

Abstract—Many problems across various domains of
research may be formulated as a multi-objective optimization
problem. Recently, the Multi-objective Evolutionary Algorithm
framework (MOEA) has been applied successfully to
unconstrained multi-objective optimization problems. This
work adapts the modified Hypervolume indicator to
incorporate constraints when used within the MOEA
framework. Results show that the approach is successful in
generating 90%+ feasible solutions in a simple binary
Knapsack problem with one soft constraint. Compared to the
same problem with one hard constraint, these solutions fetch
roughly the same objective values on the Pareto front.

I. INTRODUCTION
ULTI-OBJECTIVE optimization problems are found in a
wide variety of fields, including engineering

disciplines, finance, and design. Essentially, multi-objective
optimization may be applied in any problem that requires
simultaneously optimizing multiple objective variables,
which are in conflict with each other. Therefore, the
outcome of a multi-objective optimization process is
typically a set of solutions as opposed to a single solution.
The goal of multi-objective optimization is to find such a set
of solutions that maximizes the objectives as well as cover
the largest range of possible tradeoffs. For example, a
portfolio manager who allocates funds for investment may
have a multitude of conflicting objectives to meet, including
profit generation, risk management, etc. In addition, the task
may be subject to constraints, among others, limiting capital
and investment term as dictated by the situation. In this case,
the solution vector includes specific amounts for each
investment vehicle. The gain in each objective is calculated
by transforming the solution via the specific profit of each
investment vehicle. Finally, the set of feasible solutions are
checked by ensuring the solution vector does not exceed the
constraint conditions by multiplying against its impact on
the constraints (i.e. “weight”). The purpose of the multi-
objective optimization algorithm is to select a set of
investment options, which optimize the objectives while
satisfying the constraints.
 Such a set of solutions is called the Pareto set [1], where
each solution in the set is Pareto dominant to the solutions
excluded from the set. Mathematically, a solution vector Fa
is said to Pareto dominate, in a minimization problem,
solution vector 𝐹𝐹𝑏𝑏 , 𝐹𝐹𝑎𝑎 ≼par 𝐹𝐹𝑏𝑏 , iff

},...2,1{},...,2,1{ ,,,, njffandniff jbjaibia ∈∃<∈∀≤ (1.1)

Zack Z. Zhu is a candidate for MSc in Computational Science and

Engineering (D-Math/D-Phys). This semester paper is submitted to Tamara
Ulrich in partial fulfillment of Zhu’s MSc requirements.

 Traditionally, deterministic techniques such as dynamic
programming, calculus-based methods, etc. have been used
to solve “regular” problems that conform to conditions such
as low-dimensionality, continuous, and/or unimodal.
However, real-world problems rarely conform to these
conditions. In order to overcome the shortcomings of
traditional deterministic methods, stochastic search has been
employed by many modern methods, such as Evolutionary
Algorithms (EAs), which are capable in handling high-
dimensional, discontinuous, and multimodal problems.
 Multi-objective Evolutionary Algorithms (MOEAs)
iteratively apply operators that are inspired from nature’s
evolutionary process. In other words, these operators
recombine solution characteristics (cross-pollination) and
modify them stochastically (mutation). At the end of each
generation, a fitness function is used to evaluate the
“goodness” of the solutions and survival of the fittest is used
to eliminate the weaker solutions. This is constitutes one
generation and MOEA runs many generations to reach the
final population of solutions. MOEA can be intuitively
applied to unconstrained multi-objective optimization
problems as they it is a population-based search heuristic.
However, constraint handling within MOEA has been the
subject of recent research [2]. Recently, Deb et al. proposed
a taxonomy that divides constraint handling into two general
approaches: the penalizing approach and the repair approach
[3].

