |P| − 1 interfering processing elements:

Λi,j = νmaxi,j · (|P|Cν + instmaxi,j) + µmaxi,j · |P|Cµ (4.7)

Actually, this is the maximal WCCT for a single superblock of Eq. (4.6).
Equation (4.7) already implies that the sequence of superblocks contains
general phases with at most µmax data accesses and not more than νmax

instruction fetches. This simplifies the handling of the superblocks because
it does not matter which phase of which access model is currently analyzed.
It is easily possible to transform a sequence of superblocks of any access
model to this sequence of general phases.

– 47 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Variable Description

dj memory interference delay that can be excluded during one
processing cycle

∆j remaining time of task assuming maximal WCCT
Λi,j maximal WCCT of superblock si,j
tcj starting time of current (tcj ≤ t) or next (tcj > t) processing

cycle
wcctj task’s resulting WCCT

Table 4.2: State variables of task τj used in Algorithm 1.

4.3.2.1 Overview

To start with, an overview of the algorithm is provided. During the main
loop described in Section 4.3.2.2, the set A of currently active tasks is con-
sidered. For this, a time variable t determines which task has not finished
yet. A task τj is supposed to be running if its activation time tcj has already
past, i.e., tcj ≤ t. Moreover, the time slice ∆ is used to express the next time
instance t + ∆ where a task either starts or terminates. See Tab. 4.2 for a
full description of the used the state variables of task τj .

The state variable dj is introduced to express the overall memory inter-
ference delay of task τj that can be excluded during one processing cycle.
The objective of the algorithm is to reduce the maximal WCCT wcctupj of
Eq. (4.6) by dj . In general, different processing cycles result in different
values for dj . Hence, only the minimal value of dj for all cycles improves
the WCCT. After each cycle, the value of dj is reset and recalculated for
the next cycle.

For each task in A, the minimum access delay that can be interfered during
the time slice ∆ is computed, see Section 4.3.2.4. This delay is then multi-
plied with the number of inactive tasks |P|− |A| and added to dj . After the
termination of a task τj , wcct

up
j is reduced by dj resulting in the improved

wcctj .

In order to calculate the minimum access delay, the time window T is used
to iterate over the sequence of superblocks beginning from the relative time
t−tcj until t−tcj+∆. If a superblocks completely lies within the time slice ∆,
the memory interference delay of all accesses can be reduced. Otherwise,
the boundaries have to be differently treated. This procedure is covered in
Section 4.3.2.3.

– 48 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Algorithm 1 Calculate wcctj of task τj ∀j ∈ {1, . . . , |P|}

procedure Wcct-Untight({τj : ∀j}, Cµ, Cν)

1: wcctj = 0, ∆j =
|Sj |∑
i=1

Λi,j , t
c
j = tsj , dj = 0, ∀j ∈ {1, . . . , |P|}

2: t = min
∀j
{tsj}, ∆ = 0

3: while t < max
∀j
{tsj}+ lcm

∀j
{Wj} do

4: A =
{
τj : tcj ≤ t,∀j ∈ {1, . . . , |P|}

}
, ∆ = min

(
min
∀τj∈A

{∆j}, min
∀τj /∈A

{tcj − t}
)

5: for all τj ∈ A do
6: if |A| < |P| then
7: let i be the index of the currently active superblock si,j

8: t′ =
i−1∑
k=1

Λk,j − dj
9: while t′ < t− tcj + ∆ do

10: calculate T according to Eq. (4.8)

11: dj = dj + (|P| − |A|)·Min-Delay(si,j , T, Cµ, Cν)

12: i = i+ 1, calculate t′ according to Eq. (4.9)
13: end while
14: end if
15: ∆j = ∆j −∆
16: if ∆j = 0 then

17: ∆j =
|Sj |∑
i=1

Λi,j , wcctj = max(wcctj ,∆j − dj), tcj = tcj +Wj , dj = 0

18: end if
19: end for
20: t = t+ ∆
21: end while

4.3.2.2 Main Loop

As a first step, the state variables are initialized (Step 1). The value of the
maximal WCCT of task τj during each loop iteration is stored in wcctj . ∆j

denotes the remaining completion time of task τj . Its value is set to the sum
of the maximal completion times of all superblocks (which is equivalent to
Eq. (4.6)). The sum of all delays that can be excluded is characterized by
dj and the rest of the algorithm calculates this delay for each cycle of each
task.

Beginning from the minimum starting time, the main loop is processed until
the maximum starting time plus the hyperperiod is reached (Steps 2 and 3).
The hyperperiod is calculated as lowest common multiple of all processing
cycles in order to cover all possible offsets between the tasks. Based on the
set A of all active tasks, the new time slice ∆ is determined (Step 4). As an
example, the dotted lines in Fig. 4.5 indicate all time slices.

– 49 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

For every task in A, the excluded delay dj is iteratively increased during
Steps 6 to 14. The exact procedure is outlined in the next two sections. Af-
terwards, the remaining execution time ∆j of task τj is reduced by the time
slice ∆ (Step 15). If this value becomes zero, it is reset to the upper bound
of Eq. (4.6) and the worst-case completion time of task τj is obtained by
subtracting the excluded delay dj from this upper bound (Step 17). More-
over, the activation time is set to the beginning of the new cycle and the
sum of excluded delays dj is reinitialized.

4.3.2.3 Deriving the Time Windows

This section describes how to calculate the minimum time of task τj ∈ A
during ∆ that cannot be interfered by all tasks. Therefore, this part is only
executed if not all tasks are active (Step 6). The temporary variable t′ is
initialized with the relative starting time of the currently active superblock
si,j . This starting time is derived from summing up the upper completion
time Λk,j of all finished superblocks minus the excluded delay (Step 8). A
time window T for each active superblock is determined beginning with the
relative time t− tcj until the relative end of the time slice t− tcj + ∆ (Steps
9 to 13):

T =

t′ + Λi,j − (t− tcj) t′ < t− tcj ∧ t− tcj ≤ t′ + Λi,j −∆ (1)a

∆ t′ < t− tcj ∧ t− tcj > t′ + Λi,j −∆ (1)b

Λi,j t′ ≥ t− tcj ∧ t′ + Λi,j ≤ t− tcj + ∆ (2)

t− tcj + ∆− t′ otherwise (3)

(4.8)

For the following computations, consider Fig. 4.6 as illustrative example.
Basically, there are three different types of time windows, namely for the
first, each succeeding and the last superblock within the time slice ∆. Equa-
tion (4.8) is used to calculate the time window by distinguishing these
cases:

(1) For the first superblock, the time window is the remaining time of the
superblock and calculated as difference of the relative ending time of
the superblock t′ + Λi,j and the relative time t− tcj (1)a. However, if
the time slice ∆ is smaller than this remaining time, the time window
is equal to ∆ (1)b.

(2) For each superblock that is completely within ∆, the time window is
set to the upper completion time Λi,j .

(3) For the last superblock, the time window is derived by subtracting the
relative activation time t′ of the superblock from the relative ending
time t− tcj + ∆ of the time slice.

– 50 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Figure 4.6: Deriving the time windows T for three superblocks that are
active during the time slice ∆.

An example of two tasks is shown in Fig. 4.6. The time windows T are
calculated for task τj , while τj+1 is inactive until its activation time tcj+1. In
the figure, the time instance t∗ is relative to the activation time tcj of task τj .
If t∗ > t′′′, then all three cases (1)a, (2) and (3) are considered. However,
if t′′′ > t∗ > t′′, then only the time windows T for cases (1)a and (3) are
determined because there is no superblock that lies completely within ∆.
And if t∗ < t′′, only (1)b is regarded.

The minimum access delay of superblock si,j during T is the number of
performed requests during this time period. Its value is determined by al-
gorithm Min-Delay and multiplied by the number of inactive tasks, i.e.,
|P| − |A| (Step 11). This is actually the delay that can be excluded. After-
wards, the next superblock is processed by incrementing the index variable
i and setting the temporary variable t′ to the relative activation time of the
next superblock (Step 12):

t′ =

{
t− tcj + T t′ < t− tcj (1)

t′ + T otherwise (2) & (3)
(4.9)

4.3.2.4 Calculating the Minimum Access Delay

Algorithm 2 calculates the minimum access delay of superblock si,j during
the time window T under the assumption that each request is delayed for
|P|C time units. The resulting memory access delay is defined as number
of performed requests multiplied with the appropriate communication time.

