
 
 

 

 

Abstract—Many problems across various domains of 
research may be formulated as a multi-objective optimization 
problem. Recently, the Multi-objective Evolutionary Algorithm 
framework (MOEA) has been applied successfully to 
unconstrained multi-objective optimization problems. This 
work adapts the modified Hypervolume indicator to 
incorporate constraints when used within the MOEA 
framework. Results show that the approach is successful in 
generating 90%+ feasible solutions in a simple binary 
Knapsack problem with one soft constraint. Compared to the 
same problem with one hard constraint, these solutions fetch 
roughly the same objective values on the Pareto front. 

 

I. INTRODUCTION 
ULTI-OBJECTIVE optimization problems are found in a 
wide variety of fields, including engineering 

disciplines, finance, and design. Essentially, multi-objective 
optimization may be applied in any problem that requires 
simultaneously optimizing multiple objective variables, 
which are in conflict with each other. Therefore, the 
outcome of a multi-objective optimization process is 
typically a set of solutions as opposed to a single solution. 
The goal of multi-objective optimization is to find such a set 
of solutions that maximizes the objectives as well as cover 
the largest range of possible tradeoffs. For example, a 
portfolio manager who allocates funds for investment may 
have a multitude of conflicting objectives to meet, including 
profit generation, risk management, etc. In addition, the task 
may be subject to constraints, among others, limiting capital 
and investment term as dictated by the situation. In this case, 
the solution vector includes specific amounts for each 
investment vehicle. The gain in each objective is calculated 
by transforming the solution via the specific profit of each 
investment vehicle. Finally, the set of feasible solutions are 
checked by ensuring the solution vector does not exceed the 
constraint conditions by multiplying against its impact on 
the constraints (i.e. “weight”). The purpose of the multi-
objective optimization algorithm is to select a set of 
investment options, which optimize the objectives while 
satisfying the constraints. 
 Such a set of solutions is called the Pareto set [1], where 
each solution in the set is Pareto dominant to the solutions 
excluded from the set. Mathematically, a solution vector Fa 
is said to Pareto dominate, in a minimization problem, 
solution vector 𝐹𝐹𝑏𝑏 , 𝐹𝐹𝑎𝑎 ≼par 𝐹𝐹𝑏𝑏 , iff  

},...2,1{},...,2,1{ ,,,, njffandniff jbjaibia ∈∃<∈∀≤   (1.1) 

 
Zack Z. Zhu is a candidate for MSc in Computational Science and 

Engineering (D-Math/D-Phys). This semester paper is submitted to Tamara 
Ulrich in partial fulfillment of Zhu’s MSc requirements.  

 Traditionally, deterministic techniques such as dynamic 
programming, calculus-based methods, etc. have been used 
to solve “regular” problems that conform to conditions such 
as low-dimensionality, continuous, and/or unimodal.  
However, real-world problems rarely conform to these 
conditions. In order to overcome the shortcomings of 
traditional deterministic methods, stochastic search has been 
employed by many modern methods, such as Evolutionary 
Algorithms (EAs), which are capable in handling high-
dimensional, discontinuous, and multimodal problems.  
 Multi-objective Evolutionary Algorithms (MOEAs) 
iteratively apply operators that are inspired from nature’s 
evolutionary process. In other words, these operators 
recombine solution characteristics (cross-pollination) and 
modify them stochastically (mutation). At the end of each 
generation, a fitness function is used to evaluate the 
“goodness” of the solutions and survival of the fittest is used 
to eliminate the weaker solutions. This is constitutes one 
generation and MOEA runs many generations to reach the 
final population of solutions. MOEA can be intuitively 
applied to unconstrained multi-objective optimization 
problems as they it is a population-based search heuristic. 
However, constraint handling within MOEA has been the 
subject of recent research [2]. Recently, Deb et al. proposed 
a taxonomy that divides constraint handling into two general 
approaches: the penalizing approach and the repair approach 
[3].  