Originally proposed by Richard Courant [2] in the 1940s,
the penalty function discourages infeasible solutions by
penalizing the fitness of the solution in the following form:









×+×±= ∑∑

==
j

p

j
ji

n

i
i LcGrxfx

11
)()(φ (1.2)

where)(xφ is the modified fitness function that includes the
original fitness function and the penalization component. Gi
and Li are functions of the constraints gi(x) and hj(x),
respectively, while ri and cj are positive penalty factors. In
typical repair approaches, a heuristic is often used to convert
an infeasible solution vector { }nyyyy ,..., 21= into a

feasible solution vector { }',...','' 21 nyyyy = . The simplest
of such heuristics is to discard the item with the lowest
profit-to-weight ratio, over all profit dimensions.
 Often, repair heuristics are hard to design due to the need
to incorporate domain-specific knowledge. Moreover, these
heuristics do not guarantee feasible solutions. On the other
hand, the penalizing method has the disadvantage of leading
to tradeoffs between the objective and constraint functions.
In this paper, an approach to incorporate constraint handling

Constraint Handling in Evolutionary Multi-Objective Optimization
Zack Z. Zhu

M

by using a modified Hypervolume Indicator (via weighted
integration) [4] will be assessed as a feasible alternative.
 Originally, the Hypervolume Indicator [5] was proposed
in [6,7]. Essentially, it is a measure of the objective space
dominated by the Pareto set in a population of solution
vectors. In 2007, it was reported as the only measure known
in MOEA that is sensitive to any type of improvement and
guarantees any approximation set, which achieves
maximally possible measure value, contains all Pareto-
optimal objective vectors [5]. In [4], it was demonstrated
that a modified Hypervolume Indicator measure can be
calculated, via weighted integration, to assign different
weights to different regions in the objective space, with
reference to some upper-bound. Therefore, the impact of
each solution on the Hypervolume Indicator may be
manipulated to affect the “goodness” of the Pareto set
(subset of solution population). In this paper, the use of
weighted space in the Hypervolume will be investigated to
represent constraint (both soft and hard) satisfaction.
 This paper is organized as follows: Section II presents the
mathematical formulation of multi-objective problem and its
representation via the weighted Hypervolume Indicator
approach. Section III details how constraints satisfaction can
be represented as weights in the modified Hypervolume
Indicator approach. Section IV introduces the MOEA
framework implementation. Section V summarizes the
experimental results for a 0-1 bi-objective knapsack
problem. Finally, Section VI concludes with some
discussion on future work.

II. PROBLEM FORMULATION

A. Multi-objective Programming
The general multi-objective program is defined as

follows:
min [𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑘𝑘(𝑥𝑥)]𝑇𝑇

s.t. 𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1 …𝑚𝑚
 ℎ𝑗𝑗 (𝑥𝑥) = 0, 𝑗𝑗 = 1 …𝑝𝑝
 𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢

where the solution is an N-dimensional vector 𝑥𝑥 =
[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛]𝑇𝑇 evaluated for K objective functions. The
constraints are represented by the function vectors gi(x) and
hj(x) for inequality and equality constraints, respectively. In
addition, to keep the problem from being overconstrained,
the number of constraints must be less than N.
 In this paper, two types of constraints are differentiated:
soft constraints and hard constraints. Both constraints
require the solution to fulfill the feasibility condition.
However, the feasibility of the soft constraint can be
optimized (possibility of “more feasible” constraint values).
On the other hand, hard constraints are simply satisfied or
unsatisfied.

III. MODIFIED HYPERVOLUME INDICATOR

A. Fitness Assignment
As mentioned in Section I, the MOEA framework follows

an evolutionary approach to obtain the final population of
solution vectors. In this paper, a standard evolutionary setup
is used (detailed in Section IV) while the fitness assignment
is calculated via the modified Hypervolume Indicator. The
idea of the modified Hypervolume Indicator was applied to
build robust solutions in [8]. Here, it is adapted to
incorporate constraint satisfaction into a solution’s fitness
measure.