For the dedicated cases, it is already clear which operation is performed
during T . Therefore, it is sufficient to multiply the number of performed

– 51 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Algorithm 2 Calculate minimum delay of superblock si,j that can be in-
terfered during T

procedure Min-Delay(si,j , T, Cµ, Cν)

1: if µmax = 0 then

2: return
⌊

T
|P|Cν+instmax

⌋
· Cν

3: else if νmax = 0 then
4: return

⌊
T
|P|Cµ

⌋
· Cµ

5: else if T < Λ then
6: return min

∀m∈M
{mCµ + f(m)Cν}

7: else
8: return µmax · Cµ + νmax · Cν
9: end if

requests with the corresponding communication time (Steps 1 to 4). And
for the trivial case T = Λi,j , each request µmax and νmax can be excluded
(Step 8).

For every other time window T < Λi,j , the algorithm determines those
m ∈ {0, . . . , µmaxi,j } and n ∈ {0, . . . , νmaxi,j } that can be performed during this
time period. For this, the minimal number of instruction fetches during T
if m data access happen is calculated as2:

n = f(m) =

⌊
{T −m · |P|Cµ}+

|P|Cν + instmaxi,j

⌋
(4.10)

Because of the floor operation in Eq. (4.10), this function is not injective,
i.e., it is possible that several m are mapped to the same n (see Fig. 4.7 for
an example). Consequently, only the largest m should be chosen for equal
function values. Hence, the following set contains all those data requests m:

M = {m : 0 ≤ m < µmax, f(m) > f(m+ 1)} ∪ {µmax} (4.11)

Finally, the tuple (m′, f(m′)) is chosen that minimizes the resulting resource
access delay m′ · Cµ + f(m′) · Cν (Step 6).

4.3.2.5 Time Complexity

The time complexity of the algorithm is discussed in this section. The
loop of Steps 9 to 13 analyzes the superblocks of each task τj . This can be

2{z}+ = max(0, z)

– 52 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Figure 4.7: Different possibilities (m,n) of performed requests during the
time window T .

bounded by the total number of superblocks |Sj |. The algorithm iterates the
time over the interval between the minimal starting time and the maximal
starting time plus the hyperperiod (Steps 2 and 3). During this interval, the
maximum number of considered cycles of task τj is calculated as:

Rmaxj =

lcm
∀j
{Wj}+ max

∀j
{tsj} −min

∀j
{tsj}

Wj

 (4.12)

Consequently, the calculation of the minimum access delay for τj is executed
at most |Sj | · Rmaxj times. The overall time complexity for the algorithm
can be bounded by Eq. (4.13), which is scalable for an increasing number of
superblocks and tasks:

O
(|P|∑
j=1

(|Sj | ·Rmaxj)
)

(4.13)

4.3.3 Recursive Approximation

This section presents a way to approximate the worst-case completion time
for each task. In order to simplify the problem, we are reducing the uncer-
tainty by assuming:

• Constant communication times Cµ and Cν .

• Constant instruction times (instmin = instmax).

• Fixed number of resource accesses (µmin = µmax, νmin = νmax).

Although these assumptions may not reflect the timing behavior of multi-
processor systems, they allow an approximation of the WCCT. We are only

– 53 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

Variable Description

dj memory interference delay due to contention during one
phase

∆j remaining time of the current superblock assuming WCET
Γi,j WCET of superblock si,j
kj index of current superblock
tcj starting time of current (tcj ≤ tj) or next (tcj > tj) processing

cycle
tj task’s current time

wcctj task’s resulting WCCT

Table 4.3: State variables of task τj used in Algorithm 3.

considering tasks containing dedicated superblocks, i.e., the instruction and
the data phases are strictly separated, therefore eliminating the need to op-
timally choose the right operation at any time. Otherwise, the runtime of
the presented Algorithm 3 becomes prohibitive even for a few superblocks
per task.

4.3.3.1 Overview

The presented Algorithm 3 recursively estimates the worst-case completion
time of two tasks τ1 and τ2. Basically, if they access the same shared resource
during a phase, two cases are distinguished:

(1) τ1 wins the first contention.

(2) τ2 wins the first contention.

Each other request during the same phase of the superblocks is maximally
delayed for C resulting in the access latency of 2C. Comparing the final
worst-case completion times of both possibilities, the case that leads to the
larger WCCT is taken for each task during each recursive instance. The re-
cursion works over the whole sequence of superblocks because the optimality
of a subproblem does not have to result in global optimality as discussed in
Section 4.1.

The algorithm can be divided into two functional parts. The first one takes
care of the state variables for each task. They are initialized the first time
and updated during each recursion. The former mechanism is outlined in
Section 4.3.3.2 and the latter in Section 4.3.3.4. The second part is the
actual calculation of the worst-case delay, see Section 4.3.3.3.

– 54 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

An overview of the used state variables is provided in Tab. 4.3. The notation
is similar to Algorithm 1, but differing in the following points: First, each
task τj has its own time variable tj . Second, the variable kj is used to
index the currently active superblock. Third, the worst-case delay during
the time slice ∆ is expressed by dj . Fourth, ∆j denotes the remaining
worst-case execution time of a superblock instead of the maximal worst-
case completion time. At the activation of a superblock si,j , this value is
initialized with its WCET:

Γi,j = µmaxi,j · Cµ + νmaxi,j · (Cν + instmaxi,j) (4.14)

4.3.3.2 Initialization

The ending time is set to the latest starting time plus the hyperperiod
(Step 1). The hyperperiod is defined in the same way as in Algorithm 1
as the lowest common multiple of all processing cycles. As a result, the
time variable tj for each task τj is processed from the task’s starting time
tsj until tsj + lcm

∀j
{Wj}. Then, the state variables are initialized in Step 2 for

each task. The remaining calculation is implemented by Algorithm 4 and
described in Section 4.3.3.3.

Algorithm 3 Recursively calculate wcctj of task τj ∀j ∈ {1, 2}

procedure Wcct-Recursive({τj : ∀j}, Cµ, Cν)

1: tend = max
∀j
{tsj}+ lcm

∀j
{Wj}

2: wcctj = 0, tj = tsj , t
c
j = tsj , kj = 1, ∆j = Γkj ,j , dj = 0, ∀j ∈ {1, 2}

3: return Worst-Case-Delay({τj : ∀j}, Cµ, Cν)

4.3.3.3 Worst-Case Delay

This section describes how to calculate the worst-case delay dj for each task
τj , which is implemented by Algorithm 4. The set A contains the active
tasks with minimal tj . The time slice ∆ is set to either the earliest ending
phase (∆j), the nearest new cycle time (tcj − tj) or to the next time variable
(tj′′ − tj′), whichever results in the minimal value for ∆ (Steps 4 to 8). For
the latter, j′ is the index of the task with smaller current time and j′′ is the
index of the other task (Step 7). Then, the number of interfering requests µ
and ν during ∆ are computed (Step 10). There two reasons, for which both
values become zero:

• Only one task is currently analyzed and consequently, the task is not
interfered.

– 55 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

• If two tasks are analyzed, it is possible that there is no interference:
Since there are only dedicated phases, it is possible that the tasks do
not access the same resource during ∆.

In both cases, the worst-case delays dj are all zero and the tasks are processed
for ∆ time units without interference (Step 12).

Algorithm 4 Recursively calculate wcctj of task τj ∀j ∈ {1, 2}

procedure Worst-Case-Delay({τj : ∀j}, Cµ, Cν , [A,∆, tend])

1: State-Variables({τj : ∀j},A,∆)
2: if min

∀j
{tj} ≥ tend then

3: return {wcctj : ∀j}
4: else if t1 = t2 then

5: A =
{
τj : tcj ≤ t,∀j ∈ {1, 2}

}
, ∆ = min

(
min
∀τj∈A

{∆j}, min
∀τj /∈A

{tcj − tj}
)

6: else
7: let τj′ be the task with smaller current time and τj′′ the other task
8: A = {τj′}, ∆ = min (∆j′ , tj′′ − tj′)
9: end if

10: let µ and ν be the number of interfering requests during ∆
11: if µ = 0 and ν = 0 then
12: return Worst-Case-Delay({τj : ∀j}, Cµ, Cν ,A,∆, tend)
13: else
14: let j1 be one task of A and j2 the other task
15: if µ > 0 then
16: d1

j1
= (µ− 1)Cµ, d1

j2
= µCµ, d2

j1
= µCµ, d2

j2
= (µ− 1)Cµ

17: else
18: d1

j1
= (ν − 1)Cν , d1

j2
= νCν , d2

j1
= νCν , d2

j2
= (ν − 1)Cν

19: end if
20: for all k ∈ {1, 2} do
21: dj = dkj , ∀j
22: wcctk =Worst-Case-Delay

(
{τkj : ∀j}, Cµ, Cν ,A,∆,max

∀j
{tcj +Wj}

)
23: end for
24: return {max

∀k
{wcctkj } : ∀j}

25: end if

Otherwise, new state variables are introduced (Steps 14 to 18): The first
ones with superscript 1 are used to analyze the case where the first resource
request of task τj1 is issued immediately before the request of τj2 . For
task τj1 , this results in the worst-case delay of (µ − 1)Cµ and (µ − 1)Cν ,
respectively, while for the other task τj2 , the maximal worst-case delay is
assumed. On the other hand, the second state variables with superscript 2
are computed for the contrary case.