Originally proposed by Richard Courant [2] in the 1940s, 
the penalty function discourages infeasible solutions by 
penalizing the fitness of the solution in the following form: 
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where )(xφ is the modified fitness function that includes the 
original fitness function and the penalization component. Gi 
and Li are functions of the constraints gi(x) and hj(x), 
respectively, while ri and cj are positive penalty factors. In 
typical repair approaches, a heuristic is often used to convert 
an infeasible solution vector { }nyyyy ,..., 21= into a 

feasible solution vector { }',...','' 21 nyyyy = . The simplest 
of such heuristics is to discard the item with the lowest 
profit-to-weight ratio, over all profit dimensions.  
 Often, repair heuristics are hard to design due to the need 
to incorporate domain-specific knowledge. Moreover, these 
heuristics do not guarantee feasible solutions. On the other 
hand, the penalizing method has the disadvantage of leading 
to tradeoffs between the objective and constraint functions. 
In this paper, an approach to incorporate constraint handling 
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by using a modified Hypervolume Indicator (via weighted 
integration) [4] will be assessed as a feasible alternative. 
 Originally, the Hypervolume Indicator [5] was proposed 
in [6,7]. Essentially, it is a measure of the objective space 
dominated by the Pareto set in a population of solution 
vectors. In 2007, it was reported as the only measure known 
in MOEA that is sensitive to any type of improvement and 
guarantees any approximation set, which achieves 
maximally possible measure value, contains all Pareto-
optimal objective vectors [5]. In [4], it was demonstrated 
that a modified Hypervolume Indicator measure can be 
calculated, via weighted integration, to assign different 
weights to different regions in the objective space, with 
reference to some upper-bound. Therefore, the impact of 
each solution on the Hypervolume Indicator may be 
manipulated to affect the “goodness” of the Pareto set 
(subset of solution population). In this paper, the use of 
weighted space in the Hypervolume will be investigated to 
represent constraint (both soft and hard) satisfaction. 
 This paper is organized as follows: Section II presents the 
mathematical formulation of multi-objective problem and its 
representation via the weighted Hypervolume Indicator 
approach. Section III details how constraints satisfaction can 
be represented as weights in the modified Hypervolume 
Indicator approach. Section IV introduces the MOEA 
framework implementation. Section V summarizes the 
experimental results for a 0-1 bi-objective knapsack 
problem. Finally, Section VI concludes with some 
discussion on future work.  

II. PROBLEM FORMULATION 

A. Multi-objective Programming 
The general multi-objective program is defined as 

follows:  
min [𝑓𝑓1(𝑥𝑥), 𝑓𝑓2(𝑥𝑥), … , 𝑓𝑓𝑘𝑘(𝑥𝑥)]𝑇𝑇 

s.t.  𝑔𝑔𝑖𝑖(𝑥𝑥) ≤ 0, 𝑖𝑖 = 1 …𝑚𝑚  
       ℎ𝑗𝑗 (𝑥𝑥) =  0, 𝑗𝑗 = 1 …𝑝𝑝 
         𝑥𝑥𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑥𝑥𝑢𝑢  

where the solution is an N-dimensional vector 𝑥𝑥 =
[𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 ]𝑇𝑇  evaluated for K objective functions. The 
constraints are represented by the function vectors gi(x) and 
hj(x) for inequality and equality constraints, respectively. In 
addition, to keep the problem from being overconstrained, 
the number of constraints must be less than N. 
 In this paper, two types of constraints are differentiated: 
soft constraints and hard constraints. Both constraints 
require the solution to fulfill the feasibility condition. 
However, the feasibility of the soft constraint can be 
optimized (possibility of “more feasible” constraint values). 
On the other hand, hard constraints are simply satisfied or 
unsatisfied. 

III. MODIFIED HYPERVOLUME INDICATOR 

A. Fitness Assignment 
As mentioned in Section I, the MOEA framework follows 

an evolutionary approach to obtain the final population of 
solution vectors. In this paper, a standard evolutionary setup 
is used (detailed in Section IV) while the fitness assignment 
is calculated via the modified Hypervolume Indicator. The 
idea of the modified Hypervolume Indicator was applied to 
build robust solutions in [8]. Here, it is adapted to 
incorporate constraint satisfaction into a solution’s fitness 
measure.  