In the original Hypervolume calculation, the indicator
function, 𝐼𝐼𝐻𝐻 , for a set of solutions, A, is calculated by
integrating the attainment function, 𝛼𝛼𝐴𝐴(𝑧𝑧), over the space of
[−∞: 𝑟̅𝑟], where 𝑧𝑧 is the objective vector and 𝑟̅𝑟 is a pre-
defined reference point. In this case, 𝛼𝛼𝐴𝐴(𝑧𝑧) is simply 0 (non-
dominated) or 1 (dominated) depending on the space
dominated by the solution set A. Therefore, a solution 𝑥𝑥 ∈ 𝐴𝐴
contributes its full Hypervolume to 𝐼𝐼𝐻𝐻 , regardless of
constraint satisfaction.

To incorporate constraint satisfaction, a modified
Hypervolume indicator is calculated as in [8] by extending
the attainment function to incorporate desirability 𝜑𝜑(𝑥𝑥): 𝑥𝑥 →
[0,1]:

𝛼𝛼𝐴𝐴
𝜑𝜑(𝑧𝑧) ∶= �max𝑥𝑥𝑥𝑥𝑥𝑥 ,𝑓𝑓(𝑥𝑥)≼ 𝑧𝑧 𝜑𝜑(𝑥𝑥)

0
� 𝑖𝑖𝑖𝑖 𝐴𝐴 ⋞ {𝑧𝑧}
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 (3.1)

The attainment value for some point, 𝑧𝑧, in the objective
space is the desirability of the most feasible solution
dominating 𝑧𝑧. Otherwise, it is 0 if no solution dominates 𝑧𝑧.
Correspondingly, 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴), is calculated by summing over the
attainment functions:

𝐼𝐼𝐻𝐻
𝜑𝜑(𝐴𝐴) ≔ ∫ 𝑤𝑤(𝑧𝑧) ∙ 𝛼𝛼𝐴𝐴

𝜑𝜑(𝑧𝑧)𝑑𝑑𝑑𝑑𝑟𝑟̅
(−∞ ,…,−∞) (3.2)

where 𝑤𝑤(𝑧𝑧) is the weight of the point 𝑧𝑧. For the purposes of
this paper, all points in Z are assumed to be equal to 1.
Finally, the fitness of a solution based on the Hypervolume
indicator for the solution population, A, is calculated as
follows:

𝐼𝐼𝐹𝐹
𝜑𝜑(𝑥𝑥) ≔ 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴) − 𝐼𝐼𝐻𝐻
𝜑𝜑(𝐴𝐴\𝑥𝑥) (3.3)

where the fitness of a solution is equal to its impact on the
combined Hypervolume for the solution set A.

For a bi-objective problem with five solution vectors (of
length 2), a graphical representation of the original
Hypervolume space is depicted in Figure 1.

Fig. 1. Hypervolume Example Plots

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

8

10

12

14

16

18

Objective 1

O
bj

ec
tiv

e
2

Hypervolume Example

𝜑𝜑(a)=2

A Space

B Space

C Space

D Space

E Space

𝜑𝜑(b)=8

 𝜑𝜑(c)=6
𝜑𝜑(d)=3

𝜑𝜑(e)=5

From the upper plot in Fig.1, the solution set, A, is plotted
(blue circles) in the objective space, where they obtain
objective values of (3, 6), (7,13), (11,10), (14, 8), (17,4). In
addition, the upper-bound is plotted (red triangle) at (22, 18).
For this example, the desirability vector 𝜑𝜑(𝑥̅𝑥) of [2, 8, 6, 3,
5]T is used. According to Equation 3.1, the desirability factor
used to calculate the attainment equation for different
portions of the objective space is labelled in Fig. 1.
Calculating 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴) by multiplying labelled spaces with their
respective desirability value, one obtains 1154 for the above
example. Furthermore, one obtains values of 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴\𝑥̅𝑥) =
[966, 924, 1076, 1148, 1054]T for 𝑥̅𝑥 = [(3, 6), (7,13), (11,10),
(14, 8), (17,4)]. The respective fitness of the solutions are:
𝐼𝐼𝐹𝐹
𝜑𝜑(𝑥̅𝑥) = [188, 230, 78, 6, 100]T.