Afterwards, the worst-case completion times for both cases are recursively
determined taking the maximum of the next cycle time as ending time for

– 56 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

the recursion (Step 22). The larger WCCT for both cases is then taken as
the WCCT of the task (Step 24).

4.3.3.4 State Variables

For each recursion of Algorithm 4, the state variables are updated for all
active tasks τj ∈ A by Algorithm 5. The current time tj is increased by the
processed time slice ∆ and the worst-case delay dj . This worst-case delay
is reset and the remaining worst-case execution time ∆j of the current su-
perblock is adjusted (Step 2). If this time becomes zero, the next superblock
is activated if the task has not finished (Step 7). Otherwise, the worst-case
completion time is updated and the state variables are reinitialized (Step 5).

Algorithm 5 Handling of the state variables of task τj ∀j ∈ {1, 2}

procedure State-Variables({τj : ∀j},A,∆)

1: for all j ∈ A do
2: tj = tj + ∆ + dj , ∆j = ∆j −∆, dj = 0
3: if ∆j = 0 then
4: if kj = |Sj | then
5: wcctj = max(wcctj , t− tcj), tcj = tcj +Wj , tj = tcj , kj = 1, ∆j = Γkj ,j
6: else
7: kj = kj + 1, ∆j = Γkj ,j
8: end if
9: end if

10: end for

4.3.3.5 Time Complexity

Due to the recursion, Algorithm 3 needs exponential time for calculating the
WCCT of two tasks. In the worst case, each request of both tasks results in
a recursive decision. Therefore, the time complexity can be expressed as:

O(2n), n = max
∀j

{ |Sj |∑
i=1

µmaxi,j

}
+ max
∀j

{ |Sj |∑
i=1

νmaxi,j

}
(4.15)

Since the whole sequence of superblocks has to be taken into consideration,
this approach is not scalable for increasing number of superblocks.

4.3.4 Timed Automata

A Timed Automaton is defined as a finite automaton extended with real-
valued clock variables [21]. These clocks progress synchronously and clock

– 57 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

constrains describe the timing behavior of the automaton. It is possible
to model the proposed architecture with |P| processing elements and two
shared resources as a network of parallel Timed Automata.

One possibility of using TAs is presented in the following. One TA for each
task has been designed to model its timing behavior. An example is shown
in Fig. 4.8a for task τj+1

3. The automaton starts from the state inactive
and processes all states until one of the ending states violation or finished is
reached. The former models a deadline violation, i.e., if the completion time
of a task is larger than its processing cycle. The latter is activated when
the task has terminated and the global clock t is at least EndTime, which is
equal to max

∀j
{tsj}+ lcm

∀j
{Wj}.

During the active time of the task, its superblocks are sequentially processed
starting with the index i = 0 until i ≥ |Sj |. The counters m and n are used
for the performed data accesses and instructions of the current superblock,
respectively. The accesses of task τj+1 to the shared resources are imple-
mented by using the channels accessInst[j] and accessData[j].

An additional TA is used for every shared resource. This is outlined in
Fig. 4.8b for a FCFS bus taken from [19]. The channel accessBus has to
be set to accessData for the shared memory and to accessInst for the
instruction flash. There is another adaption necessary because the commu-
nication times are not constant: The access time MemTime from the original
TA is replaced by the parameters (BusTimeMin, BusTimeMax). They are set
to either (Cminµ , Cmaxµ) or (Cminν , Cmaxν) depending on the applied resource.

The parallel network of TAs is then analyzed with a model-checker such as
Uppaal. It verifies if their is no possibility to reach the violation states, i.e.,
if all possible completion times are smaller than the corresponding processing
cycles. The advantage of this approach is that it allows to take all the
variabilities of communication and instruction time into account. However,
it is not directly possible to obtain each WCCT. Even worse, it does not solve
the problem in general because the runtime needed for the model-checking
is not feasible for an increasing number of superblocks due to the state space
explosion. The Timed Automata are non-deterministic automata and during
the model-checking, this non-determinism is eliminated by considering all
possibilities, which results in exponential time complexity.

In order to overcome this problem, the next section replaces the original
crossbar bus with one and two TDMA buses, respectively. The TDMA
explicitly removes the memory interference since a task is only allowed to

3The used notation for the TAs is taken from Uppaal [22], where all indexes start from
zero.

– 58 –

4.3 WORST-CASE DELAY ESTIMATION FOR FCFS

NewCycle

x<=Period[j]

Finished

Violation

Execution

y<=InstMax[j][i]

InstAccess

DataAccess

NewSuperblock

Inactive

x<=StartTime[j]

x==Period[j]

x=0,i=0

t<EndTime

t>=EndTime

x>Period[j]

x<=Period[j]

i==S[j]

y>=InstMin[j][i]

i<S[j]

m==MuMax[j][i] && n == NuMax[j][i]

i++

accessInst[j]?
y=0,n++

n<NuMax[j][i]
accessInst[j]!

accessData[j]?
m++

m<MuMax[j][i]
accessData[j]!

m=0,n=0

x==StartTime[j]

x=0,i=0

(a) Timed Automaton for one task.

BusDelay

c<=BusTimeMax

CheckReq

RecvReq

Init

accessBus[1]?
enQueue(1)

accessBus[0]?
enQueue(0)

queue[0]<N
c=0

queue[0]==NaccessBus[1]?
enQueue(1)

accessBus[0]?
enQueue(0)

deQueue()

c>=BusTimeMin
accessBus[queue[0]]!

initQueue()

(b) Timed Automaton for a FCFS bus [19] extended with
variable bus delay between BusMinTime and BusMaxTime

instead of constant bus delay MemTime.

Figure 4.8: Timed Automata modeling arbitrary number of tasks accessing
two FCFS buses. For the data bus, the channel accessBus is defined by
accessData. For the instruction bus, accessBus is defined by accessInst.

– 59 –

4.4 WORST-CASE DELAY ESTIMATION FOR TDMA

Figure 4.9: Regular TDMA schedule Θ.

access the shared resource during predefined slots. This allows to analyze
the WCCT of the same tasks with reduced time complexity.

4.4 Worst-Case Delay Estimation for TDMA

As it is possible to design a system equivalent to the original one contain-
ing the crossbar bus, this section shows the performance analysis for the
TDMA arbitration. TDMA is a standard access policy in industrial hard-
ware systems often used to increases timing predictability. Generally, the
big advantage compared to FCFS is that the performance analysis is simpli-
fied by removing the influence of the interfering tasks. The worst-case delay
analysis only depends on a given task under analysis and the TDMA sched-
uler(s). Hence, a further favorable property of TDMA is that the presented
performance analysis can be directly applied to any number of tasks.

In this section, we adapt the analysis methodologies of [10] for the modified
architectures containing either one TDMA bus with schedule Θ (Fig. 4.4b)
or two TDMA buses with schedules Θµ and Θν (Fig. 4.4c). In the following,
the case for one TDMA scheduler is covered by the more general solution
of two TDMA schedulers. For this purpose, the schedules Θµ and Θν are
equal to Θ and additionally, the right communication times for the particular
resource accesses have to be taken.

The original algorithm for an acquisition / replication phase Wct-AR of [10]
is used to receive the WCCT for performing a specified number of requests.
Starting from time instance t, Algorithm 6 calculates this WCCT for a
regular schedule Θ and a particular communication time C.

The time trel ∈ [0, L(Θ)) (Step 4) determines the relative position within the
schedule Θ as illustrated in Fig. 4.9. If the slot assigned to pj is currently
available, i.e., if trel ∈

[
σpj , σpj + δpj

)
, the number of performed requests

λc during the rest of the slot is computed (Steps 5 to 12). If all pending
requests can be served, the algorithm returns.

Otherwise, the time t′ is set to the starting time of the next slot (Step 13).
The number of performed requests n during the assigned slot determines the

– 60 –

4.4 WORST-CASE DELAY ESTIMATION FOR TDMA

number of cycles that are necessary to serve all remaining requests (Step 14).
Steps 15 to 18 calculate the resulting completion time.