In the original Hypervolume calculation, the indicator 
function, 𝐼𝐼𝐻𝐻 , for a set of solutions, A, is calculated by 
integrating the attainment function, 𝛼𝛼𝐴𝐴(𝑧𝑧), over the space of 
[−∞: 𝑟̅𝑟], where 𝑧𝑧 is the objective vector and 𝑟̅𝑟 is a pre-
defined reference point. In this case, 𝛼𝛼𝐴𝐴(𝑧𝑧) is simply 0 (non-
dominated) or 1 (dominated) depending on the space 
dominated by the solution set A. Therefore, a solution 𝑥𝑥 ∈ 𝐴𝐴 
contributes its full Hypervolume to 𝐼𝐼𝐻𝐻 , regardless of 
constraint satisfaction. 

To incorporate constraint satisfaction, a modified 
Hypervolume indicator is calculated as in [8] by extending 
the attainment function to incorporate desirability 𝜑𝜑(𝑥𝑥): 𝑥𝑥 →
[0,1]: 

𝛼𝛼𝐴𝐴
𝜑𝜑(𝑧𝑧) ∶= �max𝑥𝑥𝑥𝑥𝑥𝑥 ,𝑓𝑓(𝑥𝑥)≼ 𝑧𝑧 𝜑𝜑(𝑥𝑥)    

0
�  𝑖𝑖𝑖𝑖 𝐴𝐴 ⋞ {𝑧𝑧}
𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

   (3.1) 

The attainment value for some point, 𝑧𝑧, in the objective 
space is the desirability of the most feasible solution 
dominating 𝑧𝑧. Otherwise, it is 0 if no solution dominates 𝑧𝑧. 
Correspondingly, 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴), is calculated by summing over the 
attainment functions: 

𝐼𝐼𝐻𝐻
𝜑𝜑(𝐴𝐴) ≔  ∫ 𝑤𝑤(𝑧𝑧) ∙ 𝛼𝛼𝐴𝐴

𝜑𝜑(𝑧𝑧)𝑑𝑑𝑑𝑑𝑟𝑟̅
(−∞ ,…,−∞)       (3.2) 

where 𝑤𝑤(𝑧𝑧) is the weight of the point 𝑧𝑧. For the purposes of 
this paper, all points in Z are assumed to be equal to 1. 
Finally, the fitness of a solution based on the Hypervolume 
indicator for the solution population, A, is calculated as 
follows: 

𝐼𝐼𝐹𝐹
𝜑𝜑(𝑥𝑥) ≔ 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴) − 𝐼𝐼𝐻𝐻
𝜑𝜑(𝐴𝐴\𝑥𝑥)      (3.3) 

where the fitness of a solution is equal to its impact on the 
combined Hypervolume for the solution set A.  

For a bi-objective problem with five solution vectors (of 
length 2), a graphical representation of the original 
Hypervolume space is depicted in Figure 1. 

 

 
Fig. 1. Hypervolume Example Plots  
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From the upper plot in Fig.1, the solution set, A, is plotted 
(blue circles) in the objective space, where they obtain 
objective values of (3, 6), (7,13), (11,10), (14, 8), (17,4). In 
addition, the upper-bound is plotted (red triangle) at (22, 18). 
For this example, the desirability vector 𝜑𝜑(𝑥̅𝑥) of [2, 8, 6, 3, 
5]T is used. According to Equation 3.1, the desirability factor 
used to calculate the attainment equation for different 
portions of the objective space is labelled in Fig. 1. 
Calculating  𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴) by multiplying labelled spaces with their 
respective desirability value, one obtains 1154 for the above 
example. Furthermore, one obtains values of 𝐼𝐼𝐻𝐻

𝜑𝜑(𝐴𝐴\𝑥̅𝑥) = 
[966, 924, 1076, 1148, 1054]T for 𝑥̅𝑥 = [(3, 6), (7,13), (11,10), 
(14, 8), (17,4)]. The respective fitness of the solutions are: 
𝐼𝐼𝐹𝐹
𝜑𝜑(𝑥̅𝑥) = [188, 230, 78, 6, 100]T. 

B. Scaling Factor for the Hypervolume Indicator 
As described previously, a scaling factor 𝜑𝜑𝑖𝑖(𝑥𝑥) is 

calculated for the Hypervolume of solution x with respect to 
its feasibility over the constraint condition i.  