B. Scaling Factor for the Hypervolume Indicator
As described previously, a scaling factor 𝜑𝜑𝑖𝑖(𝑥𝑥) is

calculated for the Hypervolume of solution x with respect to
its feasibility over the constraint condition i.

Intuitively, hard constraints are simply satisfied (scaling
factor of 1) or unsatisfied (scaling factor of 0).
Unfortunately, this setup is not capable of applying direct
selection pressure to penalize infeasible solutions and drive
the solution population towards feasibility. For the results
reported in the next section, a family of exponential
functions are used to “pressure” infeasible solutions towards
the feasibility boundary. As hard constraints do not
differentiate between feasible solutions, the scaling factor
𝜑𝜑𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎 is assigned a constant weight while infeasible
solutions have scaling factors that are exponentially
decreasing as a function of distance from the feasibility
boundary. Mathematically, the scaling factor for hard
constraint is expressed as:

𝜑𝜑𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥) = �
1

𝑒𝑒−𝛽𝛽�𝑥𝑥𝑖𝑖−𝛼𝛼𝑖𝑖�

2𝑒𝑒𝛽𝛽

� 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 ≤ 𝛼𝛼
𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 > 𝛼𝛼 (3.4)

where 0 ≤ 𝛽𝛽 ≤ 1 is the shape parameter determining the
exponential function’s rate of change and 𝛼𝛼𝑖𝑖 is the feasibility
constraint for the ith constraint.
 For soft constraints, the scaling factor reflects the need to
optimize for feasibility. Therefore, a linearly increasing
function is used to reflect “better” feasibility as a solution
moves inside the feasibility region. Similar to the hard
constraint, the region outside of the feasibility boundary
exponentially decreases as the solution moves away from the
feasible region. Mathematically, the scaling factor 𝜑𝜑𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is
calculated as follows:

𝜑𝜑𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥) = �

�𝑙𝑙−𝑢𝑢
𝛼𝛼−𝐿𝐿

� 𝑥𝑥𝑖𝑖 + 𝑏𝑏

𝑒𝑒−𝛽𝛽�𝑥𝑥𝑖𝑖−𝛼𝛼
(𝑖𝑖)�

2𝑒𝑒𝛽𝛽

𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 ≤ 𝛼𝛼

𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 > 𝛼𝛼
� (3.5)

where l is the value of the scaling factor at 𝛼𝛼, u is the value
of the scaling factor at L, the lowest possible value for xi,
and b is a shifting constant for the function to be placed in
the desired location.
 Fig. 2 shows the behaviour of the above desirability

functions with representative parameters 𝛽𝛽=0.2 and 𝛽𝛽=0.8
and 𝛼𝛼=271.5.

Fig. 2: Comparison of desirability function with various 𝛽𝛽

IV. IMPLEMENTATION OF THE MOEA FRAMEWORK
The abovementioned concepts are implemented and

executed within a standard MOEA Framework in Matlab
R2009a. The general structure is presented as a flowchart in
Fig. 3. The main components of the framework are briefly
explained afterwards.

Fig. 3: MOEA implementation flow chart

Initialize Problem Parameters: Problem parameters are
randomly generated and loaded into the framework.
Initialize Random Solutions: The first population of
solutions (size 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) are randomly generated with respect to
the problem context (binary, integer, etc.).
Parent Selection: A standard fitness selection method,
Roulette Selection, is used to select 𝜆𝜆𝑝𝑝 of the fitter

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Soft Constraint - Beta = 0.2

Weight

D
es

ira
bi

lit
y

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Soft Constraint - Beta = 0.8

Weight

D
es

ira
bi

lit
y

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Hard Constraint - Beta = 0.2