Algorithm 6 Calculate WCCT for performing λ resource requests

procedure Wcct-AR(Θ, pj , λ, t, C)

1: if λ = 0 then
2: return t
3: end if
4: trel = t−

⌊
t

L(Θ)

⌋
· L(Θ)

5: if σpj ≤ trel < σpj + δpj then

6: λc =
⌊
σpj+δpj−trel

C

⌋
7: if λc ≥ λ then
8: return t+ λC
9: else

10: λ = λ− λc
11: end if
12: end if
13: let t′ be the starting time of the next time slot after t

14: n =
⌊
δpj
C

⌋
, c = {

⌈
λ
n

⌉
− 1}+, λ = λ− c · n

15: if λ > n then
16: return t+ t′ + L(Θ) · (c+ 1) + (λ− n) · C
17: else
18: return t+ t′ + L(Θ) · c+ λC
19: end if

Based on this algorithm, the next two sections describe the determination
of the WCCT of a phase. Since the execution of an instruction requires an
instruction fetch first, the calculation of the worst-case completion time of
this resource access is calculated identically.

4.4.1 WCCT for a Dedicated Phase

For a dedicated phase, either the maximal number of instruction fetches
νmax or the maximal number of data accesses µmax is equal to zero. Thus,
the WCCT as calculated in Algorithm 7 (Steps 1 to 7) is the time needed
to perform all of these requests plus the starting time t.

For a data phase (Step 7), it is possible to directly apply the algorithm
Wct-AR. For an instruction phase (Steps 2 to 5) however, the WCCT is
obtained in a different way: First, the completion time of an instruction
fetch (Wct-AR) is computed followed by the execution of the instruction
(instmax). This is iteratively repeated until all νmax requests are served.
This proceeding is necessary because the active slot of schedule Θν depends

– 61 –

4.4 WORST-CASE DELAY ESTIMATION FOR TDMA

on the current time t, which progresses during the execution of the instruc-
tion.

Algorithm 7 Calculate WCCT for a general phase of task τj

procedure Wcct-Phase(Θµ,Θν , pj , µ
max, νmax, instmax, t, Cµ, Cν)

1: if µmax = 0 then
2: while νmax > 0 do
3: t =Wct-AR(Θν , pj , 1, t, Cν) + instmax, νmax = νmax − 1
4: end while
5: return t
6: else if νmax = 0 then
7: return Wct-AR(Θµ, pj , µ

max, t, Cµ)
8: else
9: tν =Wct-AR(Θν , pj , 1, t, Cν) + instmax

10: tν =Wcct-Phase(Θµ,Θν , pj , µ
max, νmax − 1, instmax, tν , Cµ, Cν)

11: tµ =Wct-AR(Θµ, pj , 1, t, Cµ)
12: tµ =Wcct-Phase(Θµ,Θν , pj , µ

max − 1, νmax, instmax, tν , Cµ, Cν)
13: return max(tν , tµ)
14: end if

4.4.2 WCCT for a General Phase

For a general phase, the question is whether to perform a data access or
an instruction. This decision has to be made in the way that it maximizes
the WCCT of the whole phase. Steps 9 to 13 of Algorithm 7 implement a
recursive approach by examining all possibilities.

On one hand, the case is considered where the first performed operation is an
instruction. Similar to the dedicated proceeding, the worst-case completion
time to perform one instruction is calculated (Step 9) and the WCCT of
the remaining operations is recursively determined (Step 10). On the other
hand, the same procedure is implemented for performing a data request as
first operation (Steps 11 and 12). This recursion is repeated until the phase
becomes dedicated. After these steps, the maximum of both completion
times is the final WCCT of the phase (Step 13).

4.4.3 Time Complexity

An equivalent representation of this approach is a binary tree with height
n = µmax + νmax and consequently, the time complexity of Algorithm 7 is:

O(2n), n = µmax + νmax (4.16)

– 62 –

4.5 EXPERIMENTS

In contrast to the FCFS arbitration, the optimality of subproblems – assum-
ing the worst-case for each phase – results in the overall optimality during the
analysis of TDMA. Hence, the recursion works over individual superblocks
instead of considering the whole task. This results in a computationally
efficient solution compared the recursive approach of Section 4.3.3.

4.5 Experiments

For the experiments, the cache profiles cprof for the example tasks are ran-
domly generated. Starting with the hybrid access model, the data accesses
during the dedicated phases of any superblock are shifted to the execution
phase in order to create the tasks for the general model. For the dedicated
access model, the data accesses during the execution phase are shifted to
the dedicated phases. This procedure ensures that the worst-case execution
times are equal for the different access models. The parameters for the uni-
form random distributions are summarized in Eq. (4.17). In addition, the
communication times are set to Cµ = 30µs and Cν = 20µs.

µmax,a ∈ {1, . . . , 2}
µmax,e ∈ {1, . . . , 4}
µmax,r ∈ {1, . . . , 2}
νmax ∈ {1, . . . , 6}

instmax ∈ [50, 200]µs

(4.17)

4.5.1 FCFS Arbitration

For the FCFS arbitration, Figure 4.10 shows the results for two dedicated
tasks for an increasing number of superblocks. The upper WCCT is the max-
imal possible WCCT if each resource request is delayed for |P|C (Eq. (4.6)).
The untight WCCT is calculated with Algorithm 1 and the recursively esti-
mated WCCT with Algorithm 3. For the sake of comparison, the worst-case
execution time of the tasks is also plotted, assuming there is no interference
at all (Eq. (4.5)). The traced WCCT is calculated by taking the maximal
completion time of all possible traces considering constant communication
and instruction times.

The upper and the untight bounds are equal for the first task with shorter
completion time, since no memory delay can be excluded by Algorithm 1.
For the second task however, the untight bound improves with increasing
number of superblocks compared to the upper bound. For example, this
improvement is 1− 8.8124

9.5124 ≈ 7.4 % for ten superblocks. The average relative

– 63 –

4.5 EXPERIMENTS

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

Number of Superblocks

C
om

pl
et

io
n

T
im

e
[m

s]
Task 1

WCCT Upper
WCCT Untight
WCET
WCCT Trace
WCCT Recursive

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

Number of Superblocks

C
om

pl
et

io
n

T
im

e
[m

s]

Task 2

WCCT Upper
WCCT Untight
WCET
WCCT Trace
WCCT Recursive

Figure 4.10: Several completion times for two example tasks with FCFS
arbitration.

difference between the untight WCCT and the traced WCCT is about 24 %
for the first and 22.5 % for the second task. Although it is not safe to take
the traced completion time as WCCT, this relative difference indicates that
the WCCT computed by Algorithm 1 is not tight for this specific setup.

Nevertheless, Fig. 4.10 also indicates that the untight WCCT for the cor-
responding general and hybrid tasks must lie between the upper and the
untight WCCT. The former is trivial because the upper WCCT cannot be
exceeded by any task model. The latter is a conclusion of the schedulabil-
ity relationship between the different access models [11]. This relationship
states that the WCCT of a general task is at least the WCCT of the cor-
responding hybrid task, which is for its part at least the WCCT of the
dedicated task. Although mentioned in the context of TDMA arbitration,
the justification for FCFS policy is analogical.

The time complexity of the untight and the recursive algorithm is compared
in Fig. 4.11. The time measurement was executed on a mobile Intel Pen-
tium Dual-Core 64-bit processor with 2 GHz frequency. Only the dedicated
access model is analyzed because even for three superblocks, the analysis for
the general tasks becomes infeasible due to the combinatorial explosion of
considering all possibilities. The figure shows that the time consumption of
the recursive approach grows exponentially because the whole sequence of
superblocks is taken into account. Hence, the algorithm is only computable

– 64 –

4.5 EXPERIMENTS

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

Number of Superblocks

T
im

e
C

on
su

m
pt

io
n

[s
]

WCCT Untight
WCCT Recursive

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of Superblocks

N
um

be
r

of
 R

eq
ue

st
s

Task 1
Task 2

Figure 4.11: Comparison of the time consumption of the algorithms for an
increasing number of resource requests (data and instruction).

for a small number of superblocks.

4.5.2 TDMA Arbitration

In this section, the timing behavior for TDMA arbitration is analyzed. The
system containing two TDMA buses is compared to the system with one
TDMA bus as well as to the original crossbar topology. For the FCFS
arbitration, the untight bound of Algorithm 1 is taken because it is the only
safe bound for all access models and for an arbitrary number of processing
elements.

4.5.2.1 Experimental Setup

In the following, the configuration of the schedulers is described. This config-
uration is only chosen for this specific setup and might be far from optimal.
In general, it is the task of the system designer to choose these parame-
ters optimally. This leads to a multi-objective optimization for a given set
of tasks, which can be solved with evolutionary algorithms [23]. For this
experiment, each processing element has the same TDMA bandwidth by
choosing all the slot lengths equally:

δµj = δµ, δνj = δν , ∀j ∈ {1, . . . , |P|} (4.18)

– 65 –

4.5 EXPERIMENTS

The cycle lengths are configured taking different slot lengths:

L(Θµ) = |P| · δµ, δµ ∈ {30, 40, . . . , 100}µs
L(Θν) = |P| · δν , δν ∈ {20, 30, . . . , 50}µs

(4.19)

The relative starting times of the TDMA slots are defined by Eq. (4.20).
The TDMA schedule Θµ dedicated for accessing the shared memory begins
with a slot for processing element p1 and each succeeding core pj has the
next active slot. The TDMA schedule Θν granting access to the instruction
flash is configured with the first slot assigned to pj′ with j′ =

⌊
|P| ÷ 2

⌋
,

which is the “middle” processing element. Equal to Θµ, the slot for each
subsequent processing element is activated afterwards.