Intuitively, hard constraints are simply satisfied (scaling 
factor of 1) or unsatisfied (scaling factor of 0). 
Unfortunately, this setup is not capable of applying direct 
selection pressure to penalize infeasible solutions and drive 
the solution population towards feasibility.  For the results 
reported in the next section, a family of exponential 
functions are used to “pressure” infeasible solutions towards 
the feasibility boundary. As hard constraints do not 
differentiate between feasible solutions, the scaling factor 
𝜑𝜑𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎  is assigned a constant weight while infeasible 
solutions have scaling factors that are exponentially 
decreasing as a function of distance from the feasibility 
boundary. Mathematically, the scaling factor for hard 
constraint is expressed as: 

𝜑𝜑𝑖𝑖ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (𝑥𝑥) = �
1

𝑒𝑒−𝛽𝛽�𝑥𝑥𝑖𝑖−𝛼𝛼𝑖𝑖�

2𝑒𝑒𝛽𝛽

�         𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 ≤ 𝛼𝛼
𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 > 𝛼𝛼    (3.4) 

where 0 ≤ 𝛽𝛽 ≤ 1 is the shape parameter determining the 
exponential function’s rate of change and 𝛼𝛼𝑖𝑖  is the feasibility 
constraint for the ith constraint. 
 For soft constraints, the scaling factor reflects the need to 
optimize for feasibility. Therefore, a linearly increasing 
function is used to reflect “better” feasibility as a solution 
moves inside the feasibility region. Similar to the hard 
constraint, the region outside of the feasibility boundary 
exponentially decreases as the solution moves away from the 
feasible region. Mathematically, the scaling factor 𝜑𝜑𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   is 
calculated as follows: 

𝜑𝜑𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑥𝑥)  = �

�𝑙𝑙−𝑢𝑢
𝛼𝛼−𝐿𝐿

� 𝑥𝑥𝑖𝑖 + 𝑏𝑏

𝑒𝑒−𝛽𝛽�𝑥𝑥𝑖𝑖−𝛼𝛼
(𝑖𝑖)�

2𝑒𝑒𝛽𝛽

           
𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 ≤ 𝛼𝛼

𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥𝑖𝑖 > 𝛼𝛼
�    (3.5) 

where l is the value of the scaling factor at 𝛼𝛼, u is the value 
of the scaling factor at L, the lowest possible value for xi, 
and b is a shifting constant for the function to be placed in 
the desired location. 
 Fig. 2 shows the behaviour of the above desirability 

functions with representative parameters 𝛽𝛽=0.2 and 𝛽𝛽=0.8 
and 𝛼𝛼=271.5. 

  

  
Fig. 2: Comparison of desirability function with various 𝛽𝛽  

IV. IMPLEMENTATION OF THE MOEA FRAMEWORK 
The abovementioned concepts are implemented and 

executed within a standard MOEA Framework in Matlab 
R2009a. The general structure is presented as a flowchart in 
Fig. 3. The main components of the framework are briefly 
explained afterwards. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: MOEA implementation flow chart  

Initialize Problem Parameters: Problem parameters are 
randomly generated and loaded into the framework. 
Initialize Random Solutions: The first population of 
solutions (size 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ) are randomly generated with respect to 
the problem context (binary, integer, etc.). 
Parent Selection: A standard fitness selection method, 
Roulette Selection, is used to select 𝜆𝜆𝑝𝑝  of the fitter 
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individuals in the population to be candidates for variation. 
This produces the parent population. 
Variation Operators: A standard crossover method, one-
point crossover, is used to recombine partial solution 
characteristics. Following, a mutation operator is applied to 
randomly modify a component for a small percentage of the 
solution population. The resulting population is the children 
population, 𝜆𝜆𝑐𝑐 . 
Environmental Selection: Combining the parent and children 
population, the fittest 𝜆𝜆𝑤𝑤  solutions are promoted to the next 
generation. 
Fitness Evaluation: This function calculates the 
Hypervolume impact, 𝐼𝐼𝐹𝐹

𝜑𝜑 , for the input solution vectors 
based on the methodology explained in Section III.A. 
Desirability Function: This function determines the 
desirability factor for each solution based on problem 
parameters that represent the constraint conditions. It 
facilitates the calculations of fitness for individual solutions. 
The calculations are based on the methodology explained in 
Section III.B. 

V. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup 
For the test problem, a standard 0-1 Knapsack problem is 

used.   Due to time constraints and the high runtime 
complexity of the fitness function (O(N4)), a relatively small 
population is run for a bi-objective problem. Table I 
summarizes the problem parameters. 

TABLE I 
EXPERIMENTAL PROBLEM PARAMETERS 

Symbol Description Value 

i Number of objectives 2 
j Number of available items 100 

wji Weight of item j on objective i Random integer on [0, 10] 
pji Profit of item j on objective i Random integer on [10, 100] 
𝛼𝛼i Capacity of objective i 0.5*max(wi) 

 
As the objective of this paper is to study the effectiveness 

of incorporating constraint handling within the modified 
Hypervolume indicator, standard binary Genetic Algorithm 
(GA) operators are used as described in Section IV. Table II 
summarizes the experimental parameters for the MOEA 
framework. 

TABLE II 
MOEA PARAMETERS 

Symbol Description Value 

G Number of generations  100 
S Solution representation Binary vector 
𝜆𝜆𝑤𝑤  Total population 50 
𝜆𝜆𝑝𝑝  Parent population 50 
𝜆𝜆𝑐𝑐  Children population 50 
𝜇𝜇 Mutation percentage 0.05 

 
Two measures are of importance in this report: the total 

Hypervolume achieved by the final solution population and 
the percentage of feasible solutions. The experiments run for 
this report investigate the influence of the desirability 

function shape (𝛽𝛽) and the use of soft and hard constraints 
on these two measures.  

B. Experimental Results 
Experiments are run for fixed problem parameters and a 

set of five randomization seeds. To maintain consistency, 
one constraint, either soft or hard, is applied to the second 
dimension (i=2). For varying shape parameters (𝛽𝛽=[0.2, 0.4, 
0.8]), the respective Hypervolume indicators are graphed:  

 

 
Fig. 4. Shape Parameter Analysis 

(Upper: Soft Constraint; Lower: Hard Constraint) 

In Fig. 4, the Hypervolumes achieved in the final solution 
population are graphed with coloured asterisks according to 
the three sets of five repetitions. Set averages are calculated 
and plotted for reference. They are denoted by black 
triangular markers. 

To analyze the solutions generated by the various shape 
parameters, first, an overview of the solution mapping in the 
objective space is provided in Fig. 5. Following, Table III 
tabulates the percentages of feasible solutions. 
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Fig. 5. Objective Mapping of Final Solutions  

(Upper: Soft Constraint; Lower: Hard Constraints) 

 In Fig. 5, the final solution population from the three sets 
(5 iterations/set) of experiments (according to varying 𝛽𝛽) are 
plotted in the objective space. Red markers represent 
infeasible solutions while green markers represent feasible 
solutions. As well, a blue triangle is plotted in the objective 
space to denote the maximum attainable profit in both 
objectives. 

TABLE III 
FINAL SOLUTION POPULATION FEASIBILITY AND HYPERVOLUME 

Description Average 
Feasibility 

Average 
Hypervolume 

Soft Constraint, Beta = 0.2  81.6% 9.028 X 106 
Soft Constraint, Beta = 0.4 91.2% 9.024 x 106 
Soft Constraint, Beta = 0.8 94.0% 8.557 x 106 
Hard Constraint, Beta = 0.2 14.8% 1.304 x 107 
Hard Constraint, Beta = 0.4 14.4% 1.201 x 107 
Hard Constraint, Beta = 0.8 21.6% 1.150 x 107 

 

C. Result Analysis 
From Fig. 4, the shape parameter, β, has considerable 

influence on the final Hypervolume indicator. For the 
experiments conducted with soft constraints (Fig. 4, top), the 
Hypervolume indicator, on average, declines with an 
increasing shape parameter. This is consistent with 
expectations as a higher 𝛽𝛽 value creates a faster exponential 
decay used in the desirability function (see Fig. 2). As a 
result, an infeasible solution in experiments with higher β 
values are assigned lower scaling factors than the same 
solution with a lower 𝛽𝛽 value. This in turn lowers the 

solution’s fitness. However, infeasible solutions with lower 
scaling factors but high Hypervolume impact (𝐼𝐼𝐹𝐹

𝜑𝜑 ), may still 
survive the fitness selection process. Essentially, a faster 
decaying desirability function trades off Hypervolume for 
constraint satisfaction (see Table III). 