Weight

D
es

ira
bi

lit
y

0 50 100 150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight

D
es

ira
bi

lit
y

Hard Constraint - Beta = 0.8

Initialize problem
parameters

Initialize random
solutions

Parent Selection

Variation Operators

Environmental
Selection

wji
pji

 ci
𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜆𝜆𝑤𝑤

𝜆𝜆𝑝𝑝

𝜆𝜆𝑐𝑐 + 𝜆𝜆𝑝𝑝

Fitness Evaluation

Desirability
Calculation

𝜑𝜑 𝐼𝐼𝐹𝐹
𝜑𝜑

𝐼𝐼𝐹𝐹
𝜑𝜑

individuals in the population to be candidates for variation.
This produces the parent population.
Variation Operators: A standard crossover method, one-
point crossover, is used to recombine partial solution
characteristics. Following, a mutation operator is applied to
randomly modify a component for a small percentage of the
solution population. The resulting population is the children
population, 𝜆𝜆𝑐𝑐 .
Environmental Selection: Combining the parent and children
population, the fittest 𝜆𝜆𝑤𝑤 solutions are promoted to the next
generation.
Fitness Evaluation: This function calculates the
Hypervolume impact, 𝐼𝐼𝐹𝐹

𝜑𝜑 , for the input solution vectors
based on the methodology explained in Section III.A.
Desirability Function: This function determines the
desirability factor for each solution based on problem
parameters that represent the constraint conditions. It
facilitates the calculations of fitness for individual solutions.
The calculations are based on the methodology explained in
Section III.B.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup
For the test problem, a standard 0-1 Knapsack problem is

used. Due to time constraints and the high runtime
complexity of the fitness function (O(N4)), a relatively small
population is run for a bi-objective problem. Table I
summarizes the problem parameters.

TABLE I
EXPERIMENTAL PROBLEM PARAMETERS

Symbol Description Value

i Number of objectives 2
j Number of available items 100

wji Weight of item j on objective i Random integer on [0, 10]
pji Profit of item j on objective i Random integer on [10, 100]
𝛼𝛼i Capacity of objective i 0.5*max(wi)

As the objective of this paper is to study the effectiveness

of incorporating constraint handling within the modified
Hypervolume indicator, standard binary Genetic Algorithm
(GA) operators are used as described in Section IV. Table II
summarizes the experimental parameters for the MOEA
framework.

TABLE II
MOEA PARAMETERS

Symbol Description Value

G Number of generations 100
S Solution representation Binary vector
𝜆𝜆𝑤𝑤 Total population 50
𝜆𝜆𝑝𝑝 Parent population 50
𝜆𝜆𝑐𝑐 Children population 50
𝜇𝜇 Mutation percentage 0.05

Two measures are of importance in this report: the total

Hypervolume achieved by the final solution population and
the percentage of feasible solutions. The experiments run for
this report investigate the influence of the desirability

function shape (𝛽𝛽) and the use of soft and hard constraints
on these two measures.

B. Experimental Results
Experiments are run for fixed problem parameters and a

set of five randomization seeds. To maintain consistency,
one constraint, either soft or hard, is applied to the second
dimension (i=2). For varying shape parameters (𝛽𝛽=[0.2, 0.4,
0.8]), the respective Hypervolume indicators are graphed:

Fig. 4. Shape Parameter Analysis

(Upper: Soft Constraint; Lower: Hard Constraint)

In Fig. 4, the Hypervolumes achieved in the final solution
population are graphed with coloured asterisks according to
the three sets of five repetitions. Set averages are calculated
and plotted for reference. They are denoted by black
triangular markers.

To analyze the solutions generated by the various shape
parameters, first, an overview of the solution mapping in the
objective space is provided in Fig. 5. Following, Table III
tabulates the percentages of feasible solutions.