σµj = (j − 1) · δµ mod L(Θµ), σνj =

(
j −

⌊
|P|
2

⌋)
· δν mod L(Θν) (4.20)

For the following experiment, the system contains ten processing elements
(|P| = 10) and task τ10 is analyzed. Every task consists of 20 superblocks
and is repeated after the period Wj = 200ms. In fact, the interfering
tasks are only relevant for calculating the WCCT for FCFS. Moreover, the
schedule Θµ is taken for the single TDMA bus topology because the slot
length has to be at least max(Cµ, Cν) = 30µs.

4.5.2.2 Results

For the single TDMA bus, the difference between the computed untight
WCCT of FCFS and the tight WCCT of TDMA is shown in Fig. 4.12 for
different slot lengths δ plotted on the x-axis. Positive bars indicate those slot
lengths, where the worst-case completion time of the system with TDMA
arbitration is smaller than the untight WCCT with FCFS arbitration (addi-
tionally marked with an arrow). Although the results are highly dependable
of the chosen parameters, there exists a slot length for this concrete case,
for which the TDMA system performs better than the original crossbar sys-
tem. This slot length is actually the minimum slot length of 30µs but the
improvement is rather small.

Figure 4.13 shows the same comparison for the dual TDMA bus. Different
slot lengths δµ and δν are plotted on the x- and y-axis. Introducing a second
TDMA bus increases the design space and consequently the possible slot
lengths, for which the TDMA outperforms the WCCT of the FCFS system.
In some cases, only the task with dedicated access has a positive difference.

Taking the communication times as slot lengths minimizes the overall WCCT
for TDMA and is moreover smaller than the best WCCT of the single TDMA

– 66 –

4.5 EXPERIMENTS30 40 50 60 70 80 90 100−60−50−40−30−20−10010 Slot Length δ [us]WCCTFCFS−WCCTTDMA[ms] Task 10GeneralHybridDedicated
Figure 4.12: Difference of the WCCT of FCFS and single bus TDMA.

Figure 4.13: Difference of the WCCT of FCFS and dual bus TDMA.

– 67 –

4.6 CONCLUSIONS

system. Instead of giving each task the same TDMA bandwidth, it would
make sense to prefer those tasks with many resource accesses. For instance,
one possibility would be to give tasks with many instruction fetches higher
bandwidth for the instruction flash and tasks with many data requests larger
slot lengths for the shared memory. However, the optimal design of the
schedulers is out of scope.

4.6 Conclusions

This chapter showed the difficulties that a second shared resource in a mul-
tiprocessor system introduces under FCFS arbitration. Taking all variabil-
ities like communication and instruction time into account is still an open
problem. The main challenge is to find a computationally efficient method
to determine the worst-case completion times of tasks. Several approaches
failed because it was not possible to reduce the large state space by solving
smaller subproblems. In the end, it was only feasible to analyze the system
by inserting structure in terms of the dedicated task model and reducing the
uncertainty of the cache profile and the memory latencies. However, this
leads to restrictive assumptions which do not really reproduce the behavior
of modern hardware systems. All in all, we are dealing with the trade-off
between scalable performance analysis and degree of freedom concerning less
restrictive assumptions.

One possible solution is to design the tasks in a time-triggered way, i.e., the
superblocks are activated at predefined time instances. Then, the problem
state space is reduced enabling the recursive approaches to terminate after
each superblock. On the other hand, the experiments showed that it is
possible to design an equivalent TDMA architecture which increases timing
predictability. The advantage of analyzing a system with TDMA compared
to FCFS is that the presented methodology is scalable with respect to the
number of tasks and the number of superblocks. This is why the TDMA
arbitration is our preferred solution.

For TDMA, the problem of finding good slot lengths for each task and sched-
ule is a multi-objective optimization problem. The objective is to minimize
the WCCT of all tasks choosing from different possible slot lengths. One
approach to solve such problems is covered by the theory of evolutionary
algorithms. Finally, a way to estimate the WCCT of a task executed in the
original crossbar topology considering variable communication times and
cache profiles is proposed as future work.

– 68 –

5
Conclusions and Outlook

5.1 Conclusions

In the first part of this thesis, we showed the efforts needed to implement a
predictable TDMA scheduler on an unpredictable MPSoC, namely the Cell
Broadband Engine. The Element Interconnect Bus (EIB) of this hardware
architecture is designed for high average throughput and high average la-
tency. However, the measurements on this hardware system yield that this
design strategy has the drawback of reduced timing predictability. There
are two reasons for analyzing the timing behavior of the EIB. First, only av-
erage values are published by the developers of the Cell Broadband Engine.
For the worst-case analysis however, only upper bounds are safe. And since
the exact structure of the EIB is unknown, it had to be assumed as black
box. Second, the measurements were necessary in order to estimate the
parameters needed for the performance analysis. In the theoretical model,
these parameters are assumed to be given, but only elaborate determination
of them enable the derivation of methodologies to calculate the WCCT of a
task.

In particular, the communication time is the time to serve one request to the
shared resource assuming no interference. This parameter is critical for the
performance analysis: On the one hand, its exact value has a large impact
on the result. On the other hand, the fact that it is often only possible to
determine an upper bound for a hardware system, results in overestimation

– 69 –

5.1 CONCLUSIONS

of the WCCT. Although the bound is safe, it reduces the timing predictabil-
ity in the sense that the difference between the actual worst case and the
resulting bound increases. For instance, cache mechanisms like a translation
look-aside buffer (TLB) are applied for optimizing the average latency, but
the average and the worst case drift apart.

The second critical parameter is the synchronization overhead. This is the
upper bound of the message sending delays between the scheduler (PPE)
and the processing element (SPE) for one TDMA slot. The actual sending
latency influences each effective slot length that is available to the SPE.
Similar to the communication time, the actual values are smaller than the
bound for most of our experiments, which also results in overestimation of
the WCCT. Furthermore, this parameter determines the minimal length of
each slot, and hence, the granularity of the scheduler. Due to the large
distribution of the measured values, we decided to sacrifice on predictability
and to opt for a highly reliable system, i.e., 99.999 % reliability. This is not
a solution for a hard real-time system, but provides reasonable guarantees
for many industrial embedded systems. A reduced minimal slot length is
essential because the WCCT of a task is increased the larger the TDMA
slot length becomes.

In the second part of this thesis, the theoretical model has been extended
with a second globally shared resource – an instruction flash. The execution
of an instruction on a processing element requires an instruction fetch first.
Consequently, a task executed on a processing element can be delayed due
to contention on both shared resources. The worst-case behavior has been
analyzed for FCFS as well as for TDMA arbitration in order to find bounds
that guarantee real-time constraints. For FCFS, finding a tight WCCT is
complicated as this dynamic policy reduces the analyzability of the system.
Several effects have been characterized that make the performance analysis
difficult. For instance, the memory interference delay depend on all tasks
and due to the domino effect, obtaining a WCCT for one task under analysis
is only possible by considering the whole sequence of superblocks on all pro-
cessing elements. Thus, the challenge is to find a computationally efficient
method, which is still an open problem.

One solution is to restrict the assumptions by assuming constant communi-
cation times and instruction times. But as a matter of fact, the assumptions
of the theoretical model are a trade-off between simplifying the performance
analysis and accuracy of the result. In the case of TDMA, this normally re-
sults in overestimation. For FCFS however, too restrictive assumptions can
lead to unsafe bounds. Therefore, our recommendation is to avoid FCFS for
multiple shared resources if timing predictability is required and to use the
static TDMA arbitration instead. The introduced structure increases the
analyzability of the system by explicitly removing memory interference. A

– 70 –

5.2 OUTLOOK

further advantage of TDMA is that the time complexity is proportional to
the number of tasks under analysis. And the experiments showed that there
exist schedulers, for which the tight WCCT of TDMA is smaller than the
untight WCCT of FCFS.

The practical experiments on the Cell Broadband Engine approved the
schedulability relationship between the access models. To be more spe-
cific, the dedicated access model, where communication is separated from
execution, has the smallest WCCT compared to the other models. And the
difference to the maximally measured completion time is the smallest for
this access model. The schedulability relationship also holds for two shared
resources. In fact, when applying FCFS, only the dedicated model could
be analyzed while the analysis of the other models turned out to be too
complex. To recapitulate, it is a necessity to introduce structure in terms
of static arbitration such as TDMA and dedicated access model to achieve
analyzable systems.