For the experiments conducted with hard constraints, a 
similar pattern is revealed. As no significant outliers exist in 
this batch of empirical data, the average Hypervolume 
obtained for the three experimental sets declines almost 
linearly with an exponentially (base 2) increasing β 
parameter. Comparing the overall Hypervolume obtained 
between the hard constraint batch and the soft constraint 
batch, the hard constraint consistently achieves higher 
Hypervolume. This is also within expectations since hard 
constraints do not continue to optimize feasible solutions 
while soft constraints do. Optimizing feasible solutions has 
the drawback of losing objective value; however, it provides 
a “margin of safety” against a solution falling back into its 
infeasible state. 

In terms of consistency within a data set, no significant 
difference in variance exist between the three sets in both 
soft and hard constraints, although an outlier is recorded in 
set two (𝛽𝛽 = 0.4, blue) of the soft constraint batch. 
 From Fig. 5, the mapping of solution populations to the 
objective space is quite different between the soft constraint 
batch and the hard constraint batch. In the soft constraint 
batch (Fig. 3, upper), a trailing set of feasible solutions lie in 
the region dominated by the feasible Pareto set, located in 
the upper-east corner of the mapped solutions. Likely, these 
dominated solutions survived the selection process due to 
their high feasibility, which scaled up their Hypervolume 
impact (and fitness measure). Contrarily, the hard constraint 
experiment batch is much more consistent in their mapping 
in the objective space. However, a significantly lower 
feasibility percentage exists in the hard constraint batch. 
This suggests that once selection pressure is taken off of a 
feasible solution (constant scaling factor in feasible region), 
that solution may slip back into the infeasible region by 
trading in for a higher Hypervolume. 
 Comparing the Pareto set that dominates in the objective 
space between the soft constraint solution batch and the hard 
constraint solution batch, the Pareto set is roughly the same 
as can be seen in Fig. 5, where the objective space is plotted 
with the same axes. A deeper look into the solutions that 
make up the feasible Pareto front reveals that in the soft 
constraint batch, it is equally shared between the 
experimental sets with 𝛽𝛽 = 0.2 and 𝛽𝛽 = 0.4. However, the 
solutions that makeup the Pareto front in the hard constraint 
case consists of solutions exclusively from 𝛽𝛽 = 0.2. This 
suggests two phenomena. First, the continued optimization 
of feasible solutions in the soft constraint case allows 
desirability functions with a slower exponential decay to 
contribute feasible solutions to the Pareto front. Second, the 
shape parameter has an influence on the final objective 
performance of the population. The empirical data obtained 
from the above experiments show that a shape parameter of 
0.8 results in poor objective performance. 
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VI. CONCLUSIONS AND FUTURE WORK 
In this exercise, a proof-of-concept for incorporating 

constraint satisfaction in a multi-objective evolutionary 
algorithm framework is developed. Experiments conducted 
by varying the desirability function parameter, 𝛽𝛽, reveal 
expected tradeoffs between the modified Hypervolume 
indicator and feasibility. Moreover, results show that the 
desirability function parameter, which governs exponential 
decay, has an impact on the performance of the solution 
population in the objective space. Therefore, it is reasonable 
to conclude that the modified Hypervolume indicator is 
capable of effectively incorporating constraints to generate 
feasible solutions via the MOEA framework. In addition, the 
final solution population is significantly more likely to 
contain feasible solutions when the problem is formulated 
with soft constraints. 

Due to the high complexity of generating the modified 
Hypervolume, the experiments were only feasible to be run 
on a simple bi-objective problem with limited population, 
generations, and experimental repetitions. Future work will 
address the lengthy computation time of the fitness 
evaluation process. This is necessary to validate the results 
presented in this report with experiments involving many 
more repetitions and higher dimensions. Also, reducing the 
computation time of is essential to extending the present 
framework to true multi-objective, multi-constraint, real-
world problems, which will also be investigated as a case 
study in the future. 
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