0 5 10 15
8.2

8.4

8.6

8.8

9

9.2

9.4 x 106

Data Sets

Hypervolume for Various Shape Parameters (Soft Constraint)

H
yp

er
vo

lu
m

e
M

ea
su

re

Beta=0.2
Beta=0.4
Beta=0.8
Set Avg

0 5 10 15
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4 x 107

H
yp

er
vo

lu
m

e
M

ea
su

re

Hypervolume for Various Shape Parameters (Hard Constraint)

Data Sets

Beta=0.2
Beta=0.4
Beta=0.8
Set Avg

Fig. 5. Objective Mapping of Final Solutions

(Upper: Soft Constraint; Lower: Hard Constraints)

 In Fig. 5, the final solution population from the three sets
(5 iterations/set) of experiments (according to varying 𝛽𝛽) are
plotted in the objective space. Red markers represent
infeasible solutions while green markers represent feasible
solutions. As well, a blue triangle is plotted in the objective
space to denote the maximum attainable profit in both
objectives.

TABLE III
FINAL SOLUTION POPULATION FEASIBILITY AND HYPERVOLUME

Description Average
Feasibility

Average
Hypervolume

Soft Constraint, Beta = 0.2 81.6% 9.028 X 106
Soft Constraint, Beta = 0.4 91.2% 9.024 x 106
Soft Constraint, Beta = 0.8 94.0% 8.557 x 106
Hard Constraint, Beta = 0.2 14.8% 1.304 x 107
Hard Constraint, Beta = 0.4 14.4% 1.201 x 107
Hard Constraint, Beta = 0.8 21.6% 1.150 x 107

C. Result Analysis
From Fig. 4, the shape parameter, β, has considerable

influence on the final Hypervolume indicator. For the
experiments conducted with soft constraints (Fig. 4, top), the
Hypervolume indicator, on average, declines with an
increasing shape parameter. This is consistent with
expectations as a higher 𝛽𝛽 value creates a faster exponential
decay used in the desirability function (see Fig. 2). As a
result, an infeasible solution in experiments with higher β
values are assigned lower scaling factors than the same
solution with a lower 𝛽𝛽 value. This in turn lowers the

solution’s fitness. However, infeasible solutions with lower
scaling factors but high Hypervolume impact (𝐼𝐼𝐹𝐹

𝜑𝜑), may still
survive the fitness selection process. Essentially, a faster
decaying desirability function trades off Hypervolume for
constraint satisfaction (see Table III).

For the experiments conducted with hard constraints, a
similar pattern is revealed. As no significant outliers exist in
this batch of empirical data, the average Hypervolume
obtained for the three experimental sets declines almost
linearly with an exponentially (base 2) increasing β
parameter. Comparing the overall Hypervolume obtained
between the hard constraint batch and the soft constraint
batch, the hard constraint consistently achieves higher
Hypervolume. This is also within expectations since hard
constraints do not continue to optimize feasible solutions
while soft constraints do. Optimizing feasible solutions has
the drawback of losing objective value; however, it provides
a “margin of safety” against a solution falling back into its
infeasible state.

In terms of consistency within a data set, no significant
difference in variance exist between the three sets in both
soft and hard constraints, although an outlier is recorded in
set two (𝛽𝛽 = 0.4, blue) of the soft constraint batch.
 From Fig. 5, the mapping of solution populations to the
objective space is quite different between the soft constraint
batch and the hard constraint batch. In the soft constraint
batch (Fig. 3, upper), a trailing set of feasible solutions lie in
the region dominated by the feasible Pareto set, located in
the upper-east corner of the mapped solutions. Likely, these
dominated solutions survived the selection process due to
their high feasibility, which scaled up their Hypervolume
impact (and fitness measure). Contrarily, the hard constraint
experiment batch is much more consistent in their mapping
in the objective space. However, a significantly lower
feasibility percentage exists in the hard constraint batch.
This suggests that once selection pressure is taken off of a
feasible solution (constant scaling factor in feasible region),
that solution may slip back into the infeasible region by
trading in for a higher Hypervolume.
 Comparing the Pareto set that dominates in the objective
space between the soft constraint solution batch and the hard
constraint solution batch, the Pareto set is roughly the same
as can be seen in Fig. 5, where the objective space is plotted
with the same axes. A deeper look into the solutions that
make up the feasible Pareto front reveals that in the soft
constraint batch, it is equally shared between the
experimental sets with 𝛽𝛽 = 0.2 and 𝛽𝛽 = 0.4. However, the
solutions that makeup the Pareto front in the hard constraint
case consists of solutions exclusively from 𝛽𝛽 = 0.2. This
suggests two phenomena. First, the continued optimization
of feasible solutions in the soft constraint case allows
desirability functions with a slower exponential decay to
contribute feasible solutions to the Pareto front. Second, the
shape parameter has an influence on the final objective
performance of the population. The empirical data obtained
from the above experiments show that a shape parameter of
0.8 results in poor objective performance.