5.2 Outlook

Due to limited time, several aspects were not analyzed in detail. Concern-
ing the synchronization of the processing elements, there are some promising
possibilities to reduce the large distribution of the synchronization overhead.
For example, one solution is to use memory spinlock techniques: The syn-
chronization is realized with DMA transfers and synchronization variables.
This approach has been briefly taken into consideration, but abandoned be-
cause the implemented solution only marginally reduces the maximum mea-
sured delays. However, a more elaborate method would possibly improve
the results. Another solution is to define one SPE as master that synchro-
nizes the other SPEs. At least, the available average latencies between two
SPEs indicate a possible improvement.

Only little time has been spent on the design of the TDMA schedulers for
the two shared resources. Depending on the tasks, the slot lengths can be
optimized. One idea is to take the structures of the tasks into account.
For example, the bandwidth of a task to the resources can be related to the
number of accesses of this task in relation to the other tasks accesses. A more
general way is to use evolutionary multiobjective optimization algorithms to
find optimal slot lengths.

– 71 –

A
Technical Issues Concerning the Cell

Broadband Engine

A.1 Mailbox Functionality

A.1.1 SPU Channels

Each SPE has an incoming (SPU Read Inbound Mailbox) and an outgoing
(SPU Write Outbound Mailbox) mailbox managed by the MFC as it has
been summarized in Section 2.1. In this thesis, only blocking functions
are considered. For the SPE, the functions for accessing the mailboxes are
provided by the library spu mfcio.h (see Chapter 4 of [24], Programming
Support for MFC Input and Output):

1 #include <stdint.h>

2 #include <spu_mfcio.h>

3

4 int main ()

5 {

6 uint32_t msg = 0;

7

8 // reading from the inbound mailbox

9 msg = spu_read_in_mbox ();

10

11 // writing to the outbound mailbox

12 spu_write_out_mbox(msg);

13

14 return 0;

15 }

– 72 –

A.1 MAILBOX FUNCTIONALITY

For the PPE, the runtime management library libspe2.h (see Chapter 7
of [25], SPE MFC Problem State Facilities) is responsible for the mailbox
handling. The following listing shows a basic example of how to use the
provided mailbox functions as well as a simple error treatment:

1 #include <stdint.h>

2 #include <libspe2.h>

3 #include <assert.h>

4

5 int main ()

6 {

7 uint32_t msg = 0;

8 int stat = 0;

9

10 // create context

11 spe_context_ptr_t ctxs = spe_context_create (0, NULL);

12

13 // writing to the inbound mailbox

14 stat = spe_in_mbox_write(ctxs , &msg , 1, SPE_MBOX_ALL_BLOCKING);

15 assert(stat == 1);

16

17 // reading from the outbound mailbox

18 while (stat == 0) {

19 stat = spe_out_mbox_read(_ctxs , msg , 1);

20 }

21 assert(stat == 1);

22

23 return 0;

24 }

This is the standard way to access mailboxes and is accomplished by the
SPU channels. The runtime management library functions for the PPE
that provide this possibility invoke a system call [8]. The performance of
mailboxes can be improved by directly accessing the corresponding MMIO
registers of an SPE. Note that this improvement is only possible for commu-
nication between PPE and SPE and not for two SPEs. Chapter Direct SPE
access for applications in [25] gives a general overview of this possibility.
The final solution as it is used for this thesis is presented in the following
section.

A.1.2 Memory-Mapped I/O

First of all, the context of an SPE needs to be created on the PPE with
the special flag SPE MAP PS in order to access the SPE’s memory-mapped
registers as described in [25]. These registers reside in the so called Problem-
State Area of an SPE (see chapter Problem-State Memory-Mapped Regis-
ters of [6]). The address of this area is obtained by calling the function
spe ps area get.

Basically, the functions spe in mbox write and spe out mbox read in-
cluded by the library cbe mfc.h access the addresses SPU Out Mbox and

– 73 –

A.2 TIME MEASUREMENT

SPU In Mbox relatively to the beginning of the Problem-State Area. The
following listing for the PPE only shows the essential parts:

1 #include <stdint.h>

2 #include <libspe2.h>

3 #include <cbe_mfc.h>

4

5 int main ()

6 {

7 uint32_t msg = 0;

8

9 // create context

10 spe_context_ptr_t ctxs = spe_context_create(SPE_MAP_PS , NULL);

11

12 // access problem state area

13 spe_spu_control_area_t ps = (spe_spu_control_area_t *)

14 spe_ps_area_get(ctxs , SPE_CONTROL_AREA);

15

16 // writing to the inbound mailbox

17 _spe_in_mbox_write(ps , &msg);

18

19 // reading from the outbound mailbox

20 msg = _spe_out_mbox_read(ps);

21

22 return 0;

23 }

A.2 Time Measurement

A.2.1 Power Processor Element

On the PPE, the GNU C Library [26] and its functionality are available
and therefore, several methods for time measurement are supported. The
function clock gettime is used to retrieve following high-resolution clock
values:

• Real Time: System-wide real-time clock.

• Process Time: High-resolution per-process timer from the CPU.

The function returns the measured time in the structure timespec which
contains two fields – one for seconds and one for nanoseconds. For our mea-
surement, this structure is converted to microseconds, which is sufficiently
accurate. Since there is a need of a system-wide time measurement, the
real-time clock is used. An SPE cannot read this value, which would be
inaccurate anyway due to the delay between the SPE and the PPE. This is
a general problem of distributed systems.

– 74 –

A.2 TIME MEASUREMENT

A faster way for measuring the elapsed time is to work with the PPE’s 64-
bit time-base register. Actually, every time function of the GNU C Library
somehow abstracts this clock, but might invoke several system calls. By
directly accessing this register, much overhead can be saved resulting in a
more accurate time measurement. The easiest but not most intuitive way for
reading the time-base register is provided by the assembler intrinsics library
ppu intrinsics.h (see chapter PPU-Specific Intrinsics of [25]):

1 #include <ppu_intrinsics.h>

2 #include <stdint.h>

3

4 int main ()

5 {

6 uint64_t clk = __mftb ();

7 return 0;

8 }

This function returns the PPE’s clock value, which is updated at a ticking
rate called time-base frequency [15]. Its value is fTB = 79.8 MHz for the
Sony PlayStation 3 and fTB = 25 MHz for the IBM Full-System Simulator.
To obtain the time value, the clock value is converted to time units:

t =
clk

fTB
[s] (A.1)

A.2.2 Synergistic Processor Element

Each SPE has its own 32-bit decrementer that can be used for time measure-
ments. It is actually a 32-bit register comparable to the PPE’s time-base
register, but in contrast, the clock value is decremented each tick. Instead
of directly calling the SPE decrementer, the SPU Timer Library [27] offers
a more convenient way for reading the clock value. It provides a virtual,
monotonically increasing 64-bit clock with the same time-base frequency as
for the PPE. Thus, the conversion to time units happens equally.

A further advantage of the SPU Timer Library is that the interrupt handler
spu clock slih for the SPU Decrementer Event is provided (see section
SPU Event Definitions of [6]). This event happens when the decrementer
has reached zero and the value has to be reset, which is the case every

232

79.8·106 = 53.821 . . . seconds for the PlayStation 3. An example and more
details concerning the interrupt handling are shown in the next section.

– 75 –

A.3 INTERRUPT HANDLING ON THE SPE

A.3 Interrupt Handling on the SPE

In order to separate the actual execution from the synchronization part, an
interrupt handler is used on the SPE. To avoid the periodic polling of the
inbound mailbox for new mails, the SPU Inbound Mailbox available event
as described in section SPU Event Definitions of [6] can be used. This
event generates an interrupt which is handled by the implemented interrupt-
handling function.

Unfortunately, interrupt handling is not well documented for the Cell Broad-
band Engine. Principally, there exist two different levels for interrupt han-
dling. The First-Level Interrupt Handler (FLIH) has to be implemented
with assembler instructions and is therefore complicated and unsafe to use.
The Second-Level Interrupt Handler (SLIH) is a more user-friendly solution
and its usage is actually very easy.

First, the interrupt-handling function is registered with spu slih register

and the event handling is activated by writing the event mask with the
function spu write event mask. There is just one thing that has to be
considered for more than one events: To avoid overwriting the currently
active handled events, the new one has to be OR’ed with the old ones reading
them with spu read event mask. Second, the interrupt-handling function
unmasks the handled event with bit manipulation.

According to chapter Synergistic Processor Unit Channels, section SPU
Event Definitions of [6], the SPU Inbound Mailbox Available Event is raised
if the channel count of the inbound mailbox changes from zero (empty) to
non-zero (not-empty). Hence, it is important to read all available messages
until the mailbox becomes empty again. The complete procedure can be
found in the following listing. The first function mfc in mbox event shows
the usage of the interrupt handler, while the main function presents the
registration of events. Note that the additional SPU Decrementer Event is
not relevant for the SPU Inbound Mailbox Available Event, but the example
shows the usage of two different events.

1 #include <stdint.h>

2 #include <spu_mfcio.h>

3

4 mfc_in_mbox_event (uint32_t status)

5 {

6 // remove handled event from event mask

7 status &= ~ MFC_IN_MBOX_AVAILABLE_EVENT ;

8

9 uint32_t ppe_msg;

10 while (spu_stat_in_mbox () > 0)

11 {

12 // reading inbound mailbox

13 ppe_msg = spu_read_in_mbox ();

14

– 76 –

A.3 INTERRUPT HANDLING ON THE SPE

15 // processing of message

16 ...

17 }

18

19 return status;

20 }

21

22 int main ()

23 {

24 uint32_t mask;

25

26 // register inbound mail available event

27 spu_slih_register(MFC_IN_MBOX_AVAILABLE_EVENT , mfc_in_mbox_event);

28 mask = spu_read_event_mask ();

29 spu_write_event_mask(mask | MFC_IN_MBOX_AVAILABLE_EVENT);

30

31 // register decrement interrupt handler

32 spu_slih_register(MFC_DECREMENTER_EVENT , spu_clock_slih);

33 mask = spu_read_event_mask ();

34 spu_write_event_mask(mask | MFC_DECREMENTER_EVENT);

35

36 ...

37

38 return 0;

39 }

A.3.1 Interrupt-Safe Critical Sections

During a running DMA transfer, the program should not be interrupted
(see section Interrupt-Safe Critical Sections in [24]). The MFC mnemonic
mfc begin critical section marks the beginning of the critical section
and returns the current interrupt state, which is restored after the critical
section with mfc end critical section:

1 // begin of critical section

2 uint32_t mach_stat = mfc_begin_critical_section ();

3

4 ...

5

6 // end of critical section

7 mfc_end_critical_section(mach_stat);

– 77 –

B
Implemented Software

B.1 Scheduling Framework

This application implements a TDMA scheduler on top of the Cell Broad-
band Engine. The PPE is used as scheduler and the SPEs execute an as-
signed task.

B.1.1 Requirements

Following external libraries have been used:

• RapdiXML as XML Parser:
http://rapidxml.sourceforge.net

• Google CTemplate as Template Engine:
http://ctemplate.sourceforge.net

B.1.2 Source

• This folder contains the source code:

source/sched

• This folder contains the MATLAB files, configuration and results:

matlab/cell_tdma

– 78 –

http://rapidxml.sourceforge.net
http://ctemplate.sourceforge.net

B.1 SCHEDULING FRAMEWORK

B.1.3 Usage

The program is called by specifying an XML file as parameter:

./sched xml-file

Thus, the TDMA scheduler is completely configurable by the specified XML
file. Its format is covered in the subsequent sections and summarized in the
following. Placeholders are represented by “...”:

1 <?xml version="1.0" encoding="utf -8"?>

2 <ppe>

3 <configuration >

4 ...

5 </configuration >

6 <scheduler type="..." mode="...">

7 ...

8 </scheduler >

9 <processing >

10 ...

11 </processing >

12 </ppe>

B.1.3.1 Configuration

This part is used for the general settings:

1 <configuration >

2 <delay name="mailbox">

3 <length unit="(us|ms|s)">...</length >

4 </delay>

5 <delay name="memory">

6 <length unit="(us|ms|s)">...</length >

7 </delay>

8 <delay name="start">

9 <length unit="(us|ms|s)">...</length >

10 </delay>

11 <!-- Template File for MATLAB -->

12 <file name="template" path="..." />

13 <file name="matlab" path="..." />

14 </configuration >

Parameter Description

delay name="mailbox" upper bound of mailbox sending latency
delay name="memory" upper bound of DMA transfer latency
delay name="start" starting delay between first synchronization

and TDMA schedule
file name="template" template file for the MATLAB output file
file name="matlab" based on the template file, this MATLAB file

is generated containing the results of the mea-
surement

– 79 –

B.1 SCHEDULING FRAMEWORK

B.1.3.2 Scheduler

This part is used for the scheduler specific configuration:

1 <scheduler type="(tdma|none)" mode="(terminate|skip_window)">

2 <duration >

3 <length unit="(us|ms|s)">...</length >

4 </duration >

5 <window >

6 <length unit="(us|ms|s)">...</length >

7 </window >

8 <slot spe="(0|...|7)">

9 <length unit="(us|ms|s)">...</length >

10 </slot>

11 <slot ...

12 </slot>

13 ...

14 </scheduler >

Parameter Description

scheduler type type of scheduler:
tdma: use TDMA scheduling
none: use no scheduling

scheduler mode reaction of scheduler if violation of upper bound of
mailbox sending latency:
terminate: terminate the measurement
skip window: skip to the next time window

window length of time window
slot spe slot length for specified SPE

B.1.3.3 Processing

This part is used for the task specific configuration:

1 <processing >

2 <task spe="(1|...|7)">

3 <period >

4 <length unit="(us|ms|s)"></length >

5 </period >

6 <superblock iterations="...">

7 <acq mu="..." />

8 <exe mu="..." lambda="..." />

9 <rep mu="..." />

10 </superblock >

11 <superblock ...

12 </superblock >

13 ...

14 </task>

15 <task ...

16 </task>

17 ...

18 </processing >

– 80 –

B.2 MEASUREMENT TOOLS

Parameter Description

task spe task configuration for specified SPE
period processing cycle
superblock iterations superblock repeated specified times
acq mu number of memory accesses during acquisi-

tion phase
exe mu number of memory accesses and . . .
exe lambda . . . computations during execution phase
rep mu number of memory accesses during replica-

tion phase

B.2 Measurement Tools

B.2.1 Mailbox Functions

This application measures the time behavior of mailbox functions and prints
the resulting values. The PPE sends a dummy value to the SPE, which
immediately acknowledges the reception. The measured values are:

• Reading the mailbox: Time to read from the mailbox.

• Writing the mailbox: Time to write to the mailbox.

• The sum: Called round-trip time.

B.2.1.1 Source

• This folder contains the source code:

source/mbox_rtt

• This folder contains the MATLAB files and results:

matlab/cell_rtt

B.2.1.2 Usage

./mbox_rtt #spu_threads #iterations outputmode

mailboxmode limit [filename]

– 81 –

B.2 MEASUREMENT TOOLS

Parameter Description

#spu threads number of SPU threads: For each thread, a whole mea-
surement round with #iterations cycles will be exe-
cuted.

#iterations number of iterations to execute per thread

outputmode output: the result after each cycle is printed
silent: only the maximum and the average values are
displayed

mailboxmode libspe: standard method using SPU channels
cbemfc: direct method using MMIO registers

limit number in the range [0, 1]: Corresponds to reliability

filename if specified, the result is appended to the file instead of
using the standard output. Useful for large number of
iterations

B.2.2 DMA Functions

This application measures the time behavior of the DMA functions of the
SPE and prints the resulting values. The following values are measured:

• Reading from the memory: Time of DMA get operation.

• Writing to the memory: Time of DMA put operation.

B.2.2.1 Source

• This folder contains the source code:

source/dma_transfer

• This folder contains the MATLAB files and results:

matlab/cell_dma

B.2.3 Usage

./dma_transfer #iterations outputmode

Parameter Description

#iterations number of iterations to execute per thread

outputmode output: the result after each cycle is printed
silent: only the maximum and the average values are
displayed

– 82 –

B.3 ANALYSIS TOOLS

B.3 Analysis Tools

B.3.1 First-Come, First-Served

B.3.1.1 Source

This folder contains the MATLAB files and results:

matlab/wcct_fcfs

B.3.1.2 Functions

• calc_wcct(task, C, start_time)

Calculates the worst-case completion time (WCCT) of the specified
set of two tasks accessing two shared resources with FCFS arbitration
policy.

• calc_wcct_trace(task, C, start_time)

Calculates the worst-case completion time (WCCT) of the specified
set of tasks considering all possible traces.

• calc_wcct_untight(task, C, start_time)

Calculates an untight worst-case completion time (WCCT) of the spec-
ified set of tasks accessing two shared resources with FCFS arbitration
policy.

• calc_wcct_upper(task, C)

Calculates the maximal possible worst-case completion time (WCCT)
of the specified set of tasks assuming worst-case delay for each resource
request.

• calc_wcet(task, C)

Calculates the worst-case execution time (WCET) of the specified set
of tasks.