1500 2000 2500 3000 3500 4000 4500 5000
1500

2000

2500

3000

3500

4000

4500

5000

5500

Objective 1

O
bj

ec
tiv

e
2

Objective Mapping of Final Solutions with Soft Constraint

1500 2000 2500 3000 3500 4000 4500 500
1500

2000

2500

3000

3500

4000

4500

5000

5500

Objective 1

Objective Mapping of Final Solutions with Hard Constraint

O
bj

ec
tiv

e
2

VI. CONCLUSIONS AND FUTURE WORK
In this exercise, a proof-of-concept for incorporating

constraint satisfaction in a multi-objective evolutionary
algorithm framework is developed. Experiments conducted
by varying the desirability function parameter, 𝛽𝛽, reveal
expected tradeoffs between the modified Hypervolume
indicator and feasibility. Moreover, results show that the
desirability function parameter, which governs exponential
decay, has an impact on the performance of the solution
population in the objective space. Therefore, it is reasonable
to conclude that the modified Hypervolume indicator is
capable of effectively incorporating constraints to generate
feasible solutions via the MOEA framework. In addition, the
final solution population is significantly more likely to
contain feasible solutions when the problem is formulated
with soft constraints.

Due to the high complexity of generating the modified
Hypervolume, the experiments were only feasible to be run
on a simple bi-objective problem with limited population,
generations, and experimental repetitions. Future work will
address the lengthy computation time of the fitness
evaluation process. This is necessary to validate the results
presented in this report with experiments involving many
more repetitions and higher dimensions. Also, reducing the
computation time of is essential to extending the present
framework to true multi-objective, multi-constraint, real-
world problems, which will also be investigated as a case
study in the future.

VII. REFERENCES
[1] D. Fudenberg and J. Tirole. Game Theory. MIT Press:

1983
[2] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.

Lamont, Evolutionary Algorithms for Solving Multi-
Objective Problems. Norwell,MA. 2002.

[3]K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley, Chichester, UK, 2001.

[4]E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume
Indicator Revisited: On the Design of Pareto-compliant
Indicators Via Weighted Integration. In S. Obayashi et
al., editors, Conference on Evolutionary Multi-Criterion
Optimization (EMO 2007), volume 4403 of LNCS, pages
862-876, Berlin, 2007. Springer.

[5] E. Zitzler, L. Thiele, M. Laumanns, C.M. Foneseca, and
V. Grunert da Fonesca. Performance assessment of
multiobjective optimizers: An analysis and review. IEEE
Transactions on Evolutionary Computation, 7(2):117-
132, 2003.

[6] E.Zitzler and L.Thiele. Multiobjective Optimization
Using Evolutionary Algorithms - A Comparative case
study. In PPSN-V, pages 292–301, Amsterdam, Sept.
1998.

[7] E. Zitzler and L. Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the Strength
Pareto Approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.

[8] J. Bader. (2010). Robustness in Hypervolume-based
Search. Unpublished.

http://en.wikipedia.org/wiki/Jean_Tirole�

	INTRODUCTION
	Problem Formulation
	Multi-objective Programming

	Modified Hypervolume Indicator
	Fitness Assignment
	Scaling Factor for the Hypervolume Indicator

	Implementation of the MOEA Framework
	Experimental Setup and Results
	Experimental Setup
	Experimental Results
	Result Analysis

	Conclusions and Future Work
	References