• get_max_requests(task, state, delta, C)

Returns the maximum number of data and instruction accesses for a
given task and time window delta. Only for dedicated tasks!

• get_min_delay(phase, delta, p, C)

Returns the minimum delay a task can suffer during time window
delta assuming p interfering tasks.

• get_phases(blocks)

Transforms a sequence of superblocks to a sequence of phases, which
are basically general superblocks.

– 83 –

B.3 ANALYSIS TOOLS

• get_wcet_of_phase(phase, C)

Returns the worst-case execution time (WCET) of the specified phase.

• get_worst_case_delay(task, state, delta, C)

Returns the worst-case delay of two tasks. For a specific time window
delta, the worst-case delay is obtained by assuming the worst-case
number of interfering data accesses and instruction fetches.

• perform_request(task, C)

Performs a request simulating the behavior of a (perfect) shared re-
source, i.e., the communication time is assumed to be constant.

• update_state(task, state, delta, delay)

Updates the remaining time of a phase for each task. If delta becomes
zero, the next phase is activated. If the last phase has finished, the
WCCT set accordingly.

• update_task(task)

Activates the next superblock of task.

• wcct_recursive(task, state, C, max_time)

Recursively determines the WCCT of the tasks of current state until
max time.

• wcct_trace(task, C)

Returns the WCCT of the tasks by recursively determine each possible
trace.

B.3.2 Time Division Multiple Access

B.3.2.1 Source

This folder contains the MATLAB files and results:

matlab/wcct_tdma

B.3.2.2 Functions

• calc_wcct(task, sched_data, sched_inst, C_data, C_inst)

Calculates the worst-case completion time (WCCT) of the specified
set of tasks with two TDMA schedules for data and instruction cache.

• get_phases(blocks)

Transforms a sequence of superblocks to a sequence of phases, which
are basically general superblocks.

– 84 –

B.3 ANALYSIS TOOLS

• wct_ar(sched, accesses, current_time, C)

Calculates the worst-case completion time of a dedicated phase with
specified number of accesses.

• wct_e(sched_data, sched_inst, accesses, instructions,

current_time, C_data, C_inst, inst_time)

Calculates the worst-case completion time of a general phase with
specified number of data accesses and instructions with maximal in-
struction time.

– 85 –

Bibliography

[1] L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-
Time Systems, vol. 28, no. 2, pp. 157–177, 2004.

[2] H. Kopetz and G. Grunsteidl, “TTP-A time-triggered protocol for fault-
tolerant real-time systems,” in Fault-Tolerant Computing, 1993. FTCS-
23. Digest of Papers., The Twenty-Third International Symposium on,
pp. 524–533, IEEE, 2002.

[3] R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 7, pp. 966–978, 2009.

[4] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared resource
load for the performance analysis of multiprocessor systems,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2010,
pp. 759–764, IEEE, 2010.

[5] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and
analysis for multicores,” in Proceedings of the seventh ACM interna-
tional conference on Embedded software, pp. 245–254, ACM, 2009.

[6] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, Cell Broadband Engine
Architecture, Version 1.02, October 2007.

[7] M. Kistler, M. Perrone, and F. Petrini, “Cell Multiprocessor Communi-
cation Network: Built for Speed,” IEEE micro, vol. 26, no. 3, pp. 10–23,
2006.

[8] J. Abellan, J. Fernandez, and M. Acacio, “CellStats: A Tool to Eval-
uate the Basic Synchronization and Communication Operations of the
Cell BE,” in Proceedings of the 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing (PDP 2008), pp. 261–268,
IEEE Computer Society, 2008.

– 86 –

BIBLIOGRAPHY

[9] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, Software Development
Kit for Multicore Acceleration, Programming Tutorial, Version 3.1,
Chapter Programming the SPEs, 2008.

[10] A. Schranzhofer, J. Chen, and L. Thiele, “Timing Analysis for TDMA
Arbitration in Resource Sharing Systems,” in 2010 16th IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pp. 215–224, IEEE, 2010.

[11] A. Schranzhofer, R. Pellizzoni, J. Chen, L. Thiele, and M. Caccamo,
“Worst-Case Response Time Analysis of Resource Access Models in
Multi-Core Systems,” in Design Automation Conference (DAC), 2010
47th ACM/IEEE, pp. 332–337, IEEE, 2010.

[12] R. Pellizzoni, A. Schranzhofer, J. Chen, M. Caccamo, and L. Thiele,
“Worst Case Delay Analysis for Memory Interference in Multicore Sys-
tems,” in Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2010, pp. 741–746, IEEE, 2010.

[13] D. Bovet, M. Cesati, and A. Oram, Understanding the Linux Kernel.
O’Reilly & Associates, Inc. Sebastopol, CA, USA, 2002.

[14] J. Gray and D. Siewiorek, “High-Availability Computer Systems,”
Computer, vol. 24, no. 9, pp. 39–48, 2002.

[15] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, Cell Broadband Engine
Programming Handbook, Version 1.12, Chapter Time Base and Decre-
menters, April 2009.

[16] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem — overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 1–53, 2008.

[17] A. Schranzhofer, R. Pellizzoni, J. Chen, L. Thiele, and M. Caccamo,
“Timing Analysis for Resource Access Interference on Adaptive Re-
source Arbiters.” Submitted to the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2011.

[18] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in International Symposium on Cir-
cuits and Systems ISCAS 2000, vol. 4, (Geneva, Switzerland), pp. 101–
104, 2000.

– 87 –

BIBLIOGRAPHY

[19] M. Lv, N. Guan, W. Yi, and G. Yu, “Combining Abstract Interpreta-
tion with Model Checking for Timing Analysis of Multicore Software,”

[20] Bertsekas, Dimitri P., Dynamic Programming and Optimal Control.
Athena Scientific, 1995.

[21] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms
and Tools,” Lectures on Concurrency and Petri Nets, pp. 87–124, 2004.

[22] G. Behrmann, A. David, and K. Larsen, “A Tutorial on Uppaal,” For-
mal methods for the design of real-time systems, pp. 33–35, 2004.

[23] A. Eiben and J. Smith, Introduction to Evolutionary Computation. Nat-
ural Computing Series, Springer, 2003.

[24] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, C/C++ Language Ex-
tensions for Cell Broadband Engine Architecture, Version 2.6, August
2008.

[25] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, SPE Runtime Manage-
ment Library, Version 2.3, October 2008.

[26] Free Software Foundation Incorporated, The GNU C Library. Online
Reference: http://www.gnu.org/software/libc/.

[27] International Business Machines Corporation, Sony Computer Enter-
tainment Incorporated, Toshiba Corporation, SPU Timer Library Pro-
grammer’s Guide and API Reference, Version 3.0, October 2007.

– 88 –

http://www.gnu.org/software/libc/

	Introduction
	Motivation
	Related Work
	Problem Statement
	Thesis Outline and Contributions

	Background
	Overview of the Cell Broadband Engine
	Communication Architecture

	System Model
	Architecture
	Task Model
	Model of the Shared Resource
	Worst-Case Execution Time

	Worst-Case Completion Time for TDMA
	WCCT for an Acquisition / Replication Phase
	WCCT for an Execution Phase

	TDMA Scheduling on the Cell Broadband Engine
	Introduction
	Approach
	Restrictions of the System Model
	Extensions of the System Model

	Framework
	Execution of the Scheduler on the PPE
	Execution of Superblocks on the SPE
	Time Window

	Timing Behavior of the Element Interconnect Bus
	Measuring the Round-Trip Time
	Measuring the Communication Time
	Evaluation
	Conclusions

	Experiments
	Experimental Setup
	Experimental Results

	Conclusions

	Memory Interference Delay Analysis for Multiple Shared Resources
	Introduction
	System Model
	Architecture
	Task Model
	Model of Shared Resources
	Determination of the WCCT

	Worst-Case Delay Estimation for FCFS
	Dynamic Programming
	Untight Bound
	Recursive Approximation
	Timed Automata

	Worst-Case Delay Estimation for TDMA
	WCCT for a Dedicated Phase
	WCCT for a General Phase
	Time Complexity

	Experiments
	FCFS Arbitration
	TDMA Arbitration

	Conclusions

	Conclusions and Outlook
	Conclusions
	Outlook

	Technical Issues Concerning the Cell Broadband Engine
	Mailbox Functionality
	SPU Channels
	Memory-Mapped I/O

	Time Measurement
	Power Processor Element
	Synergistic Processor Element

	Interrupt Handling on the SPE
	Interrupt-Safe Critical Sections

	Implemented Software
	Scheduling Framework
	Requirements
	Source
	Usage

	Measurement Tools
	Mailbox Functions
	DMA Functions
	Usage

	Analysis Tools
	First-Come, First-Served
	Time Division Multiple Access